Ontology-based documentation extraction for
semi-automatic migration of Java code

Davide Ancona

davide@disi.unige.it

Viviana Mascardi

mascardi@disi.unige.it

Ombretta Pavarino

ombretta.pavarino@virgilio.it

DISI - Universita di Genova
Via Dodecaneso, 35
16146 Genova, ltaly

ABSTRACT

Migrating libraries is not a trivial task, even under the sim-
plest assumption of a downward compatible upgrade. We
propose a novel approach to partially relieve programmers
from this task, based on the simple observation that class,
method and field names and comments contained in a Java
library should be a good approximation of its semantics, and
that code migration requires knowing the semantic similar-
ities between the two libraries.

Following this assumption, we borrow the main concepts
and notions from the Semantic Web, and show how (1) an
ontology can be automatically generated from the relevant
information extracted from the code of the library; (2) se-
mantic similarities between two different libraries can be
found by running a particular ontology matching (a.k.a. on-
tology alignment) algorithm on the two ontologies extracted
from the libraries. The main advantages of the approach
are that ontology extraction can be fully automated, with-
out adding ad-hoc code annotations, and that results and
tools produced by the Semantic Web research community
can be directly re-used for our purposes.

Experiments carried out even with simple and efficient
freely available matchers show that our approach is promis-
ing, even though it would benefit from the use of more ad-
vanced ontology matchers possibly integrated with a compo-
nent for checking type compatibility of the computed align-
ments.

*This work has been partially supported by MIUR DISCO
Distribution, Interaction, Specification, Composition for
Object Systems.

2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by
an employee, contractor or affiliate of the national govern-
ment of Italy. As such, the government of Italy retains a
nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes
only.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Portability; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—=Software libraries

General Terms

Documentation

Keywords

Code migration, ontology, ontology matching

1. INTRODUCTION

Migrating code for replacing a used library [with a new
one I’ may be a non trivial, resource consuming, and error
prone task, even under the simplest case where [’ is just a
downward compatible upgrade of {. In this paper we will
focus on the Java language, even though the proposed ap-
proach could be applied to any other programming language.

Let us consider the problem of migrating a Java applica-
tion from JDK API 1.0 to 6.0. If such an application uses
the deprecated method boolean handleEvent(Event) in class
java.awtComponent, then a correct migration should replace
such a method with void processEvent (AWTEvent); however,
automatically finding such a replacement is far from being
simple, since the two methods are not even type compati-
ble (neither the parameter types, nor the return types are
compatible).

A possible solution to this problem consists in adopting a
notion of semantic similarity between classes, methods, and
fields, by considering names and comments as a good ap-
proximation of the semantics of a library; such information
can be easily extracted automatically from the code. With
this premise, we can borrow the main concepts and notions
from the Semantic Web: the approximated semantics of a
Java library consists of (the meaning of) its names, and of its
comments, and the relationship existing among such names.

This approach allows an application to infer the seman-
tic similarity of classes Event and AWTEvent, and methods
handleEvent and processEvent. This can be achieved by (1)
automatically generating an ontology from the relevant in-
formation extracted from the code of the library; (2) find-
ing the semantic similarities between two different libraries
by running a particular ontology matching (a.k.a. ontology
alignment) algorithm on the two ontologies extracted from
the libraries. This approach has several advantages.

Extraction of semantic information and generation of the
corresponding ontology from a library can be fully auto-
mated, and no additional specific semantic annotations are
required; based on the Javadoc technology, we have imple-
mented an ontology extractor with a rather simple doclet
(less than 1K LOC) suitable to be easily extended in order
to get more advanced ontology extractors.

Another advantage consists in the possibility of reusing re-
sults and tools produced by the Semantic Web research com-
munity: the ontology extractor we have developed makes in-
tensive use of Jena [4], a Java framework for building Seman-
tic Web applications. Furthermore, the experiments we have
carried out to compute the semantic similarities between en-
tities of different Java libraries are based on Alignment API
[6], a well-known open source tool that implements several
simple and efficient ontology matching algorithms.

Information extracted and organized in an ontology can
be fruitfully used for aiding developers during migration of
software from an old library to a new one; in particular,
our experiments show that programmers can be partially
relieved from the burden of deducing from the documenta-
tion the correct correspondences between entities of the old
and of the new library. This task is time consuming and in
some cases may be also complex; our initial example shows
that even when migration involves different versions of the
same library, replacing just the deprecated entities is not
enough: for instance, as of JDK 1.1, class java.awt.Event
is obsolete (but not deprecated), but it should be replaced
by class java.awt.AWTEvent. Migration becomes even more
complex when it involves two different libraries where one
is not an upgrade of the other, and, therefore, more serious
compatibility issues may arise.

In general, automatic extraction of ontology-based docu-
mentation from code opens up other interesting possibilities:
alignments between ontologies extracted from libraries [and
" may provide software metrics which are useful to get an
estimate of the costs needed for migrating software from [
to I’. Finally, advanced web search engines for domain spe-
cific libraries could fruitfully exploit automatic extraction of
ontology-based documentation from software, to assist pro-
grammers during the software development process.

The paper is structured as follows. Section [2] provides the
necessary background on OWL (Web Ontology Language),
ontology matchers, Jena, and Javadoc, Section |3| presents
the main design aspects and some implementation details
of the ontology extractor we have developed. Experiments
carried out with four ontology matchers are presented in
Section[d] Finally, Section[f]is devoted to related work, and
Section [6] draws conclusions.

2. BACKGROUND

In this section we introduce the OWL ontology language
(Section 2.1)), the Jena framework (Section [2.2)), the ontol-
ogy matching problem (Section [2.3]), and the Javadoc tool

(Section 2.4).
2.1 The Web Ontology Language OWL

In computer science, an ontology |11] formalizes a domain
of knowledge by means of primitive concepts, called classes
and properties, and their relationships. The definitions of
classes and properties include information about their mean-
ing and constraints on their logically consistent application.

OWL [19] is the most widespread language for represent-

ing ontologies, and it is considered a de-facto standard. OWL
provides three increasingly expressive sublanguages: OWL
Lite, OWL DL, and OWL Full; for our purposes OWL Lite
has proved to be the most suitable choice.

For brevity, we summarize only the few aspects needed
to understand the technical details contained in the paper.
In the examples we use the more compact functional-style
syntax, instead of the more concrete (but also verbose) RD-
F/XML exchange syntax.

Namespace. Namespaces are inherited by OWL from XML.
XML namespaces provide a method for qualifying element
and attribute names used in XML documents by associat-
ing them with namespaces identified by URI references. A
standard initial component of an ontology includes a set of
XML namespace declarations that provide a means to un-
ambiguously interpret identifiers and make the rest of the
ontology presentation much more readable.

Classes. A class defines a group of individuals sharing some
commonalities. For instance, the functional-style syntax for
declaring class Window is Declaration(Class(:Window)).
Subclasses. Class hierarchies may be created by specify-
ing that a class is a subclass of another class. For instance,
SubClassOf (:Frame :Window) expresses in functional-style
syntax the fact that class Frame is a subclass of class Window.
In OWL, each user-defined class is implicitly a subclass of
class Thing.

Properties. Properties define relationships between indi-
viduals (object properties) or relate individuals to data val-
ues (datatype properties). Each property has a domain and
a range. For instance, the following functional-style syntax
defines the object property size with class Window as domain,
and class Dimension as range.

Declaration(ObjectProperty(:size))
ObjectPropertyDomain(:size :Window)
ObjectPropertyRange(:size :Dimension)

Analogously, the datatype property opacity is declared as
follows:
Declaration(DataProperty(:opacity))
DataPropertyDomain(:opacity :Window)
DataPropertyRange (:opacity xsd:float)

In OWL, classes and properties declared in the same names-
pace must have distinct names.

2.2 The Jena library

Jena (http://www.openjena.org/) is a Java framework
for building Semantic Web applications. It is an open source
project grown out of work with the HP Labs Semantic Web
Programme and includes the OWL API used for implement-
ing the ontology extractor described in Section

The most useful Jena feature for our purpose is the ontol-
ogy model created through the Jena ModelFactory class. The
factory provides a method createOntologyModel to create an
ontology model which implements the 0ntModel interface and
contains ontology data expressed in any of the three OWL
sublanguages.

OntModel myOntoModel =
ModelFactory.createOntologyModel (spec);

The spec parameter of type OntModelSpec specifies the ontol-
ogy model settings with respect to sublanguage, in-memory
storage, and inference capabilities.

Namespaces are set using the setNsPrefix(String prefix,
String URI) method that declares that the namespace URI

http://www.openjena.org/

may be abbreviated by prefix. Once serialized on file, the
RDF/XML writer will turn these prefix declarations into
XML namespace declarations and use them in its output.

All of the classes in the ontology API that represent on-
tology entities have OntResource as a common super-class:
OntClass and OntProperty are two of them, with intuitive
meaning.

An ontology model can be created and modified in many
ways.

An ontology in RDF/XML exchange syntax can be read
from a file or retrieved from the URL corresponding to the
ontology URI, by using the read method:

myOntoModel.read (URI, "RDF/XML");

New resources can be added to the ontology model using

the corresponding method (createClass, createObjectProperty,

createDatatypeProperty)

OntClass myClass =
myOntoModel.createClass ();

New associations can be added to the subclass relation:
myClass.addSubClass (mySubClass) ;

corresponds to the declaration

SubClass0f (:mySubClass :myClass).

Once an ontology model is completed, the write method
can be used to serialize the model on a file; for instance,

myOntoModel.write(str, "RDF/XML")};

writes in RDF/XML exchange syntax the ontology corre-
sponding to myOntoModel on the file associated with Stream
str.

2.3 Ontology Matching

A correspondence [9] between an entity E; belonging to
ontology O; and an entity E2 belonging to ontology O: is a
5-tuple < Id, Fh, E2, Rel, Conf > where Id is a unique iden-
tifier of the correspondence; E1 and E» are the entities (e.g.
properties, classes, individuals) of O; and O2 respectively;
Rel is a relation such as “equivalence”, “more general”, “dis-
jointness”, “overlapping”, holding between the entities E;
and Fs (in this paper we only consider the equivalence re-
lation); Conf is a confidence measure (typically in the [0, 1]
range) holding for the correspondence between the entities
E1 and EQ.

An alignment of ontologies O; and Oz is a set of corre-
spondences between entities of O1 and Os.

A matching process can be seen as a function F' which
takes two ontologies O; and O2, a set of parameters P and
a set of oracles and resources Res, and returns an alignment
A between O; and Os.

Often, the main activity of a matching method is to mea-
sure a pair-wise similarity between entities and to compute
the best match between them. These methods exploit the
definitions of similarity and of distance, and may be roughly
classified into “name-based”, “structure-based”, “extensional”
and “semantic-based” according to the kind of input they op-
erate on.

Since we exploit name-based methods (string-based and
language-based ones) in our experiments, we give a brief
account of them only.

String-based methods. These methods measure the similar-
ity of two entities just looking at the strings, seen as mere
sequences of characters, that label them. They include:

Substring Distance: measures the ratio of the longest
common substring of two strings with respect to their length.

n-gram Distance: two strings are the more similar, the
more n-grams (sequences of n characters) in common they
have [3].

SMOA Measure: similarity of two strings is a function

of their commonalities (in terms of substrings) as well as of
their differences [17].
Language-based methods. These methods exploit natural
language processing techniques to find the similarity be-
tween two strings seen as meaningful pieces of text rather
than sequences of characters. Some of these methods ex-
ploit external resources, such as WordNet [13], that provide
semantic relations such as synonymy, hyponymy, and hyper-
nymy, to compute the similarity.

2.4 Javadoc and Doclet

Javadoc is a JDK tool that parses declarations and com-
ments contained in a Java program or library, to generate
HTML human readable documentation. The list of source
files and package names that have to be processed must be
passed as an argument to the tool; all subpackages of a given
package are recursively processed when the -subpackage op-
tion is provided.

Javadoc has proved to be the ideal tool for our purposes,
since it has been expressly designed to automatically extract
software documentation from the source code. The tool is
based on the javac parser, but no typechecking is performed,
therefore documentation can be successfully generated also
when all method bodies are empty or, in general, do not
typecheck (even though they must be syntactically correct);
in this way developers can generate software documentation
also at early stages of design when code cannot be success-
fully compiled yet.

The notion of doclet allows easy customization of the tool
to generate any kind of documentation. A doclet is a class
that uses the standard doclet API defined in the package
com.sun. javadoc to inspect the Java source code and gener-
ate the desired form of documentation. The default doclet
is the standard predefined one generating the usual HTML
documentation; however, it is possible to hook up Javadoc
with a specific customized doclet with the option -doclet.
More in details, each doclet must provide the public and
static method boolean start(RootDoc root) which is auto-
matically invoked by Javadoc. RootDoc is a subinterface of
Doc which is at the root of the interface hierarchy of the API,
and allows visiting the parse tree generated by javadoc.

3. ONTOLOGY EXTRACTION

In this section we present Ontlet, a doclet which allows
extraction of lightweight ontologies from Java source code,
and which has been explicitly designed to be easily extended.

The implementation of such a doclet is succinct, thanks to
the intensive use of the Doclet API and of the Jena library
(see Section [2).

3.1 Basic design decisions

Simplicity has been one of the main design choices driving
the development of Ontlet: the simplest possible translation
has been considered for each element of the language. While
for some entities, like classes, the simplest translation is also
the most suitable one, for other entities, like methods, there
is not a most natural choice. However, keeping the extracted

ontology as simple as possible has several advantages. Our
choice has allowed us to quickly develop a doclet (less than
1K LOC), with which we have been able to start experiment-
ing our approach on the whole Java language and on large
existing libraries (see Section . Experiments are essential
to validate our design decisions, or to point out weak points,
and to show interesting directions for enhancements; the do-
clet has been designed to ease modifications and extensions,
to support an incremental approach to the problem: try the
simplest solutions first, consider more elaborated ones only
if the former do not work properly. Finally, keeping the
generated ontology simple has allowed us to start our exper-
iments with the simplest available matching algorithms, and
to avoid performance penalties that may occur when manip-
ulating complex ontologies or using sophisticated matching
algorithms.
Ontology boundaries and dependencies. An ontology
always corresponds to a set of Java packages which must
be explicitly specified by the user. 0Ontlet recognizes the
standard Java API, and maps it to a set of predefined on-
tologies; for non standard imported packages, the user has to
provide an explicit mapping between imported packages and
external ontologies with all information needed by Ontlet to
create the required namespaces.
Namespaces. In OWL, classes and properties in the same
namespace must have distinct names, therefore a different
namespace must be created for each Java package, sub-
package and class. For instance, if class C is declared in
package pck.test, then the following namespaces are gen-
erated: pck.test and pck.test.C corresponding to the di-
rectory ~/Java/pck/test and the file “/Java/pck/test/C. java,
respectively.
Classes and interfaces. Java classes (including exceptions
and enums) and interfaces are translated uniformly in corre-
sponding ontology classes. Except for local and anonymous
classes, nested classes are translated as well into ontology
classes contained in the namespace corresponding to their
enclosing class. Static nested and inner classes are treated
uniformly.

For instance, given the following class declaration

class C; extends C3 implements I1,...1, { ... }

the generated ontology will contain class C;, declared as a
subclass of Ca, and of I1,... I,.

Finally, the deprecated tag detected by Javadoc is trans-

lated by using the standard OWL notation for deprecated
classes.
Fields. Each Java class field is translated into an object or
datatype property; excluding the special case of arrays, fields
of reference type correspond to object properties, whereas
fields with primitive types correspond to datatype proper-
ties. The domain of the property is the enclosing class of the
field, while the range corresponds to the type of the field.
The translation does not discriminate between static fields
and instance variables

If a field is an array, then the translation is more elabo-
rated: in this case the range of the generated object prop-
erty is always the ontology class corresponding to the class
java.lang.reflect.Array; the type information that cannot
be easily encoded in the ontology are kept in form of anno-
tations of the property.

Finally, if a field is deprecated, the corresponding gen-
erated property contains the standard OWL notation for

deprecated properties.

Constructors and methods. Methods are translated into
object properties where the domain corresponds to the en-
closing class, whereas the range is the ontology class corre-
sponding to class java.lang.reflect.Method. The property
belongs to the namespace generated from the enclosing class,
and its name coincides with the name of the corresponding
method. The translation has been kept deliberately sim-
ple: there is no distinction between abstract, static and in-
stance methods, throws clauses are ignored, and overloaded
methods declared in the same class are always mapped to
a unique property. However, the return type and the sig-
nature of overloaded methods are kept in the ontology in
form of annotations of the corresponding object property.
Keeping such information in form of annotation leaves the
opportunity to develop specific matching algorithms based
also on type compatibility.

When only some overloaded version of a method are dep-
recated, a special annotation is generated, bound to the cor-
responding method signature. The property is annotated
as deprecated only when all overloaded methods are depre-
cated.

Finally, for constructors only annotations are generated,
associated with the corresponding enclosing class; they con-
tain information on the signatures of all overloaded versions,
and on deprecated constructors.

To better understand how the translation works, we con-
sider the two classes given in Figure The ontology entities

Point Point2D
int x; inty; {>
void setLocation(double x, double y)
void setLocation(Point p)

void setLocation(double x, double y)
void setLocation(Point2D p)

Figure 1: Classes Point2D and Point

generated from the two classes are graphically described in
Figure 2] Rectangles and ovals represent classes and prop-
erties, respectively. Domains and ranges of properties are
represented by incoming and outgoing black arrows, respec-
tively. White arrows represent subclass and subproperty
relations. Light blue (or gray) corresponds to objects, dark
orange (or gray) corresponds to datatypes.

Ignored Java features. The doclet ignores all kinds of
class, method, and fields modifiers, as well as all information
regarding generic classes and methods, and parameterized
types. Furthermore, there is a handful of other information
extracted by Javadoc that are disregarded by the doclet.

3.2 Design of Ontlet

To make the doclet easily extensible, we have implemented
the bridge design pattern |10| for decoupling the ontology
extraction process from the other relevant activities. Fig-
ure[Bldescribes the three classes which constitute the bulk of
the application. Ontlet is the main class implementing the
doclet; it provides the static method start which is auto-
matically invoked by Javadoc. Such a method inspects the
input source code through the parameter root: all classes
of the specified packages are visited, and for each of them

N
AccessibleObject
JAN

Figure 2: Translation of Point2D and Point

all declared fields, constructors, and methods are consid-
ered. All nested classes are processed as well, accordingly
to the behavior of method allClasses of RootDoc. Ontlet

Ontlet AbstractExtractor

static ex : Extractor
start(root:RootDoc)

process(p:PackageDoc)

Extractor

process(p:PackageDoc)

Figure 3: Main classes of the Ontlet

delegates to class Extractor the generation of all ontology
entities, through the object stored in the static field ex of
type AbstractExtractor. The visited program elements are
those filtered by the access control Javadoc options (-public,
-protected, -package, and -private). Ontlet is also responsi-
ble for processing all Javadoc options, and properly initializ-
ing the static variable ex with an instance of class Extractor;
during such an initialization all options processed by the
doclet are passed to the object implementing the ontology
extractor. In case class Extractor is extended, proper initial-
ization of field ex with an instance of the subclass of class
Extractor can be managed by redefining method start, pos-
sibly in a subclass of Ontlet.

AbstractExtractor class. This abstract class defines all
basic features of an extractor. It contains abstract over-
loaded methods for processing all main Java entities:
abstract void process(PackageDoc pd);

abstract void process(ClassDoc cd);

abstract void process(ConstructorDoc cd);

abstract void process(FieldDoc £d);
abstract void process(MethodDoc md);

The method for processing classes assumes that the passed
class belongs to the current package, that is, the last pro-
cessed package; similarly, methods for processing construc-

tors, fields, and methods assume that the passed arguments
belong to the current class, that is, the last processed class.
Finally, AbstractExtractor is responsible for creating and ini-
tializing the proper Jena ontology model, for storing all op-
tions processed by Ontlet, and for serializing the generated
ontology into a file specified in the options. Several lan-
guages can be selected when writing an ontology.
Extractor class. This class implements the informal speci-
fication given in Section[3.1] by overriding all abstract meth-
ods inherited from AbstractExtractor. More sophisticated
extraction processes can be obtained by extending such a
base class.

4. EXPERIMENTS

In order to test the feasibility of our approach we have
extracted six ontologies from three pairs of Java libraries,
each consisting of an older and a newer version of the same
library, and run on each pair four freely available implemen-
tations of ontology matching algorithms.

To be able to correctly evaluate an alignment computed
by an ontology matcher, one has to provide first a reference
alignment that contains only all correct associations, and
that is typically built manually. This is a time consuming
task consisting in thoroughly analyzing the API documenta-
tion to discover how deprecated entities should be correctly
replaced. Indeed, one of the main motivations of our work
is just to allow users to save this time (at least partially),
by using a tool able to generate all correct associations.

Since two versions of the same library are likely to have
a very similar structure, these experiments allow us to es-
tablish whether in these cases it is possible to obtain good
results also with those simpler ontology matchers that dis-
regard the structure of ontologies.

Of course, it would be also very interesting to perform
experiments to compare different libraries, rather than dif-
ferent versions of the same library. However, in this case
building a reference alignment is a much more complex task,
and we expect that more sophisticated matching algorithms
are required to get significant results.

The libraries we selected are very different in number of
declarations, ranging from java.awt with hundreds of classes,
and thousands of fields and methods, to java.net with less
then one hundred classes and fields, and around 500 meth-
ods. The percentage of deprecated entities varies as well:
java.awt and java.net do not have deprecated classes, but
have a significant percentage of deprecated methods (reach-
ing its maximum with java.awt) and less deprecated fields,
whereas java.security has more deprecated classes than meth-
ods and fields.

On each pair of extracted ontologies we have run three
string-based ontology matching algorithms, SMOA | substring
and n-grams, and one language-based algorithm that uses
WordNet to exploit the semantics of concepts appearing in
the ontology.

For each experiment we have forced replacement of depre-
cated entities with non deprecated ones by simply removing
all deprecated entities from the target ontologies.

4.1 Followed methodology

We used the substring, n-gram, SMOA, and WordNet-
based ontology matchers offered by the Alignment AP]EI 4.1.

"http://alignapi.gforge.inria.fr/

http://alignapi.gforge.inria.fr/

The accuracy of the algorithms have been estimated by
comparing the generated alignments with the reference ones
in terms of the standard notions of precision, recall and F-
measure |7].

To compute precision and recall, the alignment a returned
by the algorithm is compared to a reference alignment 7.
Precision is given by the formula P(a,r) = |rNa|/| a | and
recall is defined as R(a,r) = |rNa|/| r|. A perfect preci-
sion score of 1.0 means that every correspondence computed
by the algorithm was correct (correctness), whereas a per-
fect recall score of 1.0 means that all correct correspondences
were found (completeness).

F-measure is the harmonic mean of precision and recall:
F=2-P(a,r)- R(a,7)/(P(a,r) + R(a,r)).

4.2 Results and evaluation

Table [I] shows the obtained results in term of precision,
recall and F-measure. Figures for all four ontology matchers
are quite similar, from which we could deduce that none of
the algorithms performs significantly better than the others.
The outcomes of the experiments seem also to suggest that
results are independent of the dimension of the ontology,
and of the percentage of deprecated entities.

If we consider the fact that we have used the simplest
available ontology matchers, and that the developed doclet is
less than 1K LOC, results are promising, but also reveal the
limitations of using matchers that completely disregard the
structure of ontologies. The use of WordNet deserves some
more comments. Using sophisticated language-based match-
ing methods should be considered with care, since there is
no evidence that the their complexity brings significant im-
provements. Among the methods offered by the Alignment
API, the one based on WordNet gives results comparable to
those of the other methods if we only look at the F-measure.
In all the experiments, its recall is greater or equal than the
one of the other methods, and its precision is lower. This
means that, at least for the ontologies we have considered,
the more sophisticated methods retrieve more correct corre-
spondences than the others, but also generate more noise.

A possible explanation of the fact that the matcher based
on WordNet does not perform better than the others, is
that names of entities in Java code often contain acronyms
and abbreviations that are meaningless if a general purpose
vocabulary is used (it is not by coincidence that package
java.security is full of acronyms, and give the worst re-
sults). It would be interesting to repeat these experiments
after having extended WordNet with typical words from the
Computer Science and Object-Oriented Programming jar-
gon.

5. RELATED WORK

There exist other proposals for extracting ontologies from
software artifacts, but all those we are aware of are mainly
focused on reverse software engineering [22, 23| |16} |2, [24]
25, |12 |15} |16l [21].

Comparison with related work is considered w.r.t. to dif-
ferent important aspects: aims and reuse.

Aims. We implemented a flezible and customizable frame-
work for extracting OWL ontologies from Java libraries. Con-
cerns about the library features that the extracted OWL on-
tology will represent and about the final application where
it will be employed are left to the user of our framework. By
extending the basic doclet, users can easily implement their

own ontology extractor, and decide which details of the li-
brary should be documented. All the proposal reviewed in
this section are instead driven by very specific goals and ap-
plication constraints, and hard-wire the ontology extraction
method in the implemented or suggested algorithm.
Reuse. Coherently with our aim, we developed a framework
easy to maintain and to evolve thanks to the reuse of widely
adopted open-source Java libraries and tools (Javadoc, Do-
clet, and Jena).

Names of the ontology concepts and properties that we
generate are the class and method names as they appear in
the source code, whereas in most of the related papers men-
tioned above, they are meaningful words derived by means
of a natural language processing stage from the names of
source code entities. Our choice is intentional, is driven by
our will of “not reinventing the wheel”, and can be explained
by comparing the proposal by Ratiu, Feilkas, and Jiirjens to
ours. In that paper, the authors take many APIs as in-
put and generate one ontology whose concepts match the
main concepts available in all the APIs. Ratiu et al. 1) ex-
tract one graph from each API, where the labels of graph
nodes are the strings that appear in the API and 2) imple-
ment from scratch an ad-hoc graph matching algorithm that
takes names and graph structure into account, for generat-
ing a single ontology from many graphs.

Let us suppose that a programmer wants to use our frame-
work for reaching the same goal. She should 1) use our
framework for extracting one ontology from each API, where
the labels of the ontology elements are just the strings that
appear in the API, and 2) use one of the dozens available on-
tology matching algorithms (http://www.ontologymatching.
org/) that exploit both name-based and structure-based
techniques for generating the resulting merged ontology.

Given this bunch of choice, we think that extracting a raw
ontology from the API and deferring the ontology matching
to a successive stage is a winning choice in order to take
advantage of the more and more valuable results that the
ontology matching community is producing.

Similar considerations hold in case the extracted ontol-
ogy should be used for other purposes: ontology merging
and fusion methods [8| |14] could be used to help creating
a unified library from different existing ones whereas multi-
lingual ontology mapping [18] could be exploited to suggest
correspondences between classes and methods labeled using
different languages. Due to the liveliness of the research in
the ontology field, it is likely to find some already imple-
mented software that meets the user’s requirements.

6. CONCLUSION

We have defined and implemented a simple and extensi-
ble doclet for generating semantic information in the form
of ontologies from Java libraries, with the main aim of sup-
porting semi-automatic migration of code due to upgrade
or replacement of libraries. We have experimented the ap-
proach by extracting ontologies from different versions of
four significant packages of the standard Java API, and by
running four simple freely available ontology matchers on the
generated ontologies, to evaluate the accuracy of the com-
puted alignments. The results are promising, if we consider
that they have been obtained from real and large examples
by writing less than 1K LOC, and by running very simple
matchers; however, they have also revealed the limitations
of using matchers that completely disregard the structure of

http://www.ontologymatching.org/
http://www.ontologymatching.org/

Matching algorithm
Package Indicator Substr N-gram [SMOA WordNet
Precision 0.61 0.63 0.59 0.60
java.awt Recall 0.54 0.51 0.52 0.54
F-measure 0.57 0.56 0.55 0.57
Precision 0.66 0.70 0.67 0.66
java.net Recall 0.60 0.59 0.60 0.60
F-measure 0.63 0.64 0.63 0.63
Precision 0.47 0.54 0.47 0.47
java.security Recall 0.44 0.42 0.44 0.44
F-measure 0.46 0.47 0.45 0.45

Table 1: Alignment results

ontologies.

More experiments are needed to better evaluate and en-
hance our approach; we envisage two different directions. On
one hand, it is important to perform experiments to com-
pare also different libraries, and not just different versions
of the same library.

On the other hand, it would be interesting to evaluate the
result one can obtain by running more sophisticated ontol-
ogy matcher that take into account also the structure of the
generated ontologies.

7.

[11]

[12]

REFERENCES

K. Arnold and J. Gosling. The Java™ Programming
Language, Third Edition. Addison-Wesley, 2000.

K. Bontcheva and M. Sabou. Learning ontologies from
software artifacts: Exploring and combining multiple
sources. In SWESE’06, 2006.

E. Brill, S. Dumais, and M. Banko. An analysis of the
askmsr question-answering system. In EMNLP 2002,
2002.

J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: implementing
the semantic web recommendations. In WIWWW
(Alternate Track Papers & Posters), pages 74-83,
2004.

R. D. Cosmo, F. Pottier, and D. Rémy. Subtyping
recursive types modulo associative commutative
products. In TLCA 2005, pages 179-193, 2005.

J. David, J. Euzenat, F. Scharffe, and C. T. dos
Santos. The Alignment API 4.0. Semantic Web
Journal, 2, 2011. To appear.

H. H. Do, S. Melnik, and E. Rahm. Comparison of
schema matching evaluations. In NODe 2002, pages
221-237, 2002.

D. Dou, D. Mcdermott, and P. Qi. Ontology
translation by ontology merging and automated
reasoning. In EKAW’02, pages 3—18, 2002.

J. Euzenat and P. Shvaiko. Ontology Matching.
Springer, 2007.

E. Gamma, R. Helm, R. E. Johnson, and J. M.
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley, 1995.
T. Gruber. Ontology. In L. Liu and M. T. Ozsu,
editors, Encyclopedia of Database Systems, pages
1963-1965. Springer US, 2009.

M. Hepp and A. Wechselberger. OntonaviERP:

(13]

(14]

(15]

(16]

(17]

(18]
(19]

20]

21]

(22]

23]

(24]

25]

Ontology-supported navigation in ERP software
documentation. In ISWC 2008, pages 764776, 2008.
G. Miller. WordNet: A lexical database for english.
Communications of the ACM, 38(11):39-41, 1995.

N. F. Noy and M. A. Musen. PROMPT: Algorithm
and tool for automated ontology merging and
alignment. In AAAI/TAAT 2000, pages 450-455, 2000.
D. Ratiu, M. Feilkas, and J. Jiirjens. Extracting
domain ontologies from domain specific APIs. In
CSMR 2008, pages 203-212, 2008.

M. Sabou. From software APIs to web service
ontologies: A semi-automatic extraction method. In
ISWC 2004, pages 410-424, 2004.

G. Stoilos, G. B. Stamou, and S. D. Kollias. A string
metric for ontology alignment. In ISWC' 2005, pages
624-637, 2005.

C. Trojahn, P. Quaresma, and R. Vieira. A framework
for multilingual ontology mapping. In LREC’08, 2008.
W3C. OWL Web Ontology Language Overview —
W3C Recommendation 10 February 2004, 2004.
W3C. OWL 2 Web Ontology Language Document
Overview — W3C Recommendation 27 October 2009,
2009.

H. H. Wang, N. Gibbins, T. Payne, A. Saleh, and

Y. Li. Transitioning applications to semantic web
services: An automated formal approach.
International Journal of Interoperability in Business
Information Systems, IBIS, 2008.

C. A. Welty. Augmenting abstract syntax trees for
program understanding. In ASE’97, pages 126-133,
1997.

H. Yang, Z. Cui, and P. O’Brien. Extracting ontologies
from legacy systems for understanding and
re-engineering. In COMPSAC"99, pages 21-26, 1999.
Y. Zhang, R. Witte, J. Rilling, and V. Haarslev.
Ontology-based program comprehension tool
supporting website architectural evolution. In
WSE’06, pages 41-49, 2006.

H. Zhou, J. Kang, F. Chen, and H. Yang. OPTIMA:
An Ontology-based PlaTform-speclfic software
Migration Approach. In QSIC’07, pages 143-152,
2007.

	Introduction
	Background
	The Web Ontology Language OWL
	The Jena library
	Ontology Matching
	Javadoc and Doclet

	Ontology extraction
	Basic design decisions
	Design of [basicstyle=]Ontlet

	Experiments
	Followed methodology
	Results and evaluation

	Related work
	Conclusion
	References

