Constrained Global Types for Dynamic Checking of
Protocol Conformance in Multi-Agent Systems

Davide Ancona

Matteo Barbieri

Viviana Mascardi

DIBRIS - Universita di Genova, Via Dodecaneso 35, 16146 Genova, ltaly

{davide.ancona,matteo.barbieri,viviana.mascardi}Qunige.it

Global types are behavioral types for specifying and ve-
rifying multiparty interactions between distributed compo-
nents, inspired by the process algebra approach.

In this paper we extend the formalism of global types in
multi-agent systems resulted from our previous work with a
mechanism for easily expressing constrained shuffle of mes-
sage sequences; accordingly, we extend the semantics to in-
clude the newly introduced feature, and show the expressive
power of these “constrained global types”.

1. INTRODUCTION

In open, dynamic, unpredictable and heterogeneous sys-
tems as Multi-Agent Systems (MASs) are, ensuring confor-
mance of the agents’ actual behavior to a given interaction
protocol is of paramount importance to guarantee the par-
ticipants’ interoperability and security.

In our previous work [1, [2] we proposed a formalism of
global session types — global types for short, |5} 6] — for speci-
fying multiparty interactions in a MAS, based on cyclic Pro-
log terms. Global types represented in that formalism can be
directly exploited in the definition of a monitor agent imple-
mented in the Jason logic-based programming language [4]
for Belief-Desire-Intention (BDI) agents [8], that validates
messages with respect to a given protocol at runtime.

Even if that formalism is expressive enough to represent
many interesting protocols in a compact notation, there are
some protocols, such as the Alternating Bit one proposed
by Deniélou and Yoshida [7], whose representation would
grow exponentially in the number of different message types
involved in the communication. In this paper we extend
our formalism with a mechanism for easily expressing con-
strained shuffle of message sequences, thus reaching the ex-
pressive power required to represent complex protocols like
the Alternating Bit in a very compact way.

The paper is organized in the following way: Section
describes the extension of [1, |2] with constraints, Section
presents the implementation of our framework and shows
some examples, and Section [4] concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

2. CONSTRAINED GLOBAL TYPES

Global types 7 are built on top of the following constructs:
sending actions which occur between two agents and are
4-tuple consisting of two agent identifiers (sender and re-
ceiver), the speech act or performative (for example, “tell”,
“ask”, “refuse”), and the actual content of the message; pred-
icates on sending actions (p € P) that model which kind of
message pattern is expected at a certain point of the conver-
sation; empty type (M) that represents the empty sequence
of sending actions, and models the fact that a protocol is
allowed to be terminated at a certain point of the conver-
sation; sequence (p : 7) that allows the definition of types
composed by a predicate on a sending action followed by
another global type; choice (11 + 72) allowing the definition
of global types where more than one option is available; fork
(11 | 2) that specifies two interactions that can be inter-
leaved; and concatenation (71 -72), used to append global
types together. To specify loops we exploit recursive global
types; for instance, the protocol consisting of infinite sending
actions where first alice sends a message with performative
tell and content ping to bob, and then bob replies with a
tell performative and pong content to alice, can be rep-
resented by the recursive type 7 = pi : po : 7 where pi is a
predicate holding on sending action (alice, bob, tell, ping)
and po holds on (bob, alice, tell, pong).

A constrained global type is a triple (7, ', V), where 7 is
a global type and I and V' are defined below.

V:P — 2F represents the static constraints: for each pred-
icate p € P, V(p) denotes the transitions that must occur
before p may take place. In fact, V(p) specifies the con-
straints on p; in this way it is possible to impose that a
sending action specified in the left-hand side of a fork must
occur strictly after a sending action specified in the right-end
side.

I:P — 2F is the dynamic constraints store (DCS) which
associates each predicate symbol p with the set of predicate
symbols corresponding to those transitions that must still
occur before p can take place. Therefore, a transition p is
enabled if and only if I'(p) = 0. Initially I" specifies the
enabled transitions, hence there must exist at least one p
such that T'(p) = 0.

Figure [l] gives the formal interpretation of constrained
global types. Intuitively, a constrained global type repre-
sents a state from which several transitions to other states
(i.e. other constrained global types) are possible; for each
constrained global type there is a corresponding set of mes-
sages which cause a transition to a new state. A transition is
“fired” when a message that belongs to that set is exchanged.

p(a) AT(p) =

(seq)

(Tl7 F) (T{v F/)

(fork-1)

/ / / V
(p:7,T) = (1,17) Vpepr(p):{v()\ {p}

(Tlv F) - (T{7 Fl)

(1:, 1) = (7i,1")
(Tl + 7-27F) = (7.1_/71“/)

ifp’=p
if p’ #p

(choice) i€{1,2}

(7_27 F) = (Tév F/)

a
2 (cat-1)
(71|72, T) = (7|72, 1)

(11 - 72, T) N (ry - 12, T7)

(1)

(cat-r) 2
(7-1 T2, F) - (Téa F/)

Figure 1: Transition rules for constrained global types.

For space constraints, we omitted rule (fork-r), which is sym-
metric to rule (fork-1). Since the component V specifying the
static constraints is not affected by transitions, for simplic-
ity we omitted it from the rules as well, but it is implicit
that all transitions have shape (7,T,V) % (7,17, V).

The main change w.r.t. the rules for unconstrained global
types described in [1] concerns rule (seq), whereas the other
rules are extended in a straightforward way, and their mean-
ing is intuitive. A transition from (p : 7,I") with sending
action a is allowed only if p(a) holds and, furthermore, if
I'(p) = 0 (that is, p is enabled). The new state is the pair
(1,T") where I" is obtained by I' by resetting p by letting
I'(p) to equal V(p), and removing p from all sets T'(p’), for
all p’ # p.

3. IMPLEMENTATION AND EXAMPLES

Our approach can be considered as a first step towards
the development of a unit testing framework for MASs where
testing, types, and — more generally — formal verification can
be reconciled in a synergistic way: given a Jason implemen-
tation of a MAS, our approach allows automatic generation
of an extended MAS that can be run on a set of tests to
detect possible deviations of the behavior of a system from
a given protocol, and to check agent responsiveness.

To achieve this goal, rules given in Figure [I] have been
implemented by means of the next predicate described in
[2]. Such an approach is highly modular, since other no-
tions of global types can be considered by just changing the
definition of predicate next. Furthermore, the developer is
required to provide, besides the MAS to be verified, the fol-
lowing additional definitions:

e The interpretation of predicates in PS defined by the
predicate holds (msg(S,R,Perf,C), P), for each P € PS.

e The constrained global type (7,T", V') specifying the pro-
tocol to be tested, given by a collection of unification equa-
tions defining 7, a collection of facts of shape g(P, [P1,

., Pn]) and v(P, [P1, ., Pn]) defining the initial
dynamic constraints store and the static constraints, respec-
tively.

Given these elements, a centralized monitor agent is auto-
matically generated to verify that a conversation among any
number of participants is compliant with the specified con-
strained global type, and warns the developer if the MAS
is not responsive. The code of the agents in the original
MAS requires minimal changes that can be performed in
an automatic way as well. The monitor keeps track of the
runtime evolution of the protocol by saving its current state
(corresponding to a constrained global type), and checking
that each message that a participant would like to send,
is allowed by the current state. If so, the monitor allows
the participant to send the message by explicitly sending an
acknowledgment to it. The participants are expected to in-
teract via asynchronous exchange of messages characterized

by tell performatives, and only two changes are required
to their code:

1. the Jason standard internal action .send is replaced by
the !'my_send internal goal that, instead of sending the ac-
tual message with performative Perf and content Content to
Receiver, sends a tell message to the monitor in the format
msg(Sender, Receiver, Perf, Content). When received,
this message will be checked by the monitor against the con-
strained global type.

2. Two more plans are added for managing the interaction
with the monitor, one for sending the message to the actual
receiver after the monitor has checked its compliance to the
protocol, or to block the execution otherwise.

As an example, we show how the alternating bit protocol
can be specified by a constrained global type. We need four
predicate symbols, mi, mg,a;, and ag, such that m; holds
for sending actions of the form (a, b, tell, msg;) and a; holds
for sending actions of the form (b, a, tell, ack;), for i = 1, 2.
The alternating bit protocol basically consists of two parallel
infinite loops where messages of one loop have to be synchro-
nized with the other one. The two loops can be represented
by the global types 71 = my : a1 : 71 and 72 = mg : ag : To;
the main global type for the protocol consists of these two
types composed with a fork: Tapp = 71 | T2.

The function V must reflect the fact that, for every iter-
ation, mo ; mustﬂ follow m;; and mj i+1 must follow my ;.
The following specification models these constraints:

V= {(m17 {mQ})7 (m27 {ml})7 (alv (D)’ (8.27 0)}

Finally, the initial content of the DCS I' has to enable

sending actions of type mi, ai, as, but not of type ma.
r'= {(Hh, ®)7 (m27 {ml})7 (ah ®)7 (a27 (D)}

This constrained global type has a one-to-one representa-
tion as a set of Prolog facts and unification equations.

Suppose the protocol is in its initial state: in this state,
two transitions are expected, m; and mz but only one of
them is actually enabled (the initial DCS contains the el-
ement g(m2, [m1]) which disables transition ms). At this
point, if a sending action s such that ms(s) holds occurs, the
system notifies a violation because the only applicable clause
for predicate next corresponds to rule (seq), but I'(mz) # 0,
therefore the body of the clause fails. An error message is
displayed, showing the value of function V for disabled tran-
sition and the content of the DCS for debugging purposes.

The following example shows that predicates on sending
actions make the formalism more expressive also w.r.t. the
kind of constrains that can be enforced. Let us consider the
protocol shown in Figure[2] where two sequences of messages
are exchanged in an interleaved way; after that, a final mes-
sage with content end concludes the protocol. However the
sending action (a, b, tell, msgs) (corresponding to predicate

! The notation mo ; indicates “transition my at the i-th iter-
ation”.

v v

[m3=A-> B:msgS] [m1=A-> B:msgl]

|
.

[m4 =B->A: msgl] [mE =A->B: msgl]

P

E
®

Figure 2: “Constrained fork” example.

m4) can occur only after the sending action (a, b, tell, msg;)
has occurred twice: if constraints were specified using send-
ing actions, it would be impossible to distinguish between
the three transitions on the right side of the diagram which
are labeled by the same sending action.
The protocol is specified by the constrained global type
(10,1, V), assuming that m1 (a, b, tell, msg;), ma(a, b, tell,
msg1), ms(a, b, tell, msgs), ma(d,a,tell, msgs), ms(a,b,
tell, msg1) and e; (b, a,tell,end) hold.

To = Tf-e1:A T = (1| ™)

T = m3:mg: A\ Tp = 1My :Mg:Ms5: A

r = {(m17 Q))v (m27 0)7 (m37 (Z))v (m47 {m2})(m57 ®)7 (617 (Z))}

V. =T

Finally, the protocol shown in Figure [3] expresses the fact
that sequences msmg, mims and msma may be freely shuf-
fled, but transition me must occur after both m; and my4.
|/;\/]

|

m5 = A -> B: msg5 + |

[ml =A->B: msgl]

X i
m2 = A-> B: msg2
> <

|
< ‘

[mS =A->B: msgS]

Figure 3: “Ordering of sending actions” example

The three sequences are composed with the fork con-
struct, and constraints are used to impose the ordering. The
protocol is specified by the constrained global type (70,I, V)
and m;(a, b, tell, msg;) holds for i = 1..6.

T0o = 71| 72|73 71 = ms:Mmg:\
TQZmlimQI)\ 73:m3:m4:)\
r = {(H’l“@) I i = 15} U {(m67 {m27m4})}
vV =T

4. CONCLUSIONS AND FUTURE WORK

Although the literature on static and dynamic verifica-
tion of protocol conformance within MASs is extremely rich,
as the survey included in [2] demonstrates, to the best of
our knowledge no previous attempts of using global types
to dynamically verify MASs in some widespread agent ori-
ented programming languages had been made before. On
the other hand, using constraints to express (or restrict) in-
teraction protocols is not new. For instance, the notion of
constraint automata [3] is very relevant for our work; one
of the most interesting properties of constraint automata
is compositionality, hence the formalism deserves a deeper
comparison with ours.

There are other interesting directions we are considering.

Constrained global types can be used not only for dynamic
verification, but also for supporting self-recovering MASs.
For such kinds of systems the role of the monitor agent is
more complex: besides communicating to the other agents
the type of messages allowed at a certain point of the con-
versation, the monitor should also be able to select a default
recovery action in case the communication gets stuck.

Constrained global types can be used for static verifica-
tion of protocol implementations as well. In this case the
problem is clearly more challenging, but static verification
offers stronger correctness guarantees in comparison with
the dynamic approach. A preliminary step towards static
verification requires studying how a constrained global type
can be projected to a single agent.

Finally, performance issues that have been neglected so
far, should be taken into consideration in order to make
the approach usable even in those domains, such as ambient
intelligence applications and embedded agents, where com-
putational resources are strictly bounded.

5. REFERENCES

[1] D. Ancona, M. Barbieri, and V. Mascardi. Global types
for dynamic checking of protocol conformance of
multi-agent systems (extended abstract). In ICTS
2012, pages 39-43, 2012.

[2] D. Ancona, S. Drossopoulou, and V. Mascardi.
Automatic Generation of Self-Monitoring MASs from
Multiparty Global Session Types in Jason. In DALT
2012, Workshop Notes, pages 1-17, 2012.

[3] C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten.
Modeling component connectors in Reo by constraint
automata. Sci. Comput. Program., 61(2):75-113, 2006.

[4] R. H. Bordini, J. F. Hiibner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, 2007.

[5] M. Carbone, K. Honda, and N. Yoshida. Structured
communication-centred programming for web services.
In ESOP’07, pages 2—17. Springer, 2007.

[6] G. Castagna, M. Dezani-Ciancaglini, and L. Padovani.
On Global Types and Multi-Party Sessions. Logical
Methods in Computer Science, 8:1-45, 2012.

[7] P.-M. Deniélou and N. Yoshida. Multiparty session
types meet communicating automata. In ESOP’12,
LNCS. Springer, 2012.

[8] A.S. Rao and M. P. Georgeff. BDI agents: from theory
to practice. In ICMAS, pages 312-319, S. Francisco,
CA, June 1995.

	Introduction
	Constrained Global Types
	Implementation and Examples
	Conclusions and Future Work
	References

