Reasoning about Hand-Drawn Sketches: An
Approach Based on Intelligent Software Agents

Giovanni Casella!, Vincenzo Deufemia?, Viviana Mascardi!,
Maurizio Martelli!, and Genoveffa Tortora?

! Dipartimento di Informatica e Scienze dell’Informazione — Universita di Genova
Via Dodecaneso 35, 16146, Genova, Italy
{casella,mascardi,martelli}@disi.unige.it
2 Dipartimento di Matematica e Informatica — Universita di Salerno
Via Ponte don Melillo, 84084 Fisciano (SA), Italy

{deufemia,tortora}@unisa.it

Abstract. Sketching is a powerful means to represent objects and rea-
son on them. In this paper we describe an integrated environment, con-
ceived as a multi agent system, that brings together sketch recognition
functionalities and decision support facilities. In this environment, intel-
ligent agents are exploited both for managing the process of recognition
of the sketched objects, and for supporting users in solving decisional
problems. We explain our approach and its potential by means of a run-
ning example taken from the domain of building’s safety.

1 Introduction

Sketches play multiple roles [I]: they serve as an external memory to augment
the limitation of human cognitive abilities, act as the medium that users use to
communicate, and serve as the triggers that enable reasoning [2]. Humans see
in a sketch more than a static arrangement of arbitrary symbols: they always
consider the meaning underlying the sketch and its potential transformations. A
sketch often represents the solution to a problem that the user has in mind. Of
course, not every sketch is an admissible solution to that problem. In fact, the
placement of sketched objects must respect a set of constraints that depend on
the sketch’s domain and semantics.

Recent years’ experience suggests that a great improvement to hand-drawn
sketch recognizers can be introduced by enhancing their level of “intelligence”,
i.e., enabling them to show an intelligent behavior to the user and to help him/her
to find solutions to a problem [3]. A computer system might help the user by pro-
viding both recognition functionalities of hand-drawn symbols and domain spe-
cific knowledge for extracting the underlying sketch meaning and for supporting
the user to reason about it. Users should interact with the drawing components
in a natural and user-friendly way for obtaining real-time intelligent feedback
from the system, and the system should propose innovative solutions to solve
particular problems. An intelligent sketch system should embed a problem solv-
ing process involving specific domain knowledge, and should present feedback in

M. Sebillo, G. Vitiello, and G. Schaefer (Eds.): VISUAL 2008, LNCS 5188, pp. 302-1314] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Reasoning about Hand-Drawn Sketches 303

appropriate form, without distracting the user from the tasks in which he/she
is engaged [4].

In this paper we present an approach based on agent technology for integrating
domain-specific reasoning facilities with sketch recognition functionalities. The
system architecture consists of the “Sketch Recognition” component, devoted to
recognizing elements drawn by the user and to resolving interpretation ambigui-
ties that may arise; the “User Reasoning Support” component, that checks that
symbols drawn by the user respect a set of constraints, and, upon request, sug-
gests a re-organization of them; and the “Interface” component, that provides
the graphical interface between the user and the system.

To show how the system might be used in practice, we discuss its adoption in
the building’s safety domain. Given a building/room plant and a customizable
set of criteria to meet as input, our system might allow the user to draw objects
that are relevant for safety aspects (fire extinguishers, tables, chairs, closets,
windows, doors, lights), to check if the given safety criteria are met by the
chosen placement of the objects, and, if not, to reason about how to meet them
by re-positioning the objects, and finally to propose suggestions to the user.

The paper is organized as follows. Section 2] motivates this research and de-
scribes the case study that will be considered throughout the paper. Section [3]
describes why intelligent software agents represent a suitable approach for sketch
recognition and reasoning. Sections [and [Bl describe the proposed agent-based
system and its application to the case study. The related work is discussed in
Section [6l Finally, conclusions and further research are discussed in Section [7]

2 Motivation and Case Study

In many situations, being able to sketch a diagram using an input device, and
having the diagram components recognized in an automatic way by a software
application, is a great advantage. In fact, this approach allows to save time and
paper, to share the diagram with colleagues which are spread all over the world,
to teach how a diagram should be correctly drawn, to archive and retrieve it
in an electronic form. These advantages are well-known: the literature discusses
many examples of software systems able to recognize hand-drawn sketches in
very different domains [3/4/5]. However, there are situations where the user’s
needs go far beyond the use of a software system just for recognizing symbols
in the correct way. For example, consider an employee that needs to check that
all the safety requirements imposed by his/her country’s law, are met by the
building where he/she works.

The employee would be surely happy to use a software application that allows
him/her to load the building plant in some format, and draw, upon the plant,
tables, closets, fire extinguishers, and all the objects that may change location
over time, as well as mark some doors as emergency exits. But he/she would be
even happier, if the application would allow him/her

304 G. Casella et al.

— To understand that a table too close to an emergency exit violates the safety
constraints, or that the fire extinguishers located within a room, are either not
enough, or not located in the most convenient way;

— To move the symbols representing furniture, lights, fire extinguishers, and so
on, in order to find a setting that meets the safety constraints;

and would be able to propose, in a pro-active way, a re-arrangement of the
objects that meet the safety constraints, in case of their violation.

A software system like this must integrate capabilities coming from three
research domains:

— From the domain of automatic hand-drawn sketch recognition, the system
must borrow the ability to recognize hand-drawn symbols, and to detect and
resolve conflicts among their interpretation;

— From the domain of geometric modeling, it must borrow the ability to model
physical objects and to reason about spatial relationships among them;

— Finally, from the domain of artificial intelligence, it must borrow the ability to
act as a “pro-active” and “situation aware” expert system, supporting the user
in finding violations of constraints, explaining why and where the constraints
are violated, and proposing alternative solutions.

Provided that the rules for recognizing free-hand drawn symbols, for verifying
the allowed spatial relations among them, and for reasoning on their semantics
(determined by the constraints that they must respect), are customizable, such
a system would prove useful in many disparate domains. For example, it might
help a chemical engineer in reasoning on chemical reactions: the engineer might
sketch a chemical as a molecular graph with atoms for nodes and bonds for
edges, and the system would be able to recognize the characters that identify
atoms and the lines that represent bonds (sketch recognition ability), check that
spatial relations among symbols are met (geometric modeling capability), reason
over its semantics (artificial intelligent capability).

The domain that we will consider for showing the potential of the proposed
system is that of building’s safety already introduced in the beginning of this
section. Ensuring that a room or a building respects all the safety criteria con-
cerning accessibility of emergency exits, availability of fire extinguishers, position
of emergency lights, and so on, is extremely important for saving human lives in
case of fires and other calamities. The safety criteria to meet are stated by law,
and change from country to country.

As an example, the map in Fig. [1l shows the plant of a public library. The
library is composed by three rooms. The one depicted on the upper part of the
figure is the place where books are stored and contains four bookcases and a
desk. The one below is the reading room containing two tables and a closet.
Finally the small one on the right is the bathroom. The system will recognize
all the hand-drawn symbols representing the objects relevant for the safety do-
main, as detailed in Section [} and will check that they are correctly placed in
space according to physical rules (a table cannot intersect a closet), and will
reason about these objects following rules determined by the safety domain (a

Reasoning about Hand-Drawn Sketches 305

=8 —
+F
AN

]

:’l]* |I IDI
L
[|
-~ £
FH

ez

Fig. 1. A public library with furniture

closet placed in the middle of a room does not violate any physical or geometric
constraint, but could violate a safety constraint if it makes an emergency path
longer than a given threshold).

3 Intelligent Agents for Recognizing and Reasoning on
Hand-Drawn Sketches

The architecture of the system that we propose, consists of the three modules de-
scribed in detail in Sectiondt User Interface, User Reasoning Support, and Sketch
Recognition. Recognizing sketched symbols is demanded to the Sketch Recogni-
tion module, that integrates algorithms and solutions from the research domain
of automatic hand-drawn sketch recognition. Verifying that the spatial relation-
ships among symbols are satisfied is demanded to the User Reasoning Support,
that must be able to reason about geometric concepts and thus integrates geo-
metric modeling capabilities. Finally, reasoning over the drawn symbols in order
to support the user in finding their right placement is once again demanded to
the User Reasoning Support, that also adds some artificial intelligence to the
system. Despite to their different abilities, the components that build our system
share a common factor: they exploit intelligent agents in their implementation.

Following [6/7], an agent can be viewed as a software entity characterized by:

— Autonomy: An agent is not passively subject to a global, external flow of
control; instead, it has its own internal execution activity, and is pro-actively
oriented to the achievement of a specific task.

— Situatedness: An agent performs its actions while situated in a particular
environment, and it is able to sense and affect such an environment.

— Sociality: Agents work in open operational environments hosting the execution
of a multiplicity of agents. In these multi-agent systems (MASs), the global
behavior derives from the interactions among the constituent agents.

306 G. Casella et al.

Also reactivity is an important feature of agents [8], since they must be able
to respond in a timely fashion to changes that take place in the environment.
Finally, for many authors an explicit representation of human-like mental atti-
tudes such as beliefs, obligations, permissions, is also required for characterizing
agents.

According to the definition above, our system is a MAS. In our previous work,
we have discussed why most of the entities that compose the Sketch Recognition
Module are intelligent agents [9]. The User Reasoning Support module exploits
agents as well: we have designed it in such a way that its functionalities are
provided by the Decision Support Agent, a “deliberative” agent equipped with
both “geometric modeling rules” and “application domain rules” represented by
means of Deontic Logic [10] extended with nonmonotonicity. This kind of logic
allows the agent to easily model and reason about what the user is permitted
to draw, what he/she is forbidden to, what he/she is obliged to, and supports
a “default” reasoning thanks to its nonmonotonic component (human-like atti-
tudes). The agent will use these rules to check that what the user draws, satisfies
both geometric and domain-dependent constraints, and will pursue the goal of
avoiding their violation (pro-activeness). In case of violation, the agent, without
any intervention from the user, will look for an alternative arrangement of the
drawn objects (autonomy). If an “easy” solution cannot be found in a reasonable
amount of time (reactivity), the agent will start to interact i with the user in order
to collaborate for finding a solution (sociality). The virtual sheet where the user
draws constitutes the environment of the system, and each agent in the system
must perceive and must react to changes that occur inside it (situatedness).

In the sequel of the paper, we will show our use of agent technology for
providing an intelligent and user-friendly support to users’ decisions.

4 The Architecture of Our System for Reasoning about
Hand-Drawn Sketches

The architecture of the proposed system is shown in Fig.[2l In Section Il we will
briefly describe the User Interface and Sketch Recognition modules, whereas in
Section .2l we describe the Decision Support module by illustrating its function-
alities and its architecture. Sectiond.3]discusses how all the modules of our system
will interact in order to support the user in the most precise and efficient way.

4.1 User Interface and Sketch Recognition Modules

The two modules described in this section, already implemented and tested, have
been presented in [9].

The User Interface module manages the interaction between the user and the
system when the user draws new symbols and when he/she manipulates (deletes,
moves, resizes) them. The module integrates a Graphical User Interface for edit-
ing sketches. Since different sketch editors may be used for different application
domains, new GUIs must be “pluggable” inside the system. In that case, the

Reasoning about Hand-Drawn Sketches

1 User Interface |

Decision Support

Decision Support Agent
| State I Domain Language
rules rules

Geometric
topological
del

(new)

input interpretation

Problem
Solver

Reasoning
Engine

External
application

Input
Pre-processing
Agent

Symbol Recognition
Agent 1

Sketch
Interpretation
Agent

Symbol Recognition
Agent 2

Symbol Recognition
Agent N

Fig. 2. The architecture of the system

Interface Agent is responsible for converting the information produced by the
newly plugged editor into a format compliant with our system, and vice versa. It
is also responsible for informing the agents belonging to the Sketch Recognition
and to the Decision Support modules about both new strokes drawn by the user,
and transformations of symbols previously drawn.

The Sketch recognition module provides the functionality of recognizing sym-
bols belonging to a given visual language, hand-drawn by the user using a context
based approach. The Input Pre-processing agent is responsible for segmenting
and classifying the strokes arriving from the User Interface module. The recog-
nition process performed by the intelligent agents devoted to symbol recognition
(Symbol Recognition Agents, SRAs for short) and to the correct interpreta-
tion of the sketch (Sketch Interpretation Agent, STA for short), is based on the
knowledge about the language and about the symbols context, which is used for
disambiguating the recognized symbols. SRAs exchange contextual information,
which is sent to the SIA that solves possible conflicts and gives an interpretation
of the sketch drawn. At the lowest level the symbols of the domain language are
recognized by applying suitable Hand-Drawn Symbol Recognizers (HDSRs, for
short) to the input strokes.

4.2 Decision Support Module

Functionalities: The Decision Support module, not completely implemented
yet, provides the following functionalities.

308 G. Casella et al.

Computing both simple and complex geometric and topological relations among
symbols. Given two symbols S1 and S2, already recognized by the STA, example
of atomic geometric and topological relations between them are “on_the_left_
of(S51,82)”, “included-in(S1,S52)”, “distance(S1,52,D)”. The Decision Sup-
port Agent (DSA, for short) must be able to exploit its knowledge about
geometry and topology in order to decide, given two symbols S1 and 52, whether
S1 intersects S2, or if it is in front of it, which is the distance between them, and
so on. The “geometric and topological modeler” component depicted in Fig. [2is
responsible of computing simple and general geometric and topological relations
among the symbols drawn by the user starting from the information provided by
the SIA. Since, according to the application domain, the DSA may need to com-
pute relations that are more complex than those calculated by the geometric and
topological modeler, and that cannot be decided a priori and once and for all, it
must be able to access external components devoted to running optimized, ad
hoc algorithms. If, for example, an application working on hand-drawn sketched
graphs requires the ability to compute the shortest path, an external module
will be accessed in order to run Dijkstra’s algorithm on the input graph.

Modeling language dependent constraints on symbols. Spatial constraints change
from visual language to visual language; for example, in the representation of an
electronic circuit, a wire may graphically intersect another wire, while in a Use
Case Diagram, no intersections between symbols are allowed.

In our reference domain, where symbols represent architectonic elements and
furniture, no partial intersections of symbols are allowed while inclusion of some
symbols might be permitted (the symbol representing a light may be entirely
included on a table, since it might be placed above it). We may represent rules
about relations of symbols using normative concepts such as permitted, forbid-
den, and obligatory:

—It is permitted that a symbol representing a light is included in a symbol rep-
resenting a table.

— For any couple of symbols S1 and 52, it is forbidden that S1 intersects S2.
— It is obligatory that a symbol representing a door touches a symbol represent-
ing a wall.

Modeling domain dependent constraints on symbols. Besides constraints depend-
ing on the visual language, there are also constraints that depend on the specific
application domain of the language. For example, the criteria for arranging furni-
ture in a room in such a way that the comfort of people is ensured, are different
from those for ensuring safety, although the set of available symbols and the
language constraints they undergo, are the same. Also the domain dependent
constraints may be easily expressed in term of “permitted”, “forbidden”, and
“obligatory”.

Verifying that all constraints are satisfied by the current sketch. The recognized
symbols may or may not satisfy the constraints stated by the rules that the
DSA possesses. The DSA is in charge of verifying if a violation takes place by
running a “reasoning engine” that checks that all the rules are satisfied in the

Reasoning about Hand-Drawn Sketches 309

current state, consisting of the logical representation of the current placement
of symbols.

Helping the user in finding alternative solutions. In case of violation of con-
straints, the DSA must inform the user that a violation has occurred. The DSA
must also try to find, in a timely fashion, an alternative arrangement of the sym-
bols drawn by the user, such that constraints are respected. A “problem solver”
is in charge of this activity. If the alternative arrangement cannot be found in a
reasonable amount of time (which may happen, since finding the right placement
of objects considering a set of constraints is computationally expensive), the sys-
tem must start a collaboration with the user for finding a “guided solution” to
the constraint violation problem.

Architecture: The components of the Decision Support Agent are the following.

Geometric € topological modeler. It receives geometric information about sym-
bols drawn so far by the STA, creates a logical representation of these symbols
(the agent’s state) consistent with the logical representation used for constraints,
and computes a set of “simple” topological and geometric relations, when needed
by the engine or by the problem solver that have to verify which constraints are
satisfied.

State and rules. The DSA is equipped with two sets of rules (also named “con-
straints” in the paper): those defining what must, can, and cannot be done with
the language symbols (language rules), and those defining what must, can, and
cannot be done according to the application domain (domain rules). The rules rep-
resent the agent program, and operate over the agent state that, as anticipated,
consists of the logical representation of drawn symbols and of their placement.

Reasoning engine. A reasoning engine reasons about the rules in order to verify
that they are respected by the current state. In Computer Science terms, the
engine is an interpreter for the agent’s program and state. Since the rules may
include both “simple” and “complex” relations, the engine must be able to ac-
cess both the geometric and topological modeler, for computing the former, and
any external application that computes the latter. A wrapper, represented by
the dashed box attached to the external component in Fig. 2 must implement
the conversion of representations between the logical one used by the reasoning
engine, and the one used by the external application. The engine must imple-
ment a nonmonotonic, forward reasoning. Nonmonotonicity is necessary to avoid
stating in the rules everything that is permitted, and everything that is forbid-
den. Forward reasoning is necessary because the engine starts reasoning from the
data it possesses (the current state) and applies recursively all the rules until all
of them succeed, or one of them fails, raising a rule violation.

Problem solver. Finally, a problem solver looks for alternative solutions that meet
the rules, re-arranging the drawn symbols (namely, finding a state different from
the current one) in a way that does not raise conflicts with the agents’ program.
The problem solver must use the engine in order to verify the correctness of the
solutions (new states) that it finds.

310 G. Casella et al.

State and rules’ representation: For representing the agent’s state, we have
chosen first-order logic atoms of type represents(S, Sym), where S is an identifier
and Sym is one among the symbols of the language; has_bounding_box (S, BB),
where BB is a couple of points defining the symbol’s bounding box; starts(S,
StartingPoint); and so on. The relations between symbols may be represented
as atoms as well: on_the_left_of(S1,52), contained-in(S1,52), and so on.

For representing the agent’s rules, we have chosen deontic logic, which is the
logic to reason about ideal and actual behavior. From the 1950s, von Wright [10]
and others developed deontic logic as a modal logic with operators permission
(P), obligation (O), and prohibition (F). Providing details about deontic logic is
out of the scope of this paper; for more information about this topic, the reader
may refer to [I1].

By using deontic logic, we can easily express both language and domain rules
such as “For any couple of symbols S1 and S2, it is forbidden that S1 intersects
527 which is represented by

VS1, S2 Fintersects(S1,.52) (1)

or, in an electronic engineering domain, “It is obligatory that a symbol represent-
ing a CPU is included in a symbol representing a motherboard”, that becomes

VS1, S2((represents(S1, cpu) A represents(S2, motherboard))
= O included_in(S1, S2))

and so on.

The Decision Support Module can be implemented by exploiting the IMPACT
framework [12] that allows the user to define rules that embed deontic opera-
tors and inside which calls to external code may appear. However, IMPACT
is a commercial product and we are instead aiming at developing a free sys-
tem. For that reason, we are considering the recently developed RBSLA frame-
work (http://ibis.in.tum.de/projects/rbsla/index.php) that implements
a rule-based system able to integrate deontic modalities and is freely available
under GNU license.

4.3 System Behavior
The system behavior is described by the following algorithm:

1. Initially, the DSA state is empty

2. The user draws the symbol S

3. S is recognized by the Sketch Recognition module, and is passed to the
geometric and topological modeler of the DSA that creates its representation
as a logical atom and adds it to the current DSA state

4. The DSA runs the reasoning engine using the language and domain rules as
program, on the current state

5. If the current state does not violate the rules, then the user can go on drawing
(step 2), else

http://ibis.in.tum.de/projects/rbsla/index.php

Reasoning about Hand-Drawn Sketches 311

5.1 The user is informed of the violation, and the problem solver is run,
in order to find an alternative solution by moving only the last drawn
symbol

5.2 If the solution is found in an amount of time lower that a given threshold,
then the user is informed of the found solution, else the user is asked to
select a symbol that the problem solver will try to move, going back to
step 5.1.

5 Checking Safety Criteria in Buildings with Our System

The best way to illustrate how our system might be exploited to cope with real
problems is through an example.

Fig.[dshows a building plant where some furniture symbols have been sketched.
We suppose that the user needs only to sketch furniture since building plants (in-
cluding walls, windows, and doors) are loaded from external files. In order to face
the problem of building’s safety, the user has to sketch

— Furniture having a height that could occlude the light (i.e., wardrobe, libraries,
and so on), represented by rectangles containing dotted lines;

— Furniture that cannot obstruct the light (i.e., tables, desks, and so on), repre-
sented by empty rectangles;

— Chairs represented by lines placed near low furniture (see Fig. []).

Moreover the user may sketch an arrow to specify an emergency exit, an “L” to
represent a light, and an “E” to represent an extinguisher. In order to support
the user in finding the right placement of lights, furniture, and fire extinguishers,
the DSA uses a couple of external modules to compute the emergency paths and
the poorly illuminated areas. Some of the security constraints are specified by
the following deontic rules:

— It is forbidden to have a symbol representing a fire extinguisher behind a
symbol representing a closet
VS1,52 ((represents(S1, fire-extinguisher)A represents(S2, closet))
= F behind(S1, S2)
— It is forbidden to have any symbol intersecting an emergency path
VP, S (emergency_path(P) = F intersects(S, P)\Y

Fig. Bl(a) shows the plant of Fig. [l with emergency paths represented by dashed
lines and poorly illuminated areas represented by grey rectangles. When the user
draws a new symbol (or moves an existing one) the DSA checks if any rule is
violated. As an example, if the user draws the table on the left of the lower
room of Fig. Blb), the emergency paths are updated and the DSA detects a

! The value P of the logical variable that appears in “emergency_path(P)” must be

computed by an external resource, and must be represented in such a way that the
geometric and topological modeler can verify the intersects relation between it and
the representation of any drawn symbol.

312 G. Casella et al.

= T e

N i 2 1 FEmL

[T (AL] o= AL T

=== ApEgs, ¥ L@%L[_ﬂr#—'#SICL_

ISEREEN A== mig s =

| _i.' !_' il | | _i_. !_d U Emergency

s S

NI E SINIE MR

lgé _E_ﬂ L%%*czﬁéﬁ\::*gzggd
(a) (b)

Fig. 3. Emergency paths and poorly illuminated areas of a sketched plant (a) and
violation of security constraints (b)

constraint violation, i.e., an emergency path becomes too long. By applying the
algorithm described in Section 3] the DSA suggests to the user to move the
table towards the wall at the bottom of the plant, in order to shorten the length
of the emergency path.

If the user does not want to move table, he/she can indicate to the system
another object to move in order to find a solution. In our example the user could
indicate to the system the table placed on the right of the bottom room, and
the system would try to find a solution by moving only that table.

6 Related Work

In the following we discuss some sketch-based systems providing reasoning func-
tionalities.

If we consider the reasoning functionalities provided by our proposed ap-
proach, to our knowledge, only the Design Evaluator system addresses similar
issues. Indeed, it is an intelligent sketch system that offers critiquing annota-
tions on drawings to facilitate design reflections [4]. The critiques are generated
by applying design rules, coded as Lisp predicates, on the recognized graphi-
cal objects. However, “Design Evaluator” presents a monolithic architecture in
spite of our modular and easy customizable agent oriented system. Moreover,
Deontic Logic enables us to better formalize rules characterizing the considered
language /problem.

sKEA (Sketching Knowledge Entry Associate) is designed for capturing knowl-
edge from sketches [13]. SKEA can acquire several kinds of information from the
sketches, such as semantic information, positions, what relations one glyph has
with others, and which glyphs are conceptually and visually similar. The match-
ing capability of SKEA can be used to suggest users what glyphs would be added
and where they would be added. sKEA avoids the recognition problem by requir-
ing the user to indicate when he/she begins and finishes drawing a new object as
well as the interpretation of the object.

Reasoning about Hand-Drawn Sketches 313

NuSketch is a sketch system that provides several reasoning services, including
analogical reasoning and geographic reasoning [14]. Based on the nuSketch archi-
tecture, nusketch Battlespace (nSB), a system specialized for military reasoning,
has been created [3]. The system provides a sketching interface for drawing mili-
tary battle plans, which are understood using qualitative spatial reasoning. How-
ever, the system does not attempt to perform shape recognition of the sketches.
Rather, it depends on voice input and specific selection procedures from the user
to define object types and names.

7 Conclusions and Future Works

In this paper we have proposed an integrated environment, conceived as a multi
agent system, to support user’s reasoning through sketching. We have already
demonstrated that the agent technology is suitable for recognizing hand-drawn
symbols and for solving ambiguities that may arise in their interpretation [9].
The extension of our system, namely the Decision Support module, also exploits
intelligent agents. We have motivated our choice of having an entirely agent-
based system, and highlighted its advantages. This choice represents the major
difference between our proposal and the related work.

Our future work is to complete the implementation of the system for the
presented case study, and to design and develop innovative solutions to enhance
user interaction with the system maximizing the advantages of the proposed
approach.

References

1. Purcell, A.T., Gero, J.S.: Drawings and the design process. Design Studies 19,
389430 (1998)

2. Kavakli, M., Gero, J.S.: Sketching as mental imagery processing. Design Studies 22,
347-364 (1999)

3. Forbus, K., Usher, J., Chapman, V.: Sketching for military courses of action dia-
grams. In: Proc. of TUI 2003, pp. 61-68. ACM Press, New York (2003)

4. Oh, Y., Do, E.Y.L., Gross, M.: Intelligent critiquing of design sketches. In: Proc.
of AAAI Fall Symp. Making Pen-Based Interaction Intelligent and Natural (2004)

5. Landay, J.A., Myers, B.A.: Sketching interfaces: Toward more human interface
design. IEEE Computer 34(3), 5664 (2001)

6. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of ACM 44(4), 35-41 (2001)

7. Lind, J.: Issues in agent-oriented software engineering. In: Ciancarini, P.,
Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957. Springer, Heidelberg (2001)

8. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Journal of Autonom. Agents and Multi-Agent Syst. 1, 7-38 (1998)

9. Casella, G., Deufemia, V., Mascardi, V., Costagliola, G., Martelli, M.: An agent-
based framework for sketched symbol interpretation. Journal of Visual Languages
& Computing 29(2), 225-257 (2008)

10. Von Wright, G.: Deontic logic. Mind, 1-15 (1951)

314

11.

12.

13.

14.

G. Casella et al.

Meyer, J.J.C., Wieringa, R.J.: Deontic Logic in Computer Science. John Wiley and
Sons, Chichester (1993)

Rogers, T.J., Ross, R., Subrahmanian, V.S.: IMPACT: A system for building agent
applications. J. Intell. Inf. Syst. 14(2-3), 95-113 (2000)

Forbus, K., Usher, J.: Sketching for knowledge capture: A progress report. In: Proc.
of TUT 2002, pp. 71-77. ACM Press, New York (2002)

Forbus, K., Ferguson, R., Usher, J.: Towards a computational model of sketching.
In: Proc. of IUTI 2001, pp. 77-83. ACM Press, New York (2001)

	Introduction
	Motivation and Case Study
	Intelligent Agents for Recognizing and Reasoning on Hand-Drawn Sketches
	The Architecture of Our System for Reasoning about Hand-Drawn Sketches
	User Interface and Sketch Recognition Modules
	Decision Support Module
	System Behavior

	Checking Safety Criteria in Buildings with Our System
	Related Work
	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

