
An Agent-Based Framework for Context-Driven Interpretation of Symbols in

Diagrammatic Sketches

Giovanni Casella1,2, Gennaro Costagliola2, Vincenzo Deufemia2, Maurizio Martelli1, Viviana Mascardi1

1 Dipartimento di Informatica e Scienze dell’Informazione – Università di Genova

Via Dodecaneso 35, 16146, Genova, Italy, {casella,martelli,mascardi}@disi.unige.it

2 Dipartimento di Matematica e Informatica – Università di Salerno

Via Ponte don Melillo, 84084 Fisciano(SA), Italy, {gcostagliola,deufemia}@unisa.it

Abstract

Parsing hand-drawn diagrams is a definitely

complex recognition problem. The input drawings are

often intrinsically ambiguous, and require context to

be interpreted in a correct way. Many existing sketch

recognition systems avoid this problem by recognizing

single segments or simple geometric shapes in a

stroke. However, for a recognition system to be

effective and precise, context must be exploited, and

both the simplifications on the sketch features, and the

constraints under which recognition may take place,

must be reduced to the minimum.

In this paper we present an agent-based framework

for context-driven interpretation of symbols in

diagrammatic sketches that heavily exploits contextual

information for ambiguity resolution. Agents manage

the activity of low-level hand-drawn symbol

recognizers, that may be heterogeneous for better

adapting to the characteristics of each symbol to be

recognized, and coordinate themselves in order to

exchange contextual information, thus leading to an

efficient and precise interpretation of sketches.

1. Introduction

Recognition of hand-drawn diagrams is a very

active research field, since it finds a natural application

in a wide range of domains, such as engineering,

software design, and architecture [6, 13, 16, 25].

However, it is a particularly difficult task since the

symbols of a sketched diagram can be drawn by using

a different stroke-order, -number, and -direction. The

difficulties in the recognition process are often made

harder by the lack of precision and by the presence of

ambiguities in messy hand-drawn sketches. In fact,

hand-sketched symbols are imprecise in nature:

corners are not always sharp, lines are not perfectly

straight, and curves are not necessarily smooth.

Usually, hand-drawn diagrams consist of parts

whose meaning depends heavily on context. For

example, a single line fragment could constitute the

side of a box, or a connector between boxes, and its

role could be disambiguated only by looking at

neighboring fragments. This means that, when a

recognized symbol is unique to a context, then the

recognizer may exploit this symbol to determine the

context and thereby resolve pending recognition

ambiguities. The context can also be used to recover

from low-level interpretation errors by reclassifying

low-level shapes, obtaining significantly reduced

recognition errors [3].
Besides this, sketch interpretation is always carried

out by applying, to any symbol in the sketch, the same

recognition approach. To the best of our knowledge,

no framework exists that allows the adoption of

different techniques for recognizing different symbols.

Nonetheless, this might be a very useful feature for an

effective recognition process, since each symbol shows

its own peculiar characteristics, which make a

particular recognition technique more or less suitable

for it.
In this paper, we present an agent-based framework

for context-driven interpretation of symbols in

diagrammatic sketches. The reasoning process

performed by the intelligent agents devoted to symbol

recognition (Symbol Recognition Agents, SRA for

short) and to the correct interpretation of the sketch

(Coordinator Agent, CA for short), is based on the

knowledge about the domain context, which is used for

disambiguating the recognized symbols. At the lowest

level of our framework, the symbols of the domain

language are identified by applying suitable Hand-

Drawn Symbol Recognizers (HDSRs, for short) to the

interpretations of elementary strokes. The execution of

these HDSRs is coordinated by SRAs. In spite of the

differences among the existing HDSRs, several of

them could be profitably integrated into our system. As

0-7695-2586-5/06 $20.00 © 2006 IEEE 73

long as there is one SRA that correctly integrates a set

of HDSRs by managing their execution as well as data

conversion issues, the actual implementation of the

HDSRs and the approach to recognition that they adopt

do not matter. For this reason, our framework has the

potential to seamlessly integrate symbols that have

been recognized by heterogeneous HDSRs.
An SRA exchanges contextual information by

cooperating with other SRAs in the system. The

contextual information obtained in this way is sent to

the CA that solves possible conflicts and gives an

interpretation of the sketch drawn so far. The CA is

also able to reduce the number of active HDSRs for

improving the performances of the system.
The paper is organized as follows. Section 2

motivates the use of multi-agent systems for sketch

recognition. Section 3 describes the proposed

framework, and Section 4 exemplifies our approach by

describing the recognition system that we would obtain

by integrating the HDSRs proposed in [10] and [17].

The related work is discussed in Section 5. Finally,

conclusions and further research are discussed in

Section 6.

2. Agents for sketch understanding

The AgentLink III Technology Roadmap [20]

defines an agent as:

“a computer system that is capable of flexible

autonomous action in dynamic, unpredictable,

typically multi-agent domains.”

According to [27], agents should be

1. responsive: they should perceive their environment

and respond in a timely fashion to changes that occur

in it;
2. pro-active: they should not simply act in response to

their environment, but should exhibit opportunistic,

goal-directed behaviour and take the initiative where

appropriate;
3. social: they should be able to interact, when

appropriate, with other artificial agents and humans

in order to complete their own problem solving and

to help others with their activities.
Another characterizing feature of agents is

situatedness: the agent receives sensory input from its

environment and that it can perform actions which

change the environment in some way [19].
As far as sociality is concerned, it is now widely

recognized that interaction is probably the most

important single characteristic of nowadays’ complex

software. Two good reasons for agents to interact and

eventually cooperate, are to solve conflicts [2, 7], and

to disambiguate the interpretation of objects in some

domain [11].
If we take the above features in mind while

considering the problem of recognizing hand-drawn

sketches exploiting contextual information, we soon

realize that an architecture based on agents might be a

proper solution.
In fact, the “virtual blank sheet” where the user

draws represents a dynamic and unpredictable

environment, and an “entity” devoted to recognizing a

specific symbol of some language must be situated in

it, in order to properly perceive the user's actions.

Also, this entity must react to changes that take place

in the virtual blank sheet, i.e., new strokes drawn by

the user, have a complex long term goal, i.e, giving a

correct interpretation to what the user is drawing, and

operate in an autonomous way to reach this goal, since

no explicit input or suggestions must be required to the

user. Finally, although each single entity may be able

to recognize one specific symbol of the language with

a certain degree of confidence, by working alone, it

cannot easily resolve ambiguities (“Is this symbol an

arrow or a line?”), and conflicts (“In order to recognize

my symbol, I am using a stroke that is also used by

another entity; to which symbol does the stroke really

belong?”). Thus, a social behavior is required to reach

the final goal of each entity, that consists in

overcoming conflicts and ambiguities, and providing

the right interpretation of the sketch to the user. In the

end, this “entity” must be responsive, pro-active,

situated, autonomous, and social. In other words, it

must be an intelligent agent.

3. Our agent based framework

The framework that we propose for context-driven

interpretation of symbols is depicted in Fig. 1. It is

composed of four modules:

 Interface Manager. The Interface Manager allows

the usage of the framework with generic sketch editors

(not included in our framework). It is responsible for

converting the information produced by the editor into

a format compliant with the framework, and vice

versa.

 Stroke Interpreter. The Stroke Interpreter classifies

the user strokes into a sequence of domain independent

primitive shapes with attributes, which are stored in a

shared repository. It receives the sequence of strokes

drawn by a user from the Interface Manager. A stroke

is represented by a sequence of points whose sampling

density is dependent on the sketching speed. After a re-

sampling stage, the strokes are segmented by

0-7695-2586-5/06 $20.00 © 2006 IEEE 74

Stroke Classification

Repository

Symbol Recognition

Agent 1
xxx

new stroke Stroke

Interpreter

Symbol Recognizer

interpretation Sketch

Interpreter

Symbol Recognition

Agent 2

Symbol Recognition

Agent N

Sketch Editor

HDSR 1 HDSR 2 HDSR N

In
te

rf
a
c
e

M
a

n
a

g
er

Figure 1. The architecture of the agent-based framework for sketch recognition

identifying key points1 in order to separate the

composite sketch into primitive shapes, such as line

and arc segments. In this way, symbols can be drawn

with multiple pen strokes, and a single pen stroke can

contain multiple symbols. When key points and strokes

have been recognized, they are stored into a “Stroke

Classification Repository” that can be accessed by all

the agents in the system.

 Symbol Recognizer. The Symbol Recognizer is

composed of a set of SRAs, each one devoted to

recognizing a particular symbol of the domain. The

main goal of an SRA is to collaborate with other SRAs

to apply context knowledge to the symbols they are

recognizing, and with the CA that deals with the sketch

interpretation activity.

 Sketch Interpreter. When one symbol is recognized

by one SRA, the SRA sends a message to the CA,

included in the Sketch Interpreter, with information

about the recognized symbol and its context. Using

this information, the CA may provide the correct

sketch interpretation to the Interface Manager.
In the following sections we discuss the Symbol

Recognizer and the Sketch Interpreter in detail.

3.1 Symbol recognizer

The symbols of the domain language are identified

by applying suitable HDSRs to the interpretations

produced by the Stroke Interpreter. The execution of

these HDSRs is coordinated by SRAs. As already

observed, as long as there is one SRA that is able to

manage the execution of a set of HDSRs, and to

convert data from the stroke repository into a format

1 A key point is a point that contains the most characterizing

geometric features of a sketch. For example, a high curvature point, a

tangency point, a corner point and an inflexion point.

that the HDSRs can accept, and the output of the

HDSRs into a format that the other agents can

understand, the actual implementation of the HDSRs

and the approach to recognition that they adopt, do not

matter. .In Section 4, we exemplify the potential of our

approach by outlining how the HDSRs proposed in

[10] and [17] could be integrated into our framework.

However, many other HDSRs, such as [4, 12, 15, 23],

could undergo a similar process.
The main goal of an SRA is to recognize domain

symbol instances (as an example the symbols Actor,

Communicate, UseCase, Include, Generalize, and so

on, in UML use case diagrams [22]) by managing the

execution of a set of HDSRs for a given domain

symbol, and by collaborating with other SRAs to

obtain contextual feedback. The life cycle of each SRA

is characterized by four phases: 1) check the Stroke

Classification Repository for new interesting primitive

shapes; 2) try to recognize a symbol using the new

strokes found during the first step, suitably converted

into a format that the underlying HDSRs can accept; 3)

collaborate with other SRAs to obtain feedback on the

recognition; and 4) interact with the CA.

Checking the repository. When a new stroke

becomes available in the repository, each SRA decides

whether the stroke may be interesting for recognizing

its domain symbol or not.

Recognizing a symbol. We assume that each

HDSR, when fed with the proper input that the SRA

grabs from the repository and converts into a suitable

format, is able to produce an output that contains both

the information on the strokes that compose the

recognized symbol, and an accuracy that rates the

precision of the symbol that has been recognized. This

output is associated by the SRA to the symbol,

0-7695-2586-5/06 $20.00 © 2006 IEEE 75

together with other attributes such as the coordinates of

its centre or the minimum enclosing rectangle.

Collaborating with other SRAs. When a symbol

has been recognized, the SRA starts the collaboration

process to obtain contextual information for the

recognized symbol. The collaboration consists of

sending a feedback request message containing

information about the recognized symbol to all the

SRAs that recognize related symbols and that are

known “a priori” by each SRA.
Two domain symbols are related if the domain

language defines a relation between them. When an

SRA receives a feedback request, it checks its set of

recognized symbols to give an answer. If it finds a

symbol that satisfies the language relationship with the

symbol in the feedback request, it sends a positive

response to the requester, otherwise, it sends a negative

response. As an example, in UML use case diagrams

the Use Case symbol is related to Participate, Include

and Extend symbols.

Interacting with the Coordinator Agent. When a

symbol is recognized and the collaboration phase

terminates, the SRA communicates to the CA the

information about the new recognized symbol

including the set of strokes that form the symbol, its

accuracy value, and the positive feedback collected.

3.2 Sketch interpreter

The interpretation of the sketch is demanded to the

CA that incrementally analyzes the information

received from SRAs and solves conflicts that might

arise. When all the conflicts have been solved, the CA

proposes the sketch interpretation to the user,

interacting with the Interface Manager. The CA looks

for conflicts by checking if there are symbols that

share one or more strokes. Conflicts may take place

either because a stroke is classified as two different

shapes (for example, as a line and as an arc) due to the

sketch inaccuracy, or because the same stroke,

although correctly classified, is used by two SRAs to

recognize two different symbols.
In order to support the incremental resolution of

conflicts, the CA uses a graph structure to efficiently

represent both the information produced by the SRAs,

and that obtained during the resolution of the conflicts.

In particular, the nodes of the graph correspond to the

symbol interpretations provided by the SRAs, whereas

the edges can be of two types. The conflict edges link

conflicting symbols and are labeled with the difference

between the accuracy associated to the symbols in

absolute value, whereas the feedback edges link

symbols that have produced a positive feedback during

their recognition. The conflict between two symbols is

solved in favor of the one having the following higher

truthful value:

)
#

#
(21

n

rn
waccwtr �

where acc is the accuracy value of the symbol, #n is

the total number of nodes, #rn is the number of nodes

without conflicts (unambiguous symbols) reachable by

following a feedback edge from the symbol, and w1

and w2 are values between 0 and 1 that depend on the

domain language. In particular, for languages where

symbols in the diagrams are involved in many relations

with other symbols, w2 must be greater than w1, in

order to weight the existence of feedback more than

the accuracy of the symbol. Vice versa, for languages

with few relations between symbols in diagrams, it is

more important to consider the accuracy associated to

the symbol, and thus w1 must be greater than w2.

Unambiguous symbols are used to solve conflicts

because they represent stable and not conflicting

elements in the current sketch interpretation.

Conflicts are solved starting from:

1. Those that involve one symbol with feedback

from unambiguous symbol(s) (unambiguous

feedback) and one symbol without unambiguous

feedback.

2. Those that involve symbols with higher difference

between the number of unambiguous feedback.

3. Those that involve symbols with higher difference

of accuracy value.

This criterion helps in solving the “easiest” conflicts

first, in order to obtain new unambiguous symbols that

can be used to solve other conflicts.
When a conflict is solved, the graph is updated.

When a new symbol is communicated to the CA, a

new node is added to the graph together with the

corresponding conflict and feedback edges. The

conflict resolution is applied to that portion of the

graph reachable from the new node without involving

those parts of the diagram that are not related with the

added symbol.
In order to reduce the number of active HDSRs, the

CA selects and communicates to the SRAs the ones

that can be pruned. Many heuristics can be chosen: for

example, pruning could be applied to HDSRs that have

recognized symbols without feedback, and are

involved in conflicts with symbols having feedback, or

to HDSRs recognizing symbols whose constituent

strokes all belong to another symbol with more

positive feedback, and so on. The choice of the

heuristics to be applied also depends from the

diagrammatic language.

0-7695-2586-5/06 $20.00 © 2006 IEEE 76

4. Integrating heterogeneous hand-drawn

symbol recognizers

In this section, we discuss how our agent-based

framework might be used to integrate two different

HDSRs and to apply our context-driven cooperative

strategy for disambiguating the sketch interpretation

process. The two HDSRs that we use to exemplify our

approach take inspiration from LADDER [17] and

from Sketch Grammars [10].

 LADDER. In LADDER, the symbol recognition is

performed using the rule-based system Jess

(http://herzberg.ca.sandia.gov/jess/). In particular, for

each symbol of the domain, a Jess rule is automatically

generated from a LADDER structural shape

description. A Jess rule-based system always searches

for combinations of facts that can satisfy a rule. In the

symbol recognition domain, searching for a

combination of facts that satisfy a rule means

searching for a combination of stroke classifications

that represents a domain symbol.
In our example of use case diagrams recognition,

the Generalize SRA might demand the actual symbol

recognition to a HDSR constructed from a LADDER

specification. The “Generalize” symbol of UML use

case diagrams is represented by an arrow with a

triangle head. The Jess rule used by the “Generalize

HDSR” would be:

(defrule GeneralizeCheck

;; get four lines

?f0 <- (Subshapes Line ?shaft \$?shaft_list)

?f1 <- (Subshapes Line ?head1 \$?head1_list)

?f2 <- (Subshapes Line ?head2 \$?head2_list)

?f3 <- (Subshapes Line ?head3 \$?head3_list)

;; make sure lines are unique

(test (uniquefields \$?shaft_list \$?head1_list))

(test (uniquefields \$?shaft_list \$?head2_list))

(test (uniquefields \$?shaft_list \$?head3_list))

(test (uniquefields \$?head1_list \$?head2_list))

(test (uniquefields \$?head1_list \$?head3_list))

(test (uniquefields \$?head2_list \$?head3_list))

;; get accessible components of each line

(Line ?shaft ?shaft_p1 ?shaft_p2 ?shaft_length ?shaft_acc)
(Line ?head1 ?head1_p1 ?head1_p2 ?head1_midpoint ?head1_length ?head1_acc)

(Line ?head2 ?head2_p1 ?head2_p2 ?head2_midpoint ?head2_length ?head2_acc)

(Line ?head3 ?head3_p1 ?head3_p2 ?head3_midpoint ?head3_length ?head3_acc)

;;test constraints

(test (perpendicular ?shaft ?head1))

(test (coincident ?shaft ?head1_midpoint))

(test (coincident ?head1_p2 ?head2_p1))

(test (coincident ?head2_p2 ?head3_p1))

(test (coincident ?head3_p2 ?head1_p1))

(test (equalLength ?head1 ?head2))

(test (acuteMeet ?head1 ?head2))

(test (acuteMeet ?head2 ?head3))

(test (acuteMeet ?head3 ?head1))

=> ;; Generalize symbol found

;; add symbol to recognized symbol

 (computeaccuracy ?shaft_acc ?head1_acc ?head2_acc ?head3_acc ?acc)

 (addshape Generalize ?shaft ?head1 ?head2 ?head3 ?acc))

The above rule, like all Jess rules, is composed of

two parts. The part at the left of the “=>” symbol

contains the name of the rule (“GeneralizeCheck”) and

the preconditions that enable the rule to fire namely:

getting four lines, making sure that the four lines are

unique, getting the components of each line, and

finally checking that the lines’ components meet the

topological and geometric constraints that allow an

arrow to be composed with them. The part at the right

of the “=>” symbol, defines what to do when the

precondition is met; in this case, the symbol, together

with its constituent parts and its accuracy, computed

from the accuracy values produced by the primitive

shape recognizer, is added to the set of symbols

recognized by the Generalize SRA by calling the

“addshape” function.
Thus, when in the Stroke Classification Repository,

there are four lines that respect the precondition of the

rule, the rule is fired and a Generalize symbol is

recognized.

 Sketch Grammars. Sketch Grammars (SkGs)

represent a direct extension of context-free string

grammars, where more general relations other than

concatenation are allowed [10]. The symbol

recognizers automatically generated from SkGs try to

cluster stroke interpretations into symbols of the

domain language. The parsing technique extends the

approaches proposed in [9]: the parsers scan the input

in an incremental and non-sequential way, driven by

the spatial relations specified by the grammar

productions.
An SkG G can be seen as a context-free string

attributed grammar where the productions have the

following format:

A * o x1 R1 x2 R2 … xm-1 Rm-1 xm, Act

A is a nonterminal symbol, each xj is a terminal or

nonterminal symbol, and each Rj is a sequence of

spatial and/or temporal relations [10]. Act specifies the

actions that have to be executed when the production is

reduced during the parsing process. These may include

a set of rules used to synthesize the values of the

attributes of A from those of x1, x2,…, xm. Actions are

enclosed into the brackets { }. * is used to dynamically

insert new terminal shapes in the input during the

parsing process, enhancing the expressive power of the

formalism.
To go on with our example UML use case diagrams

recognition, the Actor SRA might manage an “Actor

HDSR” implemented using SkG. This HDSR would

use the following production to recognize the Actor

symbol:

0-7695-2586-5/06 $20.00 © 2006 IEEE 77

 Actor o�� Ellipse <joint1_1(t1)>

 Line1 < near(t2), near1(t3)>

 Line2 < joint2_1(t4), near1(t5), near2(t6)>

 Line3 <joint2_1
2(t7), rotate2(135,t8)>

 Line4 <joint2_1
3(t9), rotate3(135,t8)> Line5,

�����^�Actor.attach(1) = Ellipse.attach(1) � Line1.attach(1);

 Actor.accuracy = ComputeAccuracy();}

 Ellipse

Line2

Line1

Line3

Line5 Line4

Figure 2. The Actor Symbol

The Actor symbol is composed of an ellipse and five

lines, as shown in Fig. 2 (the attributes are represented

with bullets). The non-terminals Ellipse and Line

cluster the single stroke arcs that form an ellipse and

the parallel single stroke lines, respectively. The

attribute 1 of Ellipse, which represents its borderline, is

jointed to the attributes 1 of Line1, Line2, and Line3.

The latter are rotated with respect to the former of 45

and -45 degrees, respectively. The values t1,…,t9

specify the error margin in the satisfaction of the

relations. Finally, the attribute 1 of Actor is calculated

from the values of the attributes of Ellipse and Line1,

and the accuracy of Actor is computed by the

ComputeAccuracy function, which combines the

accuracy of the strokes forming the sketch and of their

spatial relations.

 Putting all together. Using our framework, the

HDSRs generated from LADDER and SkG

specifications might be seamlessly integrated, thanks

to the definition of suitable SRAs providing a sort of

middle layer between the CA and the actual

recognition process.
Fig. 3 shows the recognition process of a use case

diagram, where the numbers associated to the strokes

in the left-top side of the figure denote the temporal

sequence of the drawing process. For each symbol to

be recognized (Actor, Generalize, Participate, Use

Case, Extend, Include) an appropriate SRA and an

appropriate HDSR are included in the framework. In

our example, the Actor HDSR exploits SkG and the

Generalize HDSR is based on LADDER, and we do

not put constraints on the other HDSRs. When we

move from the hand-drawn symbol recognition level,

to the recognizer agent level, the underlying

recognizing techniques become irrelevant for the

communication and coordination purposes of the

agents.
While the user draws, the sketch classifications

produced by the stroke interpreter are stored in the

repository. Each SRA transforms stroke classifications

that are interesting to it, into suitable representations

that can be used by the underlying HDSR.

Stroke

Classification

Repository

User Sketch

Stroke

Interpretation

Participate

SRA

p1=<2> - p2=<3>

p3=<4> - p4=<5>

p5=<6> - p6=<7>

a1

u1

p1

u2 p6

Include

SRA

UseCase

SRA

u1=<1>

u2=<8>

Generalize
SRA

a1=<1,2,3,

4,5,6>

Actor
SRA

Extend

SRA

p3

p4

p5

p2

1

2 3

4

5 6

8
7

Coordinator

Agent

E

I

Figure 3. The Recognition Process

When the strokes from 1 to 6 in Fig. 3 are drawn,

the HDSR associated to Actor SRA uses the

production rule illustrated before to recognize the

Actor symbol a1. Moreover, stroke 1 is also

recognized as the Use Case symbol u1 by the HDSR

associated to Use Case SRA, whereas the line strokes

from 2 to 6 are recognized as the Participate symbols

p1, p2, p3, p4, and p5 by the HDSR associated to

Participate SRA. Finally, strokes 7 and 8 are correctly

recognized as the Participate symbol p6 and UseCase

symbol u2, respectively.
As described in section 3.1, when an SRA

recognizes a symbol it starts to collaborate with SRAs

recognizing related symbols for obtaining contextual

information. In use case diagrams, the Use Case

symbol is related to Participate, Include and Extend.

Thus, when the Use Case SRA recognizes u2, it sends

a feedback request to Participate SRA, Extend SRA,

and Include SRA. The first replies with a positive

response, since u2 is correctly related to p6, while the

others reply with a negative response.
When the collaboration phase terminates, the SRAs

send to the CA the recognized symbols with their

attributes and collected positive feedbacks. At the

bottom of Fig. 3 the graph constructed by the CA using

the symbols communicated by SRAs is shown. In the

graph, conflict edges and feedback edges are

0-7695-2586-5/06 $20.00 © 2006 IEEE 78

visualized with continuous arrows and dashed arrows,

respectively. Symbol a1 is in conflict with several

symbols (p1, p2, p3, p4, p5, u1). The first conflict that

is solved is the one between a1 and p1. Indeed, a1

collected two unambiguous feedback from p6 and u2,

while p1 did not receive unambiguous feedback (the

one from u1 is not unambiguous). Supposing that a1

has a greater truthful value than p1, a1 wins the

conflict. The conflict resolution goes on and since a1

wins all its conflicts, it becomes an unambiguous

symbol providing unambiguous feedback.

5. Related work

In the last two decades several approaches have

been proposed for the recognition of freehand

drawings. The novelty of our work consists in the

exploitation of intelligent agents for the integration and

coordination of heterogeneous hand-drawn symbol

recognizers.
If we consider the agent technology, that mainly

characterizes our approach, we find that very few

approaches are based on it. One of the oldest systems

we are aware of is QuickSet, a suite of agents for

multimodal human-computer communication [8]. A

very similar, but more recent, agent-based multimodal

system is Demo, described in [14]. In [1], Achten and

Jessurun discuss how graphic unit recognition in

drawings can take place using a multi-agent systems

approach, where singular agents may specialize in

graphic unit-recognition, and multi-agent systems can

address problems of ambiguity through negotiation

mechanisms. In [21], Mackenzie and Alechina propose

an agent-based technique for the classification and

understanding of child-like sketches of animals, using

a live pen-based input device. Finally, in [18] Juchmes

and Leclercq describe EsQUIsE, an interactive tool for

free-hand sketches to support early architectural

design.
When we compare our proposal with those using

the agent technology, we find that the main differences

lie in the intended usage domain of the system, which

is very specific for all the implemented systems, and in

the technique exploited for recognizing symbols from

stroke classifications, that is established once and for

all by the other approaches.
As far as the first difference is concerned, the only

general-purpose view is provided by Achten and

Jessurun that, however, do not propose a concrete

MAS architecture, but just analyze the feasibility of

adopting multi-agent techniques to sketch recognition.
Regarding the construction of symbol recognizers,

many approaches have been proposed [4, 10, 12, 15,

17, 23]. We believe that each of these proposals can be

integrated into our framework in spite of the fact that

they differ one from another under several aspects,

ranging from the identification of the shape of the

symbols to the approach used to construct them. For

instance, the Rubine recognition engine is a trainable

recognizer for single stroke gestures [23]. Gestures are

represented by global features and are classified

according to a linear function of the features.

However, the recognizer is applicable to single-stroke

sketches and is sensitive to the drawing direction and

orientation. In [4] Apte et al. developed a hard-coded

recognizer that examines the geometric properties of

the convex hull of a symbol. The recognizer also

makes use of special geometric properties of particular

shapes. CALI is a system for recognizing multi-stroke

geometric shapes based on a naïve Bayesian classifier

[12]. Fuzzy logic is also employed in their graphics

recognition approach such that their recognition

approach is orientation independent. Nevertheless, the

filters applied during the recognition are ineffective on

ambiguous shapes such as pentagon and hexagon. In

[15] Kara and Stahovich have developed a symbol

recognizer that is capable of learning new definitions

from single prototype examples. Moreover, since it is

based on a down-sampled bitmap representation, it is

particularly useful for drawings with heavy over-

stroking and erasing.

6. Conclusions and future work

In this paper we have presented an agent-based

framework for interpreting symbols in diagrammatic

sketches in a context-driven fashion, exploiting

heterogeneous techniques for the recognition of each

single symbol of the language. The recognition process

is supported by intelligent agents (SRAs) that manage

the activity of hand-drawn symbol recognizers, and

coordinate themselves in order to provide efficient and

precise interpretations of the sketch to the user. In a

certain sense, SRAs can be seen as mediators that

implement the middle layer for integrating information

provided by different data sources (the HDSRs). The

approach to information mediation based on intelligent

agents has a long tradition [5, 26]. In our approach we

apply the ideas behind mediation to a new research

field.
Currently, the main limitation of our framework is

that it defines a high-level architecture where

heterogeneous components can be suitably integrated

thanks to intelligent agents, but neither methodological

guidelines for performing this integration, nor software

application for supporting them, has been developed

yet. The system exemplified in Section 4 is, in fact,

under implementation; we have described how it will

0-7695-2586-5/06 $20.00 © 2006 IEEE 79

look like and what it will do, but we cannot provide

experimental results since a complete working

prototype is still missing.
Our short term future work is thus to complete the

implementation of our case study in order to provide a

set of already developed SRAs (that for integrating

LADDER, that for integrating Sketch Grammars, etc.)

from which the developer can choose when building

his/her own system.
In the medium term, on the one hand we will define

a set of methodological guidelines for integrating

heterogeneous HDSRs into the framework, and on the

other hand we will explore the advantages of

integrating a parser into the coordinator agent for

analyzing the syntax of the diagrammatic language.

This will allow us to improve the accuracy in

computing feedback information and to reduce the

number of symbol recognition processes.

References

[1] H.H. Achten and A.J. Jessurun, “An Agent Framework

for Recognition of Graphic Units in Drawings”, in Proc.

of eCAADe'02, 2002, pp. 246-253.

[2] M. Amer, A. Karmouch, T. Gray, S. Mankovski, “An

Agent Model for Resolution of Feature Conflicts in

Telephony”, J. Networks Syst. Manage, 8(3), 2000, pp.

419-437.

[3] C. Alvarado, and R. Davis, “Dynamically Constructed

Bayes Nets for Multi-Domain Sketch Understanding”, in

Proc. of IJCAI’05, 2005, pp. 1407-1412.

[4] A. Apte, V. Vo, and T.D. Kimura, “Recognizing

multistroke geometric shapes: An experimental

evaluation”, in Proc. UIST 93, 1993, pp. 121-128.

[5] S. Bergamaschi, “Extraction of Informations from highly

Heterogeneous Sources of Textual Data”, in Proc. of

CIA’97, LNCS, 1997, pp. 42-63

[6] D. Blostein and L. Haken, “Using Diagram Generation

Software to Improve Diagram Recognition: A Case

Study of Music Notation”, IEEE Transactions on PAMI,

21(11), 1999, pp. 1121-1136.

[7] J. Chu-Carroll and S. Carberry, “Communication for

Conflict Resolution in Multi-Agent Collaborative

Planning”, in Proc. of ICMAS'95, pp. 49-56.

[8] P. R. Cohen, M. Johnston, D. McGee, I. Smith, J.

Pittman, L. Chen, and J. Clow, “Multimodal interaction

for distributed interactive simulation”, in Proc. of

IAAI’97, pp. 978-985.

[9] G. Costagliola, V. Deufemia, G. Polese, M. Risi, “A

Parsing Technique for Sketch Recognition Systems”, in

Proc. of IEEE VL/HCC’04, pp. 19-26.

[10] G. Costagliola, V. Deufemia, M. Risi, “Sketch

Grammars: A Formalism for Describing and Recognizing

Diagrammatic Sketch Languages”, in Proc. of

ICDAR’05, IEEE Press, pp. 1226-1230.

[11] J.L.T. da Silva and V.L. Strube de Lima, “Lexical

Categorical Disambiguation using a Multi-Agent

Systems Architecture”, in Proc. of ICMAS'98, pp. 417-

418.

[12] M.J. Fonseca, C. Pimentel, and J.A. Jorge, “CALI – An

Online Scribble Recognizer for Calligraphic Interfaces”,

in Proc. AAAI Symp. Sketch Understanding, 2002, pp.

51-58.

[13] M.D. Gross, “The Electronic Cocktail Napkin – A

Computational Environment for Working with Design

Diagrams”, Design Studies, 17(1), pp. 53-69, 1996.

[14] E. Kaiser, D. Demirdjian, A. Gruenstein, X. Li, J.

Niekrasz, M. Wesson, and S. Kumar, “Demo: A

Multimodal Learning Interface for Sketch, Speak and

Point Creation of a Schedule Chart”, in Proc. of

ICMI’04, 2004, pp. 329-330.

[15] L.B. Kara and T.F. Stahovich, “An Image-based,

Trainable Symbol Recognizer for Hand-drawn

Sketches”, Computers & Graphics, 29(4), 2005, pp. 501-

517.

[16] T. Hammond and R. Davis, “Tahuti: A Geometrical

Sketch Recognition System for UML Class Diagrams”,

in Proc. of the AAAI Symp. on Sketch Understanding,

2002, pp. 51-58.

[17] T. Hammond and R. Davis, “LADDER, A Sketching

Language for User Interface Developers”, Computers &

Graphics, 29(4), 2005, pp. 518-532.

[18] R. Juchmes and P. Leclercq, “A Multi-Agent System for

the Interpretation of Architectural Sketches”, in Proc. of

2004 Eurographics Workshop on Sketch-Based

Interfaces and Modeling, Grenoble, France, pp. 53-61.

[19] N.R. Jennings, K. P. Sycara, and M. Wooldridge, “A

Roadmap of Agent Research and Development”, Journal

of Autonomous Agents and Multi-Agent Systems, 1(1),

1998, pp 7-36.

[20] M. Luck, P. McBurney, O. Shehory, S. Willmott, and

the AgentLink Community, “Agent Technology:

Computing as Interaction – A Roadmap for Agent-Based

Computing”, AgentLink III, 2005.

[21] G. Mackenzie and N. Alechina, “Classifying Sketches

of animals using an Agent-Based System”, Proc. of

CAIP 2003, LNCS 2756, pp. 521-529.

[22] Object Management Group. UML Specification version

2.0. http://www.omg.org/technology/documents/formal/

uml.htm

[23] D. Rubine, “Specifying Gestures by Example”,

Computer Graphics, 25(4), 1991, pp. 329-337.

[24] T.M. Sezgin, “Feature point detection and curve

approximation for early processing in sketch

recognition”, Master’s thesis, Massachusetts Institute of

Technology, June 2001.

[25] T.F. Stahovich, R. Davis, and H. Shrobe, “Generating

Multiple New Designs from a Sketch”, Artificial

Intelligence, 104(1-2), 1998, pp. 211-264.

[26] V. S. Subrahmanian, S-S. Chen, J. A. Hendler, R. Hull

and V. Tannen, “Smart Mediators and Intelligent Agents

(Panel)”, in Proc. CIKM 1996, page 343.

[27] M. Wooldridge and N. R. Jennings. “Intelligent agents:

Theory and practice”, The Knowledge Engineering

Review, 10(2), 1995, pp. 115-152.

0-7695-2586-5/06 $20.00 © 2006 IEEE 80

