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Abstract. In this paper we present CooL-AgentSpeak, an extension of AgentSpeak-DL with plan exchange and ontology ser-
vices. In CooL-AgentSpeak, the search for an ontologically relevant plan is no longer limited to the agent’s local plan library but
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1. Introduction

Cooperation is an important feature in the context
of Multi-Agent Systems (MASs) and is intrinsic in the
definition of a MAS as “a loosely coupled network of
problem solvers that work together to solve problems
that are beyond the individual capabilities or knowl-
edge of each problem solver” [30].

In our past research we discussed some scenarios
where cooperation obtained by allowing BDI agents
[50] to exchange their plans would have turned out to

1This paper extends the work by Viviana Mascardi, Davide An-
cona, Rafael H. Bordini and Alessandro Ricci “CooL-AgentSpeak:
Enhancing AgentSpeak-DL Agents with Plan Exchange and Ontol-
ogy Services” published in the Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, pp. 109-116, 2011.
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be extremely useful. We named that extension to the
standard BDI approach Coo-BDI [1] and one of the
scenarios we took under consideration involved un-
experienced digital butlers [48] needing to cooperate
with more experienced ones in order to better assist
their user. In that scenario a digital butler a might need
to manage the event +invitee(john) that its human user
generated by means of the user interface. Let us sup-
pose that a does not know how to deal with the pres-
ence of an invitee (namely, it has no relevant plans for
that event) and asks the more experienced digital but-
ler b. Agent b has a nice plan triggered by event +vis-
itor(Who) that states how to make guests feel as com-
fortable as possible by offering them all the hospital-
ity that they deserve. Unfortunately, +invitee(john) and
+visitor(Who) do not unify, and b will not send its nice
plan to a for not realizing it is in fact relevant.
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Now, let us suppose that agents’ belief base is not
just a set of atoms, but it consists of the definition
of complex concepts and relationships among them,
as well as specific factual knowledge (or beliefs, in
this case), namely, in Description Logic terminology,
in a TBox and an ABox. With this assumption ap-
plied to the AgentSpeak language we would obtain the
AgentSpeak-DL language introduced in [46].

If a and b shared the same ontology o(oid), and
if we could demonstrate that o(oid) |= invitee v
visitor, we could solve a’s problem: +invitee(john)
and +visitor(Who) do not unify, but a plan that works
for a visitor should work for an invitee as well, since
the latter is a subconcept of the former according to
ontology o(oid).

Sharing a common ontology to boost the coopera-
tion among agents was perceived as a pressing need
since the dawning of MASs [23,29] and was imple-
mented in many different domains including Micro-
grids [16], health care [59], trading [62], automated
scheduling [25], cultural heritage [39]. Nonetheless,
in many situations designing or eliciting such a com-
mon ontology may not be convenient, desirable or
possible. For example, companies that are temporar-
ily allied in a Virtual Enterprise might not want to
disclose their local ontology to all the partners, but
might be ready to share the minimal amount of in-
formation required to achieve the specific goal for
which the Virtual Enterprise was built. A similar situ-
ation may take place among the forces of law and or-
der, among different health care institutes, and among
many other actors that on the one hand want to col-
laborate in order to be more effective, but on the other
hand need to protect their own sensible knowledge.
Matching their ontologies and exploiting only the re-
sulting alignment may be a good compromise to trade-
off between privacy and need to cooperate, and to cope
with dynamic environments where matching must be
necessarily performed on-the-fly [47] and with situa-
tions where agents do not interact often and creating a
shared ontology is not worth [27].

With these considerations in mind, let us consider
now a more involved scenario, where a and b do
not share the same ontology (they refer to o(a) and
o(b) respectively), and where b’s plan is triggered by
+guest(Who). Even if we combined the features of
AgentSpeak-DL and of Coo-BDI, we could not man-
age this situation properly. In fact, what a and b would
need here, is some “cross ontological unification” of
concepts allowing b to realize that guest ∈ o(b) is
equivalent (at least up to a certain degree) to invitee ∈

o(a). In this case, b could send its plan for dealing
with guests to a, and a could use it for dealing with
the invitee. If agents a and b could take advantage
of some transparent and reliable mechanism perform-
ing the necessary cross ontological unification with-
out requiring that they disclose their ontologies to each
other, they could reach the goal of cooperating, still
preserving their privacy.

The CooL-AgentSpeak language presented in this
paper copes with the need of cooperating by exchang-
ing procedural knowledge expressed according to on-
tologies local to the agents, without needing to build
a common ontology or to share the local ones. CooL-
AgentSpeak integrates Coo-BDI and AgentSpeak-DL
and enhances the resulting language with ontology
matching capabilities to deal with situations such as
the one discussed above. In CooL-AgentSpeak the
search for a plan takes place not only in the agent’s lo-
cal plan library but also in the other agents’ libraries,
according to the cooperation strategy as in Coo-BDI.
However, handling an event is more flexible as it is
not based solely on unification and on the subsumption
relation between concepts as in AgentSpeak-DL, but
also on ontology matching. Belief querying and updat-
ing also take advantage of ontological matching.

The paper is organized in the following way. Sec-
tion 2 provides background knowledge on the integra-
tion of speech-acts in AgentSpeak, AgentSpeak-DL,
Coo-BDI, ontology services in MAS, and ontology
matching techniques. Section 3 introduces the CooL-
AgentSpeak language and Section 4 outlines its se-
mantics in an informal way. Section 5 describes the im-
plementation of CooL-AgentSpeak in Jason; a simple
example of its use is shown in Section 6, whereas the
experiments we carried out on three complex scenarios
are discussed in Section 7. Section 8 discusses the re-
lated work and finally Section 9 provides final remarks
and an outline of our future research directions.

2. Background

2.1. Speech-acts in AgentSpeak

Many extensions of AgentSpeak have appeared over
the years. In [44], for example, Moreira and colleagues
paved the way to the definition of the formal seman-
tics of AgentSpeak agents able to process speech-act
based messages, which is fundamental to allow social
behavior in BDI agents. That preliminary work led to
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the full formalization of a large set of speech-acts in
AgentSpeak presented in [57].

An agent’s message 〈sa, id, cnt〉 consists of a
speech-act sa, a unique sender identifier id, and a mes-
sage content cnt; depending on the speech-act, cnt can
be an atomic formula (at); a set of formulas (ATs); a
ground atomic formula (b); a set of ground atomic for-
mulas (Bs); a set of plans (PLs); or a triggering event
(te). The informal semantics of each speech act is given
below.

– 〈Tell, id, Bs〉 and 〈Untell, id, ATs〉: a Tell message
might be sent to an agent either as a reply or as an “in-
form” action. When receiving a Tell message as an in-
form, the receiver will include the beliefs in the mes-
sage content in its knowledge base and will annotate
the sender as a source for them. When receiving an
Untell message, the sender of the message is removed
from the set of sources associated with the atomic for-
mulas in the content of the message. In case the Tell
or Untell message is sent as the reply to a previously
issued message of type Ask, the suspended intention
associated with that message is resumed.

– 〈Achieve, id, at〉 and 〈Unachieve, id, at〉: in an
appropriate social context, the receiver of an Achieve
message will try to execute a plan whose triggering
event is +!at: the sender delegates the receiver to
achieve that goal. The Unachieve speech-act is dealt
with in a similar way, except that the deletion (rather
than addition) of an achievement goal is included in
the receiver’s set of events.

– 〈TellHow, id, PLs〉 and 〈UntellHow, id, PLs〉: a
TellHow message is used by the sender to inform the
receiver of a plan that can be used for handling certain
types of events as expressed in the plan’s triggering
event. This performative is fundamental for the imple-
mentation of plan exchange in Coo-AgentSpeak (Sec-
tion 2.3). The management of UntellHow is similar,
except that plans are removed from the receiver’s plan
library.

– 〈AskIf, id, {b}〉, 〈AskAll, id, {at}〉, and 〈AskHow,
id, te〉: The receiver will respond to these requests for
information if certain conditions imposed by the so-
cial settings hold between sender and receiver. The re-
ceiver processing an AskIf responds with the action of
sending either a Tell (to reply positively) or Untell (to
reply negatively) with the same content as the AskIf
message. In case of an AskAll, the agent replies with
all the atoms in the belief base that unify with the for-
mula in the message content or with an Untell. Finally,
the receiver of an AskHow responds with a TellHow
message.

A further development of that research line is dis-
cussed in [45], where the authors revisit the motiva-
tions and the initial developments that led to their pa-
per [44] and provide an overview of the state-of-the-art
in the field.

2.2. AgentSpeak-DL and its JASDL Implementation

In agent communication, the importance of ontolo-
gies for ensuring interoperability has been recognized
since their very beginning, even before they have been
employed for the Semantic Web effort. Both KQML
[42] and FIPA-ACL [22] allow agents to specify the
ontology they are using, although none of them forces
that. Agent communication languages were born with
the Semantic Web in mind. However, what was not
considered before the work in [46] is that ontologi-
cal reasoning can facilitate the development of agent
programs written in agent-oriented programming lan-
guages.

That paper introduced AgentSpeak-DL, a variant
of the AgentSpeak logic-based BDI-inspired agent-
oriented programming language. The paper proposed
a formal (operational) semantics for AgentSpeak-DL,
a variant of AgentSpeak based on description logic. In
that theoretical proposal, the belief base contained a
TBox and an ABox, so all predicates used in an agent
program were assumed to be part of an ontology. With
this, queries to the belief base could use ontological
reasoning in order to answer the query; belief update
was able to ensure ontological consistency of the belief
base; triggering plan execution could also be based on
subsumption of the event and the plan’s trigger; and,
of course, this pointed to future practical work where
agents could share knowledge represented in the OWL
language [58], for example.

Exactly to allow the practical use of these ideas, ex-
tensive work was carried out by Klapiscak and Bordini
who implemented JASDL [35], an extension of the Ja-
son AgentSpeak interpreter making available all fea-
tures of AgentSpeak-DL and others, including prelimi-
nary work on belief revision. Most importantly, the de-
velopment of JASDL used Jason extensibility mech-
anism rather than altering the hardwired implementa-
tion of the operational semantics. In JASDL, belief an-
notations are used to point out which predicates are
defined externally in OWL ontologies; this means that
traditional AgentSpeak code can be used together with
AgentSpeak-DL code. The OWL API [28] was used to
allow the integration with ontological reasoners which
would make the knowledge available elsewhere (in on-
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tologies on the web) usable within an agent program,
so as to allow, for example, for more compact pro-
grams that can handle various subsumed events by a
single, more general, plan (when appropriate).

2.3. Coo-BDI and its Coo-AgentSpeak
Implementation

Coo-BDI (Cooperative BDI [1]) extends traditional
BDI agent-oriented programming languages in many
respects. As in the traditional BDI setting, Coo-BDI
agents are characterized by an event queue, a mailbox,
a plan library, a belief base, and a set of intentions. The
main extensions of Coo-BDI involve the introduction
of cooperation among agents for the retrieval of ex-
ternal plans for a given triggering event; the extension
of plans with “access specifiers”; the extension of in-
tentions to take into account the external plan retrieval
mechanism; and the modifications in the Coo-BDI en-
gine (i.e., the interpreter) to cope with all these issues.

The cooperation strategy of an agent includes the set
of agents with which it is expected to cooperate, the
plan retrieval policy, and the plan acquisition policy.
The cooperation strategy may evolve over time, allow-
ing maximum flexibility and autonomy for the agents.
Four predicates specify an agent’s current cooperation
strategy:

– trustedAgents(TrustedAgents) specifying the
set of identifiers of the agents currently trusted by the
agent1;

– retrievalPolicy(Retrieval) specifying the
current retrieval policy (always if external relevant
plans should be always looked for, noLocal if they
should be looked for only when no local relevant plans
can be found);

– acquisitionPolicy(Acquisition) specifying
the current plan acquisition policy (discard when the
retrieved plan must be used and then discarded, add
when it must be added to the local plan library, replace
when it must replace existing relevant local plans);

– timeout(Nat), where Nat is a natural number,
stating the number of milliseconds the agent will wait
for a cooperative plan exchange request to be an-
swered.

A plan access specifier determines the set of agents
that the plan can be shared with, and the source of that
plan. It may assume three values: private (the plan can-
not be shared), public (the plan can be shared with any

1The TrustedAgents set is implemented as a Prolog list without
repetitions.

agent) and only(TrustedAgents) (the plan can be shared
only with the agents contained in the TrustedAgents
set).

Coo-BDI has been applied to (predicate logic)
AgentSpeak (i.e., AgentSpeak without ontological rea-
soning), and made practical using the Jason inter-
preter [2]. Its further developments are discussed
in [38].

2.4. Ontology Services in MASs

The problem of semantic mediation at the vocab-
ulary and domain of discourse levels was tackled by
the “Ontology Service Specification” issued by FIPA
in 2001 [21]. According to that specification, an “On-
tology Agent” (OA) should be integrated into a MAS
in order to provide services such as translating ex-
pressions between different ontologies and/or differ-
ent content languages and answering queries about re-
lationships between terms or between ontologies. Al-
though the FIPA Ontology Service Specification rep-
resents an important attempt to analyze in a system-
atic way the services that an OA should provide for
ensuring semantic interoperability in an open MAS, it
has many limitations including the model to which on-
tologies should adhere (OKBC2, when the most widely
used language for representing ontologies today is
OWL) and the fact that agents are allowed to spec-
ify only one ontology as reference vocabulary for any
given message.

Perhaps due to these limitations, there have been
very few attempts to design and implement FIPA-
compliant OAs. The only two attempts of integrating
a FIPA-compliant OA into JADE, that we are aware
of, are described in [9] and [49]. Both follow the FIPA
specification but adapt it to ontologies represented in
OWL.

An extension of the OA, described in [9], with ser-
vices for ontology access, navigation, querying, mod-
ification, and versioning of modified ontologies, has
been exploited for supporting CooL-AgentSpeak fea-
tures.

2.5. Ontology Matching

According to [20], a correspondence between an
entity e belonging to ontology ont and an en-

2http://www.ai.sri.com/~okbc/, accessed on
November 2013.
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tity e′ belonging to ontology ont′ is a 5-tuple
〈id, e, e′, R, conf〉 where:

– id is a unique identifier of the correspondence;
– e and e′ are the entities (e.g., properties, classes,

individuals) of ont and ont′ respectively;
– R is a relation, such as “equivalence”, “more gen-

eral”, “disjointness”, “overlapping”, holding between
the entities e and e′;

– conf is a confidence measure (typically in the
[0, 1] range) for the correspondence between the enti-
ties e and e′.

An alignment of ontologies ont and ont′ is a set of
correspondences between entities of ont and ont′.

Finally, a matching process can be seen as a function
f which takes two ontologies ont and ont′, a set of
parameters Par, and a set of oracles and resources Res,
and returns an alignment A between ont and ont′.

Since in our work we use equivalence as relation,
and we do not need the identifiers of correspondences,
in the remainder of this paper we will represent corre-
spondences as triples 〈e, e′, conf〉.

3. The Language

CooL-AgentSpeak stands for “Cooperative descrip-
tion-Logic AgentSpeak”. The syntax of the language
is summarized in Figure 1. With respect to previous
work on AgentSpeak-DL and JASDL, the definition of
a matching strategy ms is a completely new feature of
CooL-AgentSpeak.
Ontological knowledge. Following [46], we assume
ALC as the underlying description logic [3] for repre-
senting the cognitive structures of CooL-AgentSpeak
agents. The definition of classes and properties belong-
ing to the ABox of the ontology assumes the existence
of identifiers for primitive (i.e., not defined) classes
and properties (metavariables A and P, respectively).
New classes and properties can be defined using cer-
tain constructs such as u and t that represent the inter-
section and the union of two entities, respectively. The
TBox is a set of axioms establishing equivalence and
subsumption relations between classes and between
properties. With respect to [3] and [46], we extended
the syntax of the language used for representing the
ontology by introducing annotations of concepts and
properties, in order to make CooL-AgentSpeak practi-
cal, as discussed below. Annotations are ignored dur-
ing ontological reasoning and matching, hence they do
not change the ALC semantics.

ag ::= ont ps cs ms

ont ::= ABox TBox
ABox ::= at1 ... atn (n ≥ 0)
TBox ::= C1 ≡ D1 ... Cn ≡ Dn (n ≥ 0) |

C1 v D1 ... Cn v Dn (n ≥ 0) |
R1 ≡ S1 ... Rn ≡ Sn (n ≥ 0) |
R1 v S1 ... Rn v Sn (n ≥ 0)

C, D ::= A | ¬ C | C u D | C t D | ∀R.C | ∃R.C
R, S ::= P | R u S | R t S
at ::= C(t)[o(oid), src(bsrc)] |

R(t1, t2)[o(oid), src(bsrc)]
bsrc ::= self | aid1, ..., aidn | percept
oid ::= a string identifying an ontology | self
aid ::= a string identifying an agent

ps ::= p1 ... pn (n ≥ 1)
p ::= @t[as, src(psrc)] te : ct← h
psrc ::= self | aid1, ..., aidn
as ::= private | public | only(aid1, ..., aidn)
te ::= +at | -at | +g | -g
ct ::= at | ¬ at | ct ∧ ct | true
h ::= h1; true | true
h1 ::= a | g | u | h1; h1

g ::= !at | ?at
u ::= +at | -at

cs ::= trustedAgents([aid1, ..., aidn])
retrievalPolicy(rp)
acquisitionPolicy(ap)
timeout(n) (n ∈ N)

rp ::= always | noLocal
ap ::= discard | add | replace

ms ::= match(f) parameters(Par) resources(Res)
threshold(th) (th ∈ [0, 1]

S
{∞})

Fig. 1. CooL-AgentSpeak: Syntax.

An agent belief is an atom belonging to the ABox
annotated with o(oid), where oid is the identifier of the
ontology. We use oid=self for “naive beliefs” [35], i.e.,
normal AgentSpeak beliefs that do not relate to any on-
tology. Along the lines of [57], beliefs are also anno-
tated with sources src(bsrc), where bsrc can be either
an agent identifier aid specifying the agent which pre-
viously communicated that information, or self to de-
note beliefs created by the agent itself, or percept to in-
dicate that the belief was acquired through perception
of the environment.
Matching functions. The metavariable f represents
a matching-function name. We assume that matching
functions can be unequivocally identified by means of
their names (i.e., the functional symbols). Par and Res
are metavariables representing the parameters and re-
sources needed by matching function f.
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Agent. An agent a is characterized by an ontology ont,
a plan library ps, a cooperation strategy cs, and an on-
tology matching strategy ms.
Plan library. The plan library consists of a set
of CooL-AgentSpeak plans. Like predicate-logic
AgentSpeak plans, CooL-AgentSpeak plans consist of
a plan label (preceded by @, and t, as elsewhere, stands
for a simple term, in practice a lower-case identifier as
in Prolog) and plan annotations which include an ac-
cess specifier as (defining the accessibility level for the
plan, as introduced in Section 2.3) and an optional list
of sources src(psrc) which specifies the agents from
which the plan has been obtained, a trigger te, a con-
text ct, and a body h.
Cooperation strategy. The cooperation strategy cs
follows the description given in Section 2.3 and is
defined through the predicates trustedAgents,
retrievalPolicy, acquisitionPolicy, and
timeout.
Ontology matching strategy. The ontology match-
ing strategy ms is a characteristic feature of CooL-
AgentSpeak. It follows the description given in Sec-
tion 2.5 and consists of:

– match(f ) specifying which matching function f
the agent uses to perform the match;

– parameters(Par) and resources(Res) de-
fine the arguments that will be passed on to the match-
ing function, besides the two ontologies to match;

– threshold(th) with th ∈ [0, 1]∪{∞} stating the
confidence threshold below which correspondences re-
turned by the matching function will be discarded; if
the threshold is set to∞, all the correspondences will
be discarded.

The ontology matching strategy may change dy-
namically as well, thus allowing an agent to use dif-
ferent matching functions and different parameters
throughout its execution.

Note that above we only explained mainly the syn-
tactic aspects that are specific to the CooL-AgentSpeak
language being introduced in this paper and the Coo-
BDI approach. The interested reader can find de-
tailed descriptions of the other programming con-
structs inherited from AgentSpeak, AgentSpeak-DL,
and JASDL in the relevant literature already cited.

4. Informal Semantics

In this section we discuss the main extensions and
changes we made to the language semantics in order

to take plan exchange and ontology matching services
into account.

The most relevant steps of an AgentSpeak reason-
ing cycle are the following: processing received mes-
sages (ProcMsg); selecting an event from the set of
events (SelEv); retrieving all relevant plans (RelPl);
checking which of those are applicable (ApplPl);
selecting one particular applicable plan (the intended
means) (SelAppl); adding the new intended means
to the set of intentions (AddIM); selecting an in-
tention (SelInt); executing the selected intention
(ExecInt), and clearing an intention or intended
means that may have finished in the previous step
(ClrInt).

The semantic rules for these steps are essentially
the same in CooL-AgentSpeak as in predicate-logic
AgentSpeak [6] and in AgentSpeak-DL [46], with the
exception of the following aspects that are affected by
the introduction of ontology matching and plan ex-
change:

– plan search: performed in the steps responsible for
collecting local and external relevant plans (RelPl);

– querying the belief base: performed in the step de-
voted to executing the selected intention, ExecInt;
and

– belief updating: performed in steps ExecInt and
ProcMsg (e.g., in processing messages with perfor-
mative tell from other agents). It also happens in per-
ception of the environment that takes place before
ProcMsg (belief update is normally considered part
of the underlying agent architecture, so the formal se-
mantics of an AgentSpeak interpreter usually just ab-
stracts away from this aspect). Percepts can be anno-
tated with a reference to an ontology as well.

Recall that, in CooL-AgentSpeak, both literals (and
hence beliefs, goals, triggering events, etc.) and plans
are annotated with their sources. In the setting we are
going to present, plan (resp. belief) retrieval and update
do not depend on plan (resp. belief) sources so we drop
them for readability. In order to take them into con-
sideration properly, we would need to introduce some
more sophisticated policies depending on sources too.

A scenario where plan sources would make a dif-
ference in the plan search stage would be, for exam-
ple, the one where external plans are accepted only if
they come from trusted sources. However, if we as-
sume that, at the MAS initialization, agents only pos-
sess their own plans, and that trust is transitive, this
criterion is satisfied for free. In fact, when agents look
for external plans for the first time, they ask their
trusted agents an hence obtain plans whose sources are
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trusted. In successive plan exchanges, they may obtain
plans whose sources are trusted by their trusted agents,
and so on, hence meeting the constraint of “trust prop-
agation”. Belief sources might impact on querying the
belief base and updating it in a similar way.

4.1. Plan Search in CooL-AgentSpeak

As far as plan search is concerned, introducing the
“CooL” features to the AgentSpeak-DL language only
changes the way relevant plans are retrieved3.

A plan p with triggering event

TrEv(p) = op′D(t′)[o(oid′)]

is relevant for the event op C(t)[o(oid)]
(op, op′ ∈ {+,−, +!,+?,−!,−?}) if the operator op
is the same as op′, t and t′ unify, and:

1. if the two events refer to the same ontology (oid =
oid′)

(a) either D is identical to C (as in AgentSpeak),
(b) or C can be inferred fromD in ontology o(oid)4

by means of ontological reasoning (as in AgentSpeak-
DL);
2. otherwise, if the two events refer to different
ontologies (oid 6= oid′), then it must be the case that
C in o(oid) can be matched with D in o(oid′) using
the matching strategy and threshold adopted by the
agent that is looking for the plan p (CooL-AgentSpeak
new feature). Note that the match can be delegated to
some component of the MAS that necessarily knows
the ontologies to be matched, but that committed with
the agents not to disclose them to others. This ensures
that agents can communicate without sharing their
own ontologies among themselves.

Besides all the above, relevant plans can be both
local and external ones (as in Coo-AgentSpeak). Be-
low, we formalize these intuitions. Given an agent’s
strategy s (either cooperation or matching) we use the
dot notation “s.fld” to refer to the value assigned to
field fld of the strategy. For example, if the coop-
eration strategy cs of agent Tom contains the field
trustedAgents([Alice,Bob]), then for Tom we have
cs.trustedAgent = {Alice,Bob}.

3For the sake of clarity, in the sequel we limit ourselves to deal
with C(t)[o(oid)] literals, avoiding to deal with literals having the
form R(t1, t2)[o(oid)] explicitly.

4We use the notation o(oid), where oid is an ontology identifier,
to indicate the ontology (i.e., an ABox and a TBox) identified by
oid.

Given plans ps, cooperation strategy cs, and match-
ing strategy ms of a particular agent, and a triggering
event te = op C(t)[o(oid)], we define the set of local
relevant plans (LRP ) and the set of external relevant
plans (ERP ) as follows.

Local Relevant Plans.
LRP = LocalRelPlans(ps,ms, op C(t)[o(oid)]) is the
set of pairs (p, θ) such that
– p ∈ ps,
– TrEv(p) = op′D(t′)[o(oid′)],
– op = op′,
– θ = mgu(t, t′), and
– if oid = oid′ then o(oid) |= C v D else
〈C,D, conf〉 ∈ ms.match(o(oid), o(oid′),
ms.parameters, ms.resources) and conf ≥
ms.threshold.

The function RetrieveExtRelPlans returns the set of
all local relevant plans owned by each agent a in a
given set ags for the given triggering event te. If on-
tology matching techniques are used, the confidence
in the matching between te and the triggering event
telocal of plans local to a must be greater than the
threshold th set by the agent looking for external plans.
The m.g.u. between the argument of te and telocal is
also returned.

Formally, we define ms[th′/th] as the ontology
matching strategy ms where the threshold th has been
replaced by th′.

RetrieveExtRelPlans(te, th, ags) =⋃
a∈{ags} LocalRelPlans

(psa,msa[th/msa.threshold], te)

Note that we use msa[th/msa.threshold] as the
second argument of LocalRelPlans, to ensure that the
threshold used by agent a when applying its matching
strategy msa is th, namely the threshold of the agent
that is looking for external plans, which might be
more or less restrictive than a’s own threshold.

Having defined this auxiliary function, we are now
ready to define the set of external plans relevant for a
given event.

External Relevant Plans.
ERP = ExternalRelPlans(cs,ms, te) is defined as
– ∅ if cs.retrievalPolicy = noLocal and LRP 6= ∅,
– RetrieveExtRelPlans(te,ms.threshold,
cs.trustedAgents) otherwise.
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Relevant Plans.
The set of relevant plans is the union of local and
external relevant plans:

RP = RelPlans(ps, cs,ms, te) = LRP ∪ ERP .

As far as the rules for applicable plans are concerned,
they are the same reported in [46]. If we applied ontol-
ogy matching techniques to the verification of context
satisfiability as well, they would have required changes
accordingly.

4.2. Querying the Belief Base

The execution of actions and achievement goals is
not affected by the introduction of the CooL features
and their semantics are the same as in AgentSpeak-DL.
The evaluation of a test goal ?C(t)[o(oid)], however,
requires ontological reasoning (as in AgentSpeak-DL)
and ontology matching. Hence, the only component
of the original semantics that needs to be modified is
the function that tests whether an atom is a logical
consequence of the agent’s beliefs and returns the set
of substitutions that satisfy the test goal. In CooL-
AgentSpeak, it is redefined as follows:

Test(bs, C(t)[o(oid)]) =
{θ | o(oid) |= C(t)θ} ∪
{θ | ∃D(t′)[o(oid′)] ∈ bs,

〈C,D, conf〉 ∈ms.match( o(oid), o(oid′),
ms.parameters, ms.resources),

conf ≥ ms.threshold, θ = mgu(t, t′)}.

To give an example, let us consider the following
goal, to be tested by agent a:

?paper(inst(Id, T itle, Y ear))[o(o1)].

If a has the belief

article(inst(coolAS, "CooL . . . ", 2013)[o(o2)]

and — according to a’s matching strategy — the class
paper ∈ o(o1) is equivalent to the class article ∈
o(o2) with confidence greater than the threshold, then
θ = {Id ← coolAS, T itle ← "CooL . . . ", Y ear ←
2013} should be returned by the Test function.

4.3. Belief Updating

In Jason, beliefs are changed through perception
(sensing the environment), through agent communica-

tion, and also through plan execution; in the latter case,
beliefs are called “mental notes” and used by an agent
to remind itself of things that have happened, or things
it has done, for example. There is no automatic check
for consistency, which means that, unless program-
mers are very careful, there is considerable chance that
the belief base will become contradictory.

One advantage of having references to ontologies
annotating individual beliefs is that, at least for those
beliefs, logical consistency can be checked automati-
cally using the underlying ontological reasoner, when-
ever a change in the belief base is to take place. In [35],
a mechanism was created that rolled back the ontology
to its previous state in case of inconsistent updates.

In CooL-AgentSpeak, the addition of ontology
matching makes things even more complicated than in
AgentSpeak-DL, regarding revision. In principle, all
previous matching of concepts in different ontologies
should be taken into consideration when checking for
consistency. However, if intra-ontology consistency is
already rather heavy for a practical interpreter such as
JASDL, consistency across different ontologies, par-
ticularly for agents that make reference to large num-
bers of ontologies, is unlikely to be possible in prac-
tice. We aim to do further work to empirically assess
the feasibility of such consistency checks in practice.

5. Design and Implementation

The design of CooL-AgentSpeak is centered around
an Ontology Artifact (OntArt in the sequel) de-
fined according to the “Agents and Artifacts” (A&A)
model [53] and the CArtAgO framework [52], offer-
ing the services foreseen by the FIPA Ontology Agent
proposal.

Following A&A and CArtAgO, artifacts have been
conceived to program and build a suitable agent work-
ing context or environment: a set of passive resources
and tools encapsulating functionalities and services
that agents can share and exploit to support their indi-
vidual as well as social activities. A simple example is
given by a blackboard artifact, that agents can use to
communicate besides direct message passing.

In general, artifacts provide an effective way to de-
sign and program those components of a MAS that do
not need to be autonomous or pro-active, but rather
flexibly observable and usable by agents - without wor-
rying about issues related to concurrency (that is, mul-
tiple agents using concurrently the same artifact) and
distribution. Accordingly, they can be effectively used
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to model and implement those ontology services and
functionalities described so far. In particular, we de-
signed an ontology artifact functioning as an ontology
repository tool - to store a (possibly dynamic) set of
ontologies - and offering related ontology matching
and alignment functionalities.

In order to be used by agents, an artifact provides
a usage interface, composed by the set of actions that
an agent can perform on it (called “operations” on the
artifact side) and a set of observable properties, repre-
senting the observable state of the artifact that agents
may need to perceive according to the artifact’s func-
tionality [51].

Currently, the usage interface of the Ontology Ar-
tifact includes the operations described below5 work-
ing on ontologies expressed in OWL. The problems
raised by the agent’s willingness to keep their ontolo-
gies private can be easily managed by extending these
operations with access control policies, hence allow-
ing only the owner of an ontology to download, query,
and modify it, but still allowing all the agents to match
their own ontologies with other ones.

– register 〈oid〉 〈uri〉 [tags]:
registers the ontology whose URI is uri to the On-
tology Artifact, and identify it by oid (required to be
unique in the MAS); tags is an optional list of key-
words.

– download 〈oid〉:
downloads the ontology identified by oid.

– look_for_ontology 〈tags〉 〈result〉:
looks for ontologies tagged with tags.

– query 〈oid〉 〈RDQLq〉 〈result〉:
performs query RDQLq on ontology oid.

– add_property 〈oid〉 〈resource_uri〉
〈property_uri〉 〈property_value_uri〉:

adds a property to a resource.
– add_class 〈class_uri〉:

adds a new class.
– add_disjointwith 〈first_class_uri〉
〈disj_class_uri〉:

adds a disjointness axiom to a class.
– add_subclass 〈first_class_uri〉
〈subclass_uri〉:

adds a subclass to a given class.
– add_equivalentclass
〈first_class_uri〉 〈equiv_class_uri〉:

adds an equivalence axiom to a class.

5If the operation returns a result, it is stored in the 〈result〉 output
parameter. Parameters in square brackets are optional.

– add_individual 〈class_uri〉
〈individual_uri〉:

adds an instance to a class.
– add_comment 〈resource_uri〉 〈comment〉
〈language〉:

adds a comment in a given language to a resource.
– remove_* parameters:

everything that can be added can also be removed by
specifying the same parameters as the corresponding
add_* statements.

– align 〈oid1〉 〈oid2〉
[method] 〈result〉:

matches ontologies oid1 and oid2 using method
(if method is not specified, then the default method is
the WordNet-based one provided by the Align API).

– concept_match 〈oid〉 〈resource〉
[method] [threshold] 〈result〉:

looks for the resource closest to resource ∈ oid
belonging to the ontologies registered by the agent
that calls the operation, using method as matching
function and threshold as acceptable threshold to
consider a match reliable (if method is not speci-
fied, then the default one is used; if threshold is
not specified, then the default value 0.9 is used).
Methods currently supported are those provided by
the open source Align API [19], that include JWNL
among the others, and AROMA [13]. JWNL, http:
//alignapi.gforge.inria.fr/, computes a sub-
string distance between the entity names of the first
ontology and the entity names of the second ontology
expanded with WordNet [43] synsets. AROMA http:

//aroma.gforge.inria.fr/ is an hybrid, exten-
sional and asymmetric matching method relying on the
implication intensity measure, a probabilistic model of
deviation from independence.

Operating instructions are a description of how to
use the artifact to get its functionality, whereas the
function of an artifact is its intended purpose, i.e. the
purpose established by the designer/programmer of the
artifact. CooL-AgentSpeak agents use OntArt by exe-
cuting internal actions (each operation offered by On-
tArt corresponds to an implemented internal action)6.
Because of the simplicity of the interaction with On-
tArt, where the particular agent intention that required
an artifact operation is suspended until feedback is re-
ceived from the artifact operation, no further operating
instructions and function descriptions are required.

6Jason internal actions are implemented in Java as a Boolean
method and support is given for binding of logical variables; they
can appear in a plan wherever a literal is expected.
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Finally, the structure and behavior concern the in-
ternal aspects of the artifact, that is, how the artifact is
implemented in order to provide its function. OntArt
is implemented in Java using the OWL API for ontol-
ogy management and the already cited Align API for
ontology matching.

Among the many operations offered by OntArt, we
heavily exploited concept_match to implement
the CooL-AgentSpeak features. When an agent a
executes a concept_match 〈oid〉 〈resource〉
[method] [threshold] 〈result〉 operation,
OntArt performs the following actions:

1. for each ontology oid′ registered by the agent that
is calling the concept match operation

(a) if oid and oid′ were never matched before us-
ing method, then match them and store the resulting
alignment A; otherwise, retrieve the stored alignment
A;

(b) return those tuples 〈e, e′, th〉 in the alignment A
where th > threshold.

We chose a lazy approach to ontology matching: on-
tologies are matched only when required for the first
time. Resulting alignments are cached for further use,
so each matching is computed only once. Default val-
ues for parameters are used if actual values are not
specified. Cached alignments expire after a timeout set
by the MAS developer. The timeout, after whose ex-
piration the matching must be re-computed, is used to
cope with the (possible) evolution of ontologies.

As far as the retrieval of relevant plans is concerned,
CooL-AgentSpeak agents are characterized by the
following behavior that is implemented — in such
an integrated way — neither in JASDL nor in Coo-
AgentSpeak.

1. When agent a starts its execution, it first registers all
its ontologies with OntArt by calling the register
operation.
2. When a needs to retrieve plans relevant for a
given triggering event op C(t), with C ∈ o(oid),
it first looks for them using the approach sup-
ported by AgentSpeak (no ontological reasoning) and
AgentSpeak-DL (intra-agent ontological reasoning).
3. Then, a calls the concept match operation offered
by OntArt for looking for a match between C and con-
cepts in its own local ontologies (those it registered
to OntArt), different from oid, concept_match
〈oid〉 〈C〉 ms.method ms.threshold (where
ms is a’s matching strategy).

4. According to a’s retrieval strategy and to the out-
come of the search within local ontologies, different
actions may take place afterward:

(a) if acceptable mappings 〈C,D1, th1〉,
〈C,D2, th2〉, ..., 〈C,Dm, thm〉 have been found
locally, and if a has a noLocal strategy, and at least one
relevant plan triggered by op D1(t) or op D2(t) or ...
or op Dm(t) is locally available to a, no cooperation
is required; otherwise

(b) a suspends the event related to op C(t)
and sends a plan request to each agent in its
cs.T rustedAgents set. Plan requests contain infor-
mation on the ontologyC belongs to and on a’s match-
ing strategy ms. To be more precise, in order to im-
plement the RetrieveExtRelPlans function, we use a
“multicast synchronous ask message with a timeout”
that has been added to Jason as a demand from our
work for this paper. This action sends a multicast mes-
sage with askHow performative, used to ask the re-
ceiver if it has plans relevant for the triggering event
passed as argument [57].

(c) op C(t) remains suspended until a deadline
chosen by the MAS designer in the MAS setup
expires. When the event is resumed, either some
relevant plans have been received by a thanks to the
cooperation with other agents, and thus the event can
be managed, or no plan has been received, and the
event fails.

When an agent r receives an AskHow request
for dealing with op C(t), where C(t) ∈ oid, using
matching strategy ms, it performs the following
actions.

1. First, it looks for plans whose triggering event
op′ D(t′) is annotated with o(oid). If a plan is found
where either D is equal to C, or it is a superconcept
of C, op = op′, and t and t′ unify, the plan is stored
(in a list of plans to be sent as reply to the request)
since it is relevant for op C(t) according to intra-agent
ontological reasoning.
2. Then, it calls concept_match 〈oid〉 〈C〉
ms.method ms.threshold. Let us suppose that
〈C,D1, th1〉, 〈C,D2, th2〉, ..., 〈C,Dk, thk〉 are re-
turned by OntArt. Agent r substitutes Di to C in C(t)
and looks for plans relevant for op Di(t) in its own
plan base. If it finds such plans, it substitutes in them
not onlyDi withC, but also the other entities referring
to r’s ontologies found during this matching stage with
their corresponding entities (if any) belonging to a’s
ontology oid. This conversion step is required because
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a would not know that it can use a plan triggered by
op Di(t) for coping with op C(t), and would not know
how to cope with other goals in that plan expressed ac-
cording to unknown ontologies, thus necessarily orig-
inating other cooperation requests. Without this con-
version, r’s effort would be useless. “Backwards con-
verted” plans are stored together with those found in
step 1.
3. Stored relevant plans are sent back to a. Agent a
will use them when event op C(t) will be resumed.

This behavior is implemented within the CooL-
AgentSpeak interpreter and is transparent to agents.
The relationship between the abstract definitions
and the concrete implementation of the function for
retrieving external relevant plans is the following
(given that the timeout to be used is T and that Ag
represents the list of agents Ag in the appropriate
Jason format):

RetrieveExtRelPlans(Te[o(O), src(S)], Th,Ag) = R
iff

.send(Ag, askHow, Te[o(O), src(S), thr(Th)],
R, T).

Answering an askHow message involves calls to
OntArt operations, as discussed above.

6. CooL-AgentSpeak at Work

The scenario is inspired by the opening of [5], where
T. Berners-Lee, J. Hendler and O. Lassila envision
a world crowded by intelligent software agents liv-
ing in all electronic devices, able to understand mes-
sages coming from both their human masters and other
agents in the system, and that continuously face prob-
lems that require cooperation to be solved.

At the doctor’s office, Lucy instructed her Seman-
tic Web agent through her handheld Web browser.
The agent promptly retrieved information about
Mom’s prescribed treatment from the doctor’s
agent, looked up several lists of providers, and
checked for the ones in-plan for Mom’s insurance
within a 20-mile radius of her home and with a
rating of excellent or very good on trusted rating
services. It then began trying to find a match be-
tween available appointment times (supplied by the
agents of individual providers through their Web
sites) and Pete’s and Lucy’s busy schedules. In a
few minutes the agent presented them with a plan.

Our “HappyHousewives” scenario7, is much less se-
rious than the family healthcare problem discussed
in [5], but relies on the same assumptions. It pro-
vides the reader with a simple and easy-to-follow ex-
ample, meant to help her understanding how CooL-
AgentSpeak can be used in practice. Housewives use
their handheld devices to exchange “how-to” sugges-
tions related to their main activities (cooking, house-
keeping, kid care), and these suggestions can be
directly executed by agents managing physical de-
vices (e.g., ovens, radios, televisions) and by domestic
robots that share the same set of actions, expressed ac-
cording to a standard vocabulary agreed upon by com-
panies selling those devices.

For example, we assume that kitchen robots are
able to perform the most common activities required
in a kitchen. They are equipped with image recogni-
tion capabilities that allow them to take food from the
kitchen appliances given the food name (atomic action
take(+FoodName), that allows the robot to grasp the
object and to add in its belief base the information that
it is currently holding it) and to read information on the
object they are holding (read(+PropertyToRead,
-ReadValue)), such as the cooking time (expressed
in minutes as usual), and have pre-defined programs
for the basic cooking activities such as cooking pasta,
given the amount of pasta (expressed in grams) to
cook and the cooking time (cook_pasta(P, T,

Amount)).
On the other hand, we make no assumptions on the

higher level vocabulary used by housewives for encod-
ing their “how-to” knowledge: for one of them, the
cooking time property of a given course could be ex-
pressed by a takesCookingTime belief, for another
by the slightly different hasCookingTime belief. One
agent might know just that pasta exists, and another
might know many different types of pasta.

Personal agents are equipped with one or more on-
tologies that formalize their “how-to” knowledge in
given domains.

Let us now suppose that personal agent barbara
uses ontologies http://krono.act.uji.es/

Links/ontologies/food.owl shown in Figure 2
and http://daisy.cti.gr/svn/ontologies/

AtracoProject/Pasta/Pasta_new_1.owl

7The name seems not very original, according to a Google search
we made on November, 2013. The first ten sites returned by the
search are very close to the spirit of our scenario. Maybe this means
that the time is right for implementing a fully fledged “HappyHouse-
wives” framework with CooL-AgentSpeak!
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shown in Figure 3 to represent the food domain,
whereas personal agent alice uses ontology http://

daisy.cti.gr/svn/ontologies/AtracoProject/

Pasta/Pasta_4.owl shown in Figure 48. We will
use food, p1 and p4 to identify them in the sequel.

Fig. 3. Ontology p1 used by barbara.

Fig. 4. Ontology p4 used by alice.

Ontology p4 includes a takesCookingTime prop-
erty not shown in Figure 4 and ontology p1 includes a
hasCookingTime property.
alice has the following plan only:

+!takesCookingTime(P, T)[o("p4")] :
holding(P) <-

read(cooking_time, T).

8All the ontologies have been accessed on November 2013.

whereas barbara has the following one:

+!pasta(P)[o("food")] <-
take(P);
!hasCookingTime(P, T)[o("p1")];
cook_pasta(P, T, 50).

Agent alice receives from her housewife the in-
struction to have shortPasta ready for dinner.
shortPasta belongs to alice’s ontology but alice has
no relevant plans for the +!shortPasta(P) event,
nor plans relevant for triggering events involving one
of shortPasta’s super-classes, such as pasta. As a
result, she cannot deal with the request.

Since barbara is one of alice’s trusted agents,
the cooperation among the two starts to look for
plans in barbara’s plan base that might relate to the
+!shortPasta(P) event.

The search for a plan in barbara’s plan library
whose triggering event matches +!shortPasta(P)

succeeds thanks to the Cool-AgentSpeak features. In
fact, the correspondence 〈shortPasta ∈ p4, pasta ∈
food, 0.67〉 can be easily found by the JWNL ontol-
ogy matching algorithm provided by the OntArt arti-
fact, hence allowing the retrieval of a relevant plan for
+!pasta(P) ∈ food (and hence to +!shortPasta ∈
p4) to succeed.

Nevertheless, sending the plan shown above (with
triggering event +!pasta(P)[o("food")]) to
alice would not help her for three reasons:

1. alice does not know what
pasta(P)[o("food")] is because of the
annotation that refers to an unknown ontology;

2. alice was looking for a plan triggered by
+!shortPasta(P) and not by +!pasta(P);
and

3. she would not be able to execute the plan in
that form because of the !hasCookingTime(P,
T)[o("p1")] goal which raises problems due
to both the ontology entity and the annotation.

Before sending the plan to alice, barbara changes
all the concepts annotated with food or p1 with the
corresponding entity (if any) in p4, which is the ontol-
ogy labeling the trigger that originated the plan search.
This behavior is transparent to barbara as explained
in Section 5. In this example, besides substituting
+!pasta(P)[o("food")]

with
+!shortPasta(P)[o("p4")]

in the trigger, barbara also substitutes
!hasCookingTime(P, T)[o("p1")]
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Fig. 2. A portion of the ontology food used by barbara.

with
!takesCookingTime(P, T)[o("p4")],

in the body, obtained thanks to the mapping
〈hasCookingTime ∈ p1, takesCookingTime ∈ p4, 0.8〉
found by OntArt.

The plan sent back to alice is then:

+!shortPasta(P)[o("p4")] <-
take(P);
!takesCookingTime(P, T)[o("p4")];
cook_pasta(P, T, 50).

that alice can execute without needing further inter-
actions.

Since penne is an instance of shortPasta in
ontology “p4”, alice has the shortPasta(penne)
[o("p4")] belief in her belief base. The trace we obtain
by simulating external actions with a print action and
using fixed values for the action parameters, is:

[alice] take(penne)
[alice] read(cooking_time, 8)
[alice] cook_pasta(penne, 8, 50)

7. Experiments

In the previous section we discussed a simple sce-
nario, expressly designed to show the potential of
CooL-AgentSpeak in a clear and easy way.

The empirical evaluation of CooL-AgentSpeak has
been carried out on three complex scenarios in the
biomedicine, enterprise document organization, and fi-
nance domains.

Scenario 1: Biomedicine

In this scenario, agents FMA and NCI both oper-
ate in the field of anatomy, but while FMA organizes
its knowledge according to the Foundational Model
of Anatomy9, NCI reasons according to the National
Cancer Institute Thesaurus10.

The Foundational Model of Anatomy is a project of
the Structural Informatics Group at the University of
Washington. It has been under development since 1995
and the current version of the ontology includes 75,000
anatomical classes and 174 properties. The FMA on-
tology represents anatomical entities from a very fine
granularity such as the biological molecules to cells,
tissues, organs, organ systems, major body parts, up to
the entire body.

The NCI Thesaurus is an ontology-like vocabulary
that includes broad coverage of the cancer domain, in-
cluding cancer related diseases, findings and abnor-

9http://sig.biostr.washington.edu/
projects/fm/

10http://ncit.nci.nih.gov/
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malities; anatomy; agents, drugs and chemicals; genes
and gene products and so on. In certain areas, like can-
cer diseases and combination chemotherapies, it pro-
vides the most granular and consistent terminology
available. The NCI Thesaurus currently contains over
34,000 concepts, structured into 20 taxonomic trees.

The two ontologies are semantically rich and con-
tain tens of thousands of classes. For our experiments,
we limited ourselves to a significant fragment of
both11 , whose quantitative descriptors (named classes,
anonymous classes, properties, and dimension) are re-
ported below in Table 1.

Named
classes

Anony.
classes Prop. Dim

(KB)
ont1 (fma agent) 3,696 30 0 2,000

ont2 (nci agent) 6,488 5,141 63 4,600

Table 1
Scenario 1: Quantitative descriptors of the ontologies.

The FMA agent operates on behalf of its hu-
man user by retrieving sources of information deal-
ing with anatomical concepts represented according
to the FMA ontology12. NCI is one of FMA’s trusted
agents and provides plans to retrieve sources of infor-
mation on concepts represented according to the NCI
ontology. FMA possesses only a subset of the plans
that it would need to satisfy its user’s requests: as
shown in Section 7.1, without heavily exploiting the
CooL-AgentSpeak features, FMA would not be able to
achieve its goals.

Scenario 2: Enterprise Content Management

This scenario involves one real ontology developed
during the “EC2M system (Enterprise Cloud Con-
tent Management)” Programma Operativo Regionale
(POR) project funded by the Ligury region [8], and one
artificial ontology obtained by modifying the original
one for the purpose of running our experiments.

The EC2M project involved one of the authors
from the Department of Informatics, Bioengineering,

11http://www.cs.ox.ac.uk/isg/projects/
SEALS/oaei/2012/LargeBioMed_dataset_
oaei2012.zip, files oaei2012_NCI_small_
overlapping_fma.owl and oaei2012_FMA_
small_overlapping_nci.owl.

12Modeling the information sources in a realistic way was out of
the scope of this experiment, and we limited ourselves to represent
them as strings.

Robotics and System Engineering of the University of
Genoa, Sempla13, Nacon14, and other partners from
both academia and industry. It aimed at creating an im-
proved Enterprise Content Management ECM system
named “EC2M” exploiting ontologies to better clas-
sify, retrieve and share documentation among the dif-
ferent sites of Sempla. The ontology that has been cre-
ated to model Sempla’s business offers is actually used
by Sempla and can be considered a good representative
of ontologies for enterprise document classification.

In this scenario we moved a step further with respect
to the EC2M project’s goals by analyzing how ontol-
ogy matching techniques could ease semantic interop-
erability among the different sites of Sempla, by allow-
ing different sites to use slightly different ontologies.

We built an ontology starting from the real one in-
troducing small variations in both the concepts’ and
properties’ names, and we developed a scenario where
agent Sempla1 uses the original ontology, and agent
Sempla2 uses the modified one. As shown in Table 2,
the descriptors of the ontologies are very similar since
we only modified the names of some elements.

Named
classes

Anony.
classes Prop. Dim

(KB)
ont1 (sempla1 agent) 39 26 31 123.9

ont2 (sempla2 agent) 39 26 31 123.4

Table 2
Scenario 2: Quantitative descriptors of the ontologies.

As in the previous scenario, agent Sempla1 must
retrieve content for the users of the site where it re-
sides, but has not enough procedural knowledge to do
that. It trusts Sempla2 agent and, thanks to the CooL-
AgentSpeak features and to the knowledge possessed
by Sempla2, its objectives can be achieved.

Scenario 3: Finance

The third scenario is inspired by the financial do-
main and exploits two ontologies belonging to the

13Sempla, http://www.sempla.it/, is an Italian com-
pany working in the areas of business services and IT consulting,
program management, digital design, process and system design,
package implementation and custom development, right/downsizing
and outsourcing services. It mainly operates in the Financial Service,
Industry, Public Administration, and Utilities and Energy markets.

14Nacon, http://www.nacon.it/nacon/, is a soft-
ware house based in Genova, Italy, that just entered the Sempla
group. Its main competencies are in the Financial and Bank markets.
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Ontology Alignment Evaluation Initiative Benchmark
(OAEI, http://oaei.ontologymatching.org/).
OAEI is a coordinated international initiative to forge
the consensus on evaluating ontology matching meth-
ods. Its first edition dates back to 2004, and it has been
run at least yearly since then.

The two ontologies we used are the refer-
ence onto1 ontology for the finance data set
(http://oaei.ontologymatching.org/2012/
benchmarks/tests-finance.zip), and ontology
223 from the same data set, where numerous interme-
diate classes are introduced within the hierarchy w.r.t.
the reference one. The updated Finance ontology is to-
day a federation of ontologies where the main ontology
is found at http://fadyart.com/Finance.owl;
the two ontologies we used in our experiments, whose
quantitative descriptors are given in Table 3, are
simplified versions of the actual one.

Named
classes

Anony.
classes Prop. Dim

(KB)
ont1 (finance1 agent) 322 131 247 2,000

ont2 (finance2 agent) 644 131 247 2,100

Table 3
Scenario 3: Quantitative descriptors of the ontologies.

Also in this scenario, agents Finance1 and Finance2
model their knowledge according to ontologies onto1
and onto223 respectively, and again Finance1 lacks
some procedural knowledge that would be necessary
for completing its tasks, and that will be provided by
Finance2 thanks to the CooL-AgentSpeak cooperation
and ontology matching mechanisms.

Significance of the selected scenarios

We are aware of just a few works attempting to
carry out a statistical study on existing ontologies
[4,36,55,60,61]. One of the most recent ones [37] de-
scribes the results of analyzing the first 300 OWL on-
tologies returned by the query filetype:owl with
Google. These results can be summarized in the fol-
lowing way:

– Language. 83.3% ontologies are expressed in
English.

– File size. The average size for the OWL file is
204.26 KB. The standard deviation and variance
are high, so the dispersion is high. The most re-
peated size in the sample is a file of 5 KB.

– Number of entities. The average number of
classes is 384.73 and of properties is 67.98. The
maximum number of classes is 23,141 and of
properties is 1,507.

As far as the ontology domains are concerned, we
are not aware of extensive studies on this subject. Any-
way, by looking at existing libraries of ontologies15,
we can notice that the biological, medical and anatom-
ical domains are the most widespread ones. The en-
terprise domain is covered by a couple of ontologies
and other ontologies’ domains range from business to
finance, from territories to tourism, from cinema to
food.

With respect to these considerations, the six ontolo-
gies that we selected for our experiments, although too
few to represent a statistically relevant sample, are sig-
nificant examples of different existing domains and of
different features in terms of ontology properties (file
size and number of entities). The choice of ontologies
expressed in English is motivated by high percentage
of real ontologies that are defined in this language.

7.1. Experiments

For each scenario and for each matching algorithm
used within that scenario, we designed and imple-
mented the two agents involved in the MAS follow-
ing always the same schema. In this section we use the
first scenario with AROMA as ontology matcher as our
running example.

The first agent in the MAS (FMA, whose code is
shown in Figure 5, in our running example) has an ini-
tial +!start goal consisting of achievement subgoals
that involve concepts from ontology ont1 (the FMA
ontology in our running example). Each subgoal is re-
peated twice, to allow us to verify the correct behavior
when relevant plans are not available locally, and the
add acquisition policy and noLocal retrieval policy are
used. Among the subgoals,

– six (three different ones, repeated twice) involve
concepts in ont1 for which the used ontology matching
algorithm (AROMA, in the running example) can find
corresponding concepts in ont2, and for which no lo-
cal relevant plans exist, but plans in the trusted agent’s

15http://protegewiki.stanford.edu/wiki/
Protege_Ontology_Library#OWL_ontologies;
http://en.wikipedia.org/wiki/Ontology_
(information_science)#Examples_of_published_
ontologies; swoogle.umbc.edu/; all accessed on Novem-
ber 2013.
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code can be found (we tag these subgoals with the la-
bel OK MATCH; NO LOCAL; OK TRUSTED); these
subgoals could not be achieved without exploiting the
CooL-AgentSpeak cooperation and matching features;

– four involve concepts in ont1 for which the used
ontology matching algorithm can find corresponding
concepts in ont2, and for which both local relevant
plans and plans in the trusted agent’s code exist (OK
MATCH; OK LOCAL; OK TRUSTED);

– four involve concepts in ont1 for which the used
ontology matching algorithm can find corresponding
concepts in ont2, and for which local relevant plans
exist, but no plan in the trusted agent’s code can be
found (OK MATCH; OK LOCAL; NO TRUSTED);

– six involve concepts in ont1 for which the used
ontology matching algorithm cannot find any corre-
sponding concept in ont2, and for which local rel-
evant plans exist, but no plan in the trusted agent’s
code can be found (NO MATCH; OK LOCAL; NO
TRUSTED).

The second agent (NCI, whose code is shown in Fig-
ure 6, in the running example) provides those plans
that should be found in the trusted agent’s code, char-
acterized by a triggering event expressed using con-
cepts from ontology ont2 (the NCI ontology).

Table 4 shows the correspondences that we ex-
ploited in our running example. By subgoal of type 1
(sg column in the table) we mean those tagged by “OK
MATCH; NO LOCAL; OK TRUSTED” in Figure 5;
subgoals of type 2 are the “OK MATCH; OK LOCAL;
OK TRUSTED” ones; subgoals of type 3 are the “OK
MATCH; OK LOCAL; NO TRUSTED” ones.

sg concept in ont1 (FMA) concept in ont2 (NCI)

1 endothelium_of_arteriole arteriole_Endothelium

1 urethral_gland urethra_Gland_MMHCC

1 tarsal_plate_of_eyelid tarsal_Plate

2 root_of_tooth radix_Dentis

2 epithelium_of_ciliary_body ciliary_Epithelium

3 splenic_lymph_node splenic_Hilar_Lymph_Node

3 internal_thoracic_vein internal_Thoracic_Vein

Table 4
Correspondences exploited in our running example.

7.2. Results

As indicators for measuring how good an alignment
is, we use precision, recall and F-measure adapted for
ontology alignment evaluation [17].

Precision is defined as the number of correctly
found correspondences with respect to a reference
alignment (true positives) divided by the total number
of found correspondences (true positives and false
positives) and recall is defined as the number of cor-
rectly found correspondences (true positives) divided
by the total number of expected correspondences (true
positives and false negatives). To compute precision
and recall, the alignment A returned by the algorithm
is compared to a reference alignment R. Precision
is given by the formula P (A,R) = |R∩A|

|A| whereas

recall is defined as R(A,R) = |R∩A|
|R| . We also use

the harmonic mean of precision and recall, namely
F-measure: F (A,R) = 2 · P (A,R)·R(A,R)

P (A,R)+R(A,R) .

Table 5 shows the results we obtained when align-
ing the first ontology (FMA; sempla-mod; onto1)
and the second ontology (NCI; sempla; onto223)
with JWNL and AROMA in our three scenarios. We
used the reference alignments available in http://

www.cs.ox.ac.uk/isg/projects/SEALS/oaei/

2012/LargeBioMed_dataset_oaei2012.zip and
http://oaei.ontologymatching.org/2012/

benchmarks/tests-finance.zip for scenarios
1 and 3 respectively. We used a reference alignment
built by ourselves for scenario 2.

Precision Recall F-measure
Scen. 1, JWNL 0.88 0.75 0.81

Scen. 1, AROMA 0.50 0.61 0.55

Scen. 2, JWNL 0.25 0.79 0.39

Scen. 2, AROMA 0.78 0.78 0.78

Scen. 3, JWNL 0.36 1.00 0.53

Scen. 3, AROMA 1.00 1.00 1.00

Table 5
Quantitative measures of the matching algorithms performances.

CooL-AgentSpeak computes both the alignment be-
tween the first and the second ontology, and the one
between the second and the first, because the ontol-
ogy matchers we used in our experiments are asym-
metric and looking for correspondences in both direc-
tions gives us more chances to find them. Computing
the alignments between the two ontologies involved in
the MAS is the most time-consuming activity, but once
computed, the alignment can be stored for being used
in successive runs. For this reason we computed the
ontology matching execution time and the MAS ex-
ecution time when a pre-computed alignment is used
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separately. The time required for running the MAS
when the alignment must be computed from scratch, is
the sum of these two values.

Table 6 reports the ontology matching execution
time (Total matching time, amounting to the sum of
the time for computing the alignments in both direc-
tions), the dimension of the resulting alignments (Dim.
ont1-ont2 and Dim. ont2-ont1), as well as their sum
(Total dim.). SX stands for “scenario X”, J stands for
“using JWNL matching method” and A stands for “us-
ing AROMA matching method”.

Total matching
time

Dim.
ont1-
ont2

Dim.
ont2-
ont1

Total
dim.

S1, J 18,272,462 (>5 h) 1.3 MB 2.4 MB 3.7 MB

S1, A 205,738 (>3 m) 998 KB 994 KB ~2 MB

S2, J 19,333 (~19 s) 75 KB 75 KB 150 KB

S2, A 2,675 (~2 s) 26 KB 26 KB 52 KB

S3, J 1,400,930 (>23 m) 793 KB 886 KB ~1.7 MB

S3, A 12,996 (~13 s) 259 KB 259 KB 518 KB

Table 6
Execution time in milliseconds of the ontology matching algorithms
and dimension of the resulting alignments.

As an indicator of the efficiency of our system,
we used the time required by FMA, Sempla1 and Fi-
nance1 to achieve their +!start goal.

We run our experiments by combining the two re-
trieval policies always and noLocal with the two acqui-
sition policies add and replace. We verified that each
combination behaved as expected by manually inspect-
ing the messages printed on the Jason console.

For example, the always+add combination in sce-
nario 1 leads to the following messages

[fma] Agent fma starting...
[cool] Searching relevant plans for event
+!endothelium_of_arteriole
Starting CooL-AgentSpeak strategy
[fma] Using nci plan for arteriole_Endothelium
[cool] Searching relevant plans for event
+!endothelium_of_arteriole
Starting CooL-AgentSpeak strategy
[fma] Using nci plan for arteriole_Endothelium

showing that the external relevant plan for deal-
ing with !endothelium_of_arteriole is retrieved
two times, even if it is added to the local plan library
after the first time, because of the always policy.
The noLocal+add combination leads to

[fma] Agent fma starting...
[cool] Searching relevant plans for event
+!endothelium_of_arteriole
Starting CooL-AgentSpeak strategy
[fma] Using nci plan for arteriole_Endothelium
[fma] Using nci plan for arteriole_Endothelium

where the second call to subgoal !endothe-

lium_of_arteriole does not generate any CooL-
AgentSpeak interaction because the subgoal can be
properly dealt with using the plan that NCI sent after
the first call, and that FMA added to its plan library.

Finally, the always+replace combination for coping
with subgoal !root_of_tooth leads to the following
messages

[cool] Searching relevant plans for event
+!root_of_tooth
Starting CooL-AgentSpeak strategy
[fma] Using nci plan for radix_Dentis

showing that the plan sent by NCI for dealing
with +!radix_Dentis has been used instead of
the plan locally available to FMA for dealing with
+!root_of_tooth, because of the replace policy.

In the sequel we indicate FMA, Sempla1 and Fi-
nance1 (in scenario 1, 2 and 3, respectively) with “first
agent”, and NCI, Sempla2 and Finance2 (in scenario 1,
2 and 3, respectively) with “second agent” or “trusted
agent”.

Table 7 shows the time required by the first agent to
obtain a relevant plan for a triggering event te1 from
the second agent in the MAS, in case the second agent
possesses a plan whose triggering event is te2, and te1
and te2 correspond according to the selected matching
method. For each scenario and matching method we
computed the average time on ten experiment runs us-
ing both the add and the replace acquisition policies,
concluding that the policy does not impact on the exe-
cution time, but the dimension of the alignment does.

S1, J S1, A S2, J S2, A S3, J S3, A
122 ms 86 ms 75 ms 48 ms 81 ms 57 ms

Table 7
Average execution time in milliseconds for obtaining and
adding/replacing a relevant plan from a trusted agent.

Tables 8, 9, 10, report the execution time required
to achieve the +!start goal of the first agent, under
different configurations and using different matching
methods. The threshold for considering a correspon-
dence acceptable was set to 0.6 for all the experiments.
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As far as the retrieval policies are concerned, noLoc
stands for noLocal and alw stands for always. The ac-
quisition policies may be add and rep (replace). When
the noLocal retrieval policy is used, we set the timeout
to 2000 milliseconds. When the always retrieval policy
is used, we run the experiments using different time-
outs: 50, 200, 2000, and 4000 milliseconds.

Our experiments have been designed in such a way
that for those subgoals that cannot be handled locally,
one relevant plan is available in the trusted agent’s plan
library. Hence, when the noLocal strategy is used, we
are sure that a relevant plan coming from the trusted
agent will be obtained, and there will be no need to
wait for the timeout to expire. In this case, the execu-
tion time does not depend on the timeout.

On the other hand, when we use the always strategy,
the first agent will ask for plans that the second agent
could not possess. In this situation the second agent
does not answer to the first one, which must wait for
the timeout to expire before continuing the plan’s ex-
ecution looking for local plans. Changing the timeout,
we clearly obtain different execution times. By running
20 experiments under different conditions and scenar-
ios, we concluded that given Timeout the current time-
out, the average time required for asking for a plan to
the trusted agent, waiting for the timeout to expire, and
using the local plan, amounts to Timeout + T_external,
with T_external = 10 milliseconds. The average time
required to satisfy one achievement goal using one lo-
cal plan, without any cooperative interaction is T_local
= 2 milliseconds.

Given
– T_successful the time required to retrieve a plan

available in the trusted agent’s plan library, shown in
Table 7,

– T_external 10 milliseconds
– T_local 2 milliseconds
– S_successful the number of subgoals for which a

retrieval of an external relevant plan would be needed,
and the retrieval succeeds

– S_failing the number of subgoals for which a re-
trieval of an external relevant plan would be needed,
and the retrieval fails

– S_local the number of subgoals for which no ex-
ternal retrieval is required

– Timeout the timeout of the current experiment
we conjectured that the total execution time should

be given by the following formula:

(Equation 1)
Total_execution_time =

S_successful * T_successful +
S_failing * (Timeout + T_external) +
S_local * T_local

In the experiments with noLocal retrieval policy,
S_successful = 3; S_failing = 0; S_local = 17. In the
experiments with always retrieval policy, S_successful
= 10; S_failing = 10; S_local = 0.

Tables 8, 9, 10 report the measured time in millisec-
onds (Minumum, Median and Maximum on 5 exper-
iments for each configuration), the time expected ac-
cording to Equation 1 (Exp), and the difference be-
tween the expected time and the median measured time
(Diff). We indicate with “fail” those configurations
where the timeout expired before the relevant plan was
sent by the trusted agent, hence leading to a failure of
the plan of the first agent, at least in one of the 5 ex-
periments we carried out.

We run our experiments on an Acer TravelMate
6293 Notebook equipped with Intel Core Duo Proces-
sor P8400, 2GB of RAM, and Mandriva Linux as op-
erating system.

7.3. Discussion

The results of our experiments allowed us to draw
the following conclusions.

AROMA is more advisable than JWNL both for
precision/recall and efficiency. Tables 5 and 6 do not
require extensive comments and throw no surprise. As
stated in the Alignment API home page, “The Align-
ment API [...] is not a matcher. A few examples of
trivial matchers are provided with the Alignment API
which will indeed match ontologies.” We integrated
the algorithms provided by the Alignment API into
CooL-AgentSpeak because we preferred to give the
opportunity to the MAS developer to make a choice
among more possibilities, rather than imposing one.
The case study discussed in Section 6 uses JWNL and
it works in a satisfactory way, showing that JWNL
can be used in practice, but the experiments we run
on more complex ontologies demonstrate that in most
cases AROMA is definitely preferable to JWNL.

The time required for obtaining a relevant plan from
a trusted agent that possesses it, depends on the
dimension of the alignment. Tables 6 and 7 show
a close relationship between the average execution
time for obtaining and adding/replacing a relevant
plan from a trusted agent, and the dimension of
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JWNL Min Med Max Exp Diff AROMA Min Med Max Exp Diff
noLoc, add, 2000 351 360 371 400 40 noLoc, add, 2000 320 337 387 292 -45

noLoc, rep, 2000 332 362 397 400 38 noLoc, rep, 2000 282 307 374 292 -15

alw, add, 50 fail fail fail 1,790 – alw, add, 50 fail fail fail 1,430 –

alw, rep, 50 fail fail fail 1,790 – alw, rep, 50 fail fail fail 1,430 –

alw, add, 200 3,168 3,197 3,248 3,290 93 alw, add, 200 2,937 2,989 3,053 2,930 -59

alw, rep, 200 3,166 3,172 3,199 3,290 118 alw, rep, 200 2,859 2,930 3,071 2,930 0

alw, add, 2000 21,197 21,685 21,742 21,290 -395 alw, add, 2000 20,929 20,952 20,977 20,930 -22

alw, rep, 2000 21,184 21,233 21,453 21,290 57 alw, rep, 2000 20,913 20,978 21,021 20,930 -48

alw, add, 4000 41,134 41,222 41,327 41,290 68 alw, add, 4000 40,922 40,969 41,053 40,930 -39

alw, rep, 4000 41,198 41,225 41,439 41,290 65 alw, rep, 4000 40,995 41,006 41,071 40,930 -76

Table 8
Scenario 1 (biomedical domain, large ontologies): execution time.

JWNL Min Med Max Exp Diff AROMA Min Med Max Exp Diff
noLoc, add, 2000 218 223 227 259 36 noLoc, add, 2000 172 184 192 178 -6

noLoc, rep, 2000 206 211 224 259 48 noLoc, rep, 2000 181 188 195 178 -10

alw, add, 50 1,080 1,126 1,215 1,320 194 alw, add, 50 1,030 1,047 1,068 1,050 3

alw, rep, 50 1,099 1,129 1,144 1,320 191 alw, rep, 50 1,031 1,064 1,103 1,050 -14

alw, add, 200 2,616 2,624 2,653 2,820 196 alw, add, 200 2,602 2,610 2,625 2,550 -60

alw, rep, 200 2,627 2,649 2,710 2,820 171 alw, rep, 200 2,593 2,604 2,616 2,550 -54

alw, add, 2000 20,698 20,721 20,832 20,820 99 alw, add, 2000 20,632 20,645 20,650 20,550 -95

alw, rep, 2000 20,680 20,708 20,794 20,820 112 alw, rep, 2000 20,630 20,645 20,662 20,550 -95

alw, add, 4000 40,606 40,642 40,718 40,820 178 alw, add, 4000 40,590 40,678 40,830 40,550 -128

alw, rep, 4000 40,555 40,612 40,720 40,820 208 alw, rep, 4000 40,618 40,644 40,679 40,550 -94

Table 9
Scenario 2 (enterprise content management domain, small ontologies): execution time.

JWNL Min Med Max Exp Diff AROMA Min Med Max Exp Diff
noLoc, add, 2000 275 286 292 277 -9 noLoc, add, 2000 201 230 263 205 -25

noLoc, rep, 2000 269 272 283 277 5 noLoc, rep, 2000 209 224 235 205 -19

alw, add, 50 fail fail fail 1,380 – alw, add, 50 1,133 1,149 1,177 1,140 -9

alw, rep, 50 1,296 1,333 1,351 1,380 – alw, rep, 50 1,132 1,143 1,160 1,140 -3

alw, add, 200 2,855 2,874 2,904 2,880 6 alw, add, 200 2,603 2,620 2,651 2,640 20

alw, rep, 200 2,812 2,875 2,923 2,880 5 alw, rep, 200 2,707 2,715 2,736 2,640 -75

alw, add, 2000 20,776 20,871 20,913 20,880 9 alw, add, 2000 20,689 20,712 20,744 20,640 -72

alw, rep, 2000 20,901 20,924 20,954 20,880 -44 alw, rep, 2000 20,720 20,754 20,761 20,640 -114

alw, add, 4000 40,856 40,860 40,912 40,880 20 alw, add, 4000 40,670 40,765 40,900 40,640 -125

alw, rep, 4000 40,819 40,858 40,872 40,880 22 alw, rep, 4000 40,634 40,686 40,704 40,640 -46

Table 10
Scenario 3 (financial domain, medium ontologies): execution time.

the alignment between the ontologies used by the
two agents. Since the second agent must inspect the
alignment in order to search for a correspondence,
the larger the alignment, the higher the time required

for the search. The maximum values are obtained in
scenario 1 with JWNL, where the total dimension
of the alignment is 3.7 MB and the time is 122 ms,
whereas the minimum values are obtained in scenario
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2 with AROMA, where the total dimension of the
alignment is 52 KB and the time is 48 ms.

There is no difference in execution time between
adding and replacing a plan. Tables from 8 to 10
show that, at least in situations similar to those of our
experiments, using the add or the replace acquisition
policy has no impact on the execution time. This was a
bit surprising since we expected that replacing a plan
would be more time-consuming than just adding it,
but we had no empirical validation of our expectation.

The noLocal retrieval policy is far more efficient than
the always one. This observation was easily foresee-
able: looking for external plans whenever a goal must
be achieved is definitely more time consuming than
looking for external plans only when no local plans
can be used. This suggests that, unless required by the
application, the noLocal policy should be used instead
of the always one.

Equation 1 is correct, hence the total execution time
can be predicted in advance. Tables from 8 to 10
demonstrate that Equation 1 is correct: the difference
between the expected execution time and the measured
execution time (taking the median of 5 experiments as
reference value) is some tens of milliseconds in most
experiments, and does not exceed 395 milliseconds.
These discrepancies are physiological: measurement
errors of a few milliseconds easily justify them.

CooL-AgentSpeak can be exploited in all those scenar-
ios where no hard real-time constraints must be met.
The obtained results show that, although not suitable
for scenarios with hard real-time constraints, CooL-
AgentSpeak using the AROMA matching method can
be used in practice whenever the agents (or their hu-
man owners) can wait for a few seconds to get the an-
swer to their request. In scenario 1 using AROMA, set-
ting the timeout to 200 milliseconds is enough to be
sure to get an answer in about 3 seconds even when the
time-consuming always retrieval policy is used. Con-
sidering the dimension of the ontologies involved in
that scenario, and the advantage that a software or hu-
man agent could gain by obtaining an answer instead
of a goal failure, the price to be paid seems widely ac-
ceptable.

8. Related Work

The literature describing the integration of concepts
coming from the Semantic Web into agent-oriented en-
gineering artifacts (methodologies, models, and lan-
guages) is recent and rather limited. In particular, the
one dealing with the integration of ontology services
into agent-oriented programming languages amounts
to a few proposals, besides those already discussed in
Section 2.2. In this section we briefly overview the ex-
isting literature and compare works on the integration
of ontologies into agent-oriented programming lan-
guages to CooL-AgentSpeak.

8.1. Methodologies

In [56], an ontology-based methodology called
MOBMAS is presented with the aim to support the
analysis and design of multi-agent systems. MOB-
MAS is the first methodology that explicitly identifies
and implements the various ways in which ontologies
can be used in the MAS development process and can
be integrated into the MAS model definitions.

The authors of [32] focus on Model Driven Devel-
opment (MDD) and propose a model transformation
process for MDD of Semantic Web enabled MASs.

When support for Semantic Web technology and
its related constructs are considered at the meta-level,
agent meta-models should include meta-entities to
model MASs which work in the Semantic Web en-
vironment. In [33], an agent meta-model is proposed
to define the required constructs of a Semantic Web
enabled MAS in order to provide semantic capabil-
ity modeling and interaction of agents both with other
agents and semantic web services.

The recent work presented in [31] extends MaSE
[14] by integrating early requirement specification and
ontology concepts into its standard flow, in order to de-
fine the type of the objects used in MaSE diagrams.

8.2. Models

Among the most recent proposals of exploiting Se-
mantic Web technologies within organizations and in-
stitutions, we may cite [54] where agents dynamically
manage the interdependencies that arise during their
interactions thanks to an ontological approach to co-
ordination. A framework for the rapid development
of organizational simulations, OOS, is introduced in
[15]. It provides a structured and efficient way to de-
ploy many different organizational designs, by using
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an ontology to describe organization structures, en-
vironment characteristics and agent capabilities, and
provides semi-automatic means to generate simula-
tions from the ontology instances. Domain ontologies
are exploited for regulating institutions as normative
systems in [26], where institutions use ontologies to
relate the abstract concepts in which their norms are
formulated, to their concrete application domain. The
integration of ontologies within institutions in order to
establish the acceptable illocutions, and of a dialogic
framework defining the participant roles in the insti-
tution and the relationships among them, is discussed
in [18]. The proposal made in [34] goes even further,
since it assumes no design-time ontological alignment
of the agents.

8.3. Languages

Recent work by C. Fuzitaki, Á. Moreira, and R.
Vieira [24] stems from [46] and proposes the core of a
logic agent-oriented programming language based on
DL-Lite [10]. With respect to [46], the work by Fuz-
itaki et al. addresses ontological reasoning providing
efficient algorithms for belief base querying, plan se-
lection, and belief update and removal that were not
defined there. However, no implementation in an agent
programming framework is proposed, whereas CooL-
AgentSpeak has been implemented.

In [12] and [11], K.L. Clark and F.G. McCabe ex-
plore the use of a formal ontology as a constraining
framework for the belief store of a rational agent and
show the implementation of their proposal in the Go!
multi-threaded logic programming language [11]. A
Go! agent typically comprises several threads that im-
plement different aspects of the agent’s behavior and
which share a set of updatable objects. These are used
to represent the agent’s changing beliefs, desires, and
intentions. In the Go! “ontology-oriented program-
ming” extension, the static beliefs of the agent are the
axioms of the ontology whereas the dynamic beliefs
are the descriptions of the individuals that are instances
of the ontology classes. Belief updates not conform-
ing to the axioms lead to either rejection of the update
or some other revision of the dynamic belief store to
maintain consistency. Our work and that by Clark and
McCabe both share the aim of integrating ontologies
in a language suitable for programming BDI agents.
However, their work mainly aims at defining a map-
ping between OWL-Lite constructs and labeled theo-
ries in the Go! language, losing references to the ex-
ternal ontologies which define the agents’ vocabulary.

Conversely, our work implicitly assumes that ontolo-
gies exist outside the agents’ “minds” and makes ex-
plicit the references to external ontologies so as to re-
alize semantic integration among agents as envisioned
by the work on the Semantic Web, through ontologies
made available on the web.

Neither [24] nor [11,12] take ontology matching
into account as a means for inferring “cross-ontologi-
cal knowledge” and none of them consider “cross-on-
tological reasoning” for exchanging behavioral knowl-
edge.

9. Conclusions and Future Work

To the best of our knowledge, CooL-AgentSpeak
represents the first attempt to seamlessly integrate
“cross-ontological” reasoning into an agent-oriented
programming language. This feature proves useful in
all those applications where agents modeling their
knowledge according to different ontologies must in-
teroperate sharing not only beliefs but also behavioral
knowledge, as exemplified in the scenarios discussed
in Sections 6 and 7.

Of course, “cross-ontological” knowledge and rea-
soning may lead to unwanted behavior. Even those cor-
respondences of maximum confidence might be se-
mantically wrong and this might cause a wrong match
to be used with possible disastrous consequences.
Think for example of the “bank” word that has dif-
ferent meanings (the bank of a river, the bank where
we save money, besides many other ones). Smart on-
tology matching algorithms using word sense disam-
biguation techniques are able to understand when the
meaning of the “bank” concept in two ontologies is
different according to the neighboring concepts in the
ontology, to the comments that label the concept itself,
and to other contextual information [40]. Hence, these
matching algorithms will not return the correspon-
dence 〈bank, bank, 1〉 if they realize that the meaning
of the words is different in the two ontologies, despite
the homonymy. However, this is not always the case,
and simpler matching algorithms looking only at the
string distance (but even smart matching algorithms
that have not enough contextual knowledge available)
would return such correspondence.

The consequence might be that an agent pursuing
the goal of “putting money in a safe place” could re-
trieve an external plan saying “put them in the near-
est bank”, and, if the agent still does not know how
to pursue this second goal, it might retrieve an exter-
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nal plan leading it to leave its money in the nearest
river bank, because of ambiguity of the word “bank”.
However, similar misunderstandings might occur even
among human beings, although contextual information
in human communication is usually greater than that
available to software agents.

If we use ontology matching techniques, we must be
aware of their average precision and recall, which are
lower than 100% even for the best performing algo-
rithms16. In order to cope with this intrinsic limitation
of ontology matching techniques available today, we
will extend the agents’ strategies in order to tag some
events as sensitive, and avoid using ontology matching
techniques and/or to retrieve external plans for dealing
with them. Another research direction we are pursu-
ing to cope with these limitations is the improvement
of two matching algorithms proposed by the authors
– [40], based on natural language processing tech-
niques and on interpretation of conjunctions, disjunc-
tions and negations appearing in the concepts names as
boolean operators, and [41], exploiting upper ontolo-
gies as bridges between the ontologies to match – and
their integration among the matching methods offered
by the Ontology Artifact.

The extension with the Ontology Artifact with con-
trol access policies is part of our close future work and
is aimed at supporting those scenarios mentioned in the
Introduction, where agents do not want to share their
ontologies with others.

Finally, the exploitation of CooL-AgentSpeak in
real scenarios such as the one faced by the MUSE
project [7] will demonstrate its applicability outside
the boundaries of academia. MUSE (“MUltilingual-
ity and SEmantics for the Citizens of the World”) ad-
dresses some of the challenges raised by multilingual-
ity in the Public Administration by exploiting domain
ontologies within a MAS, and speech to text, text to
speech, and machine translation techniques. Procedu-
ral rules describing what a citizen must do to face dif-
ferent situations (identity card first issue, identity card
renewal for personal data change, renewal for address
change, renewal for loss or theft, just to make some
examples) are currently represented as plans in “plain”
Jason, even if their triggering event is already in a one-
to-one correspondence with concepts in the domain
ontology. Explicitly adding ontological information to

16See for example the results of the last Ontol-
ogy Alignment Evaluation Initiative, http://oaei.
ontologymatching.org/2011/results/index.
html, accessed on November 2013.

them and exploiting CooL-AgentSpeak features would
allow different Municipality’s Registry Offices to ex-
change their procedural rules that – although being ba-
sically the same, due to their compliance to the current
regulations – often differ in some minor details that
make them difficult to share and compare. MUSE will
be experimented in the Registry Office of Genoa Mu-
nicipality, and its extension with CooL-AgentSpeak
features is one of the forthcoming planned activities.
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/* FMA agent */

+!start : true <-
!endothelium_of_arteriole(Source1)[o(ont1)]; /* OK MATCH; NO LOCAL; OK TRUSTED */
!endothelium_of_arteriole(Source2)[o(ont1)];
!urethral_gland(Source3)[o(ont1)]; /* OK MATCH; NO LOCAL; OK TRUSTED */
!urethral_gland(Source4)[o(ont1)];
!tarsal_plate_of_eyelid(Source5)[o(ont1)]; /* OK MATCH; NO LOCAL; OK TRUSTED */
!tarsal_plate_of_eyelid(Source6)[o(ont1)];
!root_of_tooth(Source7)[o(ont1)]; /* OK MATCH; OK LOCAL; OK TRUSTED */
!root_of_tooth(Source8)[o(ont1)];
!epithelium_of_ciliary_body(Source9)[o(ont1)]; /* OK MATCH; OK LOCAL; OK TRUSTED */
!epithelium_of_ciliary_body(Source10)[o(ont1)];
!splenic_lymph_node(Source11)[o(ont1)]; /* OK MATCH; OK LOCAL; NO TRUSTED */
!splenic_lymph_node(Source12)[o(ont1)];
!internal_thoracic_vein(Source13)[o(ont1)]; /* OK MATCH; OK LOCAL; NO TRUSTED */
!internal_thoracic_vein(Source14)[o(ont1)];
!conceptWithNoMatch1(Source15)[o(ont1)]; /* NO MATCH; OK LOCAL; NO TRUSTED */
!conceptWithNoMatch1(Source16)[o(ont1)];
!conceptWithNoMatch2(Source17)[o(ont1)]; /* NO MATCH; OK LOCAL; NO TRUSTED */
!conceptWithNoMatch1(Source18)[o(ont1)];
!conceptWithNoMatch3(Source19)[o(ont1)]; /* NO MATCH; OK LOCAL; NO TRUSTED */
!conceptWithNoMatch1(Source20)[o(ont1)];

+!epithelium_of_ciliary_body("www.epith_of_ciliary_body.org")[o(ont1),source(self)] <-
.print("Using fma plan for epithelium_of_ciliary_body").

+!splenic_lymph_node("www.splenic_lymph_node.org")[o(ont1),source(self)] <-
.print("Using fma plan for splenic_lymph_node").

+!internal_thoracic_vein("www.internal_thoracic_vein.org")[o(ont1),source(self)] <-
.print("Using fma plan for internal_thoracic_vein").

+!root_of_tooth("www.root_of_tooth.org")[o(ont1),source(self)] <-
.print("Using fma plan for root_of_tooth").

+!conceptWithNoMatch1(only_local)[o(ont1),source(self)] <-
.print("Using fma plan for conceptWithNoMatch1").

+!conceptWithNoMatch2(only_local)[o(ont1),source(self)] <-
.print("Using fma plan for conceptWithNoMatch2").

+!conceptWithNoMatch3(only_local)[o(ont1),source(self)] <-
.print("Using fma plan for conceptWithNoMatch3").

Fig. 5. CooL-AgentSpeak plans of FMA agent (scenario 1, AROMA matching method).

/* NCI agent */

+!arteriole_Endothelium("www.Endothelium_of_arteriole.org")[o(ont2)] <-
.print("Using nci plan for arteriole_Endothelium").

+!urethra_Gland_MMHCC("www.Urethra_Gland.org")[o(ont2)] <-
.print("Using nci plan for urethra_Gland_MMHCC").

+!tarsal_Plate("www.tarsal_Plate.org")[o(ont2)] <-
.print("Using nci plan for tarsal_Plate").

+!ciliary_Epithelium("www.ciliary_Epithelium.org")[o(ont2)] <-
.print("Using nci plan for ciliary_Epithelium").

+!radix_Dentis("www.radix_Dentis.org")[o(ont2)] <-
.print("Using nci plan for radix_Dentis").

Fig. 6. CooL-AgentSpeak plans of NCI agent (scenario 1, AROMA matching method).


