Multi Agent Resource Allocation:
a Comparison of Five Negotiation Protocols

Daniela Briola and Viviana Mascardi
Dipartimento di Informatica e Scienze dell’Informazione (DIST)
Universita degli Studi di Genova
Email: {briola, mascardi} @disi.unige.it

Abstract—This paper describes five systems that exploit negoti-
ation strategies to solve multiagent resource allocation problems.
A deep comparison is drawn among them according to different
criteria that involve general features of the systems; adherence
to widely accepted agent definitions; domain, purpose, and
approach; analysis, design and implementation of the negotiation
protocol. Considerations on how extending one of the analyzed
systems in order to move a concrete step towards the realization
of an integrated platform for developing negotiation protocols are
also provided in the conclusions.

I. INTRODUCTION

Allocating resources amongst multiple entities is a central
matter of concern in both Computer Science and Economics.
It has inter-disciplinary characteristics which make it rel-
evant to disparate application domains including industrial
procurement, manufacturing and scheduling, network routing,
airport traffic management, crisis management, logistics, pub-
lic transport, and the timely allocation of resources in grid
architectures [14].

The abstractions of agents and multiagent systems are very
suitable to model and implement distributed problems of
this kind, and the Multiagent Resource Allocation (MARA)
research sub-field is recently gaining more and more attention.

A tentative definition of MARA can be found in [14]:

“Multiagent Resource Allocation is the process of
distributing a number of items amongst a number of
agents.”

However, as the authors of [14] observe, this definition
needs to be further qualified: What kind of items (resources)
are being distributed? How are they being distributed (in other
words, what kind of allocation procedure or mechanism do
they employ)? And finally, why are they being distributed (that
is, what are the objectives of searching for an allocation and
how are these objectives determined)?

In this paper, we analyze five existing systems that solve
different MARA problems, and whose allocation procedure
mechanism is based on negotiation.

For each of them we answer the questions of what kind
of items (resources) are being distributed and why are they
being distributed, we provide some details on the negotiation
protocol they adopt, and we answer many other questions
that, in our opinion, are relevant to gain a deeper insight of
the system and to understand whether and how it might be
exploited to solve the specific user’s MARA problem.

Due to this large amount of MARA problems and related
solutions described in literature, we limit ourselves to analyze
those works that are closer to the FYPA one we modeled and
implemented in our recent research activities [7], [12].

In particular, we focus on works where agents interact to
coordinate themselves for moving in a well defined physical
area or for accessing shared resources during time. For each
system we discuss, we motivate why we did not select it to
solve our specific FYPA MARA problem.

The paper is structured in the following way. After dis-
cussing the state of the art in agent-based negotiation (Section
II), in sections III-VII we introduce the five systems and the
MARA problems they solve:

+ FYPA (Find Your Path, Agent!) [7], [11], [12], developed
by ourselves for solving a real industrial problem of
dynamic (re-)allocation of tracks to trains inside a station
(Section III);

e MPCA (Multi-Party Collision Avoidance) [40] for air-
plane collision avoidance (Section IV);

« APR (Airplane rerouting) [3] for airplane collision avoid-
ance (Section V);

o Waypoints [34] for autonomous robots collision avoid-
ance (Section VI); and

e SPAM (Scalable Protocol for Anytime Multi-level) [27]
for target tracking with sensors (Section VII).

In Section VIII we provide a systematic comparison among
these systems, carried out taking different criteria into account
ranging from how much do they stick to the agent definition
given in [24], to their industrial exploitation, to the language
and platforms used for their implementation. Section IX
concludes the paper and outlines the future directions of our
research.

II. AGENT-BASED NEGOTIATION: THE STATE-OF-THE-ART
A. Trends and research areas

Multiagent research has long been divided into two fields,
one concerned with cooperative (benevolent) agents and the
other concerned with self-interested agents [18]. There has
been very little cross-fertilization of ideas between these fields.
Research on self-interested agents is often based on classical
game theory with its assumptions of common knowledge
among agents and complete rationality of agent reasoning.
This is in contrast with the research on cooperative agents

which makes no such assumptions; rather, it has generally been
based on heuristic approaches having their roots in knowledge-
based Al search, planning and scheduling mechanisms.

However, perhaps the most fundamental and powerful
mechanism for managing inter-agent dependencies at run-time
is negotiation, that is the process by which a group of agents
come to a mutually acceptable agreement on some matter.
Negotiation underpins attempts to cooperate and coordinate
(both between artificial and human agents) and is required
both when the agents are self interested and when they are
cooperative.

In the remainder of this section we will concentrate on
cooperative agents and on the main areas where they are
used. Most of our knowledge on this subject comes from the
overview on negotiation in MASs made by Lesser [26], whose
research activity, carried out in collaboration with many other
scientists, covers a large variety of case studies, domains and
applicative projects.

Examples of application domains that have used a multia-
gent approach for allowing the involved entities to negotiate
in a cooperative way are:

« Distributed situation assessment, which emphasizes how
(diagnostic) agents with different spheres of awareness
and control (network segments) should share their local
interpretations to arrive at consistent and comprehensive
explanations and responses. Examples of applications
belonging to this category are:

— network diagnosis [37];
— information gathering on the Internet [17], [32];
— distributed sensor networks [13], [29]).

« Distributed resource scheduling and planning, which em-
phasizes how (scheduling) agents (associated with each
work cell) should coordinate their schedules to avoid and
resolve conflicts over resources, and to maximize system
output. Under this category we can find for example:

— factory scheduling [31], [33], [38];
— network management [1];
— intelligent environments [6], [22].

« Distributed expert systems, which emphasize how agents
share information and negotiate over collective solutions
(designs) given their different expertise and solution cri-
teria. The following applications fall under this category:

— concurrent engineering [25];
— network service restoration [15], [23].

The need for a multiagent approach can also come from
applications where agents represent the interests of different
organizational entities (e.g., electronic commerce [39] and
enterprise integration [4]). Other emerging uses of multiagent
systems are in layered systems architectures where agents at
different layers need to coordinate their decisions (e.g., to
achieve appropriate configurations of resources and computa-
tional processing [41]), and in the design of survivable systems
where agents dynamically reorganize to respond to changes
in resources availability, software and hardware malfunctions,
and intrusions.

In general, multiagent systems provide a framework where
both the inherent distribution of processing and information in
an application and the complexities that come from issues of
scale can be handled in a natural way.

In these areas the word “Negotiation” is rarely expressly and
explicitly used, but nevertheless in these fields agents usually
need to cooperate to achieve a goal, and cooperation is a type
of negotiation.

There has also been a long tradition of work dating back to
the inception of the field on coordination based on logical
reasoning about the beliefs, desires, intentions (BDI) and
commitments of agents [16], [20], [35], [36], and more recent
work on the use of market mechanisms for solving multiagent
resource allocation problems [42].

The synthesis of ideas from each of these different ap-
proaches to coordination holds great potential for future de-
velopments in the field.

III. FYPA

The FYPA problem was proposed to us by Ansaldo STS,
the Italian leader in design and construction of signaling and
automation systems for conventional and high speed railway
lines.

Ansaldo STS uses a system that computes, few times a
year, the global distribution of trains over the Italian railway
network. That system does not compute safe paths of trains
inside stations: the system is only able to generate paths for
crossing the station that are consistent with the station physical
configuration, but cannot check that each path does not raise
conflicts with paths of all the other trains crossing the station in
the same time period. This check and the final identification of
safe paths inside the station were indeed performed by human
operators by hand.

In order to automatize the train schedule definition process
as much as possible, Ansaldo needed another system that could
be used off-line to identify a safe and (sub)optimal allocation
of tracks inside a station to trains, given the time trains enter
and exit the stations (times that are decided by the pre-existing
system).

One of Ansaldo’s requirements was to have a system de-
signed and implemented is such a way that, if its performances
demonstrated to suit the real time constraints, it could be used
on-line as well, in order to face re-allocation problems due
to unavailability of the pre-computed path because of tracks
being out of order or already occupied by other trains.

The FYPA system that we developed is suitable both for
on-line and off-line usage. It is already used for off-line
computation of paths inside stations, and its on-line application
is under way: FYPA is able to compute a complete re-
allocation of trains in huge stations (tests made by Ansaldo
STS engineers with data from Mestre and Pisa) in less than 2
seconds, hence quasi real-time [10].

In order to solve Ansaldo STS’ problems and implement
the FYPA system, we designed a multiagent system able to
manage the real-time allocation (and re-allocation) of a set of
limited resources. The resources are railway tracks (or only

“railway” further on) inside a station plus a set of segments
of railway where trains are allowed to stop (for example to
let the passengers in and out) that we call “stop nodes”: these
nodes are connected by one, or usually more, railways. A “stop
node” can be occupied by only one train at a time. Due to the
physical distribution in the space of “stop nodes”, some of
the railways intersect with each other so it is not possible for
different trains to use them at the same time, because they
may crash.

A train can enter or leave the station using only a set of
“stop nodes”, that we call “entering” and “exiting nodes”
respectively. Once inside the station, the train can move
following the railways to reach some ‘“‘stop nodes”, can wait
there for a period it autonomously determines and then can
reach an “exiting nodes” and leave the station. FYPA only
manages trains inside the station or entering it. When they
reach an “exiting nodes”, they leave the station and are no
longer managed by FYPA.

Every train has a predefined path in the station that it should
follow, that is generated by the pre-existing Ansaldo system
but that does not meet the requirements of being conflict-free
with respect to the other paths. Each train can hence change
some “stop nodes” if needed to reach the conflict-freeness
requirement, but it usually has to deviate as little as possible
from its original plan.

The main aim of our protocol is to dynamically find a
solution to conflicts and unavailabilities (that may be dealt
with in an homogeneous way, since both amount to a resource
needed by a train not being available), or in other words to
find a new path in the station for every train, respecting all
the safety, minimum-delay and minimal-changes constrains.

When an allocation problem arises, the system has to change
the “station crossing plan” of one, or more, trains: every train
has a specific typology (may be a slow passenger train, a fast
one, a goods carrier and so on) and every typology has a
priority. So if the system has to make a train stop for more
time on a “stop node”, waiting for the next node to become
free (forcing in this way the train to wait), usually it prefers to
stop the train with lower priority. The aim of the algorithm is
also to find a solution where the delay of the involved trains is
as limited as possible, and where the higher priority of a train
implies a minor delay. Moreover the protocol has to keep the
changes made to the original “station crossing plan” as limited
as possible.

IV. MPCA

An area where multiagent systems are very often used is the
one of “collision avoidance”: in this domain the system reflects
a situation where unmanned entities (autonomous airplanes)
need to move avoiding crashing, respecting constraints on the
path they can use, time to make a decision, distance they need
to maintain between them and so on.

Usually, this type of problem is faced in the airspace
management, where unmanned little planes need a protocol
to negotiate the route, or in software applications where the

multiagent system must suggest the user possible alternative
reorganizations of the route of many planes.

Regarding the airspace management, an accurate re-
search has been made by the “Agent technology center”
(http://agents.felk.cvut.cz/) that developed AGENTFLY, “a
multi-agent system enabling large-scale simulation of civilian
and unmanned air traffic. The system integrates advanced
flight path planning, decentralized collision avoidance with
highly detailed models of the airplanes and the environ-
ment” [2]. The AGENTFLY project is still maintained and
its authors are continuously improving it in many ways. Its
license was sold to BAE Systems as a testbed simulation
platform. It is used by US Air Force, IHMS at Florida and
several universities. Its authors are working with the Federal
Aviation Authority (FAA) using AGENTFLY as a tool on their
computation grids.

Besides this system, the authors presented many studies on
protocols to avoid collisions in airspace.

In [40] two algorithms to avoid collisions among aerial
vehicles are presented. The authors kindly accepted to review
our analysis (in this section and in section VIII) of their work,
so we are able to provide some details also on the AGENTFLY
project in Section VIII, where we add some footnotes to Tables
to report additional information submitted by the authors.

In a three dimensions space a group of autonomous air-
planes with a mission need to coordinate themselves to avoid
collisions: a mission is made of several points that must be
reached in a specified time interval. To fulfill the mission, the
airplane will follow a list of steps, each characterized by a
maneuver, a direction, a velocity, starting from the previous
step. More, every plane must maintain a minimum distance
from all the others, and there are no-flight zones in the
airspace. When two, or more, airplanes have a part of the
plan in common, they need to change it to avoid crashing.

Every agent can only interact with the ones within a range R
defined at the start of the simulation: these are the other planes
that it can “see” (on a virtual radar) from its position in the
space. Every agent sends to the others it sees an update on its
future mission steps so they can check if there are conflicts.

The authors propose two solutions to the above problem: a
local one and a global one.

In the local one, the two agents involved in a conflict
propose, at first, a list of possible changes to their path and
look if they can adopt one of these change to avoid the
conflict. If they are not able to find a solution based on the
list of generated maneuvers, they generate more maneuvers
(accepting higher values for the parameters, for examples
trying to move more to left, speeding up/slowing down more,
making the altitude higher and so on) and add them to the
list: then they try again to solve the conflict. They repeat this
procedure until they find a solution. In this way the list can
be filled with tens or hundreds maneuvers and the solution is
always found. A random choice is used when there are several
solutions with the same utility value (using an utility function
not described here).

When the agents have solved their conflict, they will check

if other collisions exist and will start the protocol again to
solve the first one that arises.

If an agent is involved in more than one collision, it will
solve the one that is expected to occur first in time.

This algorithm is called “Iterative peer-to-peer collision
avoidance (IPPCA)”.

In the second algorithm (the one proposing a global solu-
tion) called Multi-Party Collision Avoidance (MPCA), authors
enlarge the set of agents involved in the collision to find a
better solution: in this case the idea is to give the colliding
agents enough space to make their evasion maneuvers (to avoid
all the agents around) without changing their plans too much.
The agents that have a colliding path create a group: then
they try to change their paths (they create a list with all the
possible modifications to their paths) and add to the group
those agents that could be interested by these path changes.
So the group is enlarged to involve all the agents that are near
to the ones that have a conflict. Then, the possible alternative
plans are analyzed by the group till a solution is found, and
all the agents will modify their path as decided.

The group searches the states space of possible plan changes
(due to all the possible applications of evasion maneuvers
sequences, velocity change and so on) using an A* algorithm
modified for the situation.

To simplify the communication and synchronization issues
the authors have implemented this protocol creating, for each
group, a coordinator agent that collects all the information it
needs to solve the problem and than to find a solution. In this
way the organization of the algorithm is partially centralized.

If an agent is involved in more multi-party groups, it will
only join the one with the earliest expected collision in the
time line.

As the authors explained to us, MPCA could be used as a
global protocol, but it is not intended to be so. The idea is to
used it as a “local/global” protocol. This means to compute
“globally” a solution for a small group of airplanes, that are
involved in a single collision situation, but in the meanwhile
another group of agents can solve different collision in their
corner of the world. So MPCA was designed to be something
between local and global: it is used to solve “globally” ad hoc
local problems.

The MPCA has been tested using AGENTFLY and the
comparison has been made using the IPPCA algorithm, im-
plemented as plug-ins in AGENTFLY.

The observed differences between IPPCA and MPCA are:

« message flow characteristics: IPPCA has quite steady
bandwidth of communication flow. MPCA has high peaks
and then very low communication (as the data are com-
puted by the coordinator);

o quality of solution: MPCA provides better solutions be-
cause the A* is able to find solutions that are not checked
with IPPCA;

« computation demands: as the MPCA goes through much
bigger space, the computation is much longer. This one
of the reasons to keep MPCA local by restricted size of
the group.

The MPCA algorithm in particular is very similar to the
FYPA one because it is based on the same idea of “moving
others to get space for you”: for this reason it has been selected
for our analysis and comparison. The MPCA domain, instead,
is quite different from ours because airplanes have much more
flexibility in their movements than trains (they must avoid
certain zones and avoid other agents, but must neither follow
rigid and limited paths, nor have to reach a fixed point but
and area) and, above all, they move in a 3D space. For these
reasons MPCA could not be selected for solving our FYPA
problem.

V. AIRPLANE REROUTING (APR)

Another attempt to apply multiagent system negotiation to
the airplane collision avoidance problem comes from Agogino
and Tumer [3]. In their work the authors present a multiagent
structure to control air traffic flow using tree kinds of “change
mechanisms”, explained later, and then analyze a learning
algorithm to improve the system efficiency (that we do not
report here because it is out of our scope). The domain is the
one of US airspace, where the space is divided into regional
centers and again into sectors. The algorithm uses a global
evaluation function that considers the congestion in a particular
set of sectors and the global air traffic delay. Using this
common function agents independently take decisions about
how changing their plans. In this system agents are ground
location throughout the airspace and are called “fixes”. Each
agent is responsible for the aircrafts going through its fix.
Every airplane has a “flight plan” consisting of a sequence
of fixes. In this organization agents can change the plan of the
interested airplanes in three ways:

o Miles in trail (MIT): agents control the distance that the
airplane must keep from each other while approaching a
fix. If the MIT values is high, fewer planes will be able
to cross this area because they need to slow down their
velocity to maintain the distance

¢ Ground delays: an agent can control how long aircrafts
that will eventually go through a fix should wait on the
ground, that is, the airplanes will arrive later at the fix

« Rerouting: an agent can divert the foreseen planes of its
fix making them choosing another path.

The algorithm identifies sets of agents that can influence
themselves rerouting airplanes in their fixes: each agent lists
the possible solutions to the congestion problem and then
chooses the best solution using different learning algorithms
(the authors study some types of learning strategies and
compare them).

This agent’s organization is quite similar to the one we
adopted, so we included this algorithm in our comparison.

From the available documentation, it is not clear whether the
agents can use in the same simulation all the three techniques
seen above to change the plan (or if they must use only one
type in a run) and furthermore we did not find the strategy
used to choose among these strategies (if they are foreseen
simultaneously).

The algorithm has been developed using FACET (Future
ATM Concepts Evaluation Tool) [5], that receives scripts from
the agents, simulates the execution of the algorithm, and
returns the overall impact of their changes to the airplane’s
plans.

This algorithm is interesting but seems to work only if
the groups are limited to few agents, because it is based on
the list of possible choices, that becomes too long if there
are large sets of agents, or too many possibilities of plan
changes. More, the agents seem not to negotiate, but only to
work independently using the same evaluation strategy and
only one possible change to the airplane route. All these
constraints seem prevent the system from being applicable to
very complex scenarios or short term simulations, as FYPA
instead does.

VI. WAYPOINTS

Similar problems and solutions as those discussed above can
be found in the field of autonomous robots which are able to
independently move and need to avoid collisions while trying
to reach a desired destination. This is a common situation for
example in the military area, where robots are entities that
must explore territories, or in industrial applications where
little robots could be used in places that are not suitable for
humans (under-water, in mines, and so on).

In the area of autonomous robots it is worth mentioning the
proposal made by Purwin, D’ Andrea and Lee [34]: the authors
present a cooperative decentralized path-planning algorithm
for a group of autonomous agents that provides guaranteed
collision free trajectories in real-time. The algorithm is based
on the idea that every agent reserves an exclusive area (called
A area) for itself and always remains inside that area, and no
two reserved areas are allowed to intersect at any time.

The core of the algorithm is based on pair-wise conflict
resolution among two agents. Both agents operate according
to exactly the same rules, with the only exception being
how priority is assigned. For the algorithm the following
assumptions are made:

o decentralized agents: all computation/control is done on

board;

« the total number of agents is known;

e motion primitives are available to move the agents in a

deterministic fashion;

¢ point-to-point communication between agents is sup-

ported;

« agents can localize themselves, but not others.

The algorithm is executed considering discrete time (agents
work with “frames”, that is, they assume a discrete divisions
of time).

Every agent is trying to reach its task location, which has
been selected by some higher level entity that is not in the
scope of that work. Position and velocity of the agent are
expressed in a global Cartesian coordinate system. The agent’s
motion is controlled by a deterministic motion primitive MP(),
which contains trajectory generation and low-level control of
the mechanical actuators (also this aspect is out of the scope

of that research). Upon specification of a desired destination D
the motion primitive will compute a path that takes the agent
to D with zero final velocity.

Every agent stores information about itself and the other
agents and is able to communicate using a wireless network.

The algorithm grants that every agent will always, and only,
move inside its reserved area, A. Instead of choosing the
reserved area (A) directly, agents are indicating their intentions
by requesting an area (called B area) first, and exchanging it
with the others. Agents can change B arbitrarily. However,
significant changes to B can cause the negotiation cycle to
start over. The requested area B has to contain the reserved
area A at all times, hence, an agent cannot move to a location
that is not inside the requested area.

Two intersecting B areas indicate a possible conflict. In
this case the agents will negotiate to find out which one gets
priority and how the A areas are being selected. The base for
this negotiation is a scalar cost function: the agents with a
conflict exchange their respective costs and choose who has
the higher priority using this, choosing also who will change
its A area. The agent with the lower priority will reduce its A
area (stopping and waiting for the other agent to pass over).

With this solution an agent should stop and wait several
times, getting a huge delay: the algorithm proposes also a
second way of acting. Instead of stopping, an agent can decide
to change its path to avoid an obstacle (or simply a point
of its paths that intersects with many other agents) and to
move around that. It will choose a “way-point”, that is a new
intermediate destination, and will try to reach it using the same
algorithm shown above. Then it will start again to reach the
initial destination.

In the basic algorithm all agents can communicate with all
the others: this implementation is foreseen for autonomous
robots, with limited battery autonomy and wireless communi-
cation limitation, so if the total number of agents is huge then
the robots can limit their communication range to reach only
the nearest agents, saving energy. This algorithm’s limitation
is realistic because probably only the agents that are close to
each other can have intersecting paths, consequently an agent
must inform only its neighbors of the changes to A and B
areas.

We do not describe the algorithm with more details because
it presents a complex and out-of-our-scope description of the
primitives chosen for changing the reserved and requested
area, that are managed by a geometrical function and not by
the negotiation protocol: the A and B areas will be always
rectangles, chosen to approximate the new path. Moreover, the
paper presents the pseudo-code of the protocol, so reporting it
here is not interesting, and the code in C++ is also available
on the author’s web site.

This algorithm is similar to FYPA in the idea of how the
agents collaborate to solve the conflicts and how they can
change their strategy: in both protocols agents can stop and
wait for the other to move, or can change their path. The
difference is that in our domain the paths are limited to a
predefined set and are divided into fixed parts. Every subpart

is managed by a Resource agent, whereas in that article agents
are able to move without limitations and without intermediate
agents. More, those agents operate in a wireless environment,
so the number of exchanged messages and the real distance
of the agents can make the difference on the behavior of the
entities: in this case some limitations and heuristics must be
adopted (not described here), while in our algorithm the only
limitation is due to the computational time of managing all the
messages. Anyway we tested our system also with complex
configurations and the number of messages does not make the
performances degrade.

VII. SPAM

In [27] a “cooperative negotiation protocol that solves a dis-
tributed resource allocation problem while conforming to soft
real-time constraints in a dynamic environment” called SPAM
(Scalable Protocol for Anytime Multi-level) is presented by
Mailler, Lesser and Horling. In particular that proposal models
the resource allocation problem as a constraint satisfaction
problem.

As in the other domains described above, in that work we
can find a set of limited resources and some agents interested
in using them in different moments for different periods: the
resources are three sensors platforms, and agents need at least
three sensors to track an entity moving in the environment.
More sensors give a more accurate target’s location.

In the proposed solution each platform is managed by an
agent, which is also in charge of localizing and following a
target (this task allocation is made out of the system), deciding
which sensors (of which platform) it needs to do this and
when. So if two, or more, agents (called also track managers)
need the same sensor for different tasks then a conflict arises
and it must be solved. The solution is centralized because the
agent that first creates the conflict becomes the “mediator” of it
and must solve it, asking the other involved agents information
and then propagating its decision. Every agent has an utility
function U that uses to evaluate the proposed solution (the set
of sensors and the period of usage), and can change U to solve
quickly a conflict.

SPAM protocol works in two main phases, trying at first to
find a solution which avoids the negotiation. At the end of the
first stage there is always a solution, even if it is not the optimal
one or if it generates conflicts. The algorithm foresees also to
lose a target, solution that anyway causes a huge penalization
of the social utility.

Stage 1 of SPAM serves two primary functions. The first
one is to try to find a solution within the context of the
information that the protocol has when it starts up. However,
since the protocol attempts to maximize the social utility, each
of the agents tries to maximize its local utility without causing
new constraint violations. If this can be done, then no further
negotiation is necessary, and the protocol terminates at the end
of stage 1.

Moreover, in this stage the agents use a “concession rate”
to decide if they have to activate the second phase, more
expensive, or not: this rate is a percentage of the agent’s utility

and specifies how much the agent will concede before skipping
to the second phase.

The second function of stage 1 is to ensure that some utility
is obtained while waiting for stage 2 to complete. If the reason
the protocol was started was a resource requirement change,
a temporary solution is applied to the problem: this solution,
although not conflicts free, has the ability to obtain at least
some utility while the mediator tries to get a better solution.
Conflicts that are unresolved are actually left to the individual
sensor agents to handle.

If stage 1 was activated because of a newly discovered
conflict, and a conflict-free solution cannot be found, then the
manager just enters stage 2: in this case it does not concede,
does not bind a temporary solution, and it does not reset its
objective level, but it only enters stage 2 to find a solution.

Stage 2 attempts to solve all local conflicts that a track
manager has by elevating the negotiation to the track managers
that are in direct conflict over the desired resources. The
originating track manager takes the role of the negotiation
mediator and starts collecting all the information it needs to
generate alternative solutions. These solutions are generated
without a global vision, so they are conflict free only from the
point of view of the mediator. What this means is that the view
of the mediating manager is limited to only the constraints that
arise from the sharing of a resource with it. If the solution that
will be imposed by the mediator will cause other conflicts then
other agents will try to solve them, even starting again all the
algorithm.

When an agent is the mediator of a conflict, it starts
asking the other agents for meta level information, than it
elaborates them and generates all the possible alternative
solutions, including those where one, or more agents, must
lower its utility function. Then it will send the list with the
alternative solutions to the agents involved and will wait for
their responses: the other agents will reorder the list using their
local information and utility function and will send back this
reordered list to the mediator. Last, the mediator chooses a
solution, possibly a good one for all the agents involved, and
sends it to the agents that must apply it.

At this point, each of the track managers is free to propagate
and mediate a new negotiation if it chooses to enter the
second stage. At the time when this article was written, SPAM
allows the agents to enter potential oscillations, maintaining
no prior state other than objective levels, from negotiation to
negotiation and rely on the environment to break oscillations.

To test the SPAM protocol the authors implemented a model
of the domain in a simulation environment called Farm [21],
a component-based distributed simulation environment written
in Java. They performed tests to evaluate the performance of
SPAM compared with those of a Greedy Tracking Agent and
an Optimal Tracking Agent. To do this, the simulation used
not moving targets.

In the simulation with moving targets (a not comparing test,
only a performance test), SPAM gives good results, near to
the optimal, and shows a linear increase in the time needed to
converge when the problem gets harder, but they do not have

implemented other solutions to compare with.

Comparing this protocol to FYPA, the main difference that
emerges seems to be in the possibility for a track manager
agent to “loose a track”, namely give up tracking an object, if
it becomes too hard to do that: in SPAM this event is allowed,
even if it is the last option, whereas in our protocol it is not
possible for a user agent - a train - to give up obtaining
resources - railway tracks and nodes: the train has to stay
somewhere in the station!. Furthermore, the representation
of the domain as a constraint problem should be almost
difficult for the FYPA domain, and finally we preferred a real
distributed negotiation, while the solution proposed in [27]
is partially centralized. In a way similar to the Contract Net
protocol, agents do not negotiate, they choose one of them
to solve the constraint problem and then apply the solution it
proposes.

VIII. COMPARISON

A brief comparison among FYPA and these algorithms has
been already presented in the previous sections, with the aim
of clarifying why they have been chosen for the comparison
and why they have been not adopted to solve our resource
allocation problem.

Now, in order to draw a systematic comparison between the
five systems introduced in the previous sections, we identify a
set of features relevant for characterizing a negotiation proto-
col, besides the general ones proposed in [14] and summarized
in Table 1.

A. Accepted agent definition

We adhere to the definition given by Jennings, Sycara and
Wooldridge [24]:
“An agent is a computer system, situated in some
environment, that is capable of flexible autonomous
action in order to meet its design objectives. There
are thus three key concepts in our definition: situat-
edness, autonomy, and flexibility.”

Hence, the first characterizing feature we consider in our
comparison is what definition of agent is accepted by the
authors, specifying which standard features can be found in
the MAS discussed above.

o Are agents autonomous?
o Are agents situated?

e Are agents responsive?

o Are agents pro-active?

o Are agents social?

Table II provides a comparison among the protocols we
described in this paper, with respect to the accepted definition
of agenthood. For every parameter the possible values are:

o YES: the agents show all the typical features associated
with the parameter;

o NO: the agents show none, or very few, of the typical
features associated with the parameter;

o LIMITED: the agents show some of the typical main
features associated with the parameter.

In particular, “Limited” referred to sociality underlies a
solution where the agents communicate among each others
but use very simple data structures and, above all, sociality
amounts to simple exchange of information: the solution to
the problem is partially centralized, so the agents are more
“communicative” than “social”. The same value for the “Pro-
activity”! parameter underlines that the main behavior of
agents is passive, that is, they wait for some changes in the
environment happen before acting. So these agents are more
reactive than proactive.

B. Domain, Purpose, Approach of the MAS

Table III provides a comparison with respect to the general
features of the protocols.

o Which is the domain where the protocol is applied?
The described protocols refer to different applicative do-
mains, that are summarized in this way: Railway manage-
ment (“RAIL”), Air traffic management (“AIR”), Sensors
management (“SENSOR”) and Autonomous robots’s path
management (“ROBOT”).

o Is the protocol used for simulation purposes (for
example, for performing a what-if analysis or for
implementing a decision support system)? For this
parameter the value will be “YES” if the system/protocol
has been implemented/used in simulations too

o Is the protocol used for controlling agents (hence, not
for simulation purposes, but for allowing real agents
to negotiate)? In this case, the value will be “YES” if,
and only if, the system has the real control over physical
entities, that is, its decisions are not checked by an human
operator. The value will be “Limited” if a human user will
accept the proposed solutions before applying them.

o Which is the approach underlying the protocol? For
this parameter we list the main standard techniques used
in the protocol, for example Game theory, Auctions and
SO on.

o Is the system used for a real industrial application?
Which one?

C. Analysis and design of the MAS negotiation protocol

Table IV shows the values for the parameters that we
considered for the design features of the protocols.

o Which is the detail level of the MAS design? The
possible values are: High (Verbal description of the
system), Low (Detailed description with use cases or
Class Diagram or other languages)

« Is the pseudo-code, or a simplified version of the code,
of the negotiation protocol available?

Concerning the MPCA protocol, the value NO for the filed “Pro-activity”
is correct if we limit our evaluation only to the MPCA protocol, but if we
consider agents in the whole AGENTFLY project (those called “pilot agent”),
they are pro-active as well. At the beginning, every pilot agent receives its
mission (which can be changed by human operator during the simulation)
and the agent plans its trajectory to fulfill its mission or to communicate
with other agents if it is in a group mission (see “tactical-agentfly” at
http://agents.felk.cvut.cz/)

What kind of resources are being distributed? | How are they being distributed? Why are they being distributed?
MPCA volumes of air space see details in Section IV to avoid collisions among airplanes
APR volumes of air space see details in Section V to avoid collisions among airplanes
Waypoint | rectangular areas see details in Section VI to avoid collisions among robots
SPAM sensors see details in Section VII to track targets
FYPA railway tracks and nodes inside a station see details in Section III to avoid collisions among trains
Table I
COMPARISON: GENERAL FEATURES
Autonomy Situatedness Reactivity Pro-activity Sociality
MPCA YES YES YES NO YES
APR YES YES YES LIMITED LIMITED
Waypoint | YES YES YES NO LIMITED
SPAM YES YES YES NO LIMITED
FYPA LIMITED YES YES YES YES
Table II
COMPARISON: ACCEPTED AGENT DEFINITION
Domain Simulation | Real control Approach Industrial
MPCA AIR YES YES A* state search YES (BAE Systems and others)
. . LIMITED (foreseen for the Fed-
APR AIR YES LIMITED Learning algorithm eral Flight Administration)
. Scalar cost function,
Waypoint | ROBOT NO YES Computational Geometry NO
SPAM SENSOR YES NO DlsFrlbutf:d Constraints NO
Satisfaction Problem
FYPA RAIL YES LIMITED Distributed resources YES (Ansaldo STS)
allocation
Table III

COMPARISON: DOMAIN AND SIMULATION

o How many different agent roles does the MAS in-
clude?

+ How many different kinds of messages do the agents
exchange? The number indicates the type of different
ACL messages (if known) or different semantics (request, regarding the implementation features of the protocols.
answer, update...)

« Is the solution computed in a partially centralized way « Is the MAS implemented?

(at least, in any iteration step of the negotiation)? The « In which programming language?

value will be YES if the final solution in calculated by « Is the MAS based upon an existing agent platform?
only one agent?, NO if the solution emerges from a real « Can the strategy‘of the a}gent vary during the.same
negotiation among agents. execution run? With “varying sFrategy agent™® we 1nt§nd

o Is the algorithm guaranteed to terminate? Under an agent that is able to act in different ways using
which conditions? The value will be NO if the algorithm different rules. That is, it is able to find many ways to
is allowed to enter a loop or a situation where it does not solve a problem during the execution/simulation
assure to find a solution within a specified time, while « Is the code implementing th'e protocol available?
the value will be YES if the algorithm will always find a Under Whic.h licgnse? The possible valu'es are: “FREE_”
solution. In this case, if the solution is partial or it accepts if the code is available under an open license, “NO” if

some constraints violation, this will be specified between the code is protected by a Non disclosure agreement or
round brackets. it has been registered for a third private entity or “UNK”

if we do not know how/it the code is available.

This applies to Table V too.

D. Implementation of the MAS negotiation protocol

In Table V we summarize the values for the parameters

If, from the available documentation, we were not able to
clearly understand the correct value to be assigned to some
parameter, we use the value UNK, that stands for “unknown”.

3Concerning the MPCA protocol, once the MPCA or IPPCA is used for
solving particular problem, the agent will use it until a solution is find
or timeout will pass. Considering the global “AGENTFLY” project, pilots
agent have several different methods to solve collision avoidance (MPCA and
IPPCA are just some of them) and they select the best method based on
current situation (time to solution, mission goals, environment and so on).

2Concerning the MPCA protocol, a decentralized implementation exists but
it is not published, so we do not consider it in this paper.

Design Pseudo-Code Roles | Messages | Centralized Termination
MPCA HIGH YES 2 2 YES YES
APR UNK NO 1 2 NO YES
Waypoint | UNK YES 1 3 NO YES
SPAM UNK NO 2 4 YES YES (but with no assurance that
all tracks have been managed)
FYPA Low YES 3 7 NO YES (a no-way-out situation is
reported to the user)
Table IV
COMPARISON OVER THE DESIGN FEATURES
Var. .
Impl. Lang. Platforms S Code available User GUI
trategy
MPCA | YES Java AGENTFLY/ AGLOBE NO YES (for aca- | ypq ON
demic purposes) LINE
APR YES UNK FACET NO UNK NO NO
Waypoint | YES C++ 2005 Cornell RoboCup YES FREE NO PH
SPAM YES Java FARM YES UNK NO NO
. OFF
FYPA YES Java JADE YES NO YES (JADE in- | y1\g,
terface) [10]

Table V
COMPARISON OVER THE IMPLEMENTATION FEATURES

o Can the user interact with the MAS on-line during
the MAS execution? If the value is “YES” it means that
the user can change the execution of the system while it
is running, using a GUI or other techniques.

o Which GUI is available? The value can be “ON LINE”
if a GUI exists and the user is allowed to modifies the
execution of the system, “OFF LINE” if something exists
that shows the user the execution of the protocol (during
the execution or later), “NO” if the system only gives
the result but is not able to let the user understand the
intermediate steps of the protocol. The value will be “PH”
if the system is physically implemented so its execution is
visible for the user (you can see for example the physical
entities moving) but it can not be considered a GUIL

IX. CONCLUSIONS AND FUTURE WORK

This paper complements the one presented at WOA 2009
[12] and further refined in [11], where we discussed the
preliminary design and implementation of the FYPA system.

In this paper we propose a systematic comparison among
five MARA systems, including FYPA. The comparison is
detailed enough to help a developer/scientist looking for
implemented MARA solutions, in choosing among them.

From the comparison, a fact emerges: all the analyzed
systems (and many others that we took under consideration
during our research activity but that we did not report here) are
designed to solve very specific problems, although in principle
they might be easily generalized (with little or much effort
depending on the system) to face similar problems in domains
other than those they were designed for.

If this generalization process took place, an integrated plat-
form for developing negotiation protocols could be provided

to users, instead of many different and not integrated MARA
solutions.

As far as FYPA is concerned, we already made the success-
ful effort to generalize the problem that Ansaldo STS posed
to our attention, in order to exploit the solution we developed
in situations other than the specific Ansaldo STS one [7]. If
we will be able to prove that the FYPA protocol is suited to
manage even more MARA problems, we could move another
step further and design a platform for developing negotiation
protocols, starting from the FYPA one. This platform could
help users to develop new negotiation protocols step by step,
starting from the definition of the model (entities, resources
and their dependencies) and moving on with the definition of
the rules regulating the interaction (specifying the time-outs,
the priorities of entities...) and, for example, those to calculate
the alternative allocations.

The next extension would be to integrate this platform
for developing negotiation protocols into the DCaseLP rapid
prototyping framework [28], thus resulting into an “Enhanced
DCaseLP”, in order to allow developers to specify rules
regulating the agents behavior using a logical language such
as tuProlog.

Finally, as proposed in [9], a further extension to our
work could be to integrate the verification capabilities offered
by Concurrent MetateM [19] into the “Enhanced DCaseLLP”
framework.

Regarding the proposal to integrate ontologies in MASs
that we presented at WOA 2008 [8], our research group has
already extended the Ontology Agent, as described in [30].
The “Enhanced DCaseLP” will take advantage of these results
without any further effort since the extended Ontology Agent,
being developed in JADE, will be able to be integrated into it

for free.

ACKNOWLEDGEMENTS

This paper is based on Chapter 7 of Daniela Briola’s Ph.D.
Thesis, [7].

We thank Riccardo Caccia from Ansaldo STS for his help
and support during all the stages of FYPA development.

[1]

[2]
[3]

[4]
[5]

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

REFERENCES

M. R. Adler, A. B. Davis, R. Weihmayer, and R. W. Worrest. Conflict
resolution strategies for nonhierarchical distributed agents. In L. Gasser
and M. N. Huhns, editors, Distributed artificial intelligence: vol. 2, pages
139-161, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers
Inc.
AgentFly:
agentfly/.
A. Agogino and K. Tumer. Regulating air traffic flow with coupled
agents. In AAMAS ’08: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems, pages 535—
542, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

M. Barbuceanu and M. S. Fox. Cool: A language for describing
coordination in multi agent systems, 1995.

K. D. Bilimoria, B. Sridhar, G. B. Chatterji, K. S. Shethand, and S. R.
Grabbe. Future atm concepts evaluation tool. In Air Traffic Control
Quarterly , 9(1), 2001.

M. Boman, P. Davidsson, N. Skarmeas, K. Clark, and R. Gustavsson.
Energy saving and added customer value in intelligent buildings. Build-
ing, 1:505-516, 1998.

D. Briola. Negotiation in Multiagent Systems: Protocols, Ontologies and
Applications. PhD thesis, DISI, University of Genova, Italy, 2011.

D. Briola, A. Locoro, and V. Mascardi. Ontology agents in fipa-
compliant platforms: a survey and a new proposal. In From Objects
to Agents Workshop, WOA 2008, Proceedings, 2008.

D. Briola, M. Martelli, and V. Mascardi. Specification, simulation and
verification of negotiation protocols in a unified agent-based framework
(extended abstract). In ICTCS 2010: 12th Italian Conference on
Theoretical Computer Science, 2010.

D. Briola and V. Mascardi. Design and implementation of a NetLogo
interface for the stand-alone FYPA system. In this volume.

D. Briola, V. Mascardi, and M. Martelli. Intelligent agents that monitor,
diagnose and solve problems: Two success stories of industry-university
collaboration. In Journal of Information Assurance and Security,
volume 4, pages 106-117, 2009.

D. Briola, V. Mascardi, M. Martelli, R. Caccia, and C. Milani. Dynamic
resource allocation in a MAS: A case study from the industry. In From
Objects to Agents Workshop, WOA 2009, Proceedings, 2009.

N. Carver and V. Lesser. A new framework for sensor interpretation:
Planning to resolve sources of uncertainty. In In Proceedings of the
Ninth National Conference on Artificial Intelligence, pages 724-731,
1991.

Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaitre,
N. Maudet, J. A. Padget, S. Phelps, J. A. Rodriguez-Aguilar, and
P. Sousa. Issues in multiagent resource allocation. Informatica (Slove-
nia), 30(1):3-31, 2006.

D. Cockburn and N. R. Jennings. Archon: A distributed artificial
intelligence system for industrial applications, 1995.

P. R. Cohen and H. J. Levesque. Intention is choice with commitment.
Artif. Intell., 42:213-261, March 1990.

K. Decker. Designing behaviors for information agents. In In Proceed-
ings of the 1st Intl. Conf. on Autonomous Agents, pages 404—412. ACM
Press, 1997.

E. H. Durfee and J. S. Rosenschein. Distributed problem solving and
multi-agent systems: Comparisons and examples. In Proc. 13th Intl
Distributed Artificial Intelligence Workshop, pages 94-104, 1994.

M. Fisher. A survey of concurrent metatem - the language and its
applications. In Proceedings of the First International Conference
on Temporal Logic, ICTL 94, pages 480-505, London, UK, 1994.
Springer-Verlag.

B. Grosz and C. Sidner. Plans for discourse. In P. Cohen, J.Morgan, and
M. Pollack, editors, Intentions in Comm., pages 417-444. MIT Press,
Cambridge, Mass., 1990.

reference homepage. http://agents.felk.cvut.cz/projects/

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

B. Horling, R. Mailler, and V. Lesser. Farm: A scalable environment
for multi-agent development and evaluation. In A. G. C. Lucena,
J. C. A. Romanovsky, and P. Alencar, editors, Advances in Software
Engineering for Multi-Agent Systems, pages 220-237. Springer-Verlag,
Berlin, February 2004.

B. Hubermanand and S. Clearwater. A multi-agent system for controlling
building environments. In V. Lesser, editor, Proceedings of the Ist
International Conference on Multiagent Systems, 1995 June 12-14; San
Francisco, CA, volume 1, pages 171-176, 1995.

N. R. Jennings. Cooperation in industrial multi-agent systems. World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 1994.

N. R. Jennings, K. Sycara, and M. Wooldridge. @A roadmap of
agent research and development. Autonomous Agents and Multi-Agent
Systems, 1(1):7-38, 1998.

S. Lander and V. Lesser. Sharing Meta-Information to Guide Cooperative
Search Among Heterogeneous Reusable Agents. IEEE Transactions on
Knowledge and Data Engineering, 9(2):193-208, January 1997.

V. R. Lesser. Cooperative multiagent systems: A personal view of the
state of the art. [EEE Transactions on Knowledge and Data Engineering,
11:133-142, 1999.

R. Mailler, V. Lesser, and B. Horling. Cooperative negotiation for soft
real-time distributed resource allocation. In AAMAS ’03: Proceedings
of the second international joint conference on Autonomous agents and
multiagent systems, pages 576-583, New York, NY, USA, 2003. ACM.
V. Mascardi, M. Martelli, and I. Gungui. DCaseLP: a prototyping
environment for multi-language agent systems. In M. Dastani, A. E.-
F. Seghrouchni, J. Leite, and P. Torroni, editors, In Proceedings of the
First Workshop on LAnguages, methodologies and Development tools
for multi-agent systemS, LADS’007 Post-proceedings, volume 5118 of
LNCS, pages 139-155. Springer-Verlag, 2008.

C. L. Mason and R. R. Johnson. Datms: a framework for distributed
assumption based reasoning. In L. Gasser and M. N. Huhns, editors,
Distributed artificial intelligence: vol. 2, pages 293-317, San Francisco,
CA, USA, 1990. Morgan Kaufmann Publishers Inc.

F. Mulattieri. Progettazione ed implementazione di un ontology agent.
Master’s thesis, DISI, University of Genova, Italy, 2010.

D. E. Neiman, D. W. Hildum, V. R. Lesser, and T. W. Sandholm.
Exploiting meta-level information in a distributed scheduling system. In
Proceedings of the twelfth national conference on Artificial intelligence
(vol. 1), AAAI 94, pages 394-400, Menlo Park, CA, USA, 1994.
American Association for Artificial Intelligence.

T. Oates, M. V. N. Prasad, and V. R. Lesser. Cooperative information-
gathering: a distributed problem-solving approach. IEE Proceedings -
Software, pages 72—88, 1997.

H. Parunak. Manufacturing experience with the contract net. Distributed
Artificial Intelligence, pages 285-310, 1987.

O. Purwin, R. D’Andrea, and J.-W. Lee. Theory and implementation
of path planning by negotiation for decentralized agents. Robot. Auton.
Syst., 56(5):422-436, 2008.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a bdi-
architecture. In KR’91, pages 473-484, 1991.

M. P. Singh. Towards a formal theory of communication for multi-agent
systems. In In Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91, pages 69-74. Morgan Kaufmann,
1991.

T. Sugawara and K. Murakami. A Multiagent Diagnostic System for
Internetwork Problems. Proceedings of INET 92, January 1992.

K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed constrained
heuristic search. IEEE Transactions on Systems, Man, and Cybernetics,
21:1446-1461, 1991.

U.S. Congress, Office of Technology Assessment. Electronic Enter-
prises: Looking to the Future. U.S. Government Printing Office, 1994.
D. Sisldk, J. Samek, and M. Pé&choudek. Decentralized algorithms for
collision avoidance in airspace. In AAMAS '08: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent
systems, pages 543-550, Richland, SC, 2008. International Foundation
for Autonomous Agents and Multiagent Systems.

R. Weihmayer and R. Brandau. A distributed ai architecture for customer
network control. In IEEE Global Telecommunications Conference,
Globecom’90, Proceedings, pages 656—662. IEEE, 1990.

M. P. Wellman. A market-oriented programming environment and its
application to distributed multicommodity flow problems. Journal of
Artificial Intelligence Research, 1:1-23, 1993.

