
Tutorial on Jess
agents in DCaseLP

1 Creating a Jess program for the Jess agent
In order to create a Jess agent, you need first to create the Jess program for your
agent.

1. Open the JessAgentSkeleton.clp that is contained in the jessInJADE
directory with any text editor, and save it somewhere in you file system, with a
name of your choice. Let us suppose that you saved the file as C:\JessAgents\
myFirstAgent.clp.

2. You need to decide which role your agent plays, and which other agents
(and their roles) it will interact with. Let us suppose that the agent myFirstAgent
plays the role First, and is expected to communicate with an agent, named
mySecondAgent (that we will define later), that plays the role Second.

3. Add this rule to the RULES section of your myFirstAgent.clp agent:

(defrule first1
=> (bind ?cid (newcid))
(bind ?*addr* (read_addr "Second"))
(if (eq nil ?*addr*) then
(bind ?*addr* (fetch_addr "Second")))
(bind ?content do_you_want_to_chat_with_me)
(send (ACLMessage (communicative-act PROPOSE)
(receiver ?*addr*) (protocol "First")
(conversation-id ?cid)
(content ?content))) (assert (state stateFirst1 ?cid))
(printout t crlf crlf "The first agent sent an
PROPOSE " ?content " to an agent playing the
Second role whose name is " ?*addr* crlf)
)

This rule is used when the agent is activated, and simply sends a message with per-
formative PROPOSE and content ”do you want to chat with me” to any agent in
the MAS that plays the role ”Second”. The information about the message sent,
is printed on the standard output.

1



4. Open the JessAgentSkeleton.clp once again, and save it some-
where in you file system, with a name of your choice. Let us suppose that you
saved the file as C:\JessAgents\mySecondAgent.clp.

5. Add this rule to the RULES section of your mySecondAgent.clp agent:

(defrule second1
=>
(wait_msg "PROPOSE" "First")
(assert (state send (get_cid ?*msg*)))

(retract-string "(message \"PROPOSE\" \"First\")")
(bind ?current_content (get_content ?*msg*))
(printout t crlf crlf "The second agent
received a PROPOSE " ?current_content " from an
agent playing the First role" crlf)
)

(defrule second2
(state send ?cid)
=>
(send (ACLMessage (communicative-act
ACCEPT_PROPOSAL)
(sender Second) (receiver First)
(conversation-id ?cid)
(content yes_sure)))
(printout t crlf crlf "The second agent sent
an ACCEPT_PROPOSAL yes_sure to an agent playing
the First role" crlf)

)

The first rule, named second1, allows the second agent to wait for a message
from an agent playing the First role. Once the message has been received, the
second agent changes its state into a state where it will answer to the proposal
((state send ?cid)), where ?cid is the conversation identifier of the cur-
rent conversation. The second rule, named second2, is used when the agent is in
the state (state send ?cid). In this case the second agent answers to the
first agent, with an ACLMessage with performative ACCEPT PROPOSAL, and
content ”yes sure”.

2



2 Creating a Java stub for integrating the Jess agent
into JADE

Since there are two roles played by agents in the MAS, you need to define two
Java stubs.

1. Open the JavaStubSkeleton.java file that is contained in the jessInJADE
directory with any text editor, and save it somewhere in you file system, with a
name of your choice. Let us suppose that you save the file as C:\JessAgents\
First.java, since it will define the stub for the agent that has the myFirstAgent.
clp jess program, and that plays the First role.

2. Modify the code in the following way

...
/********** COMPLETE THE CODE HERE (name of
the class: substitute the string --write here
the name of the agent class-- with the name
of the class) ****************/
public class First extends jessInJADE.JessAg

...
/********** COMPLETE THE CODE HERE
(name of the role(s)
played by the instances of this class:
substitute the string --write here
the role -- with the string that
represents the name
of the role) ****************/
dfd.addProtocols("First");

...
/********** COMPLETE THE CODE HERE
(jessFile variable:
substitute the string --write here
the path to the jess file containing
the jess code for this agent--
with the string that represents the name
of the file) ****************/
String jessFile = "./myFirstAgent.clp";

3



3. Open once again the JavaStubSkeleton.java file that is contained in
the jessInJADE directory with any text editor, and save it somewhere in you file
system, with a name of your choice, for example C:\JessAgents\Second.
java, since it will define the stub for the agent that has the mySecondAgent.
clp jess program, and that plays the Second role.

4. Modify the code in the following way

...
/********** COMPLETE THE CODE HERE (name
of the class: substitute the string --write
here the name of the agent class--
with the name of the class) ****************/
public class Second extends jessInJADE.JessAg

...
/********** COMPLETE THE CODE HERE
(name of the role(s)
played by the instances of this class:
substitute the string --write here
the role -- with
the string that represents the name
of the role) ****************/
dfd.addProtocols("Second");

...
/********** COMPLETE THE CODE HERE
(jessFile variable:
substitute the string --write here the path
to the jess file containing the jess
code for this agent--
with the string that represents the name
of the file) ****************/
String jessFile = "./mySecondAgent.clp";

5. Move to the directory C:\JessAgents\ and compile the Java files by
typing the command javac*.java.

6. From the directory C:\JessAgents\, run JADE and integrate two agent
instance into it, f of type First and s of type Second, by typing the command

4



java jade.Boot f:First s:Second.

7. You should obtain the following output, that demonstrates that the two
agents successfully communicated:

The first agent sent an PROPOSE
do_you_want_to_chat_with_me to an agent
playing the Second role whose name is
s@klimt:1099/JADE

The second agent received a PROPOSE
do_you_want_to_chat_with_me
from an agent playing the First role

The second agent sent an ACCEPT_PROPOSAL
yes_sure to an agent playing the First role

8. The code of both Jess and Java components corresponding to the agents of
this example can be found in the directory DCaseLP\jessInJADE\Tutorial

3 Making Jess and tuProlog agents interact
The interaction between a Jess and a tuProlog agent is completely transparent. Try
to build a very simple tuProlog agent that behaves like the “myFirst” agent that
we just implemented using Jess.

The tuProlog code of this agent, that we name myFirstAgentInProlog.pl,
and that should be saved in the same directory where the other agents are (C:
\JessAgents\), is the following one:

main :- send_msg.

main :- true.

send_msg :-
sent(no),
ask_address("Second",Ag),bound(Ag),
rand_int(1000000,N),text_term(Txt,N),
text_concat("fff",Txt,CID),
pack(do_you_want_to_chat_with_me,STR),
send("PROPOSE",STR,Ag,’"First"’,CID),
nl,nl,retract(sent(no)),

5



write("The agent myFirstAgentInProlog has sent
a PROPOSE do_you_want_to_chat_with_me to an agent
playing the Second role whose name is "),write(Ag),
nl,nl.

send_msg :- true.

sent(no) :- true.

This agent sends a “PROPOSE do you want to chat with me” message to
an agent playing the Second role, in the same way as the Jess “myFirstAgent” did.

From the directory C:\JessAgents\, run JADE and integrate two agent
instance into it, fP, the tuProlog agent that behaves according to the theory saved
in the myFirstAgentInProlog.pl, and s, the Jess agent of type Second
that we have previously built (type the command java jade.Boot
fP:tuPInJADE.JadeShell42P(myFirstAgentInProlog.pl) s:Second).

The messages that should be printed by the two agents to the standard output
are the following ones:

’The agent myFirstAgentInProlog has sent a PROPOSE
do_you_want_to_chat_with_me’’ to an agent playing
the Second role whose name is ’’s@klimt:1099/JADE’

The second agent received a PROPOSE
do_you_want_to_chat_with_me from an agent
playing the First role

The second agent sent an ACCEPT_PROPOSAL yes_sure
to an agent playing the First role

The Jess agent defined by the “mySecondAgent.clp” program, that we already
know to be able to communicate with a Jess agent, has successfully communicated
also with an agent written in tuProlog, without needing any change to its code!!!!

The code of the myFirstAgentInProlog agent can be found in the directory
DCaseLP\jessInJADE\Tutorial

6


