
The tuPInJADE package

The tuPInJADE package defines the following classes:

ErrorMsg: this class is used by the tuProlog agents running
in a JADE platform with the aim of displaying a pop-up window
with an error/failure message, since the platform does not
provide a similar mechanism.

JadeShell42P: this class implements a tuProlog agent and,
as the name suggests, it can be considered as the skeleton for
any tuProlog agent running in a JADE platform. This agent
is ready to be loaded into a JADE platform and a Prolog
inference engine (implemented by tuProlog) is already
included inside of it. When launching this agent in JADE, it is
necessary to input the name of a text file containing the
(tu)Prolog theory defining the agent's behaviour. The tuProlog
theory specified in that file is loaded into the tuProlog engine
and is added to the standard predicates. The life cycle of this
agent consists in continuously solving the goal "main." that
must be defined in the theory file.

JadeShell42PGui: this class differs from JadeShell42P
only in the way that the file containing the tuProlog theory
defining the agent's behaviour is inputted to it. When loading
the agent in JADE, a GUI is displayed from which the user can
browse the file system and select the theory file.

TuJadeLibrary: this class implements the tuProlog library
(entirely developed in Java) that a tuProlog agent needs in
oder to communicate with other agents in any JADE platform.
It defines communicative predicates based on the facilities
that JADE offers to its agents for communication with other
agents running in any JADE platform.

The tuProlog agents

There are 2 ways to load a JadeShell42P or JadeShell42PGui
agent into a Jade platform:

• from the RMA GUI

Click the “Start New Agent” item from the “Actions”
menu in the title bar. A GUI will open and the appropriate
parameters regarding the new agent must be inputted.
The parameters that the user must input to create a
tuProlog agent are: the local name of the agent (chosen by
the user) and the fully qualified name of the Java class

implementing the agent (tuPInJADE.JadeShell42P or
tuPInJADE.JadeShell42PGui). For a JadeShell42P
agent it is also needed to input in the Arguments field in the
GUI the path of the theory file. For a JadeShell42PGui
agent, after inputting the name of the agent and the name of
the Java class implementing it, a window will open and the
user will have to select the theory file, locating it in the
system. In both cases, the agent will be created in the
selected agent container of JADE.

• from the command line when launching an agent
container

To load a JadeShell42P agent, just add the following string:

name:tuPInJADE.JadeShell42P(theory)

where name should be substituted with the name that the
user wishes to assign to the agent. The name is local to the
platform in which the agent is loaded; the globally unique
name that JADE assigns to the agent is a string formed by
concatenating this local name, the symbol ”@” and the
platform’s identifier, respectively (for more details see the
JADE manuals). Finally, theory should be substituted with
the name (comprising the entire path if the file is not in the
current classpath) of the file containing the tuProlog theory
defining the main predicate.
More than one tuProlog agent can be specified when
launching the container: it is sufficient to separate each string
of this form by a blank space (as with non-tuProlog agents).

To load a JadeShell42PGui agent, just add the following string:

name:tuPInJADE.JadeShell42PGui

where name should be substituted with the name that the
user wishes to assign to the agent.
For each JadeShell42PGui agent specified in the command
line, a window will open and the user will have to select the
theory file locating it in the system.
Both types of tuProlog agents can be loaded together in a JADE
platform.

When this agent is loaded into JADE, its first action is to check if the
user has inputted the name of the file that defines the main
predicate: if the file has not been specified or the system has
problems finding/opening/reading it, an error message is displayed
by an ad-hoc window and the agent is “killed” (leaving .

If the file can be opened and read by the system, then the agent
will check if the theory file begins with “main:-” (only lower-case
letters are valid in the word main) and if it also contains a valid
tuProlog theory.

A theory file containing the fact “main.” and no other definition of
the main predicate is considered valid, but the corresponding agent
does not ever do anything. If any of the previous checks ends
negatively, then the user is made aware of it by the appearance of a
window displaying an error message, and the agent “dies”.
On the other hand, if these checks end positively, the tuProlog
engine is created and, by default, it contains the standard tuProlog
libraries (implemented in Java and fully detailed in the “tuProlog
Users Guide” available in the documentation provided with the
tuProlog system) and the theory inputted when loaded.

After adding the inference engine, the agent tries to extend it with the
tuPInJADE.TuJadeLibrary (the Java library that we have
developed and that defines the predicates for allowing communication
between tuProlog agents and other agents in JADE): if it succeeds,
the agent can now communicate with any agent running in JADE
platforms, otherwise it terminates its life cycle.
A tuProlog theory is represented by text consisting of a series of
clauses and/or directives, each followed by “.” and the blank space.
The theory inputted to the agent “completes” the agent since it
determines its knowledge base and the rules by which it
accomplishes demonstrations.

The tuProlog agent is able to carry out logic reasoning when a query
is submitted to it, but we have chosen to only submit one query:
every time that this agent is scheduled by JADE, the agent
automatically proves the “main.” goal. If the resolution does not
succeed then an error message is displayed to the user.

A typical behaviour of a tuProlog agent may be to read a new
message from its messages queue (automatically created by JADE
for each agent), handle it and take some action (such as the update
of its knowledge and/or message delivery) according to the facts
and rules currently present in its theory.
The demonstration process is not visible to the programmer: to
see the bindings of the variables made during the resolution, the
programmer of the agent has to explicitly write the variables on
the standard output or in files.

So, the behaviour of the tuProlog agents is to prove the main
predicate, but they can differ in the facts and clauses that rule
their reasoning. Comparing them to the other kind of agents
runnable in JADE, the tuProlog agents have only one activity to

fulfil, that is the demonstration process of the main goal.

The built-in predicates of tuProlog agents

A tuProlog agent has “built-in” predicates: the ones provided by
the tuProlog libraries and the ones defined in the TuJadeLibrary
that is automatically loaded into the inference engine of the agent.
The TuJadeLibrary implements a tuProlog library defining
predicates that allow tuProlog agents to send/receive messages
to/from other agents running in JADE and to perform specific
requests to the default DF (Directory Facilitator) of the JADE
platform in which they are running.
The predicates defined in the TuJadeLibrary are listed below:

•ask_address(Role,Address)
•reg_role(Role)
•send(Performative,Content,Receiver)
•send(Performative,Content,Receiver,Protocol,Cid)
•receive(Performative,Content,Sender)
•rec_cid_role(Performative,Content,Sender,Cid,Role)
•blocking_receive(Performative,Content,Sender)
•blocking_receive(Performative,Content,Sender,Msec)
•pack(Term,StrTerm)
•unpack(StrTerm,Term)

Besides the predicates for sending and receiving messages, there are
two predicates for converting strings into tuProlog terms and vice
versa, a predicate for asking the default DF of the JADE platform
in which the agent is running for the address of an agent given the
role it registered with the DF, and a predicate to register a role with
the default DF.

The ordinary content of a JADE message is a string, even though an
object can be used. We have chosen to make the tuProlog agents
send messages whose content is a string in order to maintain
the lightweight mechanism of messaging provided by the JADE
framework: this is why we have added the pack and unpack
predicates.
So, on the one hand, when a tuProlog agent has to send a message, the
developer includes a call to the pack predicate first, and then the call
to the send predicate.
On the other hand, when a tuProlog agent has to receive a message,
the developer includes the call to the receive/rec_cid_role/
blocking_receive predicate and, afterwards, converts the content
of the message into a tuProlog term by calling the unpack predicate;
then, the agent will be able to reason over the received content as it
usually does with ordinary terms.

ask_address/2
This predicate is the Prolog counterpart of the Java search
method (available to any agent running in JADE) for asking the
default DF agent for the address of the agent that has registered
with it the given role. It takes two arguments: a string
representing the role and a string representing a JADE GUID
(Global Unique IDentifier) of an agent.
The call to the goal ask_address(Role,Address) succeeds if,
and only if:

- the Role term is a string, or a term that unifies with a string,
(not the Prolog anonymous variable “_”) representing a role;

- the Address term is a variable not bound yet.

If the goal is successful, the Address term is bound to the GUID
of the agent that registered the role Role with the default DF,
while it remains unbound in case no agent has registered that role.
If an error occurs while asking the address to the DF agent, an
error message appears to the user.

reg_role/1
This predicate is the Prolog counterpart of the Java addProtocols
method (available to any agent running in JADE) that allows an
agent to register with the default DF a protocol, which is a string.
DCaseLP agents use this protocol string to store a role instead.
It takes only one argument: a string representing the role that the
agent wishes to register with the DF.
The call to the goal reg_role(Role) succeeds if, and only if:

- the Role term is a string, or a term that unifies with a string,
(not the Prolog anonymous variable “_”) representing a role.

If the goal is successful, the role Role is successfully registered with
the DF. If an error occurs while registering the role with the DF
agent, an error message appears to the user.

send/3
This predicate is the Prolog counterpart of the Java send method
(available to any agent running in JADE) for sending a message.
To use the send method, the message that the agent wishes to send
must be passed to the method as an input parameter. In our case,
the message is automatically created and only the performative,
the content and the address/addresses of the receiver/receivers
are necessary. This predicate takes three arguments that are all
strings (the third argument can be a list of strings) used to
“complete” the message to send.
The call to the goal send(Performative,Content,Receiver)
succeeds if, and only if:

- the Performative term is a string, or a term that unifies with

a string, representing one of the available performatives of an
ACLMessage in JADE (in capital letters). If the string is not a
valid performative, the goal still is successful, but the message
that is sent has the default performative NOT_UNDERSTOOD;

- the Content term is a string, or a term that unifies with
a string, (not the Prolog anonymous variable “_”) representing
the content of the message to send;

- the Receiver term is a string, or a term that unifies with
a string, representing the address (that is, the GUID) of the
agent to which the message is to be sent. The goal is also
successful if this term is a list of strings or of terms that unify
with strings representing GUIDs.

If the goal is successful, the message is sent to the address(es)
specified by the third argument, while the address of the agent
sending the message is automatically inserted into the message
itself. If the arguments are not valid ones or an error occurs
while sending the message, an error message appears to the user.

send/5
This predicate performs the same action of the previous send
predicate, but it adds more information to the message sent. It
takes five arguments that are all strings (the third argument can
be a list of strings) used to “complete” the message to send.
The call to the goal send(Perf,Cont,Rcver,Prot,Cid)
succeeds if, and only if:

- the Perf term is a string, or a term that unifies with a string,
representing one of the available performatives of an
ACLMessage in JADE (in capital letters). If the string is not a
valid performative, the goal still is successful, but the message
that is sent has the default performative NOT_UNDERSTOOD;

- the Cont term is a string, or a term that unifies with a string,
(not the Prolog anonymous variable “_”) representing the
content of the message to send;

- the Rcver term is a string, or a term that unifies with a string,
representing the address (that is, the GUID) of the agent to
which the message is to be sent. The goal is also successful if
this term is a list of strings or of terms that unify with strings
representing GUIDs;

- the Prot term is a string, or a term that unifies with a string,
(not the Prolog anonymous variable “_”) representing the role
of the agent sending the message;

- the Cid term is a string, or a term that unifies with a string,
(not the Prolog anonymous variable “_”) representing the
conversation-id of the message that is to be sent.

If the goal is successful, the message is sent to the address(es)
specified by the third argument and the address of the agent

sending the message is automatically inserted into the message
itself. If the arguments are not valid ones or an error occurs
while sending the message, an error message appears to the user.

receive/3
This predicate is the Prolog counterpart of the Java receive
method (available to any agent running in JADE) for receiving a
message. Calling the receive method implies removing a message
from the messages queue belonging to the agent and then “reading”
the relevant information contained in the message.
This predicate takes three arguments that are all strings that will
contain the information read from the message received.
The call to the goal receive(Performative,Content,Sender)
succeeds if, and only if:

- the Performative term is a variable not bound yet;
- the Content term is a variable not bound yet;
- the Sender term is a variable not bound yet.

If there is at least one message in the queue, it is removed and
read, and the goal is successful. The performative, the content and
the address of the sender are bound to the arguments of the goal,
respectively. If, on the contrary, the queue is empty, the goal still
succeeds, but its arguments remain unbound variables.
If an error occurs while receiving the message, an error message
appears to the user.

rec_cid_role/5
This predicate performs the same action of the previous receive
predicate, but it provides more information about the message
received. It takes five arguments that are all strings that will
contain the information read from the message received.
The call to the goal rec_cid_role(Perf,Cont,Sdr,Cid,Role)
succeeds if, and only if:

- the Perf term is a variable not bound yet;
- the Cont term is a variable not bound yet;
- the Sdr term is a variable not bound yet;
- the Cid term is a variable not bound yet;
- the Role term is a variable not bound yet.

If there is at least one message in the queue, it is removed and
read, and the goal is successful. The performative, the content, the
address of the sender, the conversation-id and the protocol (used
by the sender to specify its role) are bound to the arguments of the
goal, respectively. If, on the contrary, the queue is empty, the goal
still succeeds, but its arguments remain unbound variables.
If an error occurs while receiving the message, an error message
appears to the user.

blocking_receive/3
This predicate is the Prolog counterpart of the Java
blockingReceive method (available to any agent running in
JADE) for blocking the agent in case its messages queue is empty.
If the queue is empty, the agent will wait for a message to arrive,
otherwise it removes a message from the queue and reads it.
This predicate takes three arguments that are all strings that will
contain the information read from the message received.
The call to the goal blocking_receive(Perf,Content,Sender)
succeeds if, and only if:

- the Perf term is a variable not bound yet;
- the Content term is a variable not bound yet;
- the Sender term is a variable not bound yet.

When a message is present in the queue, it is removed and
read, and the goal is successful. The performative, the content and
the address of the sender are bound to the arguments of the goal,
respectively. If an error occurs while receiving the message, an
error message appears to the user.

blocking_receive/4
This predicate performs the same action of the previous
blocking_receive predicate, but it constraints the period of time
for which the agent will block while waiting for a message to arrive.
It takes four arguments, the first three are strings that will contain
the information read from the message received, while the last
one is a number specifying the maximum amount of milliseconds
for which the agent will block.
The call to the goal blocking_receive(Perf,Cont,Sdr,Msecs)
succeeds if, and only if:

- the Perf term is a variable not bound yet;
- the Cont term is a variable not bound yet;
- the Sdr term is a variable not bound yet;
- the Msecs term is a number, or a term that unifies with a

number, that constraints the period of time for which the agent
will block.

When a message is present in the queue, it is removed and
read, and the goal is successful. The performative, the content and
the address of the sender are bound to the arguments of the goal,
respectively. If, on the contrary, the queue is empty, the agent will
wait for a message to arrive for the amount of milliseconds
specified by the fourth argument of the goal. If an error occurs
while receiving the message, an error message appears to the user.

pack/2
This predicate has the aim of converting a tuProlog term into
a string in order to be able to send that term as the content of a

message. It should be evaluated before the send predicate.
It takes two arguments that are both strings.
The call to the goal pack(Term,StrTerm) succeeds if, and only
if:

- the Term term is a ground tuProlog term or a variable that
unifies with a ground term;

- the StrTerm term is a variable not bound yet.

If the goal is successful, the StrTerm term is bound to the string
representation of the Term term. If an error occurs while parsing
the Term term or bounding its representation to the second
argument, an error message appears to the user.

unpack/2
This predicate has the aim of converting a string into a
tuProlog term in order to be able to reason on the content of a
message received. It should be evaluated after one of the
predicates by which an agent can receive a message.
It takes two arguments that are both strings.
The call to the goal unpack(StrTerm,Term) succeeds if, and
only if:

- the StrTerm term is a string, or a term that unifies with a
string, representing a tuProlog term;

- the Term term is a variable not bound yet.

If the goal is successful, the Term term is bound to the tuProlog
term represented by the StrTerm string. If an error occurs while
parsing the StrTerm term or bounding the tuProlog term that it
represents to the second argument, an error message appears to
the user.

