
Pergamon

OS93-60SO(S~')O0024-O

Neural Networlcs, Vol. 8, No. 5, pp. 729-743, 1995
Copyright O 1995 Elsevier Science Ltd

Printed in USA. All rights r--~erved
0893--6080/95 $9.50+ .00

CONTRIBUTED ARTICLE

Two Soft Relatives of Learning Vector Quantization

JAMES C. BEZDEK A N D N I K H I L R . PAL

The University of West Florida

(Received 6 October 1992; revised and accepted 1 February 1995)

Abstract--Learning vector quantization often requires extensive experimentation with the learning rate distribution
and update neighborhood used during iteration towards good prototypes. A single winner prototype controls the
updates. This paper discusses two soft relatives of L VQ: the soft competition scheme (SCS) of]'air et aL and fuzzy
LVQ=FLVQ. These algorithms both extend the update neighborhood to all nodes in the network. SCS is a
sequential, deterministic method with learning rates that are partially based on posterior probabilities. FLVQ is a
batch algorithm whose learning rates are derived from fuzzy memberships. We show that SCS learning rates can be
interpreted in terms of statistical decision theory, and derive several relationships between SCS and FL VQ. Limit
analysis shows that the learning rates of these two algorithms have opposite tendencies. Numerical examples
illustrate the difficulty of choosing good algorithmic parameters for SCS. Finally, we elaborate the relationship
between FLVQ, Fuzzy c-Means, Hard c-Means, a batch version of LVQ and SCS.

Keywords--c-Means Clustering, Fuzzy Clustering, Fuzzy LVQ, Learning Vector Quantization, Soft Competi t ion
Scheme.

1. I N T R O D U C T I O N

Numerical clustering algorithms organize a set of
u n l a b e l e d f e a t u r e vectors X = { X l , x 2 xn} C ~P
into clusters or natural groups (Hartigan, 1975; Duda
& Hart, 1973; Jain & Dubes, 1988). To characterize
solution spaces for clustering and classifier design, let
c denote the number of clusters, 1 < c < n, and set:

N~ ={y ~ atqy, ~ [0, 1]Vi, Yi > 03i} (la)

possibilistic labels;

Nfc = y E N~[E y , = 1 (lb)
i=l

fuzzy /probabilistic labels;

N~ ={y ~ NsclY, ~ {0, 1}Vi} (lc)

crisp labels.

Figure 1 depicts these sets for c = 3 classes. Nhc is the
canonical (unit vector) basis of Euclidean c-space;
Nfc, a subse t o f a h y p e r p l a n e , is i ts c o n v e x hul l ; a n d
Npc is t he u n i t h y p e r c u b e in ~ c m i n u s the o r ig in ,
Npc = [0, 1] c - {0}. These three sets a re label vectors;
each p o i n t i n t h e m p rov ides a set o f class labels for
e i ther a real ob jec t , o r a n u m e r i c a l c h a r a c t e r i z a t i o n
(x / E ~ P) o f it. T h e i th ver tex o f Nh~,

e i = (O , O , . . . , 1 , . . . , 0) r,
i

is the crisp label for class i, 1 < i < c.
It is important to see that fuzzy and probabil-

istic labels lie in the same set. The vector
y = (0.1, 0.6, 0.3) r in Nfc is a constrained label

Acknowledgments: Anonymous referees of an earlier version of
this paper provided many valuable suggestions for its improve-
ment. Reviewing papers is a thankless job, and reviewing them well
is hard. The comments sent to us were really invaluable in helping
us clarify our thinking on soft relatives of LVQ. The connection
between LVQ, FLVQ, SCS and the c-Means families given in this
paper was fully understood by us only during the rewrite. For this,
as well as numerous other improvements, we owe them our thanks
and we give it.

Requests for reprints should be sent to J. C. Bezdek,
Department of Computer Science, The University of West
Florida, Pensacola, FL 32514, USA.

• = oO:~ - ~,]

o°'~

FIGURE 1. Hard, fuzzy, probabillstlc and posslblllstic label
vectors (for c = 3 classes).

729

730 J. C. Bezdek and N. R. Pal

vector; its entries lie between 0 and 1, and are
constrained to sum to 1. If y is generated by,
say, the fuzzy c-means clustering method (Bezdek,
1981), we call it a fuzzy label for some Xk, and
interpret its values as the membership of Xk in each
of the classes represented by the rows of y. Thus,
0.6 is the membership of Xk in class 2. If y came
from a method such as maximum likelihood
estimation in mixture decomposition (Titterington,
Smith & Makov, 1985), it would be a probabilistic
label, and 0.6 would be the (posterior) probability
p(21Xk) that, given Xk, it came from class 2.

Npc is called possibilistic label vector space. Vectors
in it such as z=(0.7, 0.2, 0.7) r have each entry
between 0 and 1, but the components of z do not
necessarily sum to 1. z might be generated as the label
for some Xk by, for example, the possibilistic c-means
clustering model (Krishnapuram & Keller, 1993), or
by a feed-forward neural (classifier) network that has
unipolar sigmoidal transfer functions at each of c
output nodes (Haykin, 1994). In this case zi can be
regarded as the possibility that Xk belongs to class i.

Clustering in unlabeled data X is the assignment of
(hard, fuzzy, probabilistic, or possibilistic) label
vectors to the points in X, and hence, to the objects
generating X. If the labels are hard, we hope they
identify c natural subgroups in X. Clustering is also
called unsupervised learning, the word learning
referring here to learning the correct labels (and
possibly vector prototypes or quantizers) for good
subgroups in the data. c-partitions of X are sets of
(cn) values (u/k} satisfying some or all of the
following conditions. Let U(k) be the k-th column of
U:

Uk E Npc Vk; (2a)

0 < ~ u~ < n Vi; (2b)
k = l

c

E u~ = 1 Vk. (2c)
i = 1

Using eqns (2) with the values {u/k} arrayed as a
(c x n) matrix U = [u/k], we define:

Mpc, = { U c ~C"l U satisfies (2a) and (2b) }; (3a)

Mfc, = { U E M~,IV satisfies (2c); (3b)

Mhcn = {U E Mfc, luu, = 0or IViandk}. (3c)

Eqns (3a)-(3c) define, respectively, the sets of
possibilistic, fuzzy/probabilistic, and crisp c-parti-
tions of X. Each column of Uin Mpcn(Mfc~, Mhcn) is a
label vector from Np~(N#, Nhc). The reason these
matrices are called partitions for all cases except the
probabilistic context follows from the interpretation
of column k as the membership of Xk in the i subsets

of X defined by the rows of U. If U is probabilistic, its
rows define the posterior probabilities of each Xk in
sample X of being from one of c probability
distributions. We indicate the statistical context by
replacing U = [U/k] with P : [p/k] : [P(ilxk)]. Observe
that Mh~, C Mfcn C Mpcn.

A classifier is any function D: ~P~Np~. The value
y = D(z) is the label vector for z in ~P. D is a crisp
classifier if D[~P] = Nh~. Since definite class assign-
ments are usually the ultimate goal of classification
and clustering, outputs of algorithms that produce
label vectors in Npc or N# are commonly transformed
into crisp labels. Most often, non-crisp labels are
converted to crisp ones using the function H:
NpcH Nhc,

H(y) = e i ¢ * Ily - e, II < IlY - ejll ~ y, _ yj; j ¢ i. (4)

In eqn (4) II * II is the Euclidean norm on ~c. If
y = D(z), H simply finds the crisp label vector ei in
Nhc closest to y. Alternatively, H finds the maximum
coordinate of y, and assigns this crisp label to z. The
rationale for using H depends on the algorithm that
produces label vector y. For example, the justification
for using eqn (4) for outputs from the k-nearest
neighbor rule is simple majority voting. I f y is gotten
from mixture decomposition, using H is Bayes rule-
label z by its class of maximum posterior probability.
And if the labels are fuzzy, this step is called
defuzzification of U by the maximum membership
rule. We give these procedures a common name; we
will call the use of H hardening.

Clustering algorithms produce partitions, which
are sets of label vectors. For fuzzy partitions, the
usual method of defuzzification is the application of
eqn (4) to each column U(k) of U. The crisp maximum
membership partition UM~t in Mhcn corresponding to
any U E Mp~n has as its kth column, 1 < k < n:

UMM, (k) = H(U(k)) = ei ¢¢" u~ > ujk

j = l , 2 , . . . ,c , j ¢ i . (5)

The conversion of a probabilistic partition
P = [p/k] E Mfc n by Bayes rule (decide Xk E class i if
and only ifp(ilXk) > P(jlXk) f o r j ~ i) also results in
a crisp partition, PMP, which is entirely analogous to
the maximum membership partition produced by eqn
(5). If there are ties in eqn (5), they are resolved
arbitrarily as long as the appropriate constraint is
preserved.

We discuss three algorithms that generate proto-
types from unlabeled data. Prototype representation
(or vector quantization) is based on the idea
illustrated in Figure 2. The vector vi is taken as a
prototypical representation for all the vectors in the
hard cluster Xi C X. There are many synonyms for

Soft Relatives o f Learning Vector Quantization

Xl

FIGURE 2. Representation of many vectors by one prototype.

the word prototype: for example, vector quantizer,
signature, template, codevector, paradigm, centroid,
exemplar. In the context of clustering vi is often called
the cluster center of hard cluster Xi C X.

Many families of algorithms are prototype
generators. There are, roughly speaking, four
approaches: (i) pattern recognition models such as
the leader algorithm (Hartigan, 1975), sequential
hard c-means (Duda & Hart, 1973), and batch hard,
fuzzy (Bezdek, 1981) and possibilistic (Krishnapuram
& Keller, 1993) c-means: (ii) statistical models such as
mixture decomposition (Titterington, Smith &
Makov, 1985); (iii) network models such as Koho-
nen's self-organizing feature maps and its many
generalizations (Kohonen, 1989; Pal, Bezdek &
Tsao, 1993); and (iv) vector quantizer approaches
such as the generalized Lloyd algorithm (Gersho &
Gray, 1992).

Once prototypes are found (and possibly relabeled
if the data have physical labels), they can be used to
define a hard nearest prototype (1-NP) classifier, say
Dice, v:

1.1. Crisp Nearest Prototype (1-NP) Inner Product
Classifier

Given prototypes V = {vkll < k < c} and z E ~P:

Decide z E i¢:~Due, v(z) = ei ¢~ IIz - villa ~< I1~ - ~Jlh:

1 < j < _ c , j # i . (6)

In eqn (6) A is any positive definite p x p weight
matrix, it renders the norm in eqn (6) an inner
product norm,

i l z - v, llA = ~ / (z - v,)TACz- v,).

Eqn (6) defines a hard classifier, even though its
parameters may come from a fuzzy or probabilistic
algorithm. It would be careless to call DNe, v a fuzzy
classifier, for example, just because fuzzy c-means
produced the prototypes. The crisp 1-NP design can
be implemented using prototypes from any algorithm

731

that produces them. For fuzzy c-means and
decomposition of normal mixtures, UMM and PMP
are, respectively, generated implicitly by the 1-NP
rule at eqn (6).

Our brief discussion of the 1-NP classifier here is
aimed primarily at clarifying the geometry of and role
for the prototypes generated by LVQ type algor-
ithms, and their relationship to the 1-NP rule at eqn
(6). However, it is worth noting that prototypes
generated by LVQ and its relatives (and any other
prototype generation method, for that matter) are
often used to define the classifier DNp, v.

The common denominator in all VQ schemes is a
mathematical definition of how well prototype vi
represents Xi. Any measure of similarity on ~P can be
used to define this match. The usual choice is distance
(dissimilarity), the most convenient is squared
distance, the most common is squared Euclidean
distance. Local (sequential) methods attempt to
optimize some function of the c squared distances
{llxk - v, II 2; 1 < i < c} at each xk in Xi. Global (batch)
methods usually seek extrema of some function of all
(cn) distances {[]Xk -- v, l12; 1 < i < c and 1 _< k _< n })

LVQ attempts to minimize an objective function
that places all of its emphasis on the winning
prototype for each data point. However, informa-
tion due to data point x is carried by all of the c
distances {llx- vrll}. Many authors have suggested
modifications to LVQ that update all c quantizers
during each updating epoch, thereby eliminating the
need to define an update neighborhood. We study
two models of this type: a fuzzy model called f u z z y
learning vector quantization (FLVQ) (Tsao, Bezdek &
Pal, 1992); and a deterministic learning algorithm
that uses learning rates that are partially based on
probabilities called the soft competition scheme (SCS)
(Yair, Zeger & Gersho, 1992).

Sections 2 and 3 describe the LVQ and SCS
models. Each section contains a specification of an
algorithm for optimizing its model. Section 4 exhibits
a relationship between SCS and statistical mixtures.
We show that SCS is related to a mixture of c
multivariate normal distributions with circular
covariance matrix structure. Section 5 discusses the
Hard and Fuzzy c-Means models, with particular
emphasis on their limiting behavior. Section 6
describes FLVQ, and analyzes it as a function of
one of its parameters. Section 7 contains a numerical
example that uses the IRIS data to compare certain
aspects of LVQ, SCS and FLVQ. We compare
limiting properties of SCS to LVQ in Section 8. We
also discuss the relationship of these generalizations
to the batch hard and fuzzy c-means models/

Do not confuse our use of the terms local and global methods
with the local and global extrema found by a particular method.

732 J. C. Bezdek and N. R. Pal

m ~ L m ~ c o m m i t t e e
t+'P~omm) [.aym"

x l Output
Layer

x 2
• l

Xp

FIGURE 3. The LVQ competitive learning network.

algorithms. Section 9 contains our conclusions and
some ideas for further research.

2. LEARNING VECTOR QUANTIZATION

The primary goal of LVQ is representation of many
points by fewer prototypes. Identification of clusters
is implicit, but not active, in LVQ's pursuit of this
goal. The salient features of the LVQ model are
contained in Figure 3. The input layer of an LVQ
network is connected directly to the output layer. The
circles in Figure 3 are nodes, and the prototypes are
node weights. 2 The prototypes V = (vl, v 2 , . . . , V c) ,
v I E ~ P for 1 < i < c , are the (unknown) vector
quantizers we seek.

When an input vector x is submitted to this
network, distances are computed between x and each
vk. The output nodes "compete ," a (minimum
distance) winner node, say vi, is found; and it is
then updated using one of several update rules. We
give a brief specification of LVQ. (There are many
other versions of LVQ; this one is usually regarded as
the standard form).

2.1. The (Unlabeled Data) LVQ Algorithm
(Kohonen, 1989).

Store. Unlabeled Object Data X = {x l ,
x . } c ~P

X2, • • • ,

Pick. ~" 1 < c < n mr a l E (0, 1) w- N = max.
iterations ~- e > 0

Guess. V0 = (vl,0, I;2,0 Vc, O) E I~ cp

Iterate. For t =1, 2 , . . . , N ;
For k =1, 2 , . . . , n :

2 The p c o m p o n e n t s {re} o f vi are of ten r ega rded as weights or
connec t ion s t rengths o f the edges t h a t connec t the p inpu t s to
node i.

F i n d l l x k - v i , t - I II = minl<j<c{l lx~ - vj, ,_l IlL

(7a)
Update the winner:

vi, t = v~.,-] + ut(xk - vi,,-l) (Tb)

Next k
Adjust learning rate a t ~-- a0(1 - t / N)

Next t
V ~ V N

Use. Prototypes V. For example, a crisp label matrix
for X can be generated by applying the I - N P
(nearest prototype) rule to the data:

1;
ULVQj = 0;

IIxk : v, II ~ Ilxk : vjtl, 1 <j<_ c , j~ i "[
otherwise f

l < k < n . (8)

The update scheme or learning rule in eqn (7b) has
a simple geometric interpretation. The winning
prototype vi, t-I is simply rotated towards the current
data point, and is constrained to move towards it
along the vector (Xk -- vi, ,-1) which connects it to Xk.
The amount of shift depends on the value of the
learning rate parameter a t C [0, 1]. There is no
update if a t = 0, and when at = 1, vi, t becomes xk.
The optional labeling phase generates ULVQ =
[ut.vQ~.,] at eqn (8), which is a c x n matrix whose
columns are in Nhc. ULVQ is almost always a hard c-
partition of X (constraint (2b) may not be satisfied).

Learning rule (7b) is obtained by assuming that
each x E ~P is distributed according to an unknown
time invariant probability density function F (x) .
LVQ's objective is to find a set of vi's such that the
expected value of the square of the discretization error

E(tlx-v'll)= f f f II x-v,llEF(x)dx (9)

is minimized. In this expression vi is the winning
prototype for each x, and will of course vary as x
ranges over ~P. A sample function of the optimiza-
tion problem is e =]Ix - vii] 2. An optimal set of vi's
can be approximated by applying local gradient
descent to the sample function for every data point
x from F (Kohonen, 1991). LVQ uses Euclidean
distance, which corresponds to the update rule shown
in eqn (7b), since Vv(Hx-vl] 2) - - - 2 (x - v) . The
origin of this rule, its geometry, and a discussion of
LVQ's relationship to sequential hard c-means
appears in Pal, Bezdek and Tsao 0993).

LVQ attempts to minimize an objective function
that places all o f its emphasis on the winning

Soft Relatives of Learning Vector Quantization 733

prototype for each data point. This is reflected in eqn
(7b), which alters only the winner for each x
submitted. This is reasonable, but it ignores global
information about the geometric structure of the data
that is represented in the remaining (c - 1) losing
distances from x to the other prototypes. In this sense
LVQ updating is somewhat like using the sup norm,

IIx - vllo~ -- mf.ax{Ixj - vii}.
/ = 1

to measure distance in ~P. The extreme value in the
absolute difference between pairs of coordinates
dominates all others, and ignores them. In the same
way, LVQ updating is a very harsh local strategy that
ignores global relationships between the winner and
the rest of the prototypes.

Using an inner product norm on ~P ameliorates
the harshness of the sup norm by counting
contributions from each pair of coordinate differ-
ences in the overall distance calculation. In the same
way, we think that other nodes in the LVQ network
should be allowed to influence the update of the
winner, and perhaps, be updated themselves. This
presents two questions. First, which other nodes
should be accounted for (what is the update
neighborhood)? Second, how much influence should
each non-winner node that is recognized exert (what
is the learning rate distribution)? Modifications of
LVQ are usually motivated by a desire to solve one or
both of these problems.

If the prototypes are to be useful quantizers, we
think that information about structure in the data that
is captured by the prototypes should be used as part of
the criterion that determines the best prototypes. For
LVQ and its relatives, information due to data point x
is carried by all of the c distances {llx - V r II }. Hence, it
seems reasonable to define good quantizers in terms of
a criterion that recognizes not only the local
importance of the winner prototype, but also the
importance of the other (c - 1) distances of non-
winner prototypes relative to the winner distance. We
circumvent the need to define an update neighborhood
by expanding the neighborhood to include all c nodes.
And we do it in the belief that vector quantizers based
on both local (winner) and global (non-winner)
information about the relationship of x to the
prototypes will be better representatives of the
overall structure in X than those based on local
information alone. FLVQ and SCS recognize the
winner as the most important prototype during the
update cycle, but also give recognition to structural
relationships between it and the other c - 1 nodes.
This answers the first question posed in the previous
paragraph. The second problem--how much should
each non-winner count?--is handled quite differently
by these two algorithms. First, we consider the
probabilistic scheme.

3. THE SOFT COMPETITION SCHEME

Yair, Zeger and Gersho (1992) recognized the
limitations of LVQ just itemized. They proposed
two vector quantization models, namely, a Stochastic
Relaxation Scheme (SRS) and a Sof t Competit ion
Scheme (SCS) to address these issues. Both algor-
ithms eliminate the need to define an update
neighborhood by extending the update to all c
nodes; and they use learning rates that are functions
of the c distances { l l x - v , l l} . In SRS each codevector
is updated probabilistically, where the probability of
updating a codevector is a function of its distance
from the training vector presented at that instant. We
will not consider SRS further in this note.

The other model given by Yair, Zeger and Gersho
(1992) is the deterministic SCS algorithm (the
algorithm is deterministic because its steps are not
stochastically controlled, but it does use probabilities
as part of the learning rates). In SCS all c prototypes
are simultaneously updated by a scheme which
directs them, like LVQ, towards the current training
vector. The step size of each update is scaled by the
probability of that prototype being the winner. At
time (iterate) t, the probability of the ith prototype
winning is defined as

e-~,llxt-¢,, ,_,112
(10) Pik, t =

k e-~,llx~-** ,-1 II 5

j=l

where

lira{fit} = oo.

The probability p/k, t is one factor in the SCS update
equation. The choice for /3t is further refined by
defining /~t = $t/C/To. Here To is regarded as an
initial "temperature," and -~ is a constant which Yair,
Zeger, & Gersho (1992) stipulate should be greater
than 1. The quantity (1//3t) is regarded as the
temperature, so as t ~ co, fit ~ co, and T ~ 0,
somewhat analogous to simulated annealing.

Next, let hi, t = ni, t-I +pik. t (approximately the
total number of times that vi has been updated, this
parameter is reset to 1 whenever iteration counter t is
a perfect square). Yair, Zeger, & Gersho (1992) use
this to define the other factor of their learning rates:

1
(ll)

The overall learning rate for SCS is then taken as the
product r/0,, t "pa,, t. This number replaces the LVQ
multiplier ott in eqn (7b), resulting in the SCS
codevector update equation

vi, t = vi,,-I + (r/m,, "pik, t)(Xk -- vi, t-l). (12)

734 J. C. Bezdek and N. R. Pal

SCS starts with a low value of /~t (i.e., with
approximately uniform {P/k, t}), and then/~t is slowly
increased with time. As a result, at the beginning of
the process no codevector is strongly attracted to a
particular class. With time codevectors become more
strongly separated f rom each other as p/k, t begins to
peak around the Euclidean winner, but at the same
time r//k, t ~ 0. Thus in the limit (as iterate t goes to
infinity) SCS behaves like the winner-take-all (LVQ)
competition.

We point out that the innermost loop (on c) in the
SCS algorithm below generates the c numbers {p/k, t},
which satisfy 0 < p/k, t < 1 and

c

E P ~ , t = 1.
i = l

Consequently, p t (xk) =- (Plk, t, p2k, t, . . . , Pck, t) T is a
probabilistic label vector for Xk, p t (xk) e N/c. Since
each

r//k,t = < 1,

the sum of the learning rates for fixed input vector Xk
at any iterate t satisfies the following constraint:

c

0 < E r l i k , t "Pik, t <~ 1.
i = l

We specify our implementation of SCS.

3.1. Soft Competition Scheme (Yair, Zeger & Gersho
(1992))

Store. Unlabeled Object Da ta X = { x l , x2, . . . ,

x~} c .~P

Pick . ~- 1 < c < n w ,~ > 1 m- N = max. iterations
m- To = initial temperature

Guess. V0 = (vl,0, v2,0 , vc,0) E ~cp

I terate. For t = 1 to N: /~, = ~/tlC/To

For k = 1 to n
For i = 1 to c

Pik, t = e -AIIxk '112/k e-'&llxk-vs"-1112
l j = l

I f (t = a perfect square) ni, t = 1

else hi, t = hi, t - 1 + P/k , t

l l~, , = (l/n;,,)

(10)

(11)

I~i,, = I~i,,--I q- (Oik, t " p t ~ , t) (x k - vi, t - l)

Next i
Next k

Next t
V ~ V ~

(12)

Use. Prototypes V. For example, a crisp label matrix
for X can be generated by applying the 1 - N P

(nearest prototype) rule to the data:

1;
Uscs l = 0;

Ilxk - viii S Ilxk - vi i i , 1 <j~ c , j# i

otherwise f

l < k < n .

4. T H E R E L A T I O N S H I P OF SCS T O N O R M A L
M I X T U R E S

There is a strong relationship between SCS and
statistical decision theory that is not discussed by Yair,
Zeger, & Gersho (1992). This section is devoted to
exposing the relationship between SCS learning rates
and mixtures of normal distributions. To begin,
assume that X is drawn from a mixed population of
c p-variate statistical distributions, say with random
vector variables {X/}, that have {Tri} as their pr ior
probabil i t ies and {g(xli)} as their class-conditional
probabi l i t y densi ty f unc t ions (PDFs). That is

7ri (13a)

prior probabil i ty of class i;

g(xli) (13b)

class conditional P D F of class i.
The convex combination of the class conditional

PDFs, viz.,

c

f (x) = E 7r'g(xli) (13c)
i = l

is itself a P D F whose distribution is called a mix ture

of the components {Trig(xli)}. Let the posteriori
probabi l i t y that, given x, x came from class i, be
denoted by 7r(ilx). Bayes rule relates the elements of
eqn (13) to the probabilities {~r(ilx)} as follows:

zr(ilx) = 7r~g(xli) (14)
f (x)

For a particular Xk, eqn (14) becomes, if all
populat ions are known,

Soft Relatives of Learning Vecwr Quantization 735

~r,g(xkli)
7r(ilxk) = f (xk)

For a sample of n points X = { X l , X 2 Xn}
assumed to be drawn from eqn (13c), independently
and identically distributed (iid) with PDFs as in eqn
(13), the c x nposterior matrix II = [Tr(ilxk)] = [Ir/k] of
posterior probabilities satisfies constraints (2). Con-
sequently, I I E nfcn, the space of constrained c-
partitions of X. 7r/k is a probability that plays much
the same role in statistical pattern recognition that
the fuzzy membership value u/k plays in fuzzy pattern
recognition.

In the general theory of mixtures, the component
probability density functions (PDFs) g(xli) can be
quite arbitrary (that is, continuous, discrete or both).
Predictably, the case that dominates applications is
when every component o f f (x) is multivariate normal.
In this case the P D F g(xli) of component i has the
familiar form

e-~llx-~ll2ET,

n(#,, ~,) = g(xli) - (2~r)~ dex/-d-~ ' (15a)

where

#~ = (mh #a , . . . , rap) r

is the population mean vector of class i; (15b)

and

-I
[lTi, ll tYi, 12 . . . O'i, lpl

~"~'~I:[cov(Xi)]-I:IO'i '21! O'i'22: ''. ai'~/i , (15C)

l¢~i, pl O'i, p2 . . . O'i ppd

is the (positive definite) population covariance matrix
of class i. tridk = cov(X#, X/k) is the population
covariance between variables j and k for class i. The
norm in (15a) is an inner product norm called the
Mahalanobis norm computed in the usual way with
the population parameters (]~i, ~']q), i.e., I I x - ~,112:
(x - i,~)rr~71 (x - i'~).

We make two simplifying assumptions about the
mixture of normals obtained by substituting eqn
(15a) into eqn (13c). For each class i, 1 < i < c, we
assume that

(i) 7ri = 1/c (16a)
(all classes are equally likely)

and

(ii) ~ = tr2I (16b)
(all classes have covariance which is a scalar
multiple of the identity).

F rom eqn (16b) ~]71 = 1 / o 2 I and ~ = tr
for every class, so the Mahalonobis norm becomes a
multiple of the Euclidean norm, I I x - ~ d l ~ , , =
1/o211x-l~dl 2. For this special case Bayes rule at
eqn (14) takes the form

7r(ilx) =
(1/c)e -(I/(2° ')11 x-t,, II 2) / ((27r)P/2cr)

e-(I/(2o2)llx-mll 2)
(17)

For a given Xk this becomes

7r(ilxk) = e -Ol(~2)llxk-mll~) e -(l/(~'2)ll~k-~Al~). (18)
/ j = l

Comparing eqn (10) with eqn (18), if we define
fit = 1/(2tr 2) and vi, t_ 1 : l~i for i = 1 to c, then p/k,t
and ~r(ilxk) are identical. Thus the component p/k, t of
the SCS learning rate used by Yair, Zeger, & Gersho,
(1992), can be interpreted as an estimate of the
posterior probability of Xk being from class i under
the assumptions in eqn (16). However, this choice for
f t does not ensure

1Lm{~, } = oo.

To achieve this t is used in the definition for f t , i.e.,
f t=('~ t /C/To) . Thus, at time t, if we take
o -2 = (To$-t/c/2), then p/k,t and ~r(ilxk) are identical,
and fit = (1/2t r2) ensures

h_'m{/~,} = ~ .

In summary, P/k, t can be interpreted as the posterior
probability that Xk is from class i when all classes are
equally likely, and class i is modeled as a p-variate
normal distribution with parameters (#i = vi,
~'~i :" (To'y-t/c/2)I).

5. HARD AND F U Z Z Y c-MEANS

The most widely used objective function model for
fuzzy clustering in X is the weighted within groups
sum of squared errors objective function Jm, which is
used to define the constrained optimization problem

Jm(u, v; x) =)--~(u~)'*llxk - v, ll~ (19)
(v , v) ~ k=t i=l

where U E Mfcn, V = (Vl, V2,.. . , Vc) is a vector of

736 J. C. Bezdek and N. R. Pal

(unknown) cluster centers (prototypes), vi E ,~P for
1 < i < c and IlxllA : ~ is any inner product
norm. Optimal partitions U* of X are taken from
pairs (U*, V*) that are local minimizers of Jm.
Approximate optimization of Jm by the Fuzzy c-

Means algorithm is based on iteration through the
following necessary conditions for its local extrema:

5.1. F u z z y c - M e a n s T h e o r e m (Bezdek, 1981)

If I l x k - villa > 0 for all i and k, then (U, V) E Mfc,×
~cp may minimize Jm only if, for m > 1,)l

"~* = Ilxk - v, ll,/llxk - villA) ~ vi, k; (20a)

and

E ()mXk ra vi = ut~ u~ Vi.
k = l [k=l

(20b)

Perhaps the most popular algorithm for approx-
imating solutions of eqn (19) is alternating optim&a-

tion (AO) iteration through eqn (20a) and eqn (20b),
commonly known as the FCM-AO algorithm
(Bezdek, 1981). The most problematical choice for
FCM-AO is the weighting exponent m, which can
take any value in (1, oo). Most users of FCM
experiment with this parameter, and find a value in
the range [1.1, 5] that yields a suitable interpretation
of substructure in the data. FLVQ as defined later
provides two things: a strong link from FCM to
LVQ, and a way for FCM users to find (roughly) a
suitable value for m without extensive trials and
errors.

Some limiting properties of equations (20) that are
important for this study are (Bezdek, 1981):

= { 1 ;

0;
Ilxk - v, ll, < IIx, - vJlhVj # i ~ Vi, k. (21a)
otherwise J

Using this result, we take the same limit in eqn (20b),
obtaining:

{(#)} limit vi = u~)mxk U~)m = x:X, Vi,

(21b)

where X = X1 u . . . Xi u . . . Xc is the hard c-partition
of X defined by the right side of eqn (21a) with

n

. ~ = . , = IX, I.
k = l

If we use these results in eqn (19), we have:

li~+~,t Jm(U, v : x) = ~-"~.(,,~,)"l lxk- ",11
\ (U , 10~. k= l i=1

= Jl(g, v: x) = ~_,u,~llx~- v, ll • (2 2)
(v, v) '. k =1 i=l

Jt (U, V; X) is the classical within-groups sum of
squared errors objective function. Eqn (22) is the hard

c-means (HCM) model. Moreover, the right sides of
eqn (21a) and eqn (21b) are the necessary conditions
for local extrema of J1. Observe that crisp member-
ship assignments in the right side of eqn (21a) use the
1-NP rule at eqn (6). HCM-AO clustering is iteration
through the right hand sides of eqn (21a) and eqn
(21b).

In a weak sense then, the HCM model (objective
function+ algorithm) is a bridge between LVQ and
FCM. However, HCM and FCM are batch
algorithms, whereas the sequential implementation
of LVQ given earlier is more like the sequential hard-
c means model (Pal, Bezdek, & Tsao, 1993). For the
present article, the most important points are that
each of these algorithms generates c prototypes, and
they are all driven by objective functions that involve
sums of squared errors. The main differences between
LVQ, SCS, HCM, FCM and FLVQ lies in the way
squared errors are weighted and the way prototypes
are updated.

To properly analyze the behavior of FLVQ we will
also need the limits of eqn (20) as m goes to infinity:

/ } l imi t Ilxk - <1~ IIx~ - ~jtl,

1
= - Vi, k;

C
(23a)

Ijmit{(Vi=~=l(Uik)mxk/~=l(Uik)m)}
k Xk
k=l
- - -- ~ Vi.

(23b)

where ~ = ~-~-xex x / n is the grand mean of X.

6. FUZZY LEARNING VECTOR
QUANTIZATION

In this section we review FLVQ and provide a new
analysis of its behavior as a function of m using the
limits shown in Section 5. The connection between

Soft Relatives of Learning Vector Quantization 737

FCM and LVQ was first discussed by Huntsberger &
Ajjimarangsee (1990) who suggested fuzzification of
LVQ by replacing the learning rates (a/k,t} usually
found in rules such as eqn (7b) with the fuzzy
membership values {u/k,t} computed with FCM
formula eqn (20a). While this approach was
innovative, it was to some extent unmotivated.
Moreover, their method still required choosing m,
and it seemed to improperly mix the objectives of
LVQ (vector quantization) and FCM (clustering).
This led to a revision of LVQ that was first called
F K C N (Tsao, Bezdek, & Pal, 1992) that has
subsequently become known as FLVQ.

As noted earlier, the choice of m for the FCM
model is very important. Eqn (21a) shows that when
m is small (close to 1), FCM-AO tends to produce
almost crisp label vectors. Each column of U from
FCM-AO must sum to 1. Because of this, if updates
are based on some function ofeqn (20a) and one u/k is
close to 1, the update for node i may be very large
compared to the other updates. If, additionally, the
current prototypes from FCM-AO have an unfavor-
able geometry compared to the central tendencies of
clusters in the data, some prototypes may move
rapidly towards a cluster, while others may move but
little. This effect is illustrated in Figure 4 for the data
set X = X 1 U X2.

In Figure 4, prototype vl is closer to every point in
X than 1,2 is. The result of this is that for any m at
c = 2, the class 1 memberships {ulk} of every point in
X computed with eqn (20a) will be higher than the
class 2 memberships {u2k}. Since Ulk + U2k = 1 for all
k, the two rows of membership matrices produced
with eqn (20a) for any m will look like this:

-.-(< 0.5) ----'

U(1) = - . - (- + 0).-- "

So, when m is close to 1, memberships of points in
both X1 and X2 in class 1 will be close to 1. The effect
of this is that prototype Vl in Figure 4 will migrate
towards the grand mean ~ of X, and v2 will not
change much.

On the other hand, if m is large (say > 7) all of the

x l
0 0 x2

o o @ © o o
° o o o o

o ° o o O O 0 O o

° o ° O o o o o o 0
o o o 0 o

o o o

v 2
vl 4 ,

F I G U R E 4 . A geometric situation where a low value of m may
produce bad prototypes.

U/k'S will be nearly 1/c as implied by eqn (23a). In this
case both prototypes in Figure 4 will be pulled
towards the data very slowly by FCM-AO. This will
happen because every (U/k, t) m ~, (1/cm). So when m is
large, every prototype will be updated to almost the
same very small extent (e.g., with c = 3 and m = 7,
every um/k,t ="~ 0.0004). This will also be the case for
any competitive learning scheme whose update rate is
a monotonic function of the {u/k. t}.

Thus, neither low nor high values of m seem
desirable. However, if we start with a high value of m,
and then slowly reduce it during iteration, this
undesirable situation is avoided. Motivated by this
behavior, we define:

= x k - v , , , l l A / l l x k - - vj,,IIA) ~ Vi, k, (24a)

and

, }/£ Vi, t=Vi, t_t+Eoaik, t(Xk--Vi, t_ l tou,, Vi, (24b)
k = l [s = l

where

m, = mo + t[(m/- mo)/T]

=too+tAm; m/, mo> I; t= I, 2,...N. (2,~)

Eqn (24b) can be rewritten as

/£ Vi, t = ~ OJik, t X k OJis, t .
k = l / s = l

Comparing this to eqn (20b), eqn (24c) asserts that
when m0 = mf = m is fixed, FLVQ is FCM-AO. The
learning rates in eqn (24a) were chosen so that this
would be true. Our competitive learning scheme
based on eqn (24) has three objectives: (i) to
overcome the two problems we identified for LVQ
(which nodes to update and how to use the non-
winner prototypes in the determination of learning
rates); (ii) to circumvent (to some extent) the problem
of how to choose m for FCM; and (iii) to provide a
substantial link between the c-means and LVQ
families.

Since mt in eqn (24c) is variable, we can have three
families of Fuzzy LVQ or FLVQ algorithms,
depending on the choice of the initial (m 0) and final
(m f) values o fm. For t E{1, 2 N},

738 J. C. Bezdek and N. R. Pa l

mo > m f =¢. {mr} J. m / : Descending FLVQ

=~ FLVQ (25a)

m o < m f =~ { m t} T m y : Ascending FLVQ

=T FLVQ (25b)

mo = m f :=> m t -= m o - m : FLVQ - FCM. (25c)

We have included TFLVQ here for completeness.
However, its properties as functions of m t seem
counter to the intuitively desirable properties shared
by SCS and IFLVQ. We do not recommend the use
of TFLVQ for this reason. Here we concentrate on
and describe the implementation of I F L V Q based on
eqn (24) which is used in the numerical examples of
Section 7.

6.1. The Descending Fuzzy LVQ (IFLVQ) Algorithm
(Tsao, Bezdek, & Pal, 1992)

S tore . Unlabeled Object Data X = {Xl, x2 ,
x~} c.~P

P i c k . ~," 1 < c < n am- l[11,4 ~" N = max. iterations w
¢ > O m ' 7 > m o > m f > 1.1

Guess . V0 = (vl,0, V2,0, • • • , Vc, o) ~- ,.~cp

I t e ra te . For t : - 1, 2 , . . . , N:
m, = rao + t [(mf - mo) /T] = mo + t A m

F o r k = 1 ton :
a. Wik, t = (Uik, t) m'

(
b.

c / -m#
~(llxk - vi,,-~llAItlxk - vj, t - l l lA) ~ Vi, k

j = l

) / ~ vi,, = vl, , - i + ~ , w ~ , t (x k -- ~i, , -I ~ ~ , ,
k=l s=l

c. I f E , = IIV, - Vt-lll,rr = ~ live,, - vi.t-lll
i=l

: ~ ~ [V/j, t -- Vtj, t-1 [< E stop; else
i=1 j=l

Next k
Next t
V ~ Vt; U~- Ul

Use. Prototypes V and/or U

As with LVQ and SCS, the prototypes produced
by ~FLVQ can be used with eqn (6) to produce a
crisp parti t ion of X, and also to define a 1 - N P

classifier. Our implementation of I F L V Q is neces-
sarily batch, and this preserves its relationship to
FCM-AO. Unlike LVQ and SCS, which are both
terminated by iterate limit N, F C M - A O and I F L V Q

are terminated when successive estimates for V
become close, as measured by II v, - v,_~ [[e,r"

Another difference worth noting is that unlike
LVQ and FCM-AO, I F L V Q does not optimize a
fixed objective function. All we can say about this is
that since I F L V Q uses eqn (20) at each iteration with
m = mr, every full step of ~FLVQ uses a pair (Ut , Vt)
that are necessary for a local extrema of Jm,. We
point out the constraints 7 > m 0 > r n f > 1.1 in our
specification of ~FLVQ. In our experience these are
useful limits for m that should prevent numerical
instability. In other words, stay away from 1 and
infinity.

The c numbers {Uik, t} satisfy 0 _< u~, t < 1 and

c

E u a , t = 1.
i=l

Consequently, the vector u t (x k) = (Ulk, t, u2k, t

Uck, t) T is a fuzzy label vector for Xk, Ut(Xk) C N/c. This
means that the sum of the .[FLVQ learning rates for
input vector xk at any iterate t satisfies the same
constraint as the SCS learning rates:

c
0 < E w i k , t < 1.

i=1

To understand how mt acts to control the
distribution and values of the learning rates {w~,, t}

in FLVQ, we discuss I F L V Q in more detail. The
general situation can be understood by examining the
learning rates at eqn (24a) for fixed c, {vi, t} and mt . In
this case,

(26)

where

c

,~ =)--~ (llllx~ - vj,,llA) ~/~m'-')
j = l

is a positive constant. F rom eqn (26) we see that the
contribution of xk to the next update of the node
weights is inversely proport ional to their distances
f rom it, so the winner for this k is the vi, t - l closest to Xk.
Larger values o f rot lead to fuzzier values of U/k, t (values
closer to 1/c), and ~uik, t = 1 =~ ~ , t < 1. So, in the
initial stages of J.FLVQ large values of mt (near m0)
yield updates with lower individual learning rates.

In the initial stages of SCS (for low values of t)
p a , t ~ 1 / c , and since the c o u n t e r s {ni, t} all start at 1,
at the beginning of the SCS learning process each
codevector is (more or less) updated to the same

Soft Relatives of Learning Vector Quantization 739

extent. In other words (7/i, t" pa~, t) --~ (~/j, t" Pjk, t) for
all i and j at low values of t. What happens for
IFLVQ? In this case we start with a high value of
m = m0. For high values of m, Uik, t ~" 1/cVi, and as a
result oJ~k,t = (llik, t) mt "~ 03jk, t = (Ujk, t) I t for all i a n d j
at low values of t. Thus, in IFLVQ all c prototypes
will have about the same importance at the beginning
of iteration, with learning rates at each Xk that are
roughly uniformly distributed across the c nodes
during updates. Thus, J, FLVQ and SCS start with
very similar configurations.

As iteration continues P/k, t for SCS and u/k, t for
~FLVQ both tend to peak at the Euclidean winner.
For SCS, p/k, t --~ 1 when node i is the winner, but
~//k,t--~0 SO the overall SCS learning rate
~lik, t "Pik, t--+ O. On the other hand, for ~FLVQ
Uik, t--+ 1 when node i is the winner but since
mt--~ 1, the overall learning rate for this method
also goes to 1, W/k, t = U'~', t --* 1. As mt "x, m f (mr gets
closer to 1), more and more of the update is given to
the winner node. In other words, the lateral
distribution of learning rates is a function of t,
which in ~FLVQ sharpens at the winner node (for
each xk) as mt "x~ mf. Indeed, the learning rate
characteristics of ~FLVQ are roughly opposite to
the usual behavior imposed on them by other
competitive learning schemes. In LVQ and SCS all
c learning rates at Xk decrease towards 0 as t
increases, but in ~FLVQ, the winner learning rate
tends to increase towards 1 during learning, while the
other c-1 rates tend towards zero at each xt. Thus,
SCS behaves much more like LVQ as iteration
proceeds than ~FLVQ does.

7. NUMERICAL EXAMPLES

In this section we illustrate and compare LVQ, SCS
and FLVQ by calculating centroids obtained by
applying these three algorithms to Anderson's IRIS
data (Anderson, 1935). IRIS contains 50 (physically
labeled) vectors in ~4 for each of c = 3 classes of IRIS
subspecies. IRIS has been used in many papers to
iUustrate various clustering (unsupervised) and
classifier (supervised) designs. One way we can assess
relative performance is to compare the numerical
values of terminal centroids to the physically labeled
subsample means.

A second way to validate prototype generating

algorithms with this data is to find three terminal
prototpyes for IRIS, relabel them if necessary so
that the algorithmic labels correspond to the
physical class labels, and then use them as a basis
for the 1-NP classifier at eqn (6). Submitting all
150 points in IRIS to D~re, v and counting the
mistakes results in an estimate of DNe, v'S error rate
for that V. This is called the resubstitution error
rate. We know this error rate is a little optimistic,
but it is fine for comparisons of competing designs•
Typical resubstitution error rates for IRIS with
supervised designs are 0-5 mistakes; and for
unsupervised designs such as the three discussed
here, around 16 mistakes.

We used the two initializations shown in Table 1.
The vectors shown as initialization Ii are the sample
means of the physically labeled points in the three 50
point subsets of IRIS. The second initialization, 12 in
Table 1, is computed using the following method. For
data set X = {x l , . . . ,x,} C ~¢P, let data point k and

• . . ,) T initial prototype i be Xk = (Xkl, Xk2, Xkp and
• . . ,) T vi (vii , vi2, vie respectively. Compute the

feature ranges

Minimum of featurej :

mj = m ~ l x k j } : j = 1, 2 ,p;
k

(27a)

Maximum of featurej :

Mj=,_,~_,{xkj}: j = 1,2.
k

(27b)

With these, compute the j t h component of the ith
initial prototype as:

v# = m j + (i - 1) (Mj [~ m j ~
\ c - I) ;

i = l , 2, . . . ,c;j----l , 2 , . . . ,c . (28)

Formula (28) disperses initial prototype values
uniformly along each feature range [m j, My]. For
example, vl = m = ~ m h m2 mp) r, vc = M =
(MI , ME A lp) ' , and so on.

None of the algorithms studied here use class
information (that is, are supervised) during learning
(i.e., while finding the prototypes). The confusion

TABLE 1
Two Initializations for the Numerical Experiments

Initial Centro ids I1 - - (Means) Initial Centro ids 12

5.006 3.428 1.462 0.246 * - - Vl, 0 ~ 4.300 2.000 1.000 0.100
5.936 2.770 4.260 1.326 *-- V2,0 ~ 6.100 3.200 3.950 1.300
6.588 2.974 5.552 2.026 *-- V3, 0 ---~ 7.900 4.400 6.900 2.500

740 J. C. Bezdek and N. R. Pal

TABLE 2
Centrolds and Outputs of Sample Mean, LVQ, SCS and ~FLVQ I -NP Classifiers on the IRIS data when InlUallzed with I,

Initial Centroids/1 Final Centroids I1 Confusion Matrix

5.006
5.936
6.588

3.428 1.462 0.246 5.006 3.428 1.462 0.246 50 0 0
2.770 4.260 1.326 5.936 2.770 4.260 1.326 0 46 4
2.974 5.552 2.026 6.588 2.974 5.552 2.026 0 7 43

Final Centroids: LVQ
N = 50, so = 0.6 Confusion Matrix

Init. Same as Above

Init. Same as Above

Init. Same as Above

4.999 3.420 1.463 0.248 50 0 0
5.873 2.746 4.366 1.414 0 47 3
6.813 3.079 5.682 2.063 0 13 37

Final Centroids: SCS
N = 50, ~, = 1.3, To = 40 Confusion Martrix

5.006 3.425 1.465 0.247 50 0 0
5.884 2.743 4.370 1.414 0 47 3
6.776 3.047 5.634 2.031 0 13 37

Final Centroids: ~FLVQ
N = 50, m o = 5, mr = 1.5 Confusion Matrix

5.006 3.420 1.474 0.252 50 0 0
5.884 2.748 4.371 1.411 0 47 3
6.821 3.064 5.697 2.063 0 14 36

TABLE 3
Cen~olds and Outputsofthe SCS 1-NP Classlfieronthe IRIS Data

Set Init. ~ = 1.30, To= 40 Confusion Matrix

5.006 3.425 1.465 0.247 50 0 0
A ~ 5.884 2.743 4.370 1.414 0 47 3

6.776 3.047 5.634 2.031 0 13 37

= 1.15, To= 40 Confusion Matrix

B /1
5.843 3.057 3.758 1.199 50 0 0
5.843 3.057 3.758 1.199 50 0 0
5.843 3.057 3.758 1.199 50 0 0

= 1.30, To= 40 Confusion Matrix

C
5.006 3.425 1.465 0.247 50 0 0
5.884 2.743 4.370 1.414 0 47 3
6.776 3.047 5.634 2.031 0 13 37

= 1.15, T o = 40 Confusion Matrix

5.843 3.057 3.758 1.199 50 0 0
5.843 3.057 3.758 1.199 50 0 0
5.843 3.057 3.758 1.199 50 0 0

= 1.30, To= 60 Confusion Matrix

/2
5.008 3.378 1.548 0.284 50 0 0
6.272 2.884 4.945 1.690 3 0 47
6.292 2.884 4.945 1.690 0 0 50

= 1.30, To= 70 Confusion Matrix

/2
5.843 3.057 3.758 1.199 50 0 0
5.843 3.057 3.758 1.199 50 0 0
5.843 3.057 3.758 1.199 50 0 0

Soft Relatives of Learning Vector Quantization 741

matrices listed in Tables 2 and 3 are found by
applying the nearest prototype classifier based on the
final prototoypes from a particular algorithm to each
of the 150 points in IRIS. The /j-th entry of the
confusion matrix records the number of times real
physical label i was instead given label j by the
algorithm.

Table 2 reports the results of nearest prototype
classification of IRIS by using the centroids
recommended by LVQ, SCS and FLVQ in 1-NP
rule 6. The first set of rows shows the confusion matrix
associated with D~e, v when Vnnal = V + 0 = II, the
physical subsample means. If we know the labels, the
sample means yield a classifier that commits 11 errors;
4 class 2 points are labeled class 3; and 7 class 3 points
are labeled class 2. All three algorithms produce very
similar centroids. The confusion matrices for the LVQ
and SCS based 1-NP designs are identical, showing 16
resubstitution errors. FLVQ is very nearly the same,
committing one more error than LVQ and SCS on a
class 3 data point.

It is shown elsewhere that LVQ can terminate at
very bad centroids when initialized with vectors
outside the convex hull o f the IRIS data (Pal,
Bezdek, & Tsao, 1993). To test stability of the
results in Table 2 to V0, the initialization of the
prototypes, we made another set of runs with the
same algorithmic parameters as shown in Table 2, but
with the initialization 12 shown in Table 1. The
centroids produced by all three algorithms were
identical (to three decimal places) to those shown in
Table 2. This does not establsh that these algorithms
are insensitive to initialization, but it gives us some
confidence that the IRIS data are rather well
structured. Thus, there are combinations of initializa-
tions and algorithmic parameters for all three
algorithms that produce very similar and predictable
results.

Our implementation o f SCS found it very sensitive
to the choice of and interaction between -~ and To.
Yair, Zeger, & Gersho (1992, p. 303) state that "I t is
important that the initial temperature not be chosen
too large, for in such a case the codevectors may tend
to merge together, yielding a poor codebook."
Elsewhere, however Yair, Zeger, & Gersho (1992,
p. 302), state that "The algorithm starts with a low
value o f / 3 [our 13t] , for which Pn(i) [our pik, t] is
approximately uniform. That is, for low values of
(high temperatures) the codevectors are not yet
attracted to a certain partition, and they all migrate
towards the data presented." These two statements
suggest that there is a range over which To yields
good results.

Table 3 studies the effect on SCS outputs to the
parameters -~ and To. All runs reported in this table
used N = 50; rows A are repeated from Table 2. First
compare A, B, C and D, all o f which have To = 40.

Changing -~ from 1.30 to 1.15 using either h o r / 2 has
the dramatic result of forcing all three SCS centroids
to terminate at p=(5.843, 3.057, 3.758, 1.199) r , the
grand mean of IRIS. This has the predictably bad
effect on the 1-NP design of it committing 100
mistakes in both cases.

Next, compare sets C and F in Table 3 to see that
it is not just a change of-~ that has this effect on SCS,
for in this case you will see that the same result occurs
with -~ fixed at 1.30 but To increased from 40 to 70.
Finally, look at sets C, E and F for 12 and -~ = 1.30
fixed. Intermediate between the good result at To = 40
and the worst result at To = 70 is the case To = 60, for
which SCS terminates with a good estimate of the
first centroid, but identical vectors for the second and
third prototypes, resulting in a 1-NP error rate of 50
mistakes. Table 3, and many other experiments with
other values for "~ and To not reported here, suggest
that SCS is very sensitive to good choices for these
two parameters.

8. ON THE RELATIONSHIP BETWEEN
c-MEANS AND C O M P E T I T I V E

LEARNING SCHEMES

In eqn (19) and eqn (20) the weighting exponent m for
Jm is fixed, but in eqn (24) it is a variable. Since m is
replaced by a parameter whose value depends on the
number of iterations that have elapsed, mt plays a
role that is somewhat analogous to a~, t in LVQ. To
see this, remember that

c

E U / k , t = l

i = 1

for each Xk in X. In consequence, the learning rates in
eqn (24a) that are applied to all c nodes via eqn (24b)
for each xk are dependent on each other, and
themselves must satisfy the condition

c

Eco~,t _< I.
i=l

The effect of controlling the learning rates this way is
best understood by considering a simple example.
Suppose c = 5 and mt - - - - 4 at some iterate. Two label
vectors for xk for the five nodes, and the resultant
learning rate distributions they induce via eqn (24a)
are shown below:

u(xk) = =~ w(x/) = for any rnt; (29a)

742 J. C. Bezdek and N. R. Pal

and

, i (~ ,O =

0.1]

0.6

0.0 :~ d~(Xk)

0.2

0.1

0.0001

/0.1296/
=/ooooo/ m,

/O001 !
\ 0.0001]

= 4 is illustrated). (29b)

In eqn (29a) node 2 is the crisp winner since it
receives all of the membership of this data point in
any of the five clusters. From eqn (24a) it follows that
for any value of mt the learning rates applied to this
data point will also be crisp, and will be the same as
the labels used to compute them, as shown in eqn
(29a). Thus, when a single node can win all of the
membership, none of the non-winner nodes are
allowed to influence the update in eqn (24b) for that
data point. In this special case, FLVQ reverts to an
LVQ-like strategy, but only for data points that have
crisp memberships.

On the other hand, if the distribution of member-
ships for Xk is truly fuzzy, as in eqn (29b),
exponentiation of the membership values by mt has
a noticeable effect on the role played by each node in
the update scheme. The winner node in eqn (29b) in
the sense of maximum membership (which is, as
previously noted, also the minimum distance proto-
type) is still node 2. But in this second case, non-
winner nodes with non--zero memberships will also
participate in the determination of how much to
change their corresponding weight vectors for that
data point. Finally, if mo = m f then clearly
FCM = FLVQ.

If all n membership columns in U from the FCM
formula (20a) were crisp, eqn (24b) would become a
batch version, LVQ-style update, with

vi., = vi.,-, + ~ (Xk - v,.t-i)ln,.,,
xk ~ X~

where hi, t is the number of points in the i th crisp
cluster of X at iterate t. The previous estimate for
vi, t-l can be eliminated from this last equation by
distributing the sum over the minus sign, leaving the
HCM update formula on the right side of eqn (21b).
Suppose eqn (7b) in LVQ is replaced with this batch
update formula, and calculation of ULVQ as in eqn (8)
is required at each pass (remember that LVQ does
not do so) through the data. Call this extended batch

LVQ (EBLVQ). Then FLVQ reduces to EBLVQ
whenever U is crisp, and further, EBLVQ is precisely
HCM. In this sense FLVQ is a true generalization of
both LVQ and HCM that integrates their models in
perhaps the strongest possible way.

9. CONCLUSIONS

We think that structural information due to data
point x is carried by all of the c distances {[Ix - Vrl]}-
We have discussed two soft relatives of LVQ that
define good prototypes in terms of criteria that
recognize not only the local importance of the
winner (minimum distance) prototype, but also the
global importance of the other (c - 1) distances of
non-winner prototypes relative to the winner dis-
tance. We believe that vector quantizers based on
both local (winner) and global (non-winner) informa-
tion about the relationship of x to the prototypes will
be better representatives of the overall structure in X
than those based on local information alone.

SCS and IFLVQ both recognize the winner as the
most important prototype during the update cycle,
but also give recognition to structural relationships
between it and the other c-1 nodes. Both of these
algorithms expand the update neighborhood to
include all c nodes; and both allow all c prototypes
to participate in setting the amount by which each
node gets updated at every pass through the data.

In IFLVQ and SCS, adjustments to each
prototype are made inversely proportional to its
distance from x. In both schemes the largest share of
each update is accorded to the winner, and
proportionately smaller shares are given to each of
the other c-1 non-winner nodes. One of the most
intriguing properties of SFLVQ is that it provides a
means for circumventing the question of how to
choose the weighting exponent m in FCM-AO.

We have shown that the learning rates for SCS are
related to estimates for the posterior probabilities of a
certain mixture of normal distributions. Further, we
showed that FLVQ and Fuzzy c-Means are equiva-
lent in one special case, and as a subease of this, that
FLVQ reduces to Hard c-Means when the partition
generated is crisp.

In practice, our experience is that IFLVQ is
much more stable to changes in its parameters than
SCS. The complexity of these two algorithms
makes it hard to offer more than a conjecture about
this; here is ours. First, batch algorithms seem
inherently more stable to small changes in algorith-
mic parameters than sequential ones, simply be-
cause the effect of changes is spread across all n
data points before it is felt. And secondly, the
control strategy of SCS may cause some instability.
We draw attention to the line in the SCS algorithm
that resets the counter hi. t to 1 at every t a perfect

Soft Relatives o f Learning Vector Quantization 743

square. The effect of this is to modulate the
learning rates so that the distribution of ~Ta~, t" P~, t
looks like a sawtooth wave bounded by 1 from
above and 0 from below. The reset occurs at the
iterate numbers 1, 4, 9, 16, 25 fl so the
width between pulses is successively longer. For
large enough t, the factor rl/k,t = 1/ni, t tends
towards zero, and in the limit will go to zero.
Nonetheless, the behavior of ~?~,t "pa~, for finite
iterate limit N is quite different than the usual
Kohonen learning rate, i.eo, at=C~o(1-t/N),
which goes to zero smoothly with t. Our examples
only ran SCS for N = 50 sweeps through IRIS.
Consequently, the learning rates were reset 7 times.
It might be that longer learning times would
eradicate this, but we doubt it. Once SCS settled at
the grand mean of IRIS in our examples, it stayed
there. This behavior is an interesting facet of SCS
that might be profitably pursued in a future
investigation.

REFERENCES

Anderson, E. (1935). The IRISes of the Gaspe peninsula. Bulletin
American IRIS Society, 39, pp. 2-15.

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective
function algorithms. New York: Plenum.

Duda, R., & Hart, P. (1973). Pattern classification and scene
analysis. New York: Wiley.

Gersho, A., & Gray, R. (1992). Vector quantization and signal
compression. Boston: Kluwer.

Hartigan, J. (1975). Clustering algorithms. New York: Wiley.
Haykin, S. (1994). Neural networks: A comprehensive foundation.

New York: Macmillan.
Huntsberger, T., & Ajjimarangsee, P. (1990). Parallel Self-

Organizing Feature Maps for Unsupervised Pattern Recogni-
tion, International Journal of General Systems, 16, p. 357.

Jain, A., & Dubes, R. (1988). Algorithms that cluster data,
Englewood Cliffs: Prentice Hall.

Kohonen, T. (1989). Self-organization and a~sociative memory (3rd
ed.), Berlin: Springer Verlag.

K o h o n e n , T. (1991). SeW-organizing maps: optimization ap-
proach. In T. Kohonen, K. Makisara, O. Simula, and J.
Kangas (Eds.), Artificial neural networks, New York: Elsevier
(pp. 981-990).

Krishnapuram, R., & Keller, J. (1993). A Possibilistic Approach to
Clustering. IEEE Trans. Fuzzy Systems, 1(2), 98-110.

Pal, N. R., Bezdek, J. C., & Tsao, E. (1993). Generalized Clustering
Networks and Kohonen's SeW-Organizing Scheme. IEEE
Trans. Neural Networks, 4(4), 549-558.

Titterington, D., Smith, A., & Makov, U. (1985). Statistical
analysis of finite mixture distributions. New York: Wiley.

Tsao, E. C. K., Bezdek, J. C., & Pal, N. R. (1992). Fuzzy Kohonen
Clustering Networks. Pattern Recognition, 27(5), 1994, 757-
764.

Yair, E., Zeger, K., & Gersho, A. (1992). Competitive learning and
soft competition for vector quantizer design, IEEE Trans. SP,
40(2), 294-309.

