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Abstract--Learning vector quantization often requires extensive experimentation with the learning rate distribution 
and update neighborhood used during iteration towards good prototypes. A single winner prototype controls the 
updates. This paper discusses two soft relatives of L VQ: the soft competition scheme (SCS) of ]'air et aL and fuzzy 
LVQ=FLVQ. These algorithms both extend the update neighborhood to all nodes in the network. SCS is a 
sequential, deterministic method with learning rates that are partially based on posterior probabilities. FLVQ is a 
batch algorithm whose learning rates are derived from fuzzy memberships. We show that SCS learning rates can be 
interpreted in terms of statistical decision theory, and derive several relationships between SCS and FL VQ. Limit 
analysis shows that the learning rates of these two algorithms have opposite tendencies. Numerical examples 
illustrate the difficulty of choosing good algorithmic parameters for SCS. Finally, we elaborate the relationship 
between FLVQ, Fuzzy c-Means, Hard c-Means, a batch version of LVQ and SCS. 

Keywords--c-Means Clustering, Fuzzy Clustering, Fuzzy LVQ, Learning Vector Quantization,  Soft Competi t ion 
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1. I N T R O D U C T I O N  

Numerical clustering algorithms organize a set of 
u n l a b e l e d  f e a t u r e  vectors X = { X l ,  x 2  . . . . .  xn} C ~P 
into clusters or natural groups (Hartigan, 1975; Duda 
& Hart, 1973; Jain & Dubes, 1988). To characterize 
solution spaces for clustering and classifier design, let 
c denote the number of  clusters, 1 < c < n, and set: 

N~ ={y ~ atqy, ~ [0, 1]Vi, Yi > 03i} (la) 

possibilistic labels; 

Nfc = y E  N~[ E y ,  = 1 ( lb)  
i=l 

fuzzy /probabilistic labels; 

N~ ={y ~ NsclY, ~ {0, 1}Vi} (lc) 

crisp labels. 

Figure 1 depicts these sets for c = 3 classes. Nhc is the 
canonical (unit vector) basis of Euclidean c-space; 
Nfc, a subse t  o f  a h y p e r p l a n e ,  is i ts  c o n v e x  hul l ;  a n d  
Npc is t he  u n i t  h y p e r c u b e  in  ~ c  m i n u s  the  o r ig in ,  
Npc = [0, 1] c - {0}. These  three  sets a re  label vectors; 
each  p o i n t  i n  t h e m  p rov ides  a set o f  class labels  for  
e i ther  a real  ob jec t ,  o r  a n u m e r i c a l  c h a r a c t e r i z a t i o n  
( x / E  ~ P )  o f  it. T h e  i th ver tex  o f  Nh~, 

e i = ( O , O , . . . ,  1 , . . . , 0 )  r, 
i 

is the crisp label for class i, 1 < i < c. 
It is important to see that fuzzy and probabil- 

istic labels lie in the same set. The vector 
y =  (0.1, 0.6, 0.3) r in Nfc is a constrained label 
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FIGURE 1. Hard, fuzzy, probabillstlc and posslblllstic label 
vectors (for c = 3 classes). 
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vector; its entries lie between 0 and 1, and are 
constrained to sum to 1. If  y is generated by, 
say, the fuzzy c-means clustering method (Bezdek, 
1981), we call it a fuzzy label for some Xk, and 
interpret its values as the membership of  Xk in each 
of the classes represented by the rows of y. Thus, 
0.6 is the membership of Xk in class 2. If  y came 
from a method such as maximum likelihood 
estimation in mixture decomposition (Titterington, 
Smith & Makov, 1985), it would be a probabilistic 
label, and 0.6 would be the (posterior) probability 
p(21Xk ) that, given Xk, it came from class 2. 

Npc is called possibilistic label vector space. Vectors 
in it such as z=(0.7,  0.2, 0.7) r have each entry 
between 0 and 1, but the components of  z do not 
necessarily sum to 1. z might be generated as the label 
for some Xk by, for example, the possibilistic c-means 
clustering model (Krishnapuram & Keller, 1993), or 
by a feed-forward neural (classifier) network that has 
unipolar sigmoidal transfer functions at each of c 
output nodes (Haykin, 1994). In this case zi can be 
regarded as the possibility that Xk belongs to class i. 

Clustering in unlabeled data X is the assignment of 
(hard, fuzzy, probabilistic, or possibilistic) label 
vectors to the points in X, and hence, to the objects 
generating X. If  the labels are hard, we hope they 
identify c natural subgroups in X. Clustering is also 
called unsupervised learning, the word learning 
referring here to learning the correct labels (and 
possibly vector prototypes or quantizers) for good 
subgroups in the data. c-partitions of X are sets of 
(cn) values (u/k} satisfying some or all of the 
following conditions. Let U(k) be the k-th column of 
U: 

Uk E Npc Vk; (2a) 

0 < ~ u~ < n Vi; (2b) 
k = l  

c 

E u~ = 1 Vk. (2c) 
i = 1  

Using eqns (2) with the values {u/k} arrayed as a 
(c x n) matrix U = [u/k], we define: 

Mpc, = { U c ~C"l U satisfies (2a) and (2b) }; (3a) 

Mfc, = { U E M~,IV satisfies (2c); (3b) 

Mhcn = {U E Mfc, luu, = 0or IViandk}. (3c) 

Eqns (3a)-(3c) define, respectively, the sets of 
possibilistic, fuzzy/probabilistic, and crisp c-parti- 
tions of X. Each column of Uin Mpcn(Mfc~, Mhcn) is a 
label vector from Np~(N#, Nhc). The reason these 
matrices are called partitions for all cases except the 
probabilistic context follows from the interpretation 
of  column k as the membership of Xk in the i subsets 

of X defined by the rows of  U. If  U is probabilistic, its 
rows define the posterior probabilities of each Xk in 
sample X of being from one of c probability 
distributions. We indicate the statistical context by 
replacing U = [U/k] with P : [p/k] : [P(ilxk)]. Observe 
that Mh~, C Mfcn C Mpcn. 

A classifier is any function D: ~P~Np~. The value 
y = D(z) is the label vector for z in ~P. D is a crisp 
classifier if D[~P] = Nh~. Since definite class assign- 
ments are usually the ultimate goal of classification 
and clustering, outputs of  algorithms that produce 
label vectors in Npc or N# are commonly transformed 
into crisp labels. Most often, non-crisp labels are 
converted to crisp ones using the function H: 
NpcH Nhc, 

H(y) = e i  ¢ *  Ily - e, II < IlY - ejll ~ y, _ yj; j ¢ i. (4) 

In eqn (4) II * II is the Euclidean norm on ~c. If  
y = D(z), H simply finds the crisp label vector ei in 
Nhc closest to y. Alternatively, H finds the maximum 
coordinate of y, and assigns this crisp label to z. The 
rationale for using H depends on the algorithm that 
produces label vector y. For  example, the justification 
for using eqn (4) for outputs from the k-nearest 
neighbor rule is simple majority voting. I f y  is gotten 
from mixture decomposition, using H is Bayes rule- 
label z by its class of  maximum posterior probability. 
And if the labels are fuzzy, this step is called 
defuzzification of U by the maximum membership 
rule. We give these procedures a common name; we 
will call the use of H hardening. 

Clustering algorithms produce partitions, which 
are sets of label vectors. For  fuzzy partitions, the 
usual method of defuzzification is the application of 
eqn (4) to each column U(k) of U. The crisp maximum 
membership partition UM~t in Mhcn corresponding to 
any U E Mp~n has as its kth column, 1 < k < n: 

UMM, (k) = H(U(k)) = ei ¢¢" u~ > ujk 

j = l ,  2 , . . . ,c ,  j ¢ i .  (5) 

The conversion of a probabilistic partition 
P = [p/k] E Mfc  n by Bayes rule (decide Xk E class i if 
and only ifp(ilXk) > P(jlXk) f o r j  ~ i) also results in 
a crisp partition, PMP, which is entirely analogous to 
the maximum membership partition produced by eqn 
(5). If  there are ties in eqn (5), they are resolved 
arbitrarily as long as the appropriate constraint is 
preserved. 

We discuss three algorithms that generate proto- 
types from unlabeled data. Prototype representation 
(or vector quantization) is based on the idea 
illustrated in Figure 2. The vector vi is taken as a 
prototypical representation for all the vectors in the 
hard cluster Xi C X. There are many synonyms for 
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Xl 

FIGURE 2. Representation of many vectors by one prototype. 

the word prototype: for example, vector quantizer, 
signature, template, codevector, paradigm, centroid, 
exemplar. In the context of clustering vi is often called 
the cluster center of hard cluster Xi C X.  

Many families of algorithms are prototype 
generators. There are, roughly speaking, four 
approaches: (i) pattern recognition models such as 
the leader algorithm (Hartigan, 1975), sequential 
hard c-means (Duda & Hart, 1973), and batch hard, 
fuzzy (Bezdek, 1981) and possibilistic (Krishnapuram 
& Keller, 1993) c-means: (ii) statistical models such as 
mixture decomposition (Titterington, Smith & 
Makov, 1985); (iii) network models such as Koho- 
nen's self-organizing feature maps and its many 
generalizations (Kohonen, 1989; Pal, Bezdek & 
Tsao, 1993); and (iv) vector quantizer approaches 
such as the generalized Lloyd algorithm (Gersho & 
Gray, 1992). 

Once prototypes are found (and possibly relabeled 
if the data have physical labels), they can be used to 
define a hard nearest prototype (1-NP) classifier, say 
Dice, v: 

1.1. Crisp Nearest Prototype (1-NP) Inner Product 
Classifier 

Given prototypes V =  {vkll < k < c} and z E ~P: 

Decide z E i¢:~Due, v(z) = ei ¢~ IIz - villa ~< I1~ - ~Jlh: 

1 < j < _ c , j # i .  (6) 

In eqn (6) A is any positive definite p x p weight 
matrix, it renders the norm in eqn (6) an inner 
product norm, 

i l z -  v, llA = ~ / ( z -  v,)TACz- v,). 

Eqn (6) defines a hard classifier, even though its 
parameters may come from a fuzzy or probabilistic 
algorithm. It would be careless to call DNe, v a fuzzy  
classifier, for example, just because fuzzy c-means 
produced the prototypes. The crisp 1-NP design can 
be implemented using prototypes from any algorithm 
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that produces them. For fuzzy c-means and 
decomposition of normal mixtures, UMM and PMP 
are, respectively, generated implicitly by the 1-NP 
rule at eqn (6). 

Our brief discussion of the 1-NP classifier here is 
aimed primarily at clarifying the geometry of and role 
for the prototypes generated by LVQ type algor- 
ithms, and their relationship to the 1-NP rule at eqn 
(6). However, it is worth noting that prototypes 
generated by LVQ and its relatives (and any other 
prototype generation method, for that matter) are 
often used to define the classifier DNp, v. 

The common denominator in all VQ schemes is a 
mathematical definition of how well prototype vi 
represents Xi. Any measure of similarity on ~P can be 
used to define this match. The usual choice is distance 
(dissimilarity), the most convenient is squared 
distance, the most common is squared Euclidean 
distance. Local (sequential) methods attempt to 
optimize some function of the c squared distances 
{llxk - v, II 2; 1 < i < c} at each xk in Xi. Global (batch) 
methods usually seek extrema of some function of all 
(cn) distances {[]Xk -- v, l12; 1 < i < c and 1 _< k _< n } )  

LVQ attempts to minimize an objective function 
that places all of its emphasis on the winning 
prototype for each data point. However, informa- 
tion due to data point x is carried by all of the c 
distances {llx- vrll}. Many authors have suggested 
modifications to LVQ that update all c quantizers 
during each updating epoch, thereby eliminating the 
need to define an update neighborhood. We study 
two models of this type: a fuzzy model called f u z z y  
learning vector quantization (FLVQ) (Tsao, Bezdek & 
Pal, 1992); and a deterministic learning algorithm 
that uses learning rates that are partially based on 
probabilities called the soft  competition scheme (SCS) 
(Yair, Zeger & Gersho, 1992). 

Sections 2 and 3 describe the LVQ and SCS 
models. Each section contains a specification of an 
algorithm for optimizing its model. Section 4 exhibits 
a relationship between SCS and statistical mixtures. 
We show that SCS is related to a mixture of c 
multivariate normal distributions with circular 
covariance matrix structure. Section 5 discusses the 
Hard and Fuzzy c-Means models, with particular 
emphasis on their limiting behavior. Section 6 
describes FLVQ, and analyzes it as a function of 
one of its parameters. Section 7 contains a numerical 
example that uses the IRIS data to compare certain 
aspects of LVQ, SCS and FLVQ. We compare 
limiting properties of SCS to LVQ in Section 8. We 
also discuss the relationship of these generalizations 
to the batch hard and fuzzy c-means models/ 

Do not confuse our use of the terms local and global methods 
with the local and global extrema found by a particular method. 



732 J. C. Bezdek and N. R. Pal 

m ~  L m ~  c o m m i t t e e  
t+'P~omm) [.aym" 

x l  Output 
Layer 

x 2 
• l 

Xp 

FIGURE 3. The LVQ competitive learning network. 

algorithms. Section 9 contains our conclusions and 
some ideas for further research. 

2. LEARNING VECTOR QUANTIZATION 

The primary goal of  LVQ is representation of  many 
points by fewer prototypes. Identification of  clusters 
is implicit, but not active, in LVQ's pursuit of  this 
goal. The salient features of  the LVQ model are 
contained in Figure 3. The input layer of an LVQ 
network is connected directly to the output layer. The 
circles in Figure 3 are nodes,  and the prototypes are 
node weights. 2 The prototypes V =  (vl, v 2 , . . . , V c ) ,  
v I E ~ P  for 1 < i < c ,  are the (unknown) vector 
quantizers we seek. 

When an input vector x is submitted to this 
network, distances are computed between x and each 
vk. The output  nodes "compete ,"  a (minimum 
distance) winner node, say vi, is found; and it is 
then updated using one of  several update rules. We 
give a brief specification of  LVQ. (There are many 
other versions of  LVQ; this one is usually regarded as 
the standard form). 

2.1. The (Unlabeled Data) LVQ Algorithm 
(Kohonen, 1989). 

Store.  Unlabeled Object Data  X =  {x l ,  
x . }  c ~P 

X2, • • • , 

Pick.  ~" 1 < c < n mr a l  E (0, 1) w- N =  max. 
iterations ~- e > 0 

Guess.  V0 = (vl,0, I;2,0 . . . . .  Vc, O) E I~ cp 

Iterate.  For  t =1, 2 , . . . , N ;  
For  k =1, 2 , . . . , n :  

2 The  p c o m p o n e n t s  {re} o f  vi are  of ten r ega rded  as  weights  or  
connec t ion  s t rengths  o f  the edges  t h a t  connec t  the p inpu t s  to 
node  i. 

F i n d l l x k  - v i ,  t - I  II = minl<j<c{l lx~  - vj, ,_l IlL 

(7a) 
Update the winner: 

vi, t = v~.,-] + ut(xk - vi,,-l) (Tb) 

Next k 
Adjust learning rate a t  ~-- a0(1 - t / N )  

Next t 
V ~ V N  

Use. Prototypes V. For  example, a crisp label matrix 
for X can be generated by applying the I - N P  
(nearest prototype) rule to the data: 

1; 
ULVQj = 0; 

IIxk : v, II ~ Ilxk : vjtl, 1 <j<_ c , j~  i "[ 
otherwise f 

l < k < n .  (8)  

The update scheme or learning rule in eqn (7b) has 
a simple geometric interpretation. The winning 
prototype vi, t-I is simply rotated towards the current 
data point, and is constrained to move towards it 
along the vector (Xk -- vi, ,-1) which connects it to Xk. 
The amount  of  shift depends on the value of  the 
learning rate parameter a t  C [0, 1]. There is no 
update if a t  = 0, and when at = 1, vi, t becomes xk. 
The optional labeling phase generates ULVQ = 
[ut.vQ~.,] at eqn (8), which is a c x n matrix whose 
columns are in Nhc. ULVQ is almost always a hard c- 
partition of  X (constraint (2b) may not be satisfied). 

Learning rule (7b) is obtained by assuming that 
each x E ~P  is distributed according to an unknown 
time invariant probability density function F ( x ) .  
LVQ's objective is to find a set of  vi's such that the 
expected value of  the square of the discretization error 

E(tlx-v'll )= f f f II x-v,llEF(x)dx (9) 

is minimized. In this expression vi is the winning 
prototype for each x, and will of  course vary as x 
ranges over ~P.  A sample function of  the optimiza- 
tion problem is e = ]Ix - vii] 2. An optimal set of  vi's 
can be approximated by applying local gradient 
descent to the sample function for every data point 
x from F (Kohonen,  1991). LVQ uses Euclidean 
distance, which corresponds to the update rule shown 
in eqn (7b), since Vv(Hx-vl]  2) - - - 2 ( x - v ) .  The 
origin of  this rule, its geometry, and a discussion of  
LVQ's relationship to sequential hard c-means 
appears in Pal, Bezdek and Tsao 0993).  

LVQ attempts to minimize an objective function 
that places all o f  its emphasis on the winning 
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prototype for each data point. This is reflected in eqn 
(7b), which alters only the winner for each x 
submitted. This is reasonable, but it ignores global 
information about the geometric structure of the data 
that is represented in the remaining ( c -  1) losing 
distances from x to the other prototypes. In this sense 
LVQ updating is somewhat like using the sup norm, 

IIx - vllo~ -- mf.ax{Ixj - vii}. 
/ = 1  

to measure distance in ~P. The extreme value in the 
absolute difference between pairs of coordinates 
dominates all others, and ignores them. In the same 
way, LVQ updating is a very harsh local strategy that 
ignores global relationships between the winner and 
the rest of the prototypes. 

Using an inner product norm on ~P ameliorates 
the harshness of the sup norm by counting 
contributions from each pair of coordinate differ- 
ences in the overall distance calculation. In the same 
way, we think that other nodes in the LVQ network 
should be allowed to influence the update of the 
winner, and perhaps, be updated themselves. This 
presents two questions. First, which other nodes 
should be accounted for (what is the update 
neighborhood)? Second, how much influence should 
each non-winner node that is recognized exert (what 
is the learning rate distribution)? Modifications of 
LVQ are usually motivated by a desire to solve one or 
both of these problems. 

If  the prototypes are to be useful quantizers, we 
think that information about structure in the data that 
is captured by the prototypes should be used as part of 
the criterion that determines the best prototypes. For 
LVQ and its relatives, information due to data point x 
is carried by all of the c distances {llx - V r  II }. Hence, it 
seems reasonable to define good quantizers in terms of 
a criterion that recognizes not only the local 
importance of the winner prototype, but also the 
importance of the other ( c -  1) distances of non- 
winner prototypes relative to the winner distance. We 
circumvent the need to define an update neighborhood 
by expanding the neighborhood to include all c nodes. 
And we do it in the belief that vector quantizers based 
on both local (winner) and global (non-winner) 
information about the relationship of x to the 
prototypes will be better representatives of the 
overall structure in X than those based on local 
information alone. FLVQ and SCS recognize the 
winner as the most important prototype during the 
update cycle, but also give recognition to structural 
relationships between it and the other c -  1 nodes. 
This answers the first question posed in the previous 
paragraph. The second problem--how much should 
each non-winner count?--is handled quite differently 
by these two algorithms. First, we consider the 
probabilistic scheme. 

3. THE SOFT COMPETITION SCHEME 

Yair, Zeger and Gersho (1992) recognized the 
limitations of LVQ just itemized. They proposed 
two vector quantization models, namely, a Stochastic 
Relaxation Scheme (SRS) and a Sof t  Competit ion 
Scheme (SCS) to address these issues. Both algor- 
ithms eliminate the need to define an update 
neighborhood by extending the update to all c 
nodes; and they use learning rates that are functions 
of the c distances { l l x  - v ,  l l} .  In SRS each codevector 
is updated probabilistically, where the probability of 
updating a codevector is a function of its distance 
from the training vector presented at that instant. We 
will not consider SRS further in this note. 

The other model given by Yair, Zeger and Gersho 
(1992) is the deterministic SCS algorithm (the 
algorithm is deterministic because its steps are not 
stochastically controlled, but it does use probabilities 
as part of the learning rates). In SCS all c prototypes 
are simultaneously updated by a scheme which 
directs them, like LVQ, towards the current training 
vector. The step size of each update is scaled by the 
probability of that prototype being the winner. At 
time (iterate) t, the probability of the ith prototype 
winning is defined as 

e-~,llxt-¢,, ,_,112 
(10) Pik, t = 

k e-~,llx~-** ,-1 II 5 

j=l 

where 

lira{fit} = oo. 

The probability p/k, t is one factor in the SCS update 
equation. The choice for /3t is further refined by 
defining /~t = $t/C/To. Here To is regarded as an 
initial "temperature," and -~ is a constant which Yair, 
Zeger, & Gersho (1992) stipulate should be greater 
than 1. The quantity (1//3t) is regarded as the 
temperature, so as t ~ co, fit ~ co, and T ~ 0, 
somewhat analogous to simulated annealing. 

Next, let hi, t = ni, t-I +pik.  t (approximately the 
total number of times that vi has been updated, this 
parameter is reset to 1 whenever iteration counter t is 
a perfect square). Yair, Zeger, & Gersho (1992) use 
this to define the other factor of their learning rates: 

1 
(ll) 

The overall learning rate for SCS is then taken as the 
product r/0,, t "pa,, t. This number replaces the LVQ 
multiplier ott in eqn (7b), resulting in the SCS 
codevector update equation 

vi, t = vi,,-I + (r/m,, "pik, t)(Xk -- vi, t-l). (12) 
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SCS starts with a low value of  /~t (i.e., with 
approximately uniform {P/k, t}), and then/~t is slowly 
increased with time. As a result, at  the beginning of  
the process no codevector is strongly attracted to a 
particular class. With time codevectors become more 
strongly separated f rom each other as p/k, t begins to 
peak around the Euclidean winner, but at the same 
time r//k, t ~ 0. Thus in the limit (as iterate t goes to 
infinity) SCS behaves like the winner-take-all (LVQ) 
competition. 

We point out that  the innermost  loop (on c) in the 
SCS algorithm below generates the c numbers {p/k, t}, 
which satisfy 0 < p/k, t < 1 and 

c 

E P ~ , t  = 1. 
i = l  

Consequently, p t ( xk  ) =- (Plk, t, p2k, t, . . . , Pck, t ) T is a 
probabilistic label vector for Xk, p t ( xk )  e N/c. Since 
each 

r//k,t = < 1, 

the sum of  the learning rates for fixed input vector Xk 
at any iterate t satisfies the following constraint: 

c 

0 < E r l i k ,  t "Pik, t <~ 1. 
i = l  

We specify our implementation of  SCS. 

3.1. Soft Competition Scheme (Yair, Zeger & Gersho 
(1992)) 

Store.  Unlabeled Object Da ta  X = { x l ,  x2, . . . , 

x~} c .~P 

Pick .  ~- 1 < c < n w ,~ > 1 m- N = max. iterations 
m- To = initial temperature  

Guess. V0 = (vl,0, v2,0 . . . .  , vc,0) E ~cp 

I terate.  For  t = 1 to N: /~, = ~/tlC/To 

For  k = 1 to n 
For  i = 1 to c 

Pik, t = e -AIIxk . . . . . .  '112/k e-'&llxk-vs"-1112 
l j = l  

I f  (t = a perfect square) ni, t = 1 

else hi, t = hi, t -  1 + P/k ,  t 

l l~, ,  = (l/n;,,) 

(10) 

(11) 

I~i,, = I~i,,--I q-  (Oik, t " p t ~ , t ) ( x k  - vi, t - l )  

Next i 
Next  k 

Next  t 
V ~ V ~  

(12) 

Use. Prototypes V. For  example, a crisp label matrix 
for X can be generated by applying the 1 - N P  

(nearest prototype) rule to the data: 

1; 
Uscs l  = 0; 

Ilxk - viii S Ilxk - vi i i ,  1 <j~  c , j#  i 

otherwise f 

l < k < n .  

4. T H E  R E L A T I O N S H I P  OF SCS T O  N O R M A L  
M I X T U R E S  

There is a strong relationship between SCS and 
statistical decision theory that is not discussed by Yair, 
Zeger, & Gersho (1992). This section is devoted to 
exposing the relationship between SCS learning rates 
and mixtures of  normal distributions. To begin, 
assume that  X is drawn from a mixed population of  
c p-variate statistical distributions, say with random 
vector variables {X/}, that have {Tri} as their pr ior  
probabil i t ies  and {g(xli)} as their class-conditional 
probabi l i t y  densi ty  f unc t ions  (PDFs). That  is 

7ri (13a) 

prior probabil i ty of  class i; 

g(xli) (13b) 

class conditional P D F  of  class i. 
The convex combination of  the class conditional 

PDFs,  viz., 

c 

f ( x )  = E 7r'g(xli) (13c) 
i = l  

is itself a P D F  whose distribution is called a mix ture  

of  the components  {Trig(xli)}. Let the posteriori  
probabi l i t y  that,  given x, x came from class i, be 
denoted by 7r(ilx ). Bayes rule relates the elements of  
eqn (13) to the probabilities {~r(ilx)} as follows: 

zr(ilx) = 7r~g(xli) (14)  
f ( x )  

For  a particular Xk, eqn (14) becomes, if all 
populat ions are known, 
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~r,g(xkli) 
7r(ilxk) = f (xk)  

For  a sample of  n points X =  { X l ,  X 2 . . . . .  Xn} 
assumed to be drawn from eqn (13c), independently 
and identically distributed (iid) with PDFs  as in eqn 
(13), the c x nposterior matrix II = [Tr(ilxk) ] = [Ir/k] of 
posterior probabilities satisfies constraints (2). Con- 
sequently, I I E  nfcn, the space of  constrained c- 
partitions of  X. 7r/k is a probability that plays much 
the same role in statistical pattern recognition that 
the fuzzy membership value u/k plays in fuzzy pattern 
recognition. 

In the general theory of  mixtures, the component  
probability density functions (PDFs) g(xli  ) can be 
quite arbitrary (that is, continuous, discrete or both). 
Predictably, the case that dominates applications is 
when every component o f f ( x )  is multivariate normal. 
In this case the P D F  g(xli) of  component  i has the 
familiar form 

e-~llx-~ll2ET, 

n(#,, ~,) = g(xli ) - (2~r)~ dex/-d-~ ' (15a) 

where 

#~ = ( mh  #a , . . . ,  rap) r 

is the population mean vector of class i; (15b) 

and 

-I 
[lTi, ll tYi, 12 . . .  O'i, lpl  

~"~'~I:[cov(Xi)]-I:IO'i '21! O'i'22: ''. ai'~/i , (15C) 

l¢~i, pl O'i, p2 . . .  O'i ppd 

is the (positive definite) population covariance matrix 
of  class i. tridk = cov(X#, X/k) is the population 
covariance between variables j and k for class i. The 
norm in (15a) is an inner product  norm called the 
Mahalanobis norm computed in the usual way with 
the population parameters (]~i, ~']q), i.e., I I x -  ~,112: 
( x  - i,~)rr~71 (x  - i'~). 

We make two simplifying assumptions about  the 
mixture of  normals obtained by substituting eqn 
(15a) into eqn (13c). For  each class i, 1 < i < c, we 
assume that 

(i) 7ri = 1/c (16a) 
(all classes are equally likely) 

and 

(ii) ~ = tr2I (16b) 
(all classes have covariance which is a scalar 
multiple of  the identity). 

F rom eqn (16b) ~]71 = 1 / o 2 I  and ~ = tr 
for every class, so the Mahalonobis norm becomes a 
multiple of  the Euclidean norm, I I x - ~ d l ~ , ,  = 
1/o211x-l~dl 2. For  this special case Bayes rule at 
eqn (14) takes the form 

7r(ilx ) = 
( 1/c)e -(I/(2° ')11 x-t,, II 2 ) / ((27r)P/2cr) 

e-(I/(2o2)llx-mll 2) 
(17) 

For  a given Xk this becomes 

7r(ilxk) = e -Ol(~2)llxk-mll~) e -(l/(~'2)ll~k-~Al~). (18) 
/ j = l  

Comparing eqn (10) with eqn (18), if we define 
fit = 1/(2tr 2) and vi, t_ 1 : l~i for i =  1 to c, then p/k,t 
and ~r(ilxk) are identical. Thus the component p/k, t of  
the SCS learning rate used by Yair, Zeger, & Gersho, 
(1992), can be interpreted as an estimate of  the 
posterior probability of  Xk being from class i under 
the assumptions in eqn (16). However, this choice for 
f t  does not ensure 

1Lm{~, } = oo. 

To achieve this t is used in the definition for f t ,  i.e., 
f t=( '~ t /C/To) .  Thus, at time t, if  we take 
o -2 = (To$-t/c/2),  then p/k,t and ~r(ilxk) are identical, 
and fit = (1/2t r2) ensures 

h_'m{/~,} = ~ .  

In summary, P/k, t can be interpreted as the posterior 
probability that Xk is from class i when all classes are 
equally likely, and class i is modeled as a p-variate 
normal distribution with parameters (#i = vi, 
~'~i :"  (To'y-t/c/2)I ). 

5. HARD AND F U Z Z Y  c-MEANS 

The most widely used objective function model for 
fuzzy clustering in X is the weighted within groups 
sum of  squared errors objective function Jm, which is 
used to define the constrained optimization problem 

Jm(u,  v; x)  = )--~(u~)'*llxk - v, ll~ (19) 
( v , v ) ~  k=t i=l 

where U E Mfcn, V = (Vl, V2,.. . ,  Vc) is a vector of  



736 J. C. Bezdek and N. R. Pal 

(unknown) cluster centers (prototypes), vi E ,~P for 
1 < i < c and IlxllA : ~ is any inner product 
norm. Optimal partitions U* of X are taken from 
pairs (U*, V*) that are local minimizers of Jm. 
Approximate optimization of  Jm by the Fuzzy c- 

Means  algorithm is based on iteration through the 
following necessary conditions for its local extrema: 

5.1. F u z z y  c - M e a n s  T h e o r e m  (Bezdek, 1981) 

If  I l x k  - villa > 0 for all i and k, then (U, V) E Mfc,× 
~cp may minimize Jm only if, for m > 1, )l 

"~* = Ilxk - v, ll,/llxk - villA) ~ vi, k; (20a) 

and 

E (  )mXk ra vi = ut~ u~ Vi. 
k = l  [k=l 

(20b) 

Perhaps the most popular algorithm for approx- 
imating solutions of eqn (19) is alternating optim&a- 

tion (AO) iteration through eqn (20a) and eqn (20b), 
commonly known as the FCM-AO algorithm 
(Bezdek, 1981). The most problematical choice for 
FCM-AO is the weighting exponent m, which can 
take any value in (1, oo). Most users of FCM 
experiment with this parameter, and find a value in 
the range [1.1, 5] that yields a suitable interpretation 
of  substructure in the data. FLVQ as defined later 
provides two things: a strong link from FCM to 
LVQ, and a way for FCM users to find (roughly) a 
suitable value for m without extensive trials and 
errors. 

Some limiting properties of equations (20) that are 
important for this study are (Bezdek, 1981): 

= { 1 ;  

0; 
Ilxk - v, ll, < IIx, - vJlhVj # i ~ Vi, k. (21a) 
otherwise J 

Using this result, we take the same limit in eqn (20b), 
obtaining: 

{( # )} limit vi = u~)mxk U~)m = x:X, Vi, 

(21b) 

where X = X1 u . . .  Xi u . . .  Xc is the hard c-partition 
of  X defined by the right side of eqn (21a) with 

n 

. ~  = . ,  = IX, I. 
k = l  

If  we use these results in eqn (19), we have: 

li~+~,t Jm(U, v :  x ) =  ~-"~.(,,~,)"l lxk- ",11 
\ ( U ,  10~. k= l  i=1 

= Jl(g,  v: x ) =  ~_,u,~llx~- v,  ll • ( 2 2 )  
(v, v) '. k =1 i=l 

Jt (U, V; X) is the classical within-groups sum of 
squared errors objective function. Eqn (22) is the hard 

c-means (HCM) model. Moreover, the right sides of 
eqn (21a) and eqn (21b) are the necessary conditions 
for local extrema of  J1. Observe that crisp member- 
ship assignments in the right side of eqn (21a) use the 
1-NP rule at eqn (6). HCM-AO clustering is iteration 
through the right hand sides of  eqn (21a) and eqn 
(21b). 

In a weak sense then, the HCM model (objective 
function+ algorithm) is a bridge between LVQ and 
FCM. However, HCM and FCM are batch 
algorithms, whereas the sequential implementation 
of LVQ given earlier is more like the sequential hard- 
c means model (Pal, Bezdek, & Tsao, 1993). For the 
present article, the most important points are that 
each of these algorithms generates c prototypes, and 
they are all driven by objective functions that involve 
sums of  squared errors. The main differences between 
LVQ, SCS, HCM, FCM and FLVQ lies in the way 
squared errors are weighted and the way prototypes 
are updated. 

To properly analyze the behavior of FLVQ we will 
also need the limits of eqn (20) as m goes to infinity: 

/ } l imi t  Ilxk - <1~ IIx~ - ~jtl, 

1 
= -  Vi, k; 

C 
(23a) 

Ijmit{(Vi=~=l(Uik)mxk/~=l(Uik)m)} 
k Xk 
k=l 
- -  -- ~ Vi. 

(23b) 

where ~ = ~-~-xex x / n  is the grand mean of X. 

6. FUZZY LEARNING VECTOR 
QUANTIZATION 

In this section we review FLVQ and provide a new 
analysis of its behavior as a function of m using the 
limits shown in Section 5. The connection between 
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FCM and LVQ was first discussed by Huntsberger & 
Ajjimarangsee (1990) who suggested fuzzification of 
LVQ by replacing the learning rates (a/k,t} usually 
found in rules such as eqn (7b) with the fuzzy 
membership values {u/k,t} computed with FCM 
formula eqn (20a). While this approach was 
innovative, it was to some extent unmotivated. 
Moreover, their method still required choosing m, 
and it seemed to improperly mix the objectives of 
LVQ (vector quantization) and FCM (clustering). 
This led to a revision of LVQ that was first called 
F K C N  (Tsao, Bezdek, & Pal, 1992) that has 
subsequently become known as FLVQ. 

As noted earlier, the choice of  m for the FCM 
model is very important. Eqn (21a) shows that when 
m is small (close to 1), FCM-AO tends to produce 
almost crisp label vectors. Each column of  U from 
FCM-AO must sum to 1. Because of  this, if updates 
are based on some function ofeqn (20a) and one u/k is 
close to 1, the update for node i may be very large 
compared to the other updates. If, additionally, the 
current prototypes from FCM-AO have an unfavor- 
able geometry compared to the central tendencies of 
clusters in the data, some prototypes may move 
rapidly towards a cluster, while others may move but 
little. This effect is illustrated in Figure 4 for the data 
set X = X 1 U X2. 

In Figure 4, prototype vl is closer to every point in 
X than 1,2 is. The result of  this is that for any m at 
c = 2, the class 1 memberships {ulk} of every point in 
X computed with eqn (20a) will be higher than the 
class 2 memberships {u2k}. Since Ulk + U2k = 1 for all 
k, the two rows of membership matrices produced 
with eqn (20a) for any m will look like this: 

-.-(< 0.5) ----' 

U(1) = - . - ( - +  0).-- " 

So, when m is close to 1, memberships of  points in 
both X1 and X2 in class 1 will be close to 1. The effect 
of  this is that prototype Vl in Figure 4 will migrate 
towards the grand mean ~ of  X, and v2 will not 
change much. 

On the other hand, if m is large (say > 7) all of the 

x l 
0 0 x2 

o o @ © o o 
° o  o o o 

o ° o o O O 0 O o 

° o ° O  o o o o o 0 
o o o 0 o 

o o o 

v 2 
vl 4 ,  

F I G U R E  4 .  A geometric situation where a low value of m may 
produce bad prototypes. 

U/k'S will be nearly 1/c as implied by eqn (23a). In this 
case both prototypes in Figure 4 will be pulled 
towards the data very slowly by FCM-AO. This will 
happen because every (U/k, t) m ~, (1/cm). So when m is 
large, every prototype will be updated to almost the 
same very small extent (e.g., with c = 3 and m = 7, 
every um/k,t ="~ 0.0004). This will also be the case for 
any competitive learning scheme whose update rate is 
a monotonic function of  the {u/k. t}. 

Thus, neither low nor high values of  m seem 
desirable. However, if  we start with a high value of m, 
and then slowly reduce it during iteration, this 
undesirable situation is avoided. Motivated by this 
behavior, we define: 

= x k  - v , , , l l A / l l x k  - -  vj,,IIA) ~ Vi, k, (24a) 

and 

, }/£ Vi, t=Vi, t_t+Eoaik, t(Xk--Vi, t_ l tou,, Vi, (24b) 
k = l  [ s = l  

where 

m, = mo + t[(m/- mo)/T] 

=too+tAm; m/, mo> I; t= I, 2,...N. (2,~) 

Eqn (24b) can be rewritten as 

/£ Vi, t = ~ OJik, t X k  OJis, t .  
k = l  / s = l  

Comparing this to eqn (20b), eqn (24c) asserts that 
when m0 = mf = m is fixed, FLVQ is FCM-AO. The 
learning rates in eqn (24a) were chosen so that this 
would be true. Our competitive learning scheme 
based on eqn (24) has three objectives: (i) to 
overcome the two problems we identified for LVQ 
(which nodes to update and how to use the non- 
winner prototypes in the determination of  learning 
rates); (ii) to circumvent (to some extent) the problem 
of  how to choose m for FCM; and (iii) to provide a 
substantial link between the c-means and LVQ 
families. 

Since mt in eqn (24c) is variable, we can have three 
families of Fuzzy LVQ or FLVQ algorithms, 
depending on the choice of  the initial (m 0) and final 
(m f) values o fm.  For t E{1, 2 . . . . .  N}, 
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mo > m f  =¢. {mr} J. m / :  Descending FLVQ 

=~ FLVQ (25a) 

m o <  m f  =~ { m  t} T m y  : Ascending FLVQ 

=T FLVQ (25b) 

mo = m f  :=> m t -= m o - m : FLVQ - FCM. (25c) 

We have included TFLVQ here for completeness. 
However,  its properties as functions of  m t  seem 
counter to the intuitively desirable properties shared 
by SCS and IFLVQ.  We do not recommend the use 
of  TFLVQ for this reason. Here we concentrate on 
and describe the implementation of  I F L V Q  based on 
eqn (24) which is used in the numerical examples of  
Section 7. 

6.1. The Descending Fuzzy LVQ (IFLVQ) Algorithm 
(Tsao, Bezdek, & Pal, 1992) 

S tore .  Unlabeled Object Data  X =  {Xl, x2 . . . .  , 
x~} c.~P 

P i c k .  ~," 1 < c < n am- l[ 11,4 ~" N = max. iterations w 
¢ > O m ' 7 > m o > m f  > 1.1 

Guess .  V0 = (vl,0, V2,0, • • • , Vc, o) ~- ,.~cp 

I t e ra te .  For  t : -  1, 2 , . . . ,  N: 
m, = rao + t [ (mf  - mo) /T]  = mo + t A m  

F o r k =  1 ton :  
a. Wik, t = (Uik, t) m' 

( 
b. 

c / -m# 
~(llxk - vi,,-~llAItlxk - vj, t - l l lA )  ~ Vi, k 

j = l  

) / ~  vi,,  = vl, , - i  + ~ ,  w ~ , t ( x k  -- ~i, , -I  ~ ~ , ,  
k=l s=l 

c. I f E ,  = IIV, - Vt-lll,rr = ~ live,, - vi.t-lll 
i=l  

: ~ ~ [V/j, t -- Vtj, t-1 [ < E stop; else 
i=1 j=l 

Next  k 
Next  t 
V ~  Vt; U~- Ul 

Use.  Prototypes V and/or U 

As with LVQ and SCS, the prototypes produced 
by ~FLVQ can be used with eqn (6) to produce a 
crisp parti t ion of  X, and also to define a 1 - N P  

classifier. Our  implementation of  I F L V Q  is neces- 
sarily batch, and this preserves its relationship to 
FCM-AO.  Unlike LVQ and SCS, which are both 
terminated by iterate limit N, F C M - A O  and I F L V Q  

are terminated when successive estimates for V 
become close, as measured by II v, - v,_~ [[e,r" 

Another  difference worth noting is that unlike 
LVQ and FCM-AO,  I F L V Q  does not optimize a 
fixed objective function. All we can say about  this is 
that since I F L V Q  uses eqn (20) at each iteration with 
m = mr,  every full step of  ~FLVQ uses a pair (Ut ,  Vt) 
that are necessary for a local extrema of  Jm,. We 
point out the constraints 7 > m 0 > r n f  > 1.1 in our 
specification of  ~FLVQ. In our experience these are 
useful limits for m that should prevent numerical 
instability. In other words, stay away from 1 and 
infinity. 

The c numbers {Uik, t} satisfy 0 _< u~, t < 1 and 

c 

E u a ,  t = 1. 
i=l 

Consequently, the vector u t ( x k )  = (Ulk, t, u2k, t . . . . .  

Uck, t) T is a fuzzy label vector for Xk,  Ut(Xk) C N/c.  This 
means that the sum of  the .[FLVQ learning rates for 
input vector xk at any iterate t satisfies the same 
constraint as the SCS learning rates: 

c 
0 < E w i k ,  t < 1. 

i=1 

To understand how mt  acts to control the 
distribution and values of  the learning rates {w~,, t} 

in FLVQ, we discuss I F L V Q  in more detail. The 
general situation can be understood by examining the 
learning rates at eqn (24a) for fixed c, {vi, t} and mt .  In 
this case, 

(26) 

where 

c 

,~ = )--~ (llllx~ - vj,,llA) ~/~m'-') 
j = l  

is a positive constant. F rom eqn (26) we see that the 
contribution of  xk to the next update  of  the node 
weights is inversely proport ional  to their distances 
f rom it, so the winner for this k is the vi, t -  l closest to Xk. 
Larger values o f  rot lead to fuzzier values of  U/k, t (values 
closer to 1/c),  and ~uik,  t = 1 =~ ~ , t  < 1. So, in the 
initial stages of  J.FLVQ large values of  mt  (near m0) 
yield updates with lower individual learning rates. 

In the initial stages of  SCS (for low values of  t) 
p a ,  t ~ 1 / c ,  and since the c o u n t e r s  {ni, t} all start at 1, 
at the beginning of  the SCS learning process each 
codevector is (more or less) updated to the same 
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extent. In other words (7/i, t" pa~, t) --~ (~/j, t" Pjk, t) for 
all i and j at low values of  t. What happens for 
IFLVQ? In this case we start with a high value of  
m = m0. For high values of  m, Uik, t ~" 1/cVi,  and as a 
result oJ~k,t = (llik, t) mt "~ 03jk, t = (Ujk, t) I t  for all i a n d j  
at low values of  t. Thus, in IFLVQ all c prototypes 
will have about the same importance at the beginning 
of iteration, with learning rates at each Xk that are 
roughly uniformly distributed across the c nodes 
during updates. Thus, J, FLVQ and SCS start with 
very similar configurations. 

As iteration continues P/k, t for SCS and u/k, t for 
~FLVQ both tend to peak at the Euclidean winner. 
For SCS, p/k, t --~ 1 when node i is the winner, but 
~//k,t--~0 SO the overall SCS learning rate 
~lik, t "Pik, t--+ O. On the other hand, for ~FLVQ 
Uik, t--+ 1 when node i is the winner but since 
mt--~ 1, the overall learning rate for this method 
also goes to 1, W/k, t = U'~', t --* 1. As mt "x, m f  (mr gets 
closer to 1), more and more of  the update is given to 
the winner node. In other words, the lateral 
distribution of  learning rates is a function of t, 
which in ~FLVQ sharpens at the winner node (for 
each xk) as mt "x~ mf. Indeed, the learning rate 
characteristics of ~FLVQ are roughly opposite to 
the usual behavior imposed on them by other 
competitive learning schemes. In LVQ and SCS all 
c learning rates at Xk decrease towards 0 as t 
increases, but in ~FLVQ, the winner learning rate 
tends to increase towards 1 during learning, while the 
other c-1 rates tend towards zero at each xt. Thus, 
SCS behaves much more like LVQ as iteration 
proceeds than ~FLVQ does. 

7. NUMERICAL EXAMPLES 

In this section we illustrate and compare LVQ, SCS 
and FLVQ by calculating centroids obtained by 
applying these three algorithms to Anderson's IRIS 
data (Anderson, 1935). IRIS contains 50 (physically 
labeled) vectors in ~4  for each of  c = 3 classes of IRIS 
subspecies. IRIS has been used in many papers to 
iUustrate various clustering (unsupervised) and 
classifier (supervised) designs. One way we can assess 
relative performance is to compare the numerical 
values of  terminal centroids to the physically labeled 
subsample means. 

A second way to validate prototype generating 

algorithms with this data is to find three terminal 
prototpyes for IRIS, relabel them if necessary so 
that the algorithmic labels correspond to the 
physical class labels, and then use them as a basis 
for the 1-NP classifier at eqn (6). Submitting all 
150 points in IRIS to D~re, v and counting the 
mistakes results in an estimate of  DNe, v'S error rate 
for that V. This is called the resubstitution error 
rate. We know this error rate is a little optimistic, 
but it is fine for comparisons of competing designs• 
Typical resubstitution error rates for IRIS with 
supervised designs are 0-5 mistakes; and for 
unsupervised designs such as the three discussed 
here, around 16 mistakes. 

We used the two initializations shown in Table 1. 
The vectors shown as initialization Ii are the sample 
means of  the physically labeled points in the three 50 
point subsets of  IRIS. The second initialization, 12 in 
Table 1, is computed using the following method. For  
data set X =  {x l , . . .  ,x,} C ~¢P, let data point k and 

• . . , ) T  initial prototype i be Xk = (Xkl, Xk2, Xkp and 
• . . , ) T  vi (vii ,  vi2, vie respectively. Compute the 

feature ranges 

Minimum of featurej : 

mj  = m ~ l x k j } :  j = 1, 2 . . . .  ,p; 
k 

(27a) 

Maximum of featurej : 

Mj=,_,~_,{xkj}: j =  1,2. 
k 

(27b) 

With these, compute the j t h  component of  the ith 
initial prototype as: 

v# = m j +  ( i -  1 ) (  Mj [ ~ m j ~  
\ c - I  ) ;  

i = l ,  2, . . . ,c;j----l ,  2 , . . . ,c .  (28) 

Formula (28) disperses initial prototype values 
uniformly along each feature range [m j, My]. For 
example, vl = m  = ~ m h  m2 . . . . . .  mp) r, vc = M =  
(MI ,  ME . . . . .  A lp) ' ,  and so on. 

None of  the algorithms studied here use class 
information (that is, are supervised) during learning 
(i.e., while finding the prototypes). The confusion 

TABLE 1 
Two Initializations for the Numerical Experiments 

Initial Centro ids I1 - - (Means )  Initial Centro ids 12 

5.006 3.428 1.462 0.246 * - -  Vl, 0 ~ 4.300 2.000 1.000 0.100 
5.936 2.770 4.260 1.326 *-- V2,0 ~ 6.100 3.200 3.950 1.300 
6.588 2.974 5.552 2.026 *-- V3, 0 ---~ 7.900 4.400 6.900 2.500 
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TABLE 2 
Centrolds and Outputs of Sample Mean, LVQ, SCS and ~FLVQ I -NP Classifiers on the IRIS data when InlUallzed with I, 

Initial Centroids/1 Final Centroids I1 Confusion Matrix 

5.006 
5.936 
6.588 

3.428 1.462 0.246 5.006 3.428 1.462 0.246 50 0 0 
2.770 4.260 1.326 5.936 2.770 4.260 1.326 0 46 4 
2.974 5.552 2.026 6.588 2.974 5.552 2.026 0 7 43 

Final Centroids: LVQ 
N = 50, so = 0.6 Confusion Matrix 

Init. Same as Above 

Init. Same as Above 

Init. Same as Above 

4.999 3.420 1.463 0.248 50 0 0 
5.873 2.746 4.366 1.414 0 47 3 
6.813 3.079 5.682 2.063 0 13 37 

Final Centroids: SCS 
N = 50, ~, = 1.3, To = 40 Confusion Martrix 

5.006 3.425 1.465 0.247 50 0 0 
5.884 2.743 4.370 1.414 0 47 3 
6.776 3.047 5.634 2.031 0 13 37 

Final Centroids: ~FLVQ 
N = 50, m o =  5, mr = 1.5 Confusion Matrix 

5.006 3.420 1.474 0.252 50 0 0 
5.884 2.748 4.371 1.411 0 47 3 
6.821 3.064 5.697 2.063 0 14 36 

TABLE 3 
Cen~olds and Outputsofthe SCS 1-NP Classlfieronthe IRIS Data 

Set Init. ~ = 1.30, To=  40 Confusion Matrix 

5.006 3.425 1.465 0.247 50 0 0 
A ~ 5.884 2.743 4.370 1.414 0 47 3 

6.776 3.047 5.634 2.031 0 13 37 

= 1.15, To=  40 Confusion Matrix 

B /1 
5.843 3.057 3.758 1.199 50 0 0 
5.843 3.057 3.758 1.199 50 0 0 
5.843 3.057 3.758 1.199 50 0 0 

= 1.30, To=  40 Confusion Matrix 

C 
5.006 3.425 1.465 0.247 50 0 0 
5.884 2.743 4.370 1.414 0 47 3 
6.776 3.047 5.634 2.031 0 13 37 

= 1.15, T o =  40 Confusion Matrix 

5.843 3.057 3.758 1.199 50 0 0 
5.843 3.057 3.758 1.199 50 0 0 
5.843 3.057 3.758 1.199 50 0 0 

= 1.30, To=  60 Confusion Matrix 

/2 
5.008 3.378 1.548 0.284 50 0 0 
6.272 2.884 4.945 1.690 3 0 47 
6.292 2.884 4.945 1.690 0 0 50 

= 1.30, To=  70 Confusion Matrix 

/2 
5.843 3.057 3.758 1.199 50 0 0 
5.843 3.057 3.758 1.199 50 0 0 
5.843 3.057 3.758 1.199 50 0 0 
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matrices listed in Tables 2 and 3 are found by 
applying the nearest prototype classifier based on the 
final prototoypes from a particular algorithm to each 
of  the 150 points in IRIS. The /j-th entry of  the 
confusion matrix records the number of  times real 
physical label i was instead given label j by the 
algorithm. 

Table 2 reports the results of  nearest prototype 
classification of  IRIS by using the centroids 
recommended by LVQ, SCS and FLVQ in 1-NP 
rule 6. The first set of  rows shows the confusion matrix 
associated with D~e, v when Vnnal = V + 0 = II, the 
physical subsample means. If  we know the labels, the 
sample means yield a classifier that commits 11 errors; 
4 class 2 points are labeled class 3; and 7 class 3 points 
are labeled class 2. All three algorithms produce very 
similar centroids. The confusion matrices for the LVQ 
and SCS based 1-NP designs are identical, showing 16 
resubstitution errors. FLVQ is very nearly the same, 
committing one more error than LVQ and SCS on a 
class 3 data point. 

It is shown elsewhere that LVQ can terminate at 
very bad centroids when initialized with vectors 
outside the convex hull o f  the IRIS data (Pal, 
Bezdek, & Tsao, 1993). To test stability of  the 
results in Table 2 to V0, the initialization of  the 
prototypes, we made another set of  runs with the 
same algorithmic parameters as shown in Table 2, but 
with the initialization 12 shown in Table 1. The 
centroids produced by all three algorithms were 
identical (to three decimal places) to those shown in 
Table 2. This does not  establsh that these algorithms 
are insensitive to initialization, but it gives us some 
confidence that the IRIS data are rather well 
structured. Thus, there are combinations of  initializa- 
tions and algorithmic parameters for all three 
algorithms that produce very similar and predictable 
results. 

Our implementation o f  SCS found it very sensitive 
to the choice of  and interaction between -~ and To. 
Yair, Zeger, & Gersho (1992, p. 303) state that "I t  is 
important  that the initial temperature not be chosen 
too large, for in such a case the codevectors may tend 
to merge together, yielding a poor  codebook." 
Elsewhere, however Yair, Zeger, & Gersho (1992, 
p. 302), state that "The  algorithm starts with a low 
value o f / 3  [our 13t] , for which Pn(i) [our pik, t] is 
approximately uniform. That  is, for low values of  
(high temperatures) the codevectors are not  yet 
attracted to a certain partition, and they all migrate 
towards the data presented." These two statements 
suggest that there is a range over which To yields 
good results. 

Table 3 studies the effect on SCS outputs to the 
parameters -~ and To. All runs reported in this table 
used N = 50; rows A are repeated from Table 2. First 
compare A, B, C and D, all o f  which have To = 40. 

Changing -~ from 1.30 to 1.15 using either h o r / 2  has 
the dramatic result of  forcing all three SCS centroids 
to terminate at p=(5.843, 3.057, 3.758, 1.199) r ,  the 
grand mean of  IRIS. This has the predictably bad 
effect on the 1-NP design of  it committing 100 
mistakes in both cases. 

Next, compare sets C and F in Table 3 to see that 
it is not just a change of-~ that has this effect on SCS, 
for in this case you will see that the same result occurs 
with -~ fixed at 1.30 but To increased from 40 to 70. 
Finally, look at sets C, E and F for 12 and -~ = 1.30 
fixed. Intermediate between the good result at To = 40 
and the worst result at To = 70 is the case To = 60, for  
which SCS terminates with a good estimate of  the 
first centroid, but identical vectors for the second and 
third prototypes, resulting in a 1-NP error rate of  50 
mistakes. Table 3, and many other experiments with 
other values for "~ and To not  reported here, suggest 
that SCS is very sensitive to good choices for  these 
two parameters. 

8. ON THE RELATIONSHIP BETWEEN 
c-MEANS AND C O M P E T I T I V E  

LEARNING SCHEMES 

In eqn (19) and eqn (20) the weighting exponent m for 
Jm is fixed, but in eqn (24) it is a variable. Since m is 
replaced by a parameter whose value depends on the 
number of  iterations that have elapsed, mt plays a 
role that is somewhat analogous to a~, t in LVQ. To 
see this, remember that 

c 

E U / k , t  = l 

i = 1  

for each Xk in X. In consequence, the learning rates in 
eqn (24a) that are applied to all c nodes via eqn (24b) 
for each xk are dependent on each other, and 
themselves must satisfy the condition 

c 

Eco~,t _< I. 
i=l 

The effect of  controlling the learning rates this way is 
best understood by considering a simple example. 
Suppose c = 5 and mt - - - -  4 at some iterate. Two label 
vectors for xk for the five nodes, and the resultant 
learning rate distributions they induce via eqn (24a) 
are shown below: 

u(xk) = =~ w(x/) = for any rnt; (29a) 
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and 

, i (~ ,O  = 

0.1] 

0.6 

0.0 :~ d~(Xk) 

0.2 

0.1 

0.0001 

/0.1296/ 
=/ooooo/ m, 

/O001 ! 
\ 0.0001 ] 

= 4 is illustrated). (29b) 

In eqn (29a) node 2 is the crisp winner since it 
receives all of the membership of this data point in 
any of the five clusters. From eqn (24a) it follows that 
for any value of mt the learning rates applied to this 
data point will also be crisp, and will be the same as 
the labels used to compute them, as shown in eqn 
(29a). Thus, when a single node can win all of the 
membership, none of the non-winner nodes are 
allowed to influence the update in eqn (24b) for that 
data point. In this special case, FLVQ reverts to an 
LVQ-like strategy, but only for data points that have 
crisp memberships. 

On the other hand, if the distribution of member- 
ships for Xk is truly fuzzy, as in eqn (29b), 
exponentiation of the membership values by mt has 
a noticeable effect on the role played by each node in 
the update scheme. The winner node in eqn (29b) in 
the sense of maximum membership (which is, as 
previously noted, also the minimum distance proto- 
type) is still node 2. But in this second case, non- 
winner nodes with non--zero memberships will also 
participate in the determination of how much to 
change their corresponding weight vectors for that 
data point. Finally, if mo = m f  then clearly 
FCM = FLVQ. 

If all n membership columns in U from the FCM 
formula (20a) were crisp, eqn (24b) would become a 
batch version, LVQ-style update, with 

vi., = vi.,-, + ~ (Xk - v,.t-i)ln,.,, 
xk ~ X~ 

where hi, t is the number of points in the i th crisp 
cluster of X at iterate t. The previous estimate for 
vi, t-l  can be eliminated from this last equation by 
distributing the sum over the minus sign, leaving the 
HCM update formula on the right side of eqn (21b). 
Suppose eqn (7b) in LVQ is replaced with this batch 
update formula, and calculation of ULVQ as in eqn (8) 
is required at each pass (remember that LVQ does 
not do so) through the data. Call this extended batch 

LVQ (EBLVQ). Then FLVQ reduces to EBLVQ 
whenever U is crisp, and further, EBLVQ is precisely 
HCM. In this sense FLVQ is a true generalization of 
both LVQ and HCM that integrates their models in 
perhaps the strongest possible way. 

9. CONCLUSIONS 

We think that structural information due to data 
point x is carried by all of the c distances {[Ix - Vrl]}- 
We have discussed two soft relatives of LVQ that 
define good prototypes in terms of criteria that 
recognize not only the local importance of the 
winner (minimum distance) prototype, but also the 
global importance of the other ( c -  1) distances of 
non-winner prototypes relative to the winner dis- 
tance. We believe that vector quantizers based on 
both local (winner) and global (non-winner) informa- 
tion about the relationship of x to the prototypes will 
be better representatives of the overall structure in X 
than those based on local information alone. 

SCS and IFLVQ both recognize the winner as the 
most important prototype during the update cycle, 
but also give recognition to structural relationships 
between it and the other c-1 nodes. Both of these 
algorithms expand the update neighborhood to 
include all c nodes; and both allow all c prototypes 
to participate in setting the amount by which each 
node gets updated at every pass through the data. 

In IFLVQ and SCS, adjustments to each 
prototype are made inversely proportional to its 
distance from x. In both schemes the largest share of 
each update is accorded to the winner, and 
proportionately smaller shares are given to each of 
the other c-1 non-winner nodes. One of the most 
intriguing properties of SFLVQ is that it provides a 
means for circumventing the question of how to 
choose the weighting exponent m in FCM-AO. 

We have shown that the learning rates for SCS are 
related to estimates for the posterior probabilities of a 
certain mixture of normal distributions. Further, we 
showed that FLVQ and Fuzzy c-Means are equiva- 
lent in one special case, and as a subease of this, that 
FLVQ reduces to Hard c-Means when the partition 
generated is crisp. 

In practice, our experience is that IFLVQ is 
much more stable to changes in its parameters than 
SCS. The complexity of these two algorithms 
makes it hard to offer more than a conjecture about 
this; here is ours. First, batch algorithms seem 
inherently more stable to small changes in algorith- 
mic parameters than sequential ones, simply be- 
cause the effect of changes is spread across all n 
data points before it is felt. And secondly, the 
control strategy of SCS may cause some instability. 
We draw attention to the line in the SCS algorithm 
that resets the counter hi. t to 1 at every t a perfect 
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square. The effect of  this is to modulate the 
learning rates so that the distribution of  ~Ta~, t" P~, t 
looks like a sawtooth wave bounded by 1 from 
above and 0 from below. The reset occurs at the 
iterate numbers 1, 4, 9, 16, 25 . . . . .  fl . . . .  so the 
width between pulses is successively longer. For 
large enough t, the factor rl/k,t = 1/ni, t tends 
towards zero, and in the limit will go to zero. 
Nonetheless,  the behavior of  ~?~,t "pa~, for finite 
iterate limit N is quite different than the usual 
Kohonen  learning rate, i.eo, at=C~o(1-t/N), 
which goes to zero smoothly with t. Our examples 
only ran SCS for N =  50 sweeps through IRIS. 
Consequently,  the learning rates were reset 7 times. 
It might be that longer learning times would 
eradicate this, but we doubt it. Once SCS settled at 
the grand mean of  IRIS in our examples, it stayed 
there. This behavior is an interesting facet of  SCS 
that might be profitably pursued in a future 
investigation. 
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