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Fundamental and advanced developments in neum-fuzzy syner- 
gisms for  modeling and control are reviewed. The essential part of 
neuro-fuuy synergisms comes from a common framework called 
adaptive networks, which unifies both neural networks and fuzzy 
models. The f u u y  models under the framework of adaptive net- 
works is called Adaptive-Network-based Fuzzy Inference System 
(ANFIS), which possess certain advantages over neural networks. 
We introduce the design methods f o r  ANFIS in both modeling and 
control applications. Current problems and future directions for  
neuro-fuzzy approaches are also addressed. 
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I. INTRODUCTION 
In 1965, Zadeh published the first paper on a novel 

way of characterizing nonprobabilistic uncertainties, which 
he called “fuzzy sets” [116]. This year marks the 30th 
anniversary of fuzzy logic and fuzzy set theory, which 
has now evolved into a fruitful area containing various 
disciplines, such as calculus of fuzzy if-then rules, fuzzy 
graphs, fuzzy interpolation, fuzzy topology, fuzzy rea- 
soning, fuzzy inferences systems, and fuzzy modeling. 
The applications, which are multi-disciplinary in nature, 
includes automatic control, consumer electronics, signal 
processing, time-series prediction, information retrieval, 
database management, computer vision, data classification, 
decision-making, and so on. 

Recently, the resurgence of interest in the field of artificial 
neural networks has injected a new driving force into 
the “fuzzy” literature. The back-propagation learning rule, 
which drew little attention till its applications to artificial 
neural networks was discovered, is actually an universal 
learning paradigm for any smooth parameterized models, 
including fuzzy inference systems (or fuzzy models). As 
a result, a fuzzy inference system can now not only take 
linguistic information (linguistic rules) from human experts, 
but also adapt itself using numerical data (input/output 
pairs) to achieve better performance. This gives fuzzy 
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inference systems an edge over neural networks, which 
cannot take linguistic information directly. 

In this paper, we formalize the adaptive networks as a 
universal representation for any parameterized models. 
Under this common framework, we reexamine back- 
propagation algorithm and propose speedup schemes 
utilizing the least-squared method. We explain why neural 
networks and fuzzy inference systems are all special 
instances of adaptive networks when proper node functions 
are assigned, and all leaming schemes applicable to 
adaptive networks are also qualified methods for neural 
networks and fuzzy inference systems. 

When represented as an adaptive network, a fuzzy in- 
ference system is called adaptive networks-based fuzzy 
inference systems (ANFIS). For three of the most com- 
monly used fuzzy inference systems, the equivalent ANFIS 
can be derived directly. Moreover, the training of ANFIS 
follows the spirit of the minimum disturbance pr inc ip le  
[lo91 and is thus more efficient than sigmoidal neural 
networks. 

Once a fuzzy inference system is equipped with learning 
capability, all the design methodologies for neural network 
controllers become directly applicable to fuzzy controllers. 
We briefly review these design techniques and give related 
references for further studies. 

The arrangement of this article is as follows. In Section 11, 
an in-depth introduction to the basic concepts of fuzzy sets, 
fuzzy reasoning, fuzzy if-then rules, and fuzzy inference 
systems are given. Section 111 is devoted to the formaliza- 
tion of adaptive networks and their leaming rules, where the 
back-propagation neural network and radial basis function 
network are included as special cases. Section IV explains 
the ANFIS architecture and demonstrates its wperiority 
over back-propagation neural networks. A number of design 
techniques for fuzzy and neural controllers is described in 
Section V.  Section VI concludes this paper by pointing out 
current problems and future directions. 

11. 
REASONING, AND FUZZY MODELS 

FUZZY SETS, FUZZY RULES, F U 7 . y  

This section provides a concise introduction to and a 
summary of the basic concepts central to the study of fuzzy 
sets. Detailed treatments of specific subjects can be found 
in the reference list. 
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Fig. 1. 
“about 50 years old.” 

(a) A = “appropriate number of courses taken” (b) B = 

A. Fuzzy Sets 

example, a classical set A can be expressed as 
A classical set is a set with a crisp boundary. For 

A = {z I z > 6) (1) 

where there is a clear, unambiguous boundary point 6 
such that if z is greater than this number, then z belongs 
to the set A, otherwise z does not belong to this set. 
In contrast to a classical set, a fuzzy set, as the name 
implies, is a set without a crisp boundary. That is, the 
transition from “belonging to a set” to “not belonging to a 
set” is gradual, and this smooth transition is characterized 
by membership functions that give fuzzy sets flexibility 
in modeling commonly used linguistic expressions, such 
as “the water is hot” or “the temperature is high.” As 
Zadeh pointed out in 1965 in his seminal paper entitled 
“Fuzzy Sets” [ 1 161, such imprecisely defined sets or classes 
“play an important role in human thinking, particularly 
in the domains of pattem recognition, communication of 
information, and abstraction.” Note that the fuzziness does 
not come from the randomness of the constituent members 
of the sets, but from the uncertain and imprecise nature of 
abstract thoughts and concepts. 
Dejnition 1: Fuzzy Sets and Membership Functions If X is a 
collection of objects denoted generically by z, then a fuzzy 
set A in X is defined as a set of ordered pairs: 

p ~ ( z )  is called the membership function (MF for short) of 
2 in A. The MF maps each element of X to a continuous 
membership value (or membership grade) between 0 and 1. 

0 
Obviously the definition of a fuzzy set is a simple 

extension of the definition of a classical set in which 
the characteristic function is permitted to have continuous 
values between 0 and 1.  If the value of the membership 
function p . ~ ( z )  is restricted to either 0 or 1, then tl is 
reduced to a classical set and p.A(r)  is the characteristic 
function of A .  

Usually X is referred to as the “universe of discourse,” 
or simply the “universe,” and it may contain either discrete 
objects or continuous values. Two examples are given 
below. 

Example 1: Fuuy Sets with Discrete X .  Let X = { 1, 2, 
3, 4, 5 .  6, 7, 81 be the set of numbers of courses a student 

may take in a semester. Then the fuzzy set A = “appropriate 
number of courses taken” may be described as follows: 

A ={(11~.1),(2,0.~~,(~l~~.~)l(~, I) ,  
(5,0.9),(6,0.5),(7,0.2),(8,0.1)}. 

This fuzzy set is shown in Fig. ](a). 0 
Example 2: Fuzzy Sets with Continuous X .  Let X = R+ 

be the set of possible ages for human beings. Then the fuzzy 
set B = “about 50 years old” may be expressed as 

B = {(z.,u”B(.r) 15 E X} 
where 

This is illustrated in Fig. l(b). U 
An alternative way of denoting a fuzzy set A is 

p ~ ( z , ) / ~ , ,  if X is discrete. 

(3) A = X T € ? X -  S, p~A(:r) /r l  if x is continuous. { 
The summation and integration signs m (3) stand for the 
union of (2. p~ ( . E ) )  pairs; they do not indicate summation 
or integration. Similarly, “/” is only a marker and does 
not imply division. Using this notation, we can rewrite the 
fuzzy sets in Examples 1 and 2 as 

A = O . l / l  + 0.3/2 + 0.8/3 + 1.0/1 
+ 0.9/5 + 0.5/6 + 0.2/7 + 0.1/8, 

and 

respectively. 
From Example 1 and 2, we see that the construction of 

a fuzzy set depends on two things: the identification of a 
suitable universe of discourse and the specification of an ap- 
propriate membership function. It should be noted that the 
specification of membership functions is quite subjective, 
which means the membership functions specified for the 
same concept (say, “cold”) by different persons may vary 
considerably. This subjectivity comes from the indefinite 
nature of abstract concepts and has nothing to do with 
randomness. Therefore the subjectivity and nonrandomness 
of fuzzy sets is the primary difference between the study 
of fuzzy sets and probability theory, which deals with 
objective treatment of random phenomena. 

Corresponding to the ordinary set operations of union, 
intersection, and complement, fuzzy sets have similar oper- 
ations, which were initially defined in Zadeh’s paper [116]. 
Before introducing these three fuzzy set operations, first 
we will define the notion of containment, which plays a 
central role in both ordinary and fuzzy sets. This definition 
of containment is, of course, a natural extension of the case 
for ordinary sets. 
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Operations on fuzzy sets: (a) two fuzzy sets A and B ;  

Definition 2: Containment or Subset Fuzzy set A is con- 
tained in fuzzy set B (or, equivalently, A is a subset of 
B, or A is smaller than or equal to B )  if and only if 
PA(%) 5 p ~ ( x )  for all z. In symbols, 

(4) 

0 
Definition 3: Union (disjunction) The union of two fuzzy 

sets A and B is a fuzzy set C,  written as C = A U B 
or C = A OR B, whose MF is related to those of A 
and B by 

A c B e P A ( x )  5 P B ( x ) .  

p C ( X )  = "(bA(Z),bB(x))  = P A ( z )  V P B ( x ) .  ( 5 )  

U 
As pointed out by Zadeh [116], a more intuitive and 

appealing definition of union is the smallest fuzzy set 
containing both A and B. Alternatively, if D is any fuzzy 
set that contains both A and B, then it also contains A U  B. 
The intersection of fuzzy sets can be defined analogously. 

Definition 4: Intersection (conjunction) The intersection 
of two fuzzy sets A and B is a fuzzy set C ,  written as 
C = A fl B or C = A AND B, whose MF is related 
to those of A and B by 

P C ( z )  = min(pA(x), pL?(z) )  = pA(z) A P B ( x ) .  (6)  

0 
As in the case of the union, it is obvious that the 

intersection of A and B is the largest fuzzy set which is 
contained in both A and B. This reduces to the ordinary 
intersection operation if both A and B are nonfuzzy. 

Definition 5: Complement (negation) The complement of 
fuzzy set A,  denoted by ~ ( T A ,  NOT A),  is defined as 

p x ( x )  = 1 - P A ( Z ) .  (7) 

0 

Fig. 2 demonstrates these three basic operations: 1) illus- 
trates two fuzzy sets A and B, 2) is the complement of 
A,  3) is the union of A and B,  and 4) is the intersection 
of A and B. 

Note that other consistent definitions for fuzzy AND and 
OR have been proposed in the literature under the names 
"T-norm" and "T-conorm" operators [ 161, respectively. 
Except for min and max, none of these operators satisfy 
the law of distributivity: 

pAU(BnC)(2) = /L(AUB)n(AUC)(X), 
PAn(BUC)(l) = P(AI~B)V(A"C)(~). 

However, min and max do incur some difficulties in ana- 
lyzing fuzzy inference systems. A popular alternative is to 
use the probabilistic AND and OR: 

pAnB(z) = /LA(x)PB(z). 
p A u B ( z )  =pA(z)  -k P B ( T )  - P A ( x ) P B ( z ) .  

In the following, we shall give several classes of param- 
eterized functions commonly used to define MF's. These 
parameterized MF's play an important role in adaptive 
fuzzy inference systems. 

Definition 6: Triangular MF's A triangular M F  is spec- 
ified by three parameters { a ,  b. c}, which determine the z 
coordinates of three comers: 

triangle(:c; a ,  b,  c )  

= rnax (min (-,-),o). 2 - a  c - x  (8) h - U  C - b  

Fig. 3(a) illustrates an example of the triangular MF defined 
0 

Definition 7: Trapezoidal MF's  A trapezoidal M F  is 
by triangle(x; 20, 60, 80). 

specified by four parameters {U, b. c. d }  as follows: 

trapezoid(.c: a ,  b, c .  d )  

= max (rriin (E, x - a  1 ,  ----) d - 3 .  , ( I ) .  (9) d - ( .  

Fig. 3(b) illustrates an example of a trapezoidal MF defined 
by trapezoid(x; 10, 20, 60, 95). Obviously, the triangular 

0 
Due to their simple formulas and computational effi- 

ciency, both triangular MF's and trapezoidal MF's have 
been used extensively, especially in real-time implementa- 
tions. However, since the MF'\ are composed of straight 
line segments, they are not smooth at the switching points 
specified by the parameters. In the following we introduce 
other types of MF's defined by smooth and nonlinear 
functions. 

Definition 8: Gaussian MF's  A Gaussian M F  is specified 
by two parameters {g. c}: 

MF is a special case of the trapezoidal MF. 

gaussian(2; f7* c )  = , { - [ ( x - c ) / ~ I L }  (10) 

where c represents the MF's center and c determines the 
MF's width. Fig. 3(c) plots a Gaussian MF defined by 
gaussian(x;20,50). 0 
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Fig. 3. Examples of various classes of MF’s: (a) trrangle (x; 
20, 60, 80); (b) t rapezoid  ( x ;  IO,  20, 60, 95); (c )  gaussic~n (x; 
20, 50); (d) bell (x;  20, 4, 50). 

Deifinition 9: Generalized Bell MF’s A generalized bell 
MF (or bell MF ) is specified by three parameters {a, b ,  c}: 

where the parameter b is usually positive. Note that this MF 
is a direct generalization of the Cauchy distribution used in 
probability theory. Fig. 3 illustrates a generalized bell MF 

U 
A desired generalized bell MF can be obtained by a 

proper selection of the parameter set {a .  b. c } .  Specifically, 
we can adjust c and a to vary the center and width 
of the MF, and then use b to control the slopes at the 
crossover points. Fig. 4 shows the physical meanings of 
each parameter in a bell MF. 

Deifinition IO: Sigmoidal MF’s  A sigmoidal MF is de- 
fined by 

defined by bel@; 20, 4, 50). 

(12) 
1 

1 + exp [-a(. - c)] 
s igmoid(x ;  a.  c) = 

where a controls the slope at the crossover point x = c. 0 
Depending on the sign of the parameter a,  a sigmoidal 

MF is inherently open right or left and thus is appropriate 
for representing concepts such as “very large” or “very 
negative.” Sigmoidal functions of this kind are employed 
widely as the activation function of artificial neural net- 
works. Therefore, for a neural network to simulate the 
behavior of a fuzzy inference system, the first problem we 
face is how to synthesize a close MF through a sigmoidal 
function. There are two simple ways to achieve this: one is 

Fig. 4. Physical meaning of parameters in a generalized bell 
function. 

to take the product of two sigmoidal MF’s; the other is to 
take the absolute difference of two sigmoidal MF’s. 

It should be noted that the list of MF’s introduced in this 
section is by no means exhaustive; other specialized MF’s 
can be created for specific applications if necessary. In 
particular, any types of continuous probability distribution 
functions can be used as an MF here, provided that a set of 
parameters are given to specify the appropriate meanings 
of the MF. 

B. Fuzzy If-Then Rules 

conditional statement ) assumes the form 
A fuzzy if-then rule (fuzzy rule, fuzzy implication, or fuzzy 

if x is A then y is B (13) 

where A and B are linguistic values defined by fuzzy sets 
on universes of discourse X and Y ,  respectively. Often 
“x is A” is called the antecedent or premise while “y is 
B” is called the consequence or conclusion. Examples of 
fuzzy if-then rules are widespread in our daily linguistic 
expressions, such as the following: 

If pressure is high then volume is small. 
If the road is slippery then driving is dangerous. 
If a tomato is red then it is ripe. 
If the speed is high then apply the brake a little. 

Before we can employ fuzzy if-then rules to model 
and analyze a system, we first have to formalize what is 
meant by the expression “if x is A then y is B,” which 
is sometimes abbreviated as .4 + R. In essence, the 
expression describes a relation between two variables x 
and y; this suggests that a fuzzy if-then rule be defined as a 
binary fuzzy relation R on the product space X x Y .  Note 
that a binary fuzzy relation R is an extension of the classical 
Cartesian product, where each element (x,y) E X x Y is 
associated with a membership grade denoted by p ~ ( x ,  y). 
Altematively, a binary fuzzy relation R can be viewed as 
a fuzzy set with universe X x Y ,  and this fuzzy set is 
characterized by a two-dimensional MF p~ ( x. y ). 

Generally speaking, there are two ways to interpret the 
fuzzy rule A -+ B. If we interpret A --+ B as ‘*A coupled 
with B,” then 

R = A + B = A x B =  
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T x  Y x  
(a) (b) 

Two interpretations of fuzzy implication: (a) A coupled Fig. 5. 
with B;  (b) A entails E .  

where i is a fuzzy AND (or more generally, T-norm) 
operator and A -+ B is used again to represent the fuzzy 
relation R. On the other hand, if A -+ B is interpreted 
as “ A  entails B,” then it can be written as four different 
formulas: 

Material implication: R = A -+ B = T A  U B .  
Propositional calculus: R = A + B = - A  U ( A  n B ) .  
Extended propositional calculus: R = A -+ B = 
(’A n ’ B )  U B. 
Generalization of modus ponens: p ~ ( x , y )  = 
~ u p { c ( p ~ ( x ) * c  5 p ~ ( y ) a n d O  5 c I l}, where 
R = A -+ B and jl is a T-norm operator. 

Though these four formulas are different in appearance, 
they all reduce to the familiar identity A -+ B T A  U B 
when A and B are propositions in the sense of two-valued 
logic. Fig. 5 illustrates these two interpretations of a fuzzy 
rule A -+ B .  Here we shall adopt the first interpretation, 
where A -+ B implies “ A  coupled with B.” The treatment 
of the second interpretation can be found in [35],  [50], [Sl]. 

C. Fuzzy Reasoning (Approximate Reasoning) 
Fuzzy reasoning (also known as approximate reasoning) 

is an inference procedure used to derive conclusions from 
a set of fuzzy if-then rules and one or more conditions. 
Before introducing fuzzy reasoning, we shall discuss the 
compositional rule of inference [ 1171, which is the essential 
rationale behind fuzzy reasoning. 

The compositional rule of inference is a generalization of 
the following familiar notion. Suppose that we have a curve 
y = f(z) that regulates the relation between x and y. When 
we are given z = a,  then from y = f ( x )  we can infer that 
y = b = f(a); see Fig. 6(a). A generalization of the above 
process would allow a to be an interval and f(z) to be 
an interval-valued function, as shown in Fig. 6(b). To find 
the resulting interval y = b corresponding to the interval 
x = a, we first construct a cylindrical extension of a (that 
is, extend the domain of a from X to X x Y )  and then 
find its intersection I with the interval-valued curve. The 
projection of I onto the y-axis yields the interval y = b. 

Going one step further in our generalization, we assume 
that A is a fuzzy set of X and F is a fuzzy relation on 
X x Y, as shown in Fig. 7(a) and (b). To find the resulting 
fuzzy set B ,  again, we construct a cylindrical extension 
c(A)  with base A (that is, we expand the domain of A from 
X to X x Y to get c(A)).  The intersection of c(A) and F 
(Fig. 7(c)) forms the analog of the region of intersection I 

(a) (b) 

Fig. 6. Derivation of y = b from .c = a and y = f(.c). (a) a 
and b are points, y = f (z )  is a curve, (b) a and b are intervals, 
y = f(s) IS an interval-valued function. 

in Fig. 6(b). By projecting c (A)  n F onto the y-axis, we 
infer y as a fuzzy set B on the y-axis, as shown in Fig. 7(d). 
Specifically, let PA,  p c ( ~ ) ,  p ~ ,  and p~ be the MF’s of A,  
c(A) ,  B, and F,  respectively, where p , ( ~ )  is related to p~ 
through 

Y) = p A ( X ) .  

Then 

This formula is referred to as ma-min composition and B 
is represented as 

B = A o F  

where o denotes the composition operator. If we choose 
product for fuzzy AND and max for fuzzy OR, then 
we have ma-product composition and pg(y)  is equal 

Using the compositional rule of inference, we can formal- 
ize an inference procedure, called fuzzy reasoning, upon a 
set of fuzzy if-then rules. The basic rule of inference in 
traditional two-valued logic is modus ponens, according to 
which we can infer the truth of a proposition B from the 
truth of A and the implication A + B .  For instance, if 
A is identified with “the tomato is red” and B with “the 
tomato is ripe,” then if it is true that “the tomato is red,” 
it is also true that “the tomato is ripe.” This concept is 
illustrated below. 

vx [pA(Z:)pF(x ,  U)]. 

premise 1 (fact): 
premise 2 (rule): 

x is  A ,  
if z is A then :y is B ,  

~ 

consequence (conclusion): y is B. 

However, in much of human reasoning, modus ponens is 
employed in an approximate manner. For example, if we 
have the same implication rule “if the tomato is red then 
it is ripe” and we know that “the tomato is more or less 
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(a) cylindrical extension of A (b) fuzzy relation F on x and y 
Q, 

10 10 

(c) min. of (a) and (b) (d) projection of (c) onto y-axis a Q, U 

10 10 

ripe.” This is written as 

premise 1 (fact): x is A’, YT/jl: ...,,,,, > 
premise 2 (rule): 

consequence (conclusion): ?/ is B‘ X 

if :I‘ is A then y is B, .......-....... .... 

Fig. 7. Compositional rule of inference 

I&,> ~ ...... . .... 

Y 

where A‘ is close to A and B’ is close to B. When A,  
B, A’, and B’ are fuzzy sets of appropriate universes, 
the above inference procedure is called fuzzy reasoning or 
approximate reasoning; it is also called generalized modus  
ponens, since it has modus ponens a5 a special case. 

Using the composition rule of inference introduced ear- 
lier, we can formulate the inference procedure of fuzzy 
reasoning as the following definition. 

Dejiinitian 1 I: Fuzzy Reasoning Bused On M a - M i n  Com- 
position: Let A,  A‘, and B be fuzzy sets of X ,  X ,  and Y ,  
respectively. Assume that the fuzzy implication A + B is 
expressed as a fuzzy relation R on X x Y .  Then the fuzzy 
set B’ induced by “lc is A’” and the fuzzy rule “if x is A 
then y is B” is defined by 

Fig. 8. Fuzzy reasoning for a single rule with a single antecedent. 

Remember that (15) is a general expression for fuzzy 
reasoning, while (14) is an instance of fuzzy reasoning 
where min and max are the operators for fuzzy AND and 
OR, respectively. 

Now we can use the inference procedure of the gener- 
alized modus ponens to derive conclusions, provided that 
the fuzzy implication A --+ B is defined as an appropriate 
binary fuzzy relation. 

1) Single Rule with Single Antecedent For a single rule 
with a single antecedent, the formula is available in (14). 
A further simplification of the equation yields 

p ~ , ( y )  = max min [ p A , ( s ) ,  p R ( x , y ) ]  PB’(zl)  = [vx (P.4,(Z) A PA-L(2)] A P B ( Y )  
X 

= ? U  A p ~ ( y ) .  
= v.r [ P A ’ ( Z )  A p R ( . c ,  y)] (14) 

In other words, first we find the degree of match w as 
the maximum of ~ A , ( z )  A p,4(z) (the shaded area in the 
antecedent part of Fig. 8); then the MF of the resulting B’ 
is equal to the MF of B clipped by 20, shown a? the shaded 
area in the consequent part of Fig. 8. 

or, equivalently, 

R‘ = A’ o R = A’ o ( A  -+ B) .  (15) 

0 
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Fig. 9. Approximate reasoning for multiple antecedents. 

A fuzzy if-then rule with two antecedents is usually writ- 
ten as “if x is A and g is B then z is C.” The corresponding 
problem for approximate reasoning is expressed as 

premise 1 (fact): 
premise 2 (rule): 

consequence (conclusion): z is C’ 

x is A’ and y is B’ 
if z is A I  and y is B1 then z 
is C1 

The fuzzy rule in premise 2 above can be put into the 
simpler fomi “ A  x B -+ C.” Intuitively, this fuzzy rule 
can be transformed into a ternary fuzzy relation R, which 
is specified by the following MF: 

And the resulting C’ is expressed as 

C’ = (A’ x B’) o ( A  x B -+ C).  

Thus 

where w1 is the degree of match between A and A‘; w2 
is the degree of match between B and B’; and w1 A 
202 is called the firing strength or degree of fu&Elment 
of this fuzzy rule. A graphic interpretation is shown in 
Fig. 9, where the MF of the resulting C’ is equal to the 
MF of C clipped by the firing strength w ,  w = w1 A 
w2. The generalization to more than two antecedents is 
straightforward. 

2) Multiple Rules with Multiple Antecedents: The inter- 
pretation of multiple rules is usually taken as the union of 
the fuzzy relations corresponding to the fuzzy rules. For 
instance, given the following fact and rules: 

I 

X 

’4 

Fig. 10. Fuzzy reasoning for multiple rules with multiple an- 
tecedents. 

premise 1 (fact): 
premise 2 (rule 1): 

premise 3 (rule 2):  

x is A’ and y is B’ 
if z is A1 and y is B1 then z 
is C1 
if z is A2 and y is Bz then z 
is C, 

consequence (conclusion): z is C’ 

we can employ the fuzzy reasoning shown in Fig. 10 as 
an inference procedure to derive the resulting output fuzzy 
set C’. 

To verify this inference procedure, let RI = A1 x B1 --+ 

C1 and R2 = A2 x B2 -+ (32 .  Since the max-min 
composition operator o is distributive over the U operator, 
it follows that 

C’ = (A’ x B’) o (RI U R2) 
= [(A’ x B’) o R I ]  U [(A‘ x B‘) o Rz] 

=c; U c; (17) 

where Ci and Ch are the inferred fuzzy sets for rule 1 
and 2, respectively. Fig. 10 shows graphically the opera- 
tion of fuzzy reasoning for multiple rules with multiple 
antecedents. 

When a given fuzzy rule assumes the form “if x is A or 
y is B then z is C,” then firing strength is given as the 
maximum of degree of match on the antecedent part for a 
given condition. This fuzzy rule is equivalent to the union 
of the two fuzzy rules “if z is A then z is C” and “if 7~ 
is B then z is C” if and only if the max-min composition 
is adopted. 

D. Fuzzy Models (Fuzzy Inference Systems) 
The Fuzzy inference system is a popular computing frame- 

work based on the concepts of fuzzy set theory, fuzzy 
if-then rules, and fuzzy reasoning. It has been successfully 
applied in fields such as automatic control, data classi- 
fication, decision analysis, expert systems, and computer 
vision. Because of its multi-disciplinary nature, the fuzzy 
inference system is known by a number of names, such 
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Fig. 11. 
for fuzzy AND and OR operators, respectively. 

The Mamdani fuzzy inference system using min and max 

as “fuzzy-rule-based system,” “fuzzy expert system” (381, 
“fuzzy model” [89], [96], “fuzzy associative memory” [48], 
“fuzzy logic controller” [50], [51], 1611, and simply (and 
ambiguously) “fuzzy system.” 

The basic structure of a fuzzy inference system consists 
of three conceptual components: a rule base, which contains 
a selection of fuzzy rules, a database or dictionary, which 
defines the membership functions used in the fuzzy rules, 
and a reasoning mechanism, which performs the inference 
procedure (usually the fuzzy reasoning introduced earlier) 
upon the rules and a given condition to derive a reasonable 
output or conclusion. 

In what follows, we will first introduce three types of the 
most commonly used fuzzy inference systems. Then we will 
introduce three ways of partitioning the input space for any 
type of fuzzy inference system. Last, we will address briefly 
the features and the problems of fuzzy modeling, which is 
concemed with the construction of a fuzzy inference system 
for modeling a specific target system. 

1 )  Mamdani Fuzzy Model: The Mamdani fuzzy model 
[61] was proposed as the very first attempt to control a 
steam engine and boiler combination by a set of linguistic 
control rules obtained from experienced human operators. 
Fig. 11 is an illustration of how a two-rule fuzzy inference 
system of the Mamdani type derives the overall output z 
when subjected to two crisp inputs x and y. 

If we adopt product and max as our choice for the fuzzy 
AND and OR operators, respectively, and use max-product 
composition instead of the original max-min composition, 
then the resulting fuzzy reasoning is shown in Fig. 12, 
where the inferred output of each rule is a fuzzy set 
scaled down by its firing strength via the algebraic product. 
Though this type of fuzzy reasoning was not employed 
in Mamdani’s original paper, it has often been used in 
the literature. Other variations are possible if we have 
different choices of fuzzy AND (T-norm) and OR (T- 
conorm) operators. 

I 
X 

I 
Y ax 

I 1. 

z 

Fig. 12. The Mamdani fuuy  inferexe system using p r  ~ d t r c t  
and max for fuzzy AND dnd OR operaLor5, re\pectively 

In Mamdani’s application [61], two fuzzy inference sys- 
tems were used as two controllers to generate the heat input 
to the boiler and throttle opening of the engine cylinder, 
respectively, in order to regulate the steam pressure in the 
boiler and the speed of the engine. Since the plant takes 
only crisp values as inputs, we have to use a defuzzifier 
to convert a fuzzy set to a crisp value. DefuzziJication 
refers to the way a crisp value is extracted from a fuzzy 
set as a representative value. The most frequently used 
defuzzification strategy is the centroid of area. which is 
defined as 

where p c / ( x )  is the aggregated output MF. This formula is 
reminiscent of the calculation of expecled values in prob- 
ability distributions. Other defuzzification strategies arise 
for specific applications, which includes bisector of area, 
mean of maximum, largest of maximum, and smallest of 
maximum, and so on. Fig. 13 demonstrates these defuzzifi- 
cation strategies. Generally speaking, these defuzzification 
methods are computation intensive and there is no rigorous 
way to analyze them except through experiment-based 
studies. Other more flexible defuzzification methods can 
be found in [72], [79], [ I  131. 

Both Figs. 11 and 12 conform to the fuzzy reasoning 
defined previously. In practice, however, a fuzzy inference 
system may have certain reasoning mechanisms that do 
not follow the strict definition of the compositional rule of 
inference. For instance, one might use either min or product 
for computing firing strengths and/or qualified rule outputs. 
Another variation is to use pointwise summation (sum) 
instead of max in the standard fuzzy reasoning, though sum 
is not really a fuzzy OR operators. An advantage of this 
sum-product composition [48] is that the final crisp output 
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Fig. 13. Various defuzzification schemes for obtdining a crisp 
output. 

via centroid defuzzification is equal to the weighted average 
of each rule’s crisp output, where the weighting factor for 
a rule is equal to its firing strength multiplied by the area 
of the rule’s output MF, and the crisp output of a rule is 
equal to the centroid defuzzified value of its output MF. 
This reduces the computation burden if we can obtain the 
area and the centroid of each output MF in advance. 

2) Sugeno Fuzzy Model: The Sugeno fuzzy model (also 
known as the TSK fuzzy model) was proposed by Takagi, 
Sugeno, and Kang [89], [96] in an effort to develop a 
systematic approach to generating fuzzy rules from a given 
input-output data set. A typical fuzzy rule in a Sugeno fuzzy 
model has the form 

if z is A and y is B then z = f ( z ,  y) 

where A and B are fuzzy sets in the antecedent, while 
z = f(z, y) is a crisp function in the consequent. Usually 
f ( z ,  y) is a polynomial in the input variables z and y, but it 
can be any function as long as it can appropriately describe 
the output of the system within the fuzzy region specified 
by the antecedent of the rule. When f(z, y) is a first-order 
polynomial, the resulting fuzzy inference system is called 
a first-order Sugeno fuzzy model, which was originally 
proposed in [89], [96]. When f is a constant, we then have a 
zero-order Sugeno fuzzy model, which can be viewed either 
as a special case of the Mamdani fuzzy inference system, 
in which each rule’s consequent is specified by a fuzzy 
singleton (or a predefuzzified consequent), or a special case 
of the Tsukamoto fuzzy model (to be introduce later), in 
which each rule’s consequent is specified by an MF of a step 
function crossing at the constant. Moreover, a zero-order 
Sugeno fuzzy model is functionally equivalent to a radial 
basis function network under certain minor constraints [33]. 

It should be pointed out that the output of a zero-order 
Sugeno model is a smooth function of its input variables 
as long as the neighboring MF’s in the premise have 
enough overlap. In other words, the overlap of MF’s in 
the consequent does not have a decisive effect on the 
smoothness of the interpolation; it is the overlap of the 
MF’s in the premise that determines the smoothness of the 
resulting input-output behavior. 

Fig. 14 shows the fuzzy reasoning procedure for a first- 
order Sugeno fuzzy model. Since each rule has a crips 
output, the overall output is obtained via weighted average 
and thus the time-consuming procedure of defuzzification 
is avoided. In practice, sometimes the weighted average 

X Y 

I 
dghtdsverage 1 

= -  wtzi+wazr 
I*l + wa 

Fig. 14. The Sugeno fuzzy model. 

mi” cv 

I I 
X Y 

Fig. 15. The Tsukamoto fuzzy model. 

operator is replaced with the weighted sum operator (that 
is, z = wlzl + w2z2 in Fig. 14) in order to further reduce 
computation load, especially in training a fuzzy inference 
system. However, this simplification could lead to the loss 
of MF linguistic meanings unless the sum of firing strengths 
(that is, E, w,) is close to unity. 

3)  Tsukamoto Fuzzy Model: In the Tsukamoto fuzzy m d -  
els [99l, the consequent of each fuzzy if-then rule is 
represented by a fuzzy set with a monotonical MF, as shown 
in Fig. 15. As a result, the inferred output of each rule is 
defined as a crisp value induced by the rule’s firing strength. 
The overall output is taken as the weighted average of 
each rule’s output. Fig. 15 illustrates the whole reasoning 
procedure for a two-input two-rule system. 

Since each rule infers a crisp output, the Tsukamoto 
fuzzy model aggregates each rule’s output by the method of 
weighted average and thus also avoids the time-consuming 
process of defuzzification. 

4)  Partition Styles for Fuuy Models: By now it should 
be clear that the spirit of fuzzy inference systems resembles 
that of “divide and conquer”-the antecedents of fuzzy 
rules partition the input space into a number of local 
fuzzy regions, while the consequents describe the behavior 
within a given region via various constituents. The conse- 
quent constituent could be an output MF (Mamdani and 
Tsukamoto fuzzy models), a constant (zero-order Sugeno 
model), or a linear equation (first-order Sugeno model). 
Different consequent constituents result in different fuzzy 
inference systems, but their antecedents are always the 
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Various methods for partitioning the input space: (a) grid partition; (b) tree partition; Fig. 16. 
(c) scatter partition. 

same. Therefore the following discussion of methods of 
partitioning input spaces to form the antecedents of fuzzy 
rules is applicable to all three types of fuzzy inference 
systems. 

Grid Partition: Fig. 16(a) illustrates a typical grid par- 
tition in a two-dimensional input space. This partition 
method is often chosen in designing a fuzzy controller, 
which usually involves only several state variables 
as the inputs to the controller. This partition strategy 
needs only a small number of MF’s for each input. 
However, it encounters problems when we have a 
moderately large number of inputs. For instance, a 
fuzzy model with 10 inputs and two MF’s on each 
input would result in 2’O = 1024 fuzzy if-then rules, 
which is prohibitively large. This problem, usually 
referred to as the curse of dimensionality, can be 
alleviated by the other partition strategies introduced 
below. 
Tree Partition: Fig. 16(b) shows a typical tree partition, 
in which each region can be uniquely specified along a 
corresponding decision tree. The tree partition relieves 
the problem of an exponential increase in the number 
of rules. However, more MF’s for each input are 
needed to define these fuzzy regions, and these MF’s 
do not usually bear clear linguistic meanings such as 
“small,” “big,” and so on. 
Scatter Partition: As shown in Fig. 16(c), by covering 
a subset of the whole input space that characterizes a 
region of possible occurrence of the input vectors, the 
scatter partition can also limit the number of rules to 
a reasonable amount. 

5 )  Neuro-Fuzzy Modeling: The process for constructing a 
fuzzy inference system is usually called “fuzzy modeling,” 
which has the following features: 

Due to the rule structure of a fuzzy inference system, it 
is easy to incorporate human expertise about the target 
system directly into the modeling process. Namely, 
fuzzy modeling takes advantage of domain knowledge 
that might not be easily or directly employed in other 
modeling approaches. 

When the input-output data of a system to be modeled 
is available, conventional system identification tech- 
niques can be used for fuzzy modeling. In other words, 
the use of numerical data also plays an important 
role in fuzzy modeling, just as in other mathematical 
modeling methods. 
common practice is to use domain knowledge for 

structure determination (that is. determine relevant inputs, 
number of MF’s for each input, number of rules, types of 
fuzzy models, and so on) and numerical data for parameter 
identification (that is, identify the values of parameters that 
can generate best the performance). In particular, the term 
neuro-fuzzy modeling refers to the way of applying various 
learning techniques developed in the neural network litera- 
ture to fuzzy inference systems. In the subsequent sections, 
we will apply the concept of the adaptive network, which 
is a generalization of the common back-propagation neural 
network, to tackle the parameter identification problem in 
a fuzzy inference system. 

111. ADAPTIVE NETWORKS 
This section describes the architectures and learning 

procedures of adaptive networks, which are a superset of all 
kinds of neural network paradigms with supervised learning 
capability. In particular, we shall address two of the most 
popular network paradigms adopted in the neural network 
literature: the back-propagation neural network (BPNN) and 
the radial basis function network (RBFN). Other network 
paradigms that can be interpreted as a set of fuzzy if-then 
rules are described in the next section. 

A. Architecture 
As the name implies, an adaprive nehvork (Fig. 17) is 

a network structure whose overall input-output behavior 
is determined by the values of a collection of modifiable 
parameters. More specifically, the configuration of an adap- 
tive network is composed of a set of nodes connected 
through directed links, where each node is a process unit 
that performs a static node function on its incoming signals 
to generate a single node output and each link specifies the 
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tion. 

A feedforward adaptive network in layered representa- 

direction of signal flow from one node to another. Usually 
a node function is a parameterized function with modifiable 
parameters; by changing these parameters, we are actually 
changing the node function as well as the overall behavior 
of the adaptive network. 

In the most general case, an adaptive network is hetero- 
geneous and each node may have a different node function. 
Also remember that each link in an adaptive network 
are merely used to specify the propagation direction of a 
node’s output; generally there are no weights or parameters 
associated with links. Fig. 17 shows a typical adaptive 
network with two inputs and two outputs. 

The parameters of an adaptive network are distributed 
into the network’s nodes, so each node has a local parameter 
set. The union of these local parameter sets is the network’s 
overall parameter set. If a node’s parameter set is nonempty, 
then its node function depends on the parameter values; 
we use a square to represent this kind of adaptive node. 
On the other hand, if a node has an empty parameter 
set, then its function is fixed; we use a circle to denote 
this type of fixed node. Adaptive networks are generally 
classified into two categories on the basis of the type of 
connections they have: feedforward and recurrent types. 
The adaptive network shown in Fig. 17 is a feedfonvard 
network, since the output of each node propagates from 
the input side (left) to the output side (right) unanimously. 
If there is a feedback link that forms a circular path in a 
network, then the network is a recurrent network; Fig. 18 
is an example. (From the viewpoint of graph theory, a 
feedforward network is represented by an acyclic directed 
graph which contains no directed cycles, while a recurrent 
network always contains at least one directed cycle.) 

In the layered representation of the feedforward adaptive 
network in Fig. 17, there are no links between nodes 
in the same layer and outputs of nodes in a specific 
layer are always connected to nodes in succeeding layers. 
This representation is usually preferred because of its 
modularity, in that nodes in the same layer have the same 
functionality or generate the same level of abstraction about 
input vectors. 

Another representation of feedfonvard networks is the 
topological ordering representation, which labels the nodes 
in an ordered sequence 1, 2, 3, . . .  , such that there are 
no links from node i to node j whenever i 2 j. Fig. 19 

U 

Fig. 18. A recurrent adaptive network 

is the topological ordering representation of the network 
in Fig. 17. This representation is less modular than the 
layer representation, but it facilitates the formulation of the 
leaming rule, as will be seen in the next section. (Note that 
the topological ordering representation is in fact a special 
case of the layered representation, with one node per layer.) 

Conceptually, a feedfonvard adaptive network is actually 
a static mapping between its input and output spaces; 
this mapping may be either a simple linear relationship 
or a highly nonlinear one, depending on the structure 
(node arrangement and connections, and so on) for the 
network and the function for each node. Here our aim is 
to construct a network for achieving a desired nonlinear 
mapping that is regulated by a data set consisting of a 
number of desired input-output pairs of a target system. 
This data set is usually called the training data set and 
the procedure we follow in adjusting the parameters to 
improve the performance of the network are often referred 
to as the learning rule or learning algorithm. Usually 
an adaptive network’s performance is measured as the 
discrepancy between the desired output and the network’s 
output under the same input conditions. This discrepancy is 
called the error measure and it can assume different forms 
for different applications. Generally speaking, a leaming 
rule is derived by applying a specific optimization technique 
to a given error measure. 

Before introducing a basic learning algorithm for adap- 
tive networks, we shall present several examples of adaptive 
networks. 

Example 3: An Adaptive Network with a Single Linear 
Node: Fig. 20 is an adaptive network with a single node 
specified by 

where x1 and z2 are inputs and al .  a2, and a.3 are mod- 
ifiable parameters. Obviously this function defines a plane 
in 2 1  - :c2 - 5 3  space, and by setting appropriate values 
for the parameters, we can place this plane arbitrarily. By 
adopting the squared error as the error measure for this 
network, we can identify the optimal parameters via the 

Example 4: A Building Block for the Perceptron or the 
Back-Propagation Neural Network: If we add another node 
to let the output of the adaptive network in Fig. 20 have 
only two values 0 and 1,  then the nonlinear network shown 

linear least-squares estimation method. 0 
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Fig. 19. A fecdforward adaptive network in topological ordering representation. 

Fig. 20. A linear single-node adaptive network. 

Fig. 21. A nonlinear single-node adaptive network. 

in Fig. 21 is obtained. Specifically, the node outputs are 
expressed as 

and 

1 if 2 3  2 0 
0 if z3 < 0 

3:4 = f4(3:3) = 

where f 3  is a linearly parameterized function and f 4  is a 
step function which maps -c3 to either 0 or 1. The overall 
function of this network can be viewed as a linear classi$er: 
the first node forms a decision boundary as a straight line 
in 11'1 - x2 space, and the second node indicates which half 
plane the input vector ( T I .  ,c2) resides in. Obviously we 
can form an equivalent network with a single node whose 
function is the composition of f3 and f 4 ;  the resulting node 
is the building block of the classical perceptron. 

Since the step function is discontinuous at one point and 
flat at all the other points, it is not suitable for learning 
procedures based on gradient descent. One way to get 
around this difficulty is to use the sigmoid function: 

which is a continuous and differentiable approximation to 
the step function. The composition of f3 and this differ- 
entiable f 4  is the building block for the back-propagation 

0 neural network in the following example. 

. 

U 

f t f 
layer 0 layer 1 layer 2 

(Input layer) (hidden layer) (output layer) 

Fig. 22. A 3-3-2 neural network. 

Example 5: A Back-Propagation Neurul Network: Fig. 22 
is a typical architecture for a back-propagation neural 
network with three inputs, two outputs, and three hidden 
nodes that do not connect directly to either inputs or 
outputs. (The term back-propagation refers to the way the 
learning procedure is performed, that is, by propagating 
gradient information from the network's outputs to its 
inputs; details on this are to be introduced next.) Each node 
in a network of this kind has the same node function, which 
is the composition of a linear f 3  and a sigmoidal fi in 
Example 4. For instance, the node function of node 7 in 
Fig. 22 is 

where x4, .c5, and :E6 are outputs from nodes 4, 5 ,  and 
6, respectively, and ( 7 ~ 4 , ~ :  2115,~.  ' u I ~ , J .  t:.} is the parameter 
set. Usually we view wi;j as the weight associated with 
the link connecting node i and j and t j  as the threshold 
associated with node j .  However, it should be noted that 
this weight-link association is only valid in this type of 
network. In general, a link only indicates the signal flow 
direction and, the causal relationship between connected 
nodes, as will be shown in other types of adaptive networks 
in the subsequent development. A more detailed discussion 
about the structure and learning rules of the artificial neural 

0 network will be presented later. 
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Fig. 23. 
sentation 

Our notational conventions: (a) layered representation; (b) topological ordering repre- 

B. Back-Propagation Learning Rule 
The central part of a learning rule for an adaptive network 

concerns how to recursively obtain a gradient vector in 
which each element is defined as the derivative of an error 
measure with respect to a parameter. This is done by means 
of the chain rule, and the method is generally referred to as 
the "back-propagation learning rule" because the gradient 
vector is calculated in the direction opposite to the flow of 
the output of each node. Details follow below. 

Suppose that a given feedforward adaptive network in 
the layered representation has L layers and layer 1(1  = 0, 
1, . . . . L; I = 0 represents the input layer) has N ( l )  nodes. 
Then the output and function of node i (i = 1, . . .  , N ( l ) )  
of layer 1 can be represented as xl.? and .fl.z, respectively, 
as shown in Fig. 23(a). Without loss of generality, we 
assume there are no jumping links, that is, links connecting 
nonconsecutive layers. Since the output of a node depends 
on the incoming signals and the parameter set of the node, 
we have the following general expression for the node 
function fl,?: 

5 1 , z  = ~ / , ~ ( x / - l , l , . . . ~ l - l , ~ ( l - ~ ) , a , / ? , ~ , . . . )  (19) 

where a,  /?, 7, etc., are the parameters pertaining to this 
node. 

Assuming the given training data set has P entries, we 
can define an error measure for the p th (1 5 p 5 P )  entry 
of the training data as the sum of squared errors: 

where d k  is the kth component of the pth desired output 
vector and X L , k  is the kth component of the actual output 
vector produced by presenting the pth input vector to the 
network. (For notational simplicity, we omit the subscript p 
for both d k  and X L , ~ . )  Obviously, when Ep is equal to zero, 
the network is able to reproduce exactly the desired output 
vector in the pth training data pair. Thus our task here is 
to minimize an overall error measure, which is defined as 

Remember that the definition of Ep in (20) is not uni- 
versal; other definitions of Ep are possible for specific 
situations or applications. Therefore we shall avoid using 
an explicit expression for the error measure Ep in order to 
emphasize the generality. In addition, we assume that Ep 
depends on the output nodes only; more general situations 
will be discussed below. 

To use the gradient method to minimize the error mea- 
sure, first we have to obtain the gradient vector. Before 
calculating the gradient vector, we should observe that 

P 
E = C,=lEP. 

/changein*rchangeintheourput/ 
parametera of node containing Q: 

change in the output change in the output *[Fl*Fl 
where the arrows * indicate causal relationships. In other 
words, a small change in a parameter a will affect the 
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The error signal for the ith output node (at layer L) can 
be calculated directly: 

Fig. 24. 
text for details). 

Ordered derivatives and ordinary partial derivatives (see 

output of the node containing a;  this in turn will affect the 
output of the final layer and thus the error measure. There- 
fore the basic concept in calculating the gradient vector of 
the parameters is to pass a form of derivative information 
starting from the output layer and going backward layer by 
layer until the input layer is reached. 

To facilitate the discussion, we define the error signal 
F L , ~  as the derivative of the error measure Ep with respect 
to the output of node i in layer 1, taking both direct and 
indirect paths into consideration. In symbols, 

This expression was called the “ordered derivative” by 
Werbos [107]. The difference between the ordered deriva- 
tive and the ordinary partial derivative lies in the way 
we view the function to be differentiated. For an internal 
node output . c ~ , ~  (where 1 # L) ,  the partial derivative 
(?lEP/axl,&) is equal to zero, since Ep does not depend on 
~ 1 , ~  directly. However, it is obvious that Ep does depend 
on ~ 1 , ~  indirectly, since a change in ~ 1 , ~  will propagate 
through indirect paths to the output layer and thus produce 
a corresponding change in the value of E p .  Therefore 

can be viewed as the ratio of these two changes 
when they are made infinitesimal. The following example 
demonstrates the difference between the ordered derivative 
and the ordinary partial derivative. 

Example 6: Ordered Derivatives and Ordinary Partial 
Derivatives: Consider the simple adaptive network shown 
in Fig. 24, where z is a function of x and y, and y is in 
turn a function of x: 

Y = f(x.). { 2 = d G Y ) .  

For the ordinary partial derivative (az/dz) ,  we assume that 
all the other input variables (in this case, y) are constant: 

ax ax . 
In other words, we assume the direct inputs x and y are 
independent, without paying attention to the fact that y is 
actually a function of x. For the ordered derivative, we take 
this indirect causal relationship into consideration: 

az - a g ( ~ , y >  -~ - 

a+z - a d z ,  f (.)I - 
i ) X  dX 

Therefore the ordered derivative takes into consideration 
both the direct and indirect paths that lead to the causal 
relationship. 0 

This is equal to  EL,^ = - 2 ( 4  - Z L , ~ )  if Ep is defined as in 
(20). For the internal (nonoutput) node at the ith position 
of layer 1, the error signal can be derived by the chain rule: 

error signal error signal 
at layer 1+1 at layer 1 

where 0 5 1 5 L- 1. That is, the error signal of an internal 
node at layer 1 can be expressed as a linear combination 
of the error signal of the nodes at layer 1+ I .  Therefore 
for any I and .i (0 5 I 5 L and 1 5 i 5 N ( l ) ) ,  we 
can find = (d+Ep/3xl,z)  by first applying (22) once 
to get error signals at the output layer, and then applying 
(23) iteratively until we reach the desired layer 1. Since the 
error signals are obtained sequentially from the output layer 
back to the input layer, this learning paradigm is called the 
“back-propagation” learning rule by Rumelhart, Hinton, and 
Williams [78]. 

The gradient vector is defined as the derivative of the 
error measure with respect to each parameter, so we have 
to apply the chain rule again to find the gradient vector. If 
a is a parameter of the ith node at layer I ,  we have 

Note that if we allow the parameter a to be shared between 
different nodes, then (24) should be changed to a more 
general form: 

where S is the set of nodes containing a as a parameter 
and f* is the node function for calculating x*. 

The derivative of the overall error measure E with respect 
to a is 

p=l  

Accordingly, the update formula for the generic param- 
eter a is 

d+E 
A a = - T ) -  atr 

in which 71 is the leaming rate, which can be further 
expressed as 

(28) 
K 
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where IC. is the step size, the length of each transition along 
the gradient direction in the parameter space. Usually we 
can change the step size to vary the speed of convergence; 
two heuristic rules for updating the value of IE are described 
in [30]. 

When an n-node feedforward network is represented in 
its topological order, we can envision the error measure E, 
as the output of an additional node with index n + 1, whose 
node function fn+l can be defined on the outputs of any 
nodes with smaller indexes; see Fig. 23(b). (Therefore Ep 
may depend directly on any intemal nodes.) Applying the 
chain rule again, we have the following concise formula for 
calculating the error signal ti = 8Ep/i3x,: 

or 

where the first term shows the direct effect of 2, on Ep via 
the direct path from node z to node n + 1 and each product 
term in the summation indicates the indirect effect of x, on 
Ep. Once we find the error signal for each node, then the 
gradient vector for the parameters is derived as before. 

Another simple and systematic way to calculate the 
error signals is through the representation of the error- 
propagation network (or sensitivity model), which is ob- 
tained from the original adaptive network by reversing the 
links and supplying the error signals at the output layer as 
inputs. The reader is referred to [22] or [35] for a complete 
coverage. 

Depending on the applications we are interested in, two 
types of leaming paradigms for adaptive networks are 
available to suit our needs. In off-line learning (or batch 
leaming), the update formula for parameter a is based on 
(26) and the update action takes place only after the whole 
training data set has been presented, that is, only after each 
epoch or sweep. On the other hand, in on-line learning (or 
pattern learning), the parameters are updated immediately 
after each input-output pair has been presented, and the 
update formula is based on (24). In practice, it is possible to 
combine these two leaming modes and update the parameter 
after k training data entries have been presented, where k 
is between 1 and P and it is sometimes referred to as the 
epoch size. 

For a recurrent adaptive network that operates synchro- 
nously, we can transform it into an equivalent feedfor- 
ward network by a simple technique called “unfolding 
of time” [78]. When applied to an unfold network, The 
back-propagation learning algorithm is often referred to 
as “back-propagation through time.” An improved on-line 
version that is less memory-intensive, called “real-time 
recurrent leaming” [112], is also available in the literature. 
Due to space limitation, the reader is refer to [22] or [351 
for a general coverage of applying back-propagation to 
recurrent networks. 

C. Hybrid Learning Rule: Combining BP and LSE 
It is observed that if an adaptive network’s output (as- 

suming only one) or its transformation is linear in some of 
the network’s parameters, then we can identify these linear 
parameters by the well known linear least-squares method. 
This observation leads to a hybrid learning rule [251, [30] 
which combines the gradient method and the least-squares 
estimator (LSE) for fast identification of parameters. 

I) 08-Line Learning (Batch Learning): For simplicity, 
assume that the adaptive network under consideration has 
only one output 

output = F(I:  S )  (31) 

where 9 is the vector of input variables and S is the set 
of parameters. If there exists a function H such that the 
composite function H o F is linear in some of the elements 
of S ,  then these elements can be identified by the least- 
squares method. More formally, if the parameter set S can 
be decomposed into two sets 

(where Q represents direct sum) such that H o  F is linear in 
the elements of S Z ,  then upon applying H to (31), we have 

H(ou tpu t )  = H 0 F ( f ,  S )  (33) 

which is linear in the elements of Sz. Now given values of 
elements of SI, we can plug P training data into (33) and 
obtain a matrix equation: 

AB = U (34) 

where B is an unknown vector whose elements are param- 
eters in SZ.  This equation represents the standard linear 
least-squares problem and the best solution for 8, which 
minimizes ((AB - L?(I2, is the least-squares estimator (LSE) 
e* : 

where AT is the transpose of A and (ATA)-’AT is the 
pseudo-inverse of A if A T A  is nonsingular. Of course, we 
can also employ the recursive LSE formula [ l l ,  1241, [591. 
Specifically, let the ith row vector of matrix A defined in 
(34) be U: and the ith element of B be bT; then B can be 
calculated iteratively as follows: 

where the least-squares estimator B* is equal to B p .  The 
initial conditions needed to bootstrap (36) are 80 = 0 and 
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SO = 71, where y is a positive large number and I is the 
identity matrix of dimension M x M .  When we are dealing 
with multi-output adaptive networks (output in (31) is a 
column vector), (36) still applies except that bT is the ith 
row of matrix B. 

Now we can combine the gradient method and the least- 
squares estimator to update the parameters in an adaptive 
network. For hybrid learning to be applied in a batch mode, 
each epoch is composed of a forward pass and a backward 
pass. In the forward pass, after an input vector is presented, 
we calculate the node outputs in the network layer by 
layer until a corresponding row in the matrices A and B 
in (34) are obtained. This process is repreated for all the 
training data entries to form the complete A and B; then 
parameters in S2 are identified by either the pseudo-inverse 
formula in (35) or the recursive least-squares formulas in 
(36). After the parameters in SZ are identified, we can 
compute the error measure for each training data entry. In 
the backward pass, the error signals (the derivative of the 
error measure w.r.t. each node output, see (22) and (23)) 
propagate from the output end toward the input end; the 
gradient vector is accumulated for each training data entry. 
At the end of the backward pass for all training data, the 
parameters in S1 are updated by the gradient method in 
(27). 

For given fixed values of the parameters in SI, the 
parameters in Sz thus found are guaranteed to be the global 
optimum point in the Sz parameter space because of the 
choice of the squared error measure. Not only can this 
hybrid learning rule decrease the dimension of the search 
space in the gradient method, but, in general, it will also 
substantially reduce the time needed to reach convergence. 

It should be kept in mind that by using the least-squares 
method on the data transformed by W(.), the obtained 
parameters are optimal in terms of the transformed squared 
error measure instead of the original one. In practice, 
this usually does not cause a problem as long as H ( . )  
is monotonically increasing and the training data are not 
too noisy. A more detailed treatment of this transformation 
method can be found in [35]. 

2) On-Line Learning (Pattern Learning): If the parame- 
ters are updated after each data presentation, we have an 
on-line leaming or pattern learning scheme. This leaming 
strategy is vital to on-line parameter identification for 
systems with changing characteristics. To modify the batch 
learning rule to obtain an on-line version, it is obvious 
that the gradient descent should be based on Ep (see (24)) 
instead of E.  Strictly speaking, this is not a truly gradient 
search procedure for minimizing E, yet it will approximate 
one if the learning rate is small. 

For the recursive least-squares formula to account for 
the time-varying characteristics of the incoming data, the 
effects of old data pairs must decay as new data pairs 
become available. Again, this problem is well studied in the 
adaptive control and system identification literature and a 
number of solutions are available [20]. One simple method 
is to formulate the squared error measure as a weighted 
version that gives higher weighting factors to more recent 

data pairs. This amounts to the addition of a forgetting 
factor X to the original recursive formula: 

where the typical value of X in practice is between 0.9 and 
1 .  The smaller X is, the faster the effects of old data decay. 
A small X sometimes causes numerical instability. however, 
and thus should be avoided. For a complete discussion and 
derivation of ( 3 3 ,  the reader is referred to [20], 1351, [59]. 

3)  Different Ways of Combining GD and LSE: The com- 
putational complexity of the least-squares estimator (LSE) 
is usually higher than that of the gradient descent (GD) 
method for one-step adaptation. However, for achieving 
a prescribed performance level, the LSE is usually much 
faster. Consequently, depending on the available computing 
resources and required level of performance, we can choose 
from among at least five types of hybrid leaming rules 
combining GD and LSE in different degrees, as follows: 

One pass of LSE only: Nonlinear parameters are fixed 
while linear parameters are identified by one-time 
application of LSE. 
GD only: All parameters are updated by GD itera- 
tively. 
One pass of LSE followed by GD: LSE is employed 
only once at the very beginning to obtain the initial 
values of linear parameters and then GD takes over 
to update all parameters iteratively. 
GD and LSE: This is the proposed hybrid leaming 
rule, where each iteration (epoch) of GD used to 
update the nonlinear parameters is followed by LSE 
to identify the linear parameters. 
Sequential (approximate) LSE only: The outputs of 
an adaptive network are linearized with respect to 
its parameters, and then the extended Kalman filter 
algorithm [21] is employed to update all parameters. 
This method has been proposed in the neural network 
literature [82]-[84]. 

The choice of one of the above methods should be 
based on a tradeoff between computational complexity and 
performance. Moreover, the whole concept of fitting data to 
parameterized models is called regression in statistics liter- 
ature, and there are a number of other techniques for either 
linear or nonlinear regression, such as the Guass-Newton 
method (linearization method) and the Marquardt procedure 
[62]. These methods can be found in advanced textbooks on 
regression and they are also viable techniques for finding 
optimal parameters in adaptive networks. 

D. Neural Networks as Special Cases ofAdaptive Networks 
Some special cases of adaptive networks have been 

explored extensively in the neural network literature. In 
particular, we will introduce two types of neural networks: 
the back-propagation neural network (BPNN) and the radial 
basis function network (RBFN). Other types of adaptive 
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Fig. 25. Activation functions for BPNN’s: (a) step function; (b) 
sigmoid function; (c) hyper-tangent function; (d) identity function. 

networks that can be interpreted as a set of fuzzy if-then 
rules are investigated in the next section. 

I )  Back Propagation Neural Networks (BPNN’s): A back- 
propagation neural network (BPNN), as already mentioned 
in Examples 4 and 5, is an adaptive network whose nodes 
(called “neurons”) perform the same function on incoming 
signals; this node function is usually a composite function 
of the weighted sum and a nonlinear function called the 
“activation function” or “transfer function.” Usually the 
activation functions are of either a sigmoidal or a hyper- 
tangent type which approximates the step function (or hard 
limiter) and yet provides differentiability with respect to 
input signals. Fig. 25 depicts the four different types of 
activation functions f(x) defined below. 

Step function: 1 i f z > 0 .  
0 i f x < O .  

1 

Sigmoid function: 

Hyper-tangent function: 
1 - e-” 
1 + e-“ 

f(x) = tanh (2/2) = -. 
Identity function: f(x) = 2. 

When the step function (hard-limiter) is used as the acti- 
vation function for a layered network, the network is often 
called a “perceptron” [69], [77], as explained in Example 4. 
For a neural network to approximate a continuous-valued 
function not necessarily limited to the interval [0,1] or [ I ,  
-11, we usually let the node function for the output layer be 
a weighted sum with no limiting-type activation functions. 
This is equivalent to the situation where the activation 
function is an identity function, and output nodes of this 
type are often called linear nodes. 

Fig. 26. A BPNN node 

For simplicity, we assume the BPNN in question uses the 
sigmoidal function as its activation function. The net input 
Z of a node is defined as the weighted sum of the incoming 
signals plus a threshold. For instance, the net input and 
output of node j in Fig. 26 (where j = 4) are 

where xi is the output of node i located in the previous 
layer, wij is the weight associated with the link connecting 
nodes i and j ,  and t j  is the threshold of node j .  Since 
the weights wij  are actually intemal parameters associ- 
ated with each node j ,  changing the weights of a node 
will alter the behavior of the node and in turn alter the 
behavior of the whole BPNN. Fig. 22 shows a two-layer 
BPNN with 3 inputs in the input layer, 3 neurons in the 
hidden layer, and 2 output neurons in the output layer. 
For simplicity, this BPNN will be referred to as a 3-3- 
2 structure, corresponding to the number of nodes in each 
layer. (Note that the input layer is composed of three buffer 
nodes for distributing the input signals; therefore this layer 
is conventionally not counted as a physical layer of the 
BPNN.) 

BPNN’s are by far the most commonly used NN structure 
for applications in a wide range of areas, such as speech 
recognition, optical character recognition (OCR), signal 
processing, data compression, and automatic control. 

2) The Radial Basis Function Networks (RBFN’s): The 
locally tuned and overlapping receptive field is a well 
known structure that has been studied in the regions of the 
cerebral cortex, the visual cortex, and so forth. Drawing 
on the knowledge of biological receptive fields, Moody 
and Darken [65], [66] proposed a network structure that 
employs local receptive fields to perform function map- 
pings. Similar schemes have been proposed by Powell [73], 
Broomhead and Lowe [7 ] ,  and many others in the areas 
of interpolation and approximation theory; these schemes 
are collectively called radial basis function approximations. 
Here we shall call this network structure the radial basis 
function network or RBFN. Fig. 27 shows a schematic 
diagram of an RBFN with five receptive field units; the 
activation level of the ith receptive field unit (or hidden 
unit) is 
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Fig. 27. A radial basis function network (RBFN). 

where 5 is a multi-dimensional input vector, G is a vector 
with the same dimension as 5, H is the number of radial 
basis functions (or equivalently, receptive field units), and 
R,(.) is the ith radial basis function with a single maximum 
at the origin. Typically, R;(.) is chosen as a Gaussian 
function 

or as a logistic function 

Thus the activation level of the radial basis function w, 
computed by the ith hidden unit is maximum when the 
input vector 2 is at the center 

The output of a radial basis function network can be 
computed in two ways. In the simpler method, as shown in 
Fig. 27, the final output is the weighted sum of the output 
value associated with each receptive field: 

of that unit. 

H H 

a = 1  2 = 1  

where f, is the output value associated with the ith recep- 
tive field. A more complicated method for calculating the 
overall output is to take the weighted average of the output 
associated with each receptive field: 

H H 

f2Wt ftRt(5) 
(43) 1=1 

H 
- f(2) = 1=1 - 

?W. ZRd4 . 
I = 1  L = l  

This mode of calculation, though has a higher degree of 
computational complexity, possesses the advantage that 
points in the overlapping area of two receptive fields 
will have a well interpolated output value between the 
output values of the two receptive fields. For representation 
purposes, if we change the radial basis function &(2) 
in each node of layer 2 in Fig. 27 by its normalized 
counterpart R,(Z)/  E, Rt(2) ,  then the overall output is 
specified by (43). 

Several learning algorithms have been proposed to iden- 
tify the parameters (6, o; and f;) of an RBFN. Note that the 
RBFN is an ideal example of the hybrid learning described 
in the previous section, where the linear parameters are f; 
and the nonlinear parameters are ci and oi. In practice, the 
6 are usually found by means of vector quantization or 
clustering techniques (which assume similar input vectors 
produce similar outputs) and the oi are obtained heuristi- 
cally (such as by taking the average distance to the first 
several nearest neighbors of Zi’s). Once these nonlinear 
parameters are fixed, the linear parameters can be found 
by either the least-squares method or the gradient method. 
Chen et al. [8] used an alternative method that employs the 
orthogonal least-squares algorithm to determine the c;’s and 
fi’s while keeping the oi’s at a pre-determined constant. 

An extension of Moody-Darken’s RBFN is to assign a 
linear function as the output function of each receptive field; 
that is, f i  is a linear function of the input variables instead 
of a constant: 

f ;  = r i a  . .t + b, (44) 

where Zi is a parameter vector and bi is a scalar parameter. 
Stokbro et al. 1871 used this structure to model the Mackey- 
Glass chaotic time series [60] and found that this extended 
version performed better than the original RBFN with the 
same number of fitting parameters. 

It was pointed out by the authors that under certain 
constraints, the RBFN is functionally equivalent to the the 
zero-order Sugeno fuzzy model. See 1331 or 1351 for details. 

IV. ANFIS: ADAPTIVE NEURO-FUZZY 
INFERENCE SYSTEMS 

A class of adaptive networks that act as a fundamental 
framework for adaptive fuzzy inference systems is intro- 
duced in this section. This type of networks is referred to 
as “ANFIS” [25], 1261, 1301, which stands for Adaptive- 
Network-based Fuzzy Inference System, or semantically 
equivalently, Adaptive Neuro-Fuzzy Inference System. We 
will describe primarily the ANFIS architecture and its 
learning algorithm for the Sugeno fuzzy model, with an 
application example of chaotic time series prediction. 

Note that similar network structures were also proposed 
independently by Lin and Lee 1571 and Wang and Mendel 
[1041). 

A. ANFIS Architecture 
For simplicity, we assume the fuzzy inference system 

under consideration has two inputs z and 1~ and one output 
z .  For a first-order Sugeno fuzzy model [89], [96], a typical 
rule set with two fuzzy if-then rules can be expressed as 

Ride 1 : If z is AI and is B1, 

Rule 2 : If x is A2 and y is B2, 
then f l  = plz  + y ~ g  + TI ,  

then f 2  = p 2 2  + q2y + 1.2. 

Fig. 28(a) illustrates the reasoning mechanism for this 
Sugeno model. The corresponding equivalent ANFIS archi- 
tecture is as shown in Fig. 28(b), where nodes of the same 
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Fig. 28. 
architecture. 

(a) A two-input first-order Sugeno fuzzy model with two rules; (b) equivalent ANFIS 

layer have similar functions, as described below. (Here we 
denote the output node i in layer 1 as Ol,i.) 

Layer I: Every node i in this layer is an adaptive node 
with a node output defined by 

where z (or y) is the input to the node and A, (or 
Bi-2) is a fuzzy set associated with this node. In other 
words, outputs of this layer are the membership values of 
the premise part. Here the membership functions for A, 
and B, can be any appropriate parameterized membership 
functions introduced in Section 11. For example, A, can be 
characterized by the generalized bell function: 

where {ai, bi, ci} is the parameter set. Parameters in this 
layer are referred to as premise parameters. 

Layer 2: Every node in this layer is a fixed node labeled 
II, which multiplies the incoming signals and outputs the 
product. For instance, 

(47) 

Each node output represents the firing strength of a rule. (In 
fact, any other T-norm operators that perform fuzzy AND 
can be used as the node function in this layer.) 

Layer 3: Every node in this layer is a fixed node labeled 
N .  The ith node calculates the ratio of the ith rule's firing 
strength to the sum of all rules' firing strengths: 

0 2 , a  = w, = p A z ( Z )  x p&(y), i = 1.2. 

For convenience, outputs of this layer will be called nor- 
malized jiring strengths. 

Layer 4: Every node i in this layer is an adaptive node 
with a node function 

(49) 

where E,i is the output of layer 3 and {pi, qi ,  ri} is the 
parameter set. Parameters in this layer will be referred to 
as consequent parameters. 

04,a = Wafa = Ei(piX + qiy + Ti) 
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Table 1 Two Passes in the Hybrid Learning Procedure for ANFIS 

Signals 
Fig. 29. 
Sugeno fuzzy model. 

Another ANFIS architecture for the two-input two-rule 
Node Outputs Error Signals 

- t  
Premise Fixed Gradient 

Parameters Descent 

Parameters Estimate 

h y e r 5 :  The single node in this layer is a fixed node 
labeled E, which computes the overall output as the sum- 
mation of all incoming signals: 

2 

Thus we have constructed an adaptive network that has 
exactly the same function as a Sugeno fuzzy model. Note 
that the structure of this adaptive network is not unique; we 
can easily combine layers 3 and 4 to obtain an equivalent 
network with only four layers. Similarly, we can perform 
weight normalization at the last layer; Fig. 29 illustrates an 
ANFIS of this type. 

Fig. 30(a) is an ANFIS architecture that is equivalent 
to a two-input first-order Sugeno fuzzy model with nine 
rules, where each input is assumed to have three associated 
MF’s. Fig. 30(b) illustrates how the 2-D input space is 
partitioned into nine overlapping fuzzy regions, each of 
which is governed by fuzzy if-then rules. In other words, 
the premise part of a rule defines a fuzzy region, while the 
consequent part specifies the output within this region. 

For ANFIS architectures for the Mamdani and Tsukamoto 
fuzzy models, the reader is referred to [30] and [35) for 
more detail. 

B. Hybrid Learning Algorithm 
From the ANFIS architecture shown in Fig. 28(b), we 

observe that when the values of the premise parameters 
are fixed, the overall output can be expressed as a linear 
combination of the consequent parameters. In symbols, the 
outpht f in Fig. 28(b) can be rewritten as 

f 2  
101 U’2 

f=----- fl  + ~ 

w1 + w 2  W l + W 2  

=E1 f l  + 732 f2 

= @ l X h  + (WlY)91 + (W1)Tl 

+ ( a 2 X ) P z  + (z2y)qz + ( w 2 ) ~  (51) 

which is linear in the consequent parameters p l ,  q1, r1. 

pa, 92, and rg. Therefore the hybrid learning algorithm 
developed in the previous section can be applied directly. 
More specifically, in the forward pass of the hybrid learning 
algorithm, node outputs go forward until layer 4 and the 
consequent parameters are identified by the least-squares 
method. In the backward pass, the error signals propagate 

backward and the premise parameters are updated by gra- 
dient descent. Table 1 summarizes the activities in each 
pass. 

As mentioned earlier, the consequent parameters thus 
identified are optimal under the condition that the premise 
parameters are fixed. Accordingly, the hybrid approach 
converges much faster since it reduces the dimension of 
the search space of the original back-propagation method. 

If we fix the membership functions and adapt only 
the consequent part, then ANFIS can be viewed as a 
functional-link network [47], [70] where the “enhanced 
representations” of the input variables are obtained via the 
membership functions. These “enhanced representations,” 
which take advantage of human knowledge, apparently 
express more insight than the functional expansion and 
the tensor (outer product) models 1701. I3y fine-tuning the 
membership functions, we actually make this “enhanced 
representation” also adaptive. 

From (42), (43), and (50), it is not too hard to see 
the resemblance between the radial basis function network 
(RBFN) and the ANFIS for the Sugeno model. Actually 
these two computing framework are functionally equivalent 
under certain minor conditions [33]; this cross-fertilize both 
disciplines in many respect$. 

C. Application to Chaotic Time Series Prediction 
ANFIS can be applied to a wide range of areas, such 

as nonlinear function modeling [25] ,  [30], time series 
prediction [30], [34], on-line parameter identification for 
control systems [30], and fuzzy controller design [27], [29]. 
In particular, GE has been using ANFIS for modeling 
correction factors in steel rolling mills [6]. Here we will 
briefly report the application of ANFIS to chaotic time 
series prediction [30], [34]. 

The time series used in our simulation is generated by 
the Mackey-Glass differential delay [6Ol: 

(52)  
0.2z(t - 7) 

1 + z y t  - T )  
i ( t )  = - O.lz(t). 

The prediction of future values of this time series is a 
benchmark problem that has been used and reported by a 
number of connectionist researchers, such as Lapedes and 
Farber [49], Moody [64], [66], Jones et al. [36], Crower 
[76], and Sanger [80] .  The simulation results presented 
here were reported in [30], [34]; more details can be found 
therein, 
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Fig. 31. (a) Mackey-Glass time series from t = 124 to 1123 and 
six-step ahead prediction (which is indistinguishable from the time 
series here); (b) prediction error. (Note that the first 500 data points 
are training data, while the remaining are for validation.) 

The goal of the task is to use past values of the time series 
up to the point x = t to predict the value at some point in 
the future z = t + P. The standard method for this type of 
prediction is to create a mapping from D points of the time 
series spaced A apart, that is, (z(t - (D - l )A) ,  . . . , z ( t  - 
A), ~ ( t ) ) ,  to a predicted future value z ( t  + P ) .  To allow 
comparison with earlier work (Lapedes and Farber [49], 
Moody [64], [66], Crower [76]), the values D = 4 and 
A = P = 6 were used. All other simulation settings were 
arranged to be as similar as possible to those reported in 

From the Mackey-Glass time series ~ ( t ) ,  we extracted 
~761. 

1000 input-output data pairs of the following format: 

[ ~ ( t  - 18), ~ ( t  - 12).  ~ ( t  - 6 ) , 5 ( t ) :  X ( t  + 6)] (53) 

where t = 118 to 11 17. The first 500 pairs (training data 
set) were used for training ANFIS, while the remaining 500 

- f  

model 

:g 
with nine 

.# 
1 4 7  

1 - - - -  m 
(b) 

rules; 

Table 2 Generalization Result Comparisons for P = 6 

pairs (checking data set) were used for validating the model 
identified. The number of membership functions assigned 
to each input of the ANFIS was set to two, so the number 
of rules is 16. The ANFIS used here contains a total of 104 
fitting parameters, of which 24 are premise parameters and 
80 are consequent parameters 

Fig. 3 1 shows the results after about 500 epochs of learn- 
ing. The desired and predicted values for both training data 
and checking data are essentially the same in Fig. 31(a); 
the differences between them can only be seen on a much 
finer scale, such as that in Fig. 31(b). 

Table 2 lists the generalization capabilities of other 
methods, which were measured by using each method to 
predict 500 points immediately following the training set. 
The last four row of Table 2 are from [76] directly. The 
nondimensional error index (NDEI) [49], 1761 is defined 
as the root mean square error divided by the standard 
deviation of the target series. The remarkable generalization 
capability of ANFIS is attributed to the following facts: 

ANFIS can achieve a highly nonlinear mapping, there- 
fore it is well suited for predicting nonlinear time 
series. 
The ANFIS used here has 104 adjustable parameters, 
far fewer than those used in the cascade-correlation 
NN (693, the median) and back-prop NN (about 540) 
listed in Table 2. 
Though not based on a priori knowledge, the initial 
parameter settings of ANFIS are intuitively reasonable 
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Fig. 32. Block diagram for a continuous time feedback control 
system. 
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Fig. 33. The inverted pendulum system. 

and results in fast convergence to good parameter 
values that captures the underlying dynamics. 
ANFIS consists of fuzzy rules which are actually 
local mappings (which are called local experts in [37]) 
instead of global ones. These local mappings facilitate 
the minimal disturbunce principle [ 1091, which states 
that the adaptation should not only reduce the output 
error for the current training pattern but also minimize 
disturbance to response already learned. This is partic- 
ularly important in on-line learning. We also found the 
use of least-squares method to determine the output 
of each local mapping is of particular importance. 
Without using LSE, the learning time would be ten 
times longer. 

Other generalization tests and comparisons with neural 
network approaches can be found in 1301. 

The original ANFIS C codes and several examples 
(including this one) can be retrieved via anonymous 
ftp in u se r / a i / a r eas / fuzzy / sys t ems /an f i s  
at f t p  . cs . cmu . edu (CMU Artificial Intelligence 
Repository). 

V. NEURO-FUZZY CONTROL 
Once a fuzzy controller is transformed into an adap- 

tive network, the resulting ANFIS can take advantage 
of all the NN controller design techniques proposed in 
the literature. In this section we shall introduce common 
design techniques for ANFIS controllers. Most of these 
methodologies are derived directly from their counterparts 
for NN controllers. However, certain design techniques 
apply exclusively to ANFIS, which will be pointed out 
explicitly. 

As shown in Fig. 32, the block diagram of a typical 
feedback control system consists of a plant block and a 
controller block. The plant block is usually represented by 
a set of differential equations that describe the phy$ical sys- 
tem to be controlled. These equations govern the behavior 
of the plant state x ( t ) ,  which is assumed to be accessible in 
our discussion. In contrast, the controller block is usually 
a static function denoted by g; it maps the the plant state 
x(t) into a control action ~ ( t )  that can hopefully achieve 
a given control objective. Thus for a general time-invariant 
control system, we have the following equations: 

x(t)  = f(x(t), u( t ) )  (plant dynamics), 
u(t> = g(x(t)) (controller). 

The control objective here is to design a controller function 
g(.) such that the plant state x(t) can follow a desired 
trajectory x d ( t )  as closely as possible. 

A simple example of a feedback control system is the 
inverted pendulum system (Fig. 33) where a rigid pole is 
hinged to a cart through a free joint with only one degree of 
freedom, and the cart moves on the rail tracks to its right 
or left depending on the force exerted on it. Thc control 
goal is to find the applied force 'U as a function of the state 
variable x = [8 ,  8, z ,  i] (where 8 is the pole angle and z is 
the cart position) such that the pole can be balanced from 
a given nonzero initial condition. 

For a feedback control system in a discrete time domain, a 
general block diagram representation is as shown in Fig. 34. 
Note that the inputs to the plant block include the control 
action u(k) and the previous plan1 output x(k), so the plant 
block now represents a static mapping. In symbols, we have 

x(k + 1) = f(x(k), u(k)) (plant), 
u(k) = g(x(k)) (controller). 

A central problem in control engineering is that of finding 
the control action U as a function of the plant output 
x in order to achieve a given control goal. Each design 
method for neuro-fuzzy controllers corresponds to a way of 
obtaining the control action; these methods are discussed 
next. 
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Fig. 35. 
phase; (b) application phase. 

Block diagram for inverse control method: (a) learning 

A. Mimicking Another Working Controller 
Most of the time, the controller being mimicked is an 

experienced human operator who can control the plant 
satisfactorily. In fact, the whole concept of mimicking a 
human expert is the original intention of fuzzy controllers 
whose ultimate goal is to replace human operators who 
can control complex systems such as chemical reaction 
processes, subway trains, and traffic systems. An expe- 
rienced human operator usually can summarize his or 
her control actions as a set of fuzzy if-then rules with 
roughly correct membership functions; this corresponds to 
the linguistic information. Prior to the emergence of neuro- 
fuzzy approaches, relining membership function is usually 
obtained via a lengthy trial-and-error process. Now with 
learning algorithms, we can further take advantage of the 
numerical information (input/output data pairs) and refine 
the membership functions in a systematic way. Note that 
the capability to utilize linguistic information is specific 
to fuzzy inference systems; it is not always available in 
neural networks. Successful applications of fuzzy controller 
based on linguistic information plus trial-and-error tuning 
includes steam engine and boiler control [61], Sendai 
subway systems [ 1151, container ship crane control [ 1141, 
elevator control [551, nuclear reaction control [ 5 ] ,  au- 
tomobile transmission control [41], aircraft control [ 141, 
and many others [88]. With the availability of learning 
algorithms, a wider range of applications is expected. 

Note that this approach is not only for control appli- 
cations. If the target system to be emulated is a human 
physician or a credit analyst, then the resulting fuzzy infer- 
ence systems become a fuzzy expert system for diagnosis 
and credit analysis, respectively. 

B. Inverse Control 
Another scheme for obtaining desired control action is 

the inverse control method shown in Fig. 35. For simplicity, 
we assume that the plant has only one state z ( k )  and one 

I I 

I I 

(b) 
Fig. 36. 
ized learning with model reference. 

Block diagram for (a) specialized learning; (b) special- 

input u(k) .  In the learning phase, a training set is obtained 
by generating inputs u(k)  at random, and observing the 
corresponding outputs z ( k )  produced by the plant. The 
ANFIS in Fig. 35(a) is then used to leam the inverse 
model of the plant by fitting the data pairs ( x ( k ) , z ( k  + 
1); u(k):t. In the application phase, the ANFIS identifier is 
copied to the ANFIS controller in Fig. 35 for generating 
the desired output. The input to the ANFIS controller is 
( ~ ( k ) , z d ( k ) ) ;  if the inverse model (ANFIS identifier) that 
maps ( z ( k ) , x ( k + l ) )  to u(k )  is accurate, then the generated 
u(k)  should result in z ( k  + 1) that is close to zd(k). That 
is, the whole system in Fig. 35 will behave like a pure 
unit-delay system. 

This method seems straightforward and only one learning 
task is needed to find the inverse model of the plant. 
However, it assumes existence of the inverse of a plant, 
which is not valid in general. Moreover, minimization of the 
network error I le, ( k )  1 1 ’  does not guarantee minimization of 
the overall system error llxd(k) - x(k)I l2 .  

Using ANFIS for adaptive inverse control can be found 
in [43]. 

C. Specialized Learning 
The major problem with the inverse control scheme is 

that we are minimizing the network error instead of the 
overall system error. An alternative is to minimize the 
system error directly; this is called “specialized learning” 
[75]. In order to back-propagate error signals through the 
plant block in Fig. 36, we need to find a model representing 
the behavior of the plant. In fact, in order to apply back- 
propagation learning, all we need to know is the Jacobian 
matrix of the plant, where the element at row i and column 
j is equal to the derivative of the plant’s ith output with 
respect to its j th  input. 
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Fig. 37. A trajectory network for control application (FC stands for “fuzzy controller”). 

If the Jacobian matrix is not easy to find, an alternative 
is to estimate it on-line from the changes of the plant’s 
inputs and outputs during two consecutive time instants. 
Other similar methods that aim at using an approximate 
Jacobian matrix to achieve the same leaming effects can be 
found in [ 111, [42], [ 1011. Applying specialized learning to 
find an ANFIS controller for the inverted pendulum was 
reported in [ 2 8 ] .  

It is not always convenient to specify the desired plant 
output z d ( l c )  at every time instant IC. As a standard approach 
in model reference adaptive control, the desired behavior 
of the overall system can be implicitly specified by a 
(usually linear) model that is able to achieve the control 
goal satisfactorily. This alternative approach is shown in 
Fig. 36(b), where the desired output .ud(k + 1) is generated 
through a desired model. 

D. Back-Propagarion Through Time and 
Real Time Recurrent Learning 

If we replace the controller and plant blocks in Fig. 34 
with two adaptive networks, we can duplicate and cascade 
these networks to form a huge trajectory network, as shown 
in Fig. 37, in order to find the trajectory of each node’s 
output. And by applying back-propagation to the trajectory 
network, we can force the plant block to generate a desired 
trajectory. The operation to get trajectory networks is called 
unfolding of time; the back-propagation used here is thus 
referred to as back-propagation through time. 

In particular, the inputs to the trajectory network are 
initial conditions of the plant; the outputs are the state 
trajectory from k = 1 to k = rn. The adjustable param- 

eters are all pertaining to the FC (fuzzy controller) block 
implemented as an ANFIS. Though there are m FC blocks, 
all of them refer to the same parameter set. For clarity, 
this parameter set is shown explicitly in Fig. 37 and it is 
updated according to the output of the error measure block. 

Use of back-propagation through time to train a neural 
network for backing up a tractor-trailer system is reported 
in [68]. The same technique was used to design an ANFIS 
controller for balancing an inverted pendulum [29]. Note 
that back-propagation through time is usually an off-line 
leaming algorithms in the sense that the parameters will 
not be updated till the sequence (k == 1 to m) is over. 
If the sequence is too long or if we want to update the 
parameters in the middle of the sequence, we can always 
apply real time recurrent learning [ 1 121. 

E. Feedback Linearization and Sliding Control 
The equations of motion of a class of dynamic systems in 

continuous time domain can be expressed in the canonical 
form: 

&(t) = f(z(t),.(t), . . 4 - ’ ) ( t ) )  + b U ( t )  (54) 

where f is an unknown continuous function, b is the control 
gain, and U E R and y E R are the input and output of the 
system, respectively. The control objective is to force the 
state vector 2 = [x. X I  . . . , 2(n-1)]T to follow a specified 
desired trajectory z d  = [ ~ d ,  X d 3  . . . , ~ r - ’ ) ] ~ .  If we define 
the tracking error vector as e = x - xd. then the control 
objective is to design a control law u ( t )  which ensures 
e + 0 as t + cc. (For simplicity, we assume b = 1 in the 
following discussion.) 
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Equation (54) is a typical feedback linearizable system 
since it can be reduced to a linear system if f is known 
exactly. Specifically, the following control law 

~ ( t )  = - f ( z ( t ) )  + zp) + kTe (55)  

would transform the original nonlinear dynamics into a 
linear one: 

where k = [ I C n , .  . . , k1IT is an appropriately chosen vector 
that ensures satisfactory behavior of the close-loop linear 
system in (56). 

Since f is unknown, an intuitive candidate of U would be 

(57) U = - F ( z , p )  + xy) + kTe + v 

where v is an additional control input to be determined later, 
F is an parameterized function (such as ANFIS, neural 
networks, or any other types of adaptive networks) that is 
rich enough to approximate f .  Using this control law, the 
close-loop system becomes 

e'") + + . . . + k,e = ( f  - F )  + V .  (58) 

Now the problem is divided into two tasks: 

so that F ( z , p )  z f ( z )  for all z. 

is approximating f during the whole process. 

How to update the parameter vector p incrementally 

How to apply v to guarantee global stability while F 

The first task is not too difficult as long as F ,  which 
could be a neural network or a fuzzy inference system, is 
equipped with enough parameters to approximate f .  For the 
second task, we need to apply the concept of a branch of 
nonlinear control theory called sliding control [85], [loo]. 
The standard approach is to define an error metrics as 

The equation s ( t )  = 0 defines a time varying hyper- 
plane in R" on which the tracking error vector e ( t )  = 
[e@),  e ( t ) ,  . . . , e"-'(t)lT decays exponentially to zero, so 
that perfect tracking can be obtained asymptotically. More- 
over, if we can maintain the following condition: 

then Is( t )  I will approach the hyperplane Is@) I = 0 in a finite 
time less than or equal to l s (O) l /q .  For details about how to 
maintain the above condition, the reader is referred to [MI. 
Applications of this technique to neural and fuzzy control 
can be found in [81] and [102], respectively. This approach 
uses a number of nonlinear control design techniques and 
possesses rigorous proofs for global stability. However, its 
applicability is restricted to feedback linearizable systems. 

F. Gain Scheduling 
Under certain arrangements, the first-order Sugeno fuzzy 

model becomes a gain scheduler that switches between 
several sets of feedback gains. For instance, a first-order 
Sugeno fuzzy controller for an hypothetical inverted pen- 
dulum system with varying pole length may have the 
following fuzzy if-then rules: 

This is in fact a gain scheduling controller, where the 
scheduling variable is the pole length and the control 
action is switching smoothly between three sets of feedback 
gains depending on the value of the scheduling variable. 
In general, the scheduling variables only appear in the 
premise part while the state variables only appear in the 
consequent part. The design method here is standard in gain 
scheduling: find several nominal points in the space formed 
by scheduling variables and employ any of the linear control 
design techniques to find appropriate feedback gains. If the 
number of nominal points is small, we can construct the 
fuzzy rules directly. On the other hand, if the number of 
nominal points is large, we can always use ANFIS to fit 
desired control actions to a fuzzy controller. 

Examples of applying this method to both one-pole and 
two-pole inverted pendulum systems with varying pole 
lengths can be found in the demo programs in [32]. 

G. Others 
Other design techniques that do not use the learning 

algorithm in neuro-fuzzy modeling are summarized here. 
For complex control problems with perfect plant models, 

we can always use gradient-free optimization schemes, 
such as genetic algorithms [19], [23], simulated annealing 
[45], downhill Simplex method [67], and random method 
[63]. In particular, use of genetic algorithms for neural 
network controllers can be found in [ 1 111; for fuzzy logic 
controllers, see [39], [40], [53]. 

If the plant model is not available, we can apply rein- 
forcement learning [2] to find a working controller directly. 
The close relationship between reinforcement learning and 
dynamic programming was addressed in [3], [108]. Other 
variants of reinforcement learning includes temporal dif- 
ference methods (TD(X) algorithms) and Q-learning [ 1061. 
Representative applications of reinforcement learning to 
fuzzy control can be found in [4], [12], [521, [581. 

Some other design and analysis approaches for fuzzy 
controllers include cell-to-cell mapping techniques [ 131, 
[86], model-based design method [97], self-organizing con- 
trollers [74], [98], and so on. As more and more people are 
working in this field, new design methods are coming out 
sooner than before. 
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VI. CONCLUDING REMARKS [lo], [1051, noise or echo cancelling [ I  lo], predictive 
coding [54], and so on. 

A. Current Problems and Possible Solutions 
A typical modeling problem includes structure determi- 

nation and parameter identijkation. We address the param- 
eter identification problem for ANmS in this paper, which 
is solved via the back-propagation gradient descent and the 
least-squares method. The structure determination problem, 
which deals with the partition style, the number of MF’s 
for each input, and the number of fuzzy if-then rules, and 
so on, is now an active research topic in the field. Work 
along this direction includes Jang’s fuzzy CART approach 
[31], Lin’s reinforcement learning method [56], Sun’s fuzzy 
k-d trees [91], Sugeno’s iterative method [90] and various 
clustering algorithms proposed by Chiu [ 151, Khedkar [44], 
and Wang [ 1031. Moreover, advances on the constructive 
and destructive learning of neural networks [18], [54] can 
also shed some lights on this problem. 

Though we can speed up the parameter identification 
problem by introducing the least-squares estimator into 
the learning cycle, gradient descent still slows down the 
training process and the training time could be prohibitively 
long for a complicated task. Therefore the need to search 
for better learning algorithms hold equally true for both 
neural networks and fuzzy models. Variants of gradient 
descent proposed in the neural network literature; includ- 
ing second-order back-propagation [7 I ] ,  quick-propagation 
[17], and so on, can be used to speed up training. A 
number of techniques used in nonlinear regression can 
also contribute in this regard, such as the Guass-Newton 
method (linearization method) and the Marquardt proce- 
dure [62]. Another important resource is the rich literature 
of optimization, which offers many better gradient-based 
optimization routines, such as quadratic programming and 
conjugate gradient descent. 

B. Future Directions 
Due to the extreme flexibility of adaptive networks, 

ANFIS can have a number of variants that are different from 
what we have proposed here. For instance, we can replace 
the II nodes in layer 2 of ANFIS with the parameterized T- 
norm operator [I61 and let the learning algorithm decide 
the best T-norm function for a specific application. By 
employing the adaptive network as a common framework, 
we have also proposed other adaptive fuzzy models tailored 
for different purposes, such as the neuro-fuzzy classifier 
[92], [93] for data classification and the fuzzy filter scheme 
[94], [95] for feature extraction. There are a number of 
possible extensions and applications and they are currently 
under investigation. 

During the past years, we have witnessed the rapid 
growth of the application of fuzzy logic and fuzzy set 
theory to consumer electronic products, automotive industry 
and process control. With the advent of fuzzy hardware 
with possibly on-chip learning capability, the applications 
to adaptive signal processing and control are expected. 
Potential applications within adaptive signal processing 
includes adaptive filtering [21], channel equalization [SI, 
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