
Neuro-Fuzzy Modeling and Control
JYH-SHING ROGER JANG, MEMBER, IEEE, AND CHUEN-TSAI SUN, MEMBER, IEEE

Fundamental and advanced developments in neum-fuzzy syner-
gisms for modeling and control are reviewed. The essential part of
neuro-fuuy synergisms comes from a common framework called
adaptive networks, which unifies both neural networks and fuzzy
models. The f u u y models under the framework of adaptive net-
works is called Adaptive-Network-based Fuzzy Inference System
(ANFIS), which possess certain advantages over neural networks.
We introduce the design methods f o r ANFIS in both modeling and
control applications. Current problems and future directions for
neuro-fuzzy approaches are also addressed.

modeling. neuro-fuzzy control. ANFIS.
Keywords- F u u y logic, neural networks, fuzzy modeling, neuro-fuzzy

I. INTRODUCTION
In 1965, Zadeh published the first paper on a novel

way of characterizing nonprobabilistic uncertainties, which
he called “fuzzy sets” [116]. This year marks the 30th
anniversary of fuzzy logic and fuzzy set theory, which
has now evolved into a fruitful area containing various
disciplines, such as calculus of fuzzy if-then rules, fuzzy
graphs, fuzzy interpolation, fuzzy topology, fuzzy rea-
soning, fuzzy inferences systems, and fuzzy modeling.
The applications, which are multi-disciplinary in nature,
includes automatic control, consumer electronics, signal
processing, time-series prediction, information retrieval,
database management, computer vision, data classification,
decision-making, and so on.

Recently, the resurgence of interest in the field of artificial
neural networks has injected a new driving force into
the “fuzzy” literature. The back-propagation learning rule,
which drew little attention till its applications to artificial
neural networks was discovered, is actually an universal
learning paradigm for any smooth parameterized models,
including fuzzy inference systems (or fuzzy models). As
a result, a fuzzy inference system can now not only take
linguistic information (linguistic rules) from human experts,
but also adapt itself using numerical data (input/output
pairs) to achieve better performance. This gives fuzzy

Manuscript received March 30, 1994; revised November 28, 1994. This
work was supported in part by NASA Grant NCC 2-275, MICRO Grant
92-180, EPRl Agreement RP 8010-34, and in part by the BISC program.

J . 4 . Jang is with the Control and Simulation Group, The Mathworks,
Inc., Natick, MA 01760 USA.

C.-T. Sun is with the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan.

IEEE Log Number 940830 1 .

inference systems an edge over neural networks, which
cannot take linguistic information directly.

In this paper, we formalize the adaptive networks as a
universal representation for any parameterized models.
Under this common framework, we reexamine back-
propagation algorithm and propose speedup schemes
utilizing the least-squared method. We explain why neural
networks and fuzzy inference systems are all special
instances of adaptive networks when proper node functions
are assigned, and all leaming schemes applicable to
adaptive networks are also qualified methods for neural
networks and fuzzy inference systems.

When represented as an adaptive network, a fuzzy in-
ference system is called adaptive networks-based fuzzy
inference systems (ANFIS). For three of the most com-
monly used fuzzy inference systems, the equivalent ANFIS
can be derived directly. Moreover, the training of ANFIS
follows the spirit of the minimum disturbance pr inc ip le
[lo91 and is thus more efficient than sigmoidal neural
networks.

Once a fuzzy inference system is equipped with learning
capability, all the design methodologies for neural network
controllers become directly applicable to fuzzy controllers.
We briefly review these design techniques and give related
references for further studies.

The arrangement of this article is as follows. In Section 11,
an in-depth introduction to the basic concepts of fuzzy sets,
fuzzy reasoning, fuzzy if-then rules, and fuzzy inference
systems are given. Section 111 is devoted to the formaliza-
tion of adaptive networks and their leaming rules, where the
back-propagation neural network and radial basis function
network are included as special cases. Section IV explains
the ANFIS architecture and demonstrates its wperiority
over back-propagation neural networks. A number of design
techniques for fuzzy and neural controllers is described in
Section V. Section VI concludes this paper by pointing out
current problems and future directions.

11.
REASONING, AND FUZZY MODELS

FUZZY SETS, FUZZY RULES, F U 7 . y

This section provides a concise introduction to and a
summary of the basic concepts central to the study of fuzzy
sets. Detailed treatments of specific subjects can be found
in the reference list.

378

0018-9219/95$04.00 0 1995 IEEE

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995

MF on a diwntc X
I ’ I

MF an a continuous x

X = numbcr of courses X = age

Fig. 1.
“about 50 years old.”

(a) A = “appropriate number of courses taken” (b) B =

A. Fuzzy Sets

example, a classical set A can be expressed as
A classical set is a set with a crisp boundary. For

A = {z I z > 6) (1)

where there is a clear, unambiguous boundary point 6
such that if z is greater than this number, then z belongs
to the set A, otherwise z does not belong to this set.
In contrast to a classical set, a fuzzy set, as the name
implies, is a set without a crisp boundary. That is, the
transition from “belonging to a set” to “not belonging to a
set” is gradual, and this smooth transition is characterized
by membership functions that give fuzzy sets flexibility
in modeling commonly used linguistic expressions, such
as “the water is hot” or “the temperature is high.” As
Zadeh pointed out in 1965 in his seminal paper entitled
“Fuzzy Sets” [1 161, such imprecisely defined sets or classes
“play an important role in human thinking, particularly
in the domains of pattem recognition, communication of
information, and abstraction.” Note that the fuzziness does
not come from the randomness of the constituent members
of the sets, but from the uncertain and imprecise nature of
abstract thoughts and concepts.
Dejnition 1: Fuzzy Sets and Membership Functions If X is a
collection of objects denoted generically by z, then a fuzzy
set A in X is defined as a set of ordered pairs:

p ~ (z) is called the membership function (MF for short) of
2 in A. The MF maps each element of X to a continuous
membership value (or membership grade) between 0 and 1.

0
Obviously the definition of a fuzzy set is a simple

extension of the definition of a classical set in which
the characteristic function is permitted to have continuous
values between 0 and 1. If the value of the membership
function p . ~ (z) is restricted to either 0 or 1, then tl is
reduced to a classical set and p.A(r) is the characteristic
function of A .

Usually X is referred to as the “universe of discourse,”
or simply the “universe,” and it may contain either discrete
objects or continuous values. Two examples are given
below.

Example 1: Fuuy Sets with Discrete X . Let X = { 1, 2,
3, 4, 5 . 6, 7, 81 be the set of numbers of courses a student

may take in a semester. Then the fuzzy set A = “appropriate
number of courses taken” may be described as follows:

A ={(11~.1),(2,0.~~,(~l~~.~)l(~, I) ,
(5,0.9),(6,0.5),(7,0.2),(8,0.1)}.

This fuzzy set is shown in Fig.](a). 0
Example 2: Fuzzy Sets with Continuous X . Let X = R+

be the set of possible ages for human beings. Then the fuzzy
set B = “about 50 years old” may be expressed as

B = {(z.,u”B(.r) 15 E X}
where

This is illustrated in Fig. l(b). U
An alternative way of denoting a fuzzy set A is

p ~ (z ,) / ~ , , if X is discrete.

(3) A = X T € ? X - S, p~A(:r) /r l if x is continuous. {
The summation and integration signs m (3) stand for the
union of (2. p~ (. E)) pairs; they do not indicate summation
or integration. Similarly, “/” is only a marker and does
not imply division. Using this notation, we can rewrite the
fuzzy sets in Examples 1 and 2 as

A = O . l / l + 0.3/2 + 0.8/3 + 1.0/1
+ 0.9/5 + 0.5/6 + 0.2/7 + 0.1/8,

and

respectively.
From Example 1 and 2, we see that the construction of

a fuzzy set depends on two things: the identification of a
suitable universe of discourse and the specification of an ap-
propriate membership function. It should be noted that the
specification of membership functions is quite subjective,
which means the membership functions specified for the
same concept (say, “cold”) by different persons may vary
considerably. This subjectivity comes from the indefinite
nature of abstract concepts and has nothing to do with
randomness. Therefore the subjectivity and nonrandomness
of fuzzy sets is the primary difference between the study
of fuzzy sets and probability theory, which deals with
objective treatment of random phenomena.

Corresponding to the ordinary set operations of union,
intersection, and complement, fuzzy sets have similar oper-
ations, which were initially defined in Zadeh’s paper [116].
Before introducing these three fuzzy set operations, first
we will define the notion of containment, which plays a
central role in both ordinary and fuzzy sets. This definition
of containment is, of course, a natural extension of the case
for ordinary sets.

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 379

two fuzzy gets A, B

" A OR B"

"NOT A
I'

"A AND E"
I

' t

Fig.?.
(b) 4; (c) A U 8; (d) -4 f l B.

Operations on fuzzy sets: (a) two fuzzy sets A and B ;

Definition 2: Containment or Subset Fuzzy set A is con-
tained in fuzzy set B (or, equivalently, A is a subset of
B, or A is smaller than or equal to B) if and only if
PA(%) 5 p ~ (x) for all z. In symbols,

(4)

0
Definition 3: Union (disjunction) The union of two fuzzy

sets A and B is a fuzzy set C, written as C = A U B
or C = A OR B, whose MF is related to those of A
and B by

A c B e P A (x) 5 P B (x) .

p C (X) = "(bA(Z),bB(x)) = P A (z) V P B (x) . (5)

U
As pointed out by Zadeh [116], a more intuitive and

appealing definition of union is the smallest fuzzy set
containing both A and B. Alternatively, if D is any fuzzy
set that contains both A and B, then it also contains A U B.
The intersection of fuzzy sets can be defined analogously.

Definition 4: Intersection (conjunction) The intersection
of two fuzzy sets A and B is a fuzzy set C , written as
C = A fl B or C = A AND B, whose MF is related
to those of A and B by

P C (z) = min(pA(x), pL?(z)) = pA(z) A P B (x) . (6)

0
As in the case of the union, it is obvious that the

intersection of A and B is the largest fuzzy set which is
contained in both A and B. This reduces to the ordinary
intersection operation if both A and B are nonfuzzy.

Definition 5: Complement (negation) The complement of
fuzzy set A, denoted by ~ (T A , NOT A), is defined as

p x (x) = 1 - P A (Z) . (7)

0

Fig. 2 demonstrates these three basic operations: 1) illus-
trates two fuzzy sets A and B, 2) is the complement of
A, 3) is the union of A and B, and 4) is the intersection
of A and B.

Note that other consistent definitions for fuzzy AND and
OR have been proposed in the literature under the names
"T-norm" and "T-conorm" operators [161, respectively.
Except for min and max, none of these operators satisfy
the law of distributivity:

pAU(BnC)(2) = /L(AUB)n(AUC)(X),
PAn(BUC)(l) = P(AI~B)V(A"C)(~).

However, min and max do incur some difficulties in ana-
lyzing fuzzy inference systems. A popular alternative is to
use the probabilistic AND and OR:

pAnB(z) = /LA(x)PB(z).
p A u B (z) =pA(z) -k P B (T) - P A (x) P B (z) .

In the following, we shall give several classes of param-
eterized functions commonly used to define MF's. These
parameterized MF's play an important role in adaptive
fuzzy inference systems.

Definition 6: Triangular MF's A triangular M F is spec-
ified by three parameters { a , b. c}, which determine the z
coordinates of three comers:

triangle(:c; a , b, c)

= rnax (min (-,-),o). 2 - a c - x (8) h - U C - b

Fig. 3(a) illustrates an example of the triangular MF defined
0

Definition 7: Trapezoidal MF's A trapezoidal M F is
by triangle(x; 20, 60, 80).

specified by four parameters {U, b. c. d } as follows:

trapezoid(.c: a , b, c . d)

= max (rriin (E, x - a 1 , ----) d - 3 . , (I) . (9) d - (.

Fig. 3(b) illustrates an example of a trapezoidal MF defined
by trapezoid(x; 10, 20, 60, 95). Obviously, the triangular

0
Due to their simple formulas and computational effi-

ciency, both triangular MF's and trapezoidal MF's have
been used extensively, especially in real-time implementa-
tions. However, since the MF'\ are composed of straight
line segments, they are not smooth at the switching points
specified by the parameters. In the following we introduce
other types of MF's defined by smooth and nonlinear
functions.

Definition 8: Gaussian MF's A Gaussian M F is specified
by two parameters {g. c}:

MF is a special case of the trapezoidal MF.

gaussian(2; f7* c) = , { - [(x - c) / ~ I L } (10)

where c represents the MF's center and c determines the
MF's width. Fig. 3(c) plots a Gaussian MF defined by
gaussian(x;20,50). 0

380 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995

hianguler MF

X

(a)

Gaussian MF bell MF

X

Fig. 3. Examples of various classes of MF’s: (a) trrangle (x;
20, 60, 80); (b) t rapezoid (x ; IO, 20, 60, 95); (c) gaussic~n (x;
20, 50); (d) bell (x; 20, 4, 50).

Deifinition 9: Generalized Bell MF’s A generalized bell
MF (or bell MF) is specified by three parameters {a, b , c}:

where the parameter b is usually positive. Note that this MF
is a direct generalization of the Cauchy distribution used in
probability theory. Fig. 3 illustrates a generalized bell MF

U
A desired generalized bell MF can be obtained by a

proper selection of the parameter set {a . b. c } . Specifically,
we can adjust c and a to vary the center and width
of the MF, and then use b to control the slopes at the
crossover points. Fig. 4 shows the physical meanings of
each parameter in a bell MF.

Deifinition IO: Sigmoidal MF’s A sigmoidal MF is de-
fined by

defined by bel@; 20, 4, 50).

(12)
1

1 + exp [-a(. - c)]
s igmoid(x ; a. c) =

where a controls the slope at the crossover point x = c. 0
Depending on the sign of the parameter a, a sigmoidal

MF is inherently open right or left and thus is appropriate
for representing concepts such as “very large” or “very
negative.” Sigmoidal functions of this kind are employed
widely as the activation function of artificial neural net-
works. Therefore, for a neural network to simulate the
behavior of a fuzzy inference system, the first problem we
face is how to synthesize a close MF through a sigmoidal
function. There are two simple ways to achieve this: one is

Fig. 4. Physical meaning of parameters in a generalized bell
function.

to take the product of two sigmoidal MF’s; the other is to
take the absolute difference of two sigmoidal MF’s.

It should be noted that the list of MF’s introduced in this
section is by no means exhaustive; other specialized MF’s
can be created for specific applications if necessary. In
particular, any types of continuous probability distribution
functions can be used as an MF here, provided that a set of
parameters are given to specify the appropriate meanings
of the MF.

B. Fuzzy If-Then Rules

conditional statement) assumes the form
A fuzzy if-then rule (fuzzy rule, fuzzy implication, or fuzzy

if x is A then y is B (13)

where A and B are linguistic values defined by fuzzy sets
on universes of discourse X and Y , respectively. Often
“x is A” is called the antecedent or premise while “y is
B” is called the consequence or conclusion. Examples of
fuzzy if-then rules are widespread in our daily linguistic
expressions, such as the following:

If pressure is high then volume is small.
If the road is slippery then driving is dangerous.
If a tomato is red then it is ripe.
If the speed is high then apply the brake a little.

Before we can employ fuzzy if-then rules to model
and analyze a system, we first have to formalize what is
meant by the expression “if x is A then y is B,” which
is sometimes abbreviated as .4 + R. In essence, the
expression describes a relation between two variables x
and y; this suggests that a fuzzy if-then rule be defined as a
binary fuzzy relation R on the product space X x Y . Note
that a binary fuzzy relation R is an extension of the classical
Cartesian product, where each element (x,y) E X x Y is
associated with a membership grade denoted by p ~ (x , y).
Altematively, a binary fuzzy relation R can be viewed as
a fuzzy set with universe X x Y , and this fuzzy set is
characterized by a two-dimensional MF p~ (x. y).

Generally speaking, there are two ways to interpret the
fuzzy rule A -+ B. If we interpret A --+ B as ‘*A coupled
with B,” then

R = A + B = A x B =

JANG AND SUN: NEURO-FULLY MODELING AND CONTROL 381

B

T x Y x
(a) (b)

Two interpretations of fuzzy implication: (a) A coupled Fig. 5.
with B; (b) A entails E .

where i is a fuzzy AND (or more generally, T-norm)
operator and A -+ B is used again to represent the fuzzy
relation R. On the other hand, if A -+ B is interpreted
as “ A entails B,” then it can be written as four different
formulas:

Material implication: R = A -+ B = T A U B .
Propositional calculus: R = A + B = - A U (A n B) .
Extended propositional calculus: R = A -+ B =
(’A n ’ B) U B.
Generalization of modus ponens: p ~ (x , y) =
~ u p { c (p ~ (x) * c 5 p ~ (y) a n d O 5 c I l}, where
R = A -+ B and jl is a T-norm operator.

Though these four formulas are different in appearance,
they all reduce to the familiar identity A -+ B T A U B
when A and B are propositions in the sense of two-valued
logic. Fig. 5 illustrates these two interpretations of a fuzzy
rule A -+ B . Here we shall adopt the first interpretation,
where A -+ B implies “ A coupled with B.” The treatment
of the second interpretation can be found in [35], [50], [Sl].

C. Fuzzy Reasoning (Approximate Reasoning)
Fuzzy reasoning (also known as approximate reasoning)

is an inference procedure used to derive conclusions from
a set of fuzzy if-then rules and one or more conditions.
Before introducing fuzzy reasoning, we shall discuss the
compositional rule of inference [1171, which is the essential
rationale behind fuzzy reasoning.

The compositional rule of inference is a generalization of
the following familiar notion. Suppose that we have a curve
y = f(z) that regulates the relation between x and y. When
we are given z = a, then from y = f (x) we can infer that
y = b = f(a); see Fig. 6(a). A generalization of the above
process would allow a to be an interval and f(z) to be
an interval-valued function, as shown in Fig. 6(b). To find
the resulting interval y = b corresponding to the interval
x = a, we first construct a cylindrical extension of a (that
is, extend the domain of a from X to X x Y) and then
find its intersection I with the interval-valued curve. The
projection of I onto the y-axis yields the interval y = b.

Going one step further in our generalization, we assume
that A is a fuzzy set of X and F is a fuzzy relation on
X x Y, as shown in Fig. 7(a) and (b). To find the resulting
fuzzy set B , again, we construct a cylindrical extension
c(A) with base A (that is, we expand the domain of A from
X to X x Y to get c(A)). The intersection of c(A) and F
(Fig. 7(c)) forms the analog of the region of intersection I

(a) (b)

Fig. 6. Derivation of y = b from .c = a and y = f(.c). (a) a
and b are points, y = f (z) is a curve, (b) a and b are intervals,
y = f(s) IS an interval-valued function.

in Fig. 6(b). By projecting c (A) n F onto the y-axis, we
infer y as a fuzzy set B on the y-axis, as shown in Fig. 7(d).
Specifically, let PA, p c (~) , p ~ , and p~ be the MF’s of A,
c(A) , B, and F, respectively, where p , (~) is related to p~
through

Y) = p A (X) .

Then

This formula is referred to as ma-min composition and B
is represented as

B = A o F

where o denotes the composition operator. If we choose
product for fuzzy AND and max for fuzzy OR, then
we have ma-product composition and pg(y) is equal

Using the compositional rule of inference, we can formal-
ize an inference procedure, called fuzzy reasoning, upon a
set of fuzzy if-then rules. The basic rule of inference in
traditional two-valued logic is modus ponens, according to
which we can infer the truth of a proposition B from the
truth of A and the implication A + B . For instance, if
A is identified with “the tomato is red” and B with “the
tomato is ripe,” then if it is true that “the tomato is red,”
it is also true that “the tomato is ripe.” This concept is
illustrated below.

vx [pA(Z:)pF(x , U)].

premise 1 (fact):
premise 2 (rule):

x is A ,
if z is A then :y is B ,

~

consequence (conclusion): y is B.

However, in much of human reasoning, modus ponens is
employed in an approximate manner. For example, if we
have the same implication rule “if the tomato is red then
it is ripe” and we know that “the tomato is more or less

382 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3. MARCH 1995

(a) cylindrical extension of A (b) fuzzy relation F on x and y
Q,

10 10

(c) min. of (a) and (b) (d) projection of (c) onto y-axis a Q, U

10 10

ripe.” This is written as

premise 1 (fact): x is A’, YT/jl: ...,,,,, >
premise 2 (rule):

consequence (conclusion): ?/ is B‘ X

if :I‘ is A then y is B,-.......

Fig. 7. Compositional rule of inference

I&,> ~

Y

where A‘ is close to A and B’ is close to B. When A,
B, A’, and B’ are fuzzy sets of appropriate universes,
the above inference procedure is called fuzzy reasoning or
approximate reasoning; it is also called generalized modus
ponens, since it has modus ponens a5 a special case.

Using the composition rule of inference introduced ear-
lier, we can formulate the inference procedure of fuzzy
reasoning as the following definition.

Dejiinitian 1 I: Fuzzy Reasoning Bused On M a - M i n Com-
position: Let A, A‘, and B be fuzzy sets of X , X , and Y ,
respectively. Assume that the fuzzy implication A + B is
expressed as a fuzzy relation R on X x Y . Then the fuzzy
set B’ induced by “lc is A’” and the fuzzy rule “if x is A
then y is B” is defined by

Fig. 8. Fuzzy reasoning for a single rule with a single antecedent.

Remember that (15) is a general expression for fuzzy
reasoning, while (14) is an instance of fuzzy reasoning
where min and max are the operators for fuzzy AND and
OR, respectively.

Now we can use the inference procedure of the gener-
alized modus ponens to derive conclusions, provided that
the fuzzy implication A --+ B is defined as an appropriate
binary fuzzy relation.

1) Single Rule with Single Antecedent For a single rule
with a single antecedent, the formula is available in (14).
A further simplification of the equation yields

p ~ , (y) = max min [p A , (s) , p R (x , y)] PB’(zl) = [vx (P.4,(Z) A PA-L(2)] A P B (Y)
X

= ? U A p ~ (y) .
= v.r [P A ’ (Z) A p R (. c , y)] (14)

In other words, first we find the degree of match w as
the maximum of ~ A , (z) A p,4(z) (the shaded area in the
antecedent part of Fig. 8); then the MF of the resulting B’
is equal to the MF of B clipped by 20, shown a? the shaded
area in the consequent part of Fig. 8.

or, equivalently,

R‘ = A’ o R = A’ o (A -+ B) . (15)

0

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 383

mln min

Fig. 9. Approximate reasoning for multiple antecedents.

A fuzzy if-then rule with two antecedents is usually writ-
ten as “if x is A and g is B then z is C.” The corresponding
problem for approximate reasoning is expressed as

premise 1 (fact):
premise 2 (rule):

consequence (conclusion): z is C’

x is A’ and y is B’
if z is A I and y is B1 then z
is C1

The fuzzy rule in premise 2 above can be put into the
simpler fomi “ A x B -+ C.” Intuitively, this fuzzy rule
can be transformed into a ternary fuzzy relation R, which
is specified by the following MF:

And the resulting C’ is expressed as

C’ = (A’ x B’) o (A x B -+ C).

Thus

where w1 is the degree of match between A and A‘; w2
is the degree of match between B and B’; and w1 A
202 is called the firing strength or degree of fu&Elment
of this fuzzy rule. A graphic interpretation is shown in
Fig. 9, where the MF of the resulting C’ is equal to the
MF of C clipped by the firing strength w , w = w1 A
w2. The generalization to more than two antecedents is
straightforward.

2) Multiple Rules with Multiple Antecedents: The inter-
pretation of multiple rules is usually taken as the union of
the fuzzy relations corresponding to the fuzzy rules. For
instance, given the following fact and rules:

I

X

’4

Fig. 10. Fuzzy reasoning for multiple rules with multiple an-
tecedents.

premise 1 (fact):
premise 2 (rule 1):

premise 3 (rule 2):

x is A’ and y is B’
if z is A1 and y is B1 then z
is C1
if z is A2 and y is Bz then z
is C,

consequence (conclusion): z is C’

we can employ the fuzzy reasoning shown in Fig. 10 as
an inference procedure to derive the resulting output fuzzy
set C’.

To verify this inference procedure, let RI = A1 x B1 --+

C1 and R2 = A2 x B2 -+ (32 . Since the max-min
composition operator o is distributive over the U operator,
it follows that

C’ = (A’ x B’) o (RI U R2)
= [(A’ x B’) o R I] U [(A‘ x B‘) o Rz]

=c; U c; (17)

where Ci and Ch are the inferred fuzzy sets for rule 1
and 2, respectively. Fig. 10 shows graphically the opera-
tion of fuzzy reasoning for multiple rules with multiple
antecedents.

When a given fuzzy rule assumes the form “if x is A or
y is B then z is C,” then firing strength is given as the
maximum of degree of match on the antecedent part for a
given condition. This fuzzy rule is equivalent to the union
of the two fuzzy rules “if z is A then z is C” and “if 7~
is B then z is C” if and only if the max-min composition
is adopted.

D. Fuzzy Models (Fuzzy Inference Systems)
The Fuzzy inference system is a popular computing frame-

work based on the concepts of fuzzy set theory, fuzzy
if-then rules, and fuzzy reasoning. It has been successfully
applied in fields such as automatic control, data classi-
fication, decision analysis, expert systems, and computer
vision. Because of its multi-disciplinary nature, the fuzzy
inference system is known by a number of names, such

384 PROCEEDINGS OF THE IEEE, VOL. 83. NO. 3. MARCH 1995

min

I
X

I
Y 0x

z

Fig. 11.
for fuzzy AND and OR operators, respectively.

The Mamdani fuzzy inference system using min and max

as “fuzzy-rule-based system,” “fuzzy expert system” (381,
“fuzzy model” [89], [96], “fuzzy associative memory” [48],
“fuzzy logic controller” [50], [51], 1611, and simply (and
ambiguously) “fuzzy system.”

The basic structure of a fuzzy inference system consists
of three conceptual components: a rule base, which contains
a selection of fuzzy rules, a database or dictionary, which
defines the membership functions used in the fuzzy rules,
and a reasoning mechanism, which performs the inference
procedure (usually the fuzzy reasoning introduced earlier)
upon the rules and a given condition to derive a reasonable
output or conclusion.

In what follows, we will first introduce three types of the
most commonly used fuzzy inference systems. Then we will
introduce three ways of partitioning the input space for any
type of fuzzy inference system. Last, we will address briefly
the features and the problems of fuzzy modeling, which is
concemed with the construction of a fuzzy inference system
for modeling a specific target system.

1) Mamdani Fuzzy Model: The Mamdani fuzzy model
[61] was proposed as the very first attempt to control a
steam engine and boiler combination by a set of linguistic
control rules obtained from experienced human operators.
Fig. 11 is an illustration of how a two-rule fuzzy inference
system of the Mamdani type derives the overall output z
when subjected to two crisp inputs x and y.

If we adopt product and max as our choice for the fuzzy
AND and OR operators, respectively, and use max-product
composition instead of the original max-min composition,
then the resulting fuzzy reasoning is shown in Fig. 12,
where the inferred output of each rule is a fuzzy set
scaled down by its firing strength via the algebraic product.
Though this type of fuzzy reasoning was not employed
in Mamdani’s original paper, it has often been used in
the literature. Other variations are possible if we have
different choices of fuzzy AND (T-norm) and OR (T-
conorm) operators.

I
X

I
Y ax

I 1.

z

Fig. 12. The Mamdani fuuy inferexe system using p r ~ d t r c t
and max for fuzzy AND dnd OR operaLor5, re\pectively

In Mamdani’s application [61], two fuzzy inference sys-
tems were used as two controllers to generate the heat input
to the boiler and throttle opening of the engine cylinder,
respectively, in order to regulate the steam pressure in the
boiler and the speed of the engine. Since the plant takes
only crisp values as inputs, we have to use a defuzzifier
to convert a fuzzy set to a crisp value. DefuzziJication
refers to the way a crisp value is extracted from a fuzzy
set as a representative value. The most frequently used
defuzzification strategy is the centroid of area. which is
defined as

where p c / (x) is the aggregated output MF. This formula is
reminiscent of the calculation of expecled values in prob-
ability distributions. Other defuzzification strategies arise
for specific applications, which includes bisector of area,
mean of maximum, largest of maximum, and smallest of
maximum, and so on. Fig. 13 demonstrates these defuzzifi-
cation strategies. Generally speaking, these defuzzification
methods are computation intensive and there is no rigorous
way to analyze them except through experiment-based
studies. Other more flexible defuzzification methods can
be found in [72], [79], [I 131.

Both Figs. 11 and 12 conform to the fuzzy reasoning
defined previously. In practice, however, a fuzzy inference
system may have certain reasoning mechanisms that do
not follow the strict definition of the compositional rule of
inference. For instance, one might use either min or product
for computing firing strengths and/or qualified rule outputs.
Another variation is to use pointwise summation (sum)
instead of max in the standard fuzzy reasoning, though sum
is not really a fuzzy OR operators. An advantage of this
sum-product composition [48] is that the final crisp output

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 385

- centroid of area
blaectw of area

smallest of max. J&
- mean ofmer. largest of max.

Fig. 13. Various defuzzification schemes for obtdining a crisp
output.

via centroid defuzzification is equal to the weighted average
of each rule’s crisp output, where the weighting factor for
a rule is equal to its firing strength multiplied by the area
of the rule’s output MF, and the crisp output of a rule is
equal to the centroid defuzzified value of its output MF.
This reduces the computation burden if we can obtain the
area and the centroid of each output MF in advance.

2) Sugeno Fuzzy Model: The Sugeno fuzzy model (also
known as the TSK fuzzy model) was proposed by Takagi,
Sugeno, and Kang [89], [96] in an effort to develop a
systematic approach to generating fuzzy rules from a given
input-output data set. A typical fuzzy rule in a Sugeno fuzzy
model has the form

if z is A and y is B then z = f (z , y)

where A and B are fuzzy sets in the antecedent, while
z = f(z, y) is a crisp function in the consequent. Usually
f (z , y) is a polynomial in the input variables z and y, but it
can be any function as long as it can appropriately describe
the output of the system within the fuzzy region specified
by the antecedent of the rule. When f(z, y) is a first-order
polynomial, the resulting fuzzy inference system is called
a first-order Sugeno fuzzy model, which was originally
proposed in [89], [96]. When f is a constant, we then have a
zero-order Sugeno fuzzy model, which can be viewed either
as a special case of the Mamdani fuzzy inference system,
in which each rule’s consequent is specified by a fuzzy
singleton (or a predefuzzified consequent), or a special case
of the Tsukamoto fuzzy model (to be introduce later), in
which each rule’s consequent is specified by an MF of a step
function crossing at the constant. Moreover, a zero-order
Sugeno fuzzy model is functionally equivalent to a radial
basis function network under certain minor constraints [33].

It should be pointed out that the output of a zero-order
Sugeno model is a smooth function of its input variables
as long as the neighboring MF’s in the premise have
enough overlap. In other words, the overlap of MF’s in
the consequent does not have a decisive effect on the
smoothness of the interpolation; it is the overlap of the
MF’s in the premise that determines the smoothness of the
resulting input-output behavior.

Fig. 14 shows the fuzzy reasoning procedure for a first-
order Sugeno fuzzy model. Since each rule has a crips
output, the overall output is obtained via weighted average
and thus the time-consuming procedure of defuzzification
is avoided. In practice, sometimes the weighted average

X Y

I
dghtdsverage 1

= - wtzi+wazr
I*l + wa

Fig. 14. The Sugeno fuzzy model.

mi” cv

I I
X Y

Fig. 15. The Tsukamoto fuzzy model.

operator is replaced with the weighted sum operator (that
is, z = wlzl + w2z2 in Fig. 14) in order to further reduce
computation load, especially in training a fuzzy inference
system. However, this simplification could lead to the loss
of MF linguistic meanings unless the sum of firing strengths
(that is, E, w,) is close to unity.

3) Tsukamoto Fuzzy Model: In the Tsukamoto fuzzy m d -
els [99l, the consequent of each fuzzy if-then rule is
represented by a fuzzy set with a monotonical MF, as shown
in Fig. 15. As a result, the inferred output of each rule is
defined as a crisp value induced by the rule’s firing strength.
The overall output is taken as the weighted average of
each rule’s output. Fig. 15 illustrates the whole reasoning
procedure for a two-input two-rule system.

Since each rule infers a crisp output, the Tsukamoto
fuzzy model aggregates each rule’s output by the method of
weighted average and thus also avoids the time-consuming
process of defuzzification.

4) Partition Styles for Fuuy Models: By now it should
be clear that the spirit of fuzzy inference systems resembles
that of “divide and conquer”-the antecedents of fuzzy
rules partition the input space into a number of local
fuzzy regions, while the consequents describe the behavior
within a given region via various constituents. The conse-
quent constituent could be an output MF (Mamdani and
Tsukamoto fuzzy models), a constant (zero-order Sugeno
model), or a linear equation (first-order Sugeno model).
Different consequent constituents result in different fuzzy
inference systems, but their antecedents are always the

386 PROCEEDINGS OF THE IEEE. VOL. 83. NO. 3. MARCH 1995

(a) (b)

Various methods for partitioning the input space: (a) grid partition; (b) tree partition; Fig. 16.
(c) scatter partition.

same. Therefore the following discussion of methods of
partitioning input spaces to form the antecedents of fuzzy
rules is applicable to all three types of fuzzy inference
systems.

Grid Partition: Fig. 16(a) illustrates a typical grid par-
tition in a two-dimensional input space. This partition
method is often chosen in designing a fuzzy controller,
which usually involves only several state variables
as the inputs to the controller. This partition strategy
needs only a small number of MF’s for each input.
However, it encounters problems when we have a
moderately large number of inputs. For instance, a
fuzzy model with 10 inputs and two MF’s on each
input would result in 2’O = 1024 fuzzy if-then rules,
which is prohibitively large. This problem, usually
referred to as the curse of dimensionality, can be
alleviated by the other partition strategies introduced
below.
Tree Partition: Fig. 16(b) shows a typical tree partition,
in which each region can be uniquely specified along a
corresponding decision tree. The tree partition relieves
the problem of an exponential increase in the number
of rules. However, more MF’s for each input are
needed to define these fuzzy regions, and these MF’s
do not usually bear clear linguistic meanings such as
“small,” “big,” and so on.
Scatter Partition: As shown in Fig. 16(c), by covering
a subset of the whole input space that characterizes a
region of possible occurrence of the input vectors, the
scatter partition can also limit the number of rules to
a reasonable amount.

5) Neuro-Fuzzy Modeling: The process for constructing a
fuzzy inference system is usually called “fuzzy modeling,”
which has the following features:

Due to the rule structure of a fuzzy inference system, it
is easy to incorporate human expertise about the target
system directly into the modeling process. Namely,
fuzzy modeling takes advantage of domain knowledge
that might not be easily or directly employed in other
modeling approaches.

When the input-output data of a system to be modeled
is available, conventional system identification tech-
niques can be used for fuzzy modeling. In other words,
the use of numerical data also plays an important
role in fuzzy modeling, just as in other mathematical
modeling methods.
common practice is to use domain knowledge for

structure determination (that is. determine relevant inputs,
number of MF’s for each input, number of rules, types of
fuzzy models, and so on) and numerical data for parameter
identification (that is, identify the values of parameters that
can generate best the performance). In particular, the term
neuro-fuzzy modeling refers to the way of applying various
learning techniques developed in the neural network litera-
ture to fuzzy inference systems. In the subsequent sections,
we will apply the concept of the adaptive network, which
is a generalization of the common back-propagation neural
network, to tackle the parameter identification problem in
a fuzzy inference system.

111. ADAPTIVE NETWORKS
This section describes the architectures and learning

procedures of adaptive networks, which are a superset of all
kinds of neural network paradigms with supervised learning
capability. In particular, we shall address two of the most
popular network paradigms adopted in the neural network
literature: the back-propagation neural network (BPNN) and
the radial basis function network (RBFN). Other network
paradigms that can be interpreted as a set of fuzzy if-then
rules are described in the next section.

A. Architecture
As the name implies, an adaprive nehvork (Fig. 17) is

a network structure whose overall input-output behavior
is determined by the values of a collection of modifiable
parameters. More specifically, the configuration of an adap-
tive network is composed of a set of nodes connected
through directed links, where each node is a process unit
that performs a static node function on its incoming signals
to generate a single node output and each link specifies the

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 387

t t t t
Inputlayer layer 1 layer2 layer3

(WOHlt

Fig. 17.
tion.

A feedforward adaptive network in layered representa-

direction of signal flow from one node to another. Usually
a node function is a parameterized function with modifiable
parameters; by changing these parameters, we are actually
changing the node function as well as the overall behavior
of the adaptive network.

In the most general case, an adaptive network is hetero-
geneous and each node may have a different node function.
Also remember that each link in an adaptive network
are merely used to specify the propagation direction of a
node’s output; generally there are no weights or parameters
associated with links. Fig. 17 shows a typical adaptive
network with two inputs and two outputs.

The parameters of an adaptive network are distributed
into the network’s nodes, so each node has a local parameter
set. The union of these local parameter sets is the network’s
overall parameter set. If a node’s parameter set is nonempty,
then its node function depends on the parameter values;
we use a square to represent this kind of adaptive node.
On the other hand, if a node has an empty parameter
set, then its function is fixed; we use a circle to denote
this type of fixed node. Adaptive networks are generally
classified into two categories on the basis of the type of
connections they have: feedforward and recurrent types.
The adaptive network shown in Fig. 17 is a feedfonvard
network, since the output of each node propagates from
the input side (left) to the output side (right) unanimously.
If there is a feedback link that forms a circular path in a
network, then the network is a recurrent network; Fig. 18
is an example. (From the viewpoint of graph theory, a
feedforward network is represented by an acyclic directed
graph which contains no directed cycles, while a recurrent
network always contains at least one directed cycle.)

In the layered representation of the feedforward adaptive
network in Fig. 17, there are no links between nodes
in the same layer and outputs of nodes in a specific
layer are always connected to nodes in succeeding layers.
This representation is usually preferred because of its
modularity, in that nodes in the same layer have the same
functionality or generate the same level of abstraction about
input vectors.

Another representation of feedfonvard networks is the
topological ordering representation, which labels the nodes
in an ordered sequence 1, 2, 3, . . . , such that there are
no links from node i to node j whenever i 2 j. Fig. 19

U

Fig. 18. A recurrent adaptive network

is the topological ordering representation of the network
in Fig. 17. This representation is less modular than the
layer representation, but it facilitates the formulation of the
leaming rule, as will be seen in the next section. (Note that
the topological ordering representation is in fact a special
case of the layered representation, with one node per layer.)

Conceptually, a feedfonvard adaptive network is actually
a static mapping between its input and output spaces;
this mapping may be either a simple linear relationship
or a highly nonlinear one, depending on the structure
(node arrangement and connections, and so on) for the
network and the function for each node. Here our aim is
to construct a network for achieving a desired nonlinear
mapping that is regulated by a data set consisting of a
number of desired input-output pairs of a target system.
This data set is usually called the training data set and
the procedure we follow in adjusting the parameters to
improve the performance of the network are often referred
to as the learning rule or learning algorithm. Usually
an adaptive network’s performance is measured as the
discrepancy between the desired output and the network’s
output under the same input conditions. This discrepancy is
called the error measure and it can assume different forms
for different applications. Generally speaking, a leaming
rule is derived by applying a specific optimization technique
to a given error measure.

Before introducing a basic learning algorithm for adap-
tive networks, we shall present several examples of adaptive
networks.

Example 3: An Adaptive Network with a Single Linear
Node: Fig. 20 is an adaptive network with a single node
specified by

where x1 and z2 are inputs and al . a2, and a.3 are mod-
ifiable parameters. Obviously this function defines a plane
in 2 1 - :c2 - 5 3 space, and by setting appropriate values
for the parameters, we can place this plane arbitrarily. By
adopting the squared error as the error measure for this
network, we can identify the optimal parameters via the

Example 4: A Building Block for the Perceptron or the
Back-Propagation Neural Network: If we add another node
to let the output of the adaptive network in Fig. 20 have
only two values 0 and 1, then the nonlinear network shown

linear least-squares estimation method. 0

388 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3. MARCH 1995

Fig. 19. A fecdforward adaptive network in topological ordering representation.

Fig. 20. A linear single-node adaptive network.

Fig. 21. A nonlinear single-node adaptive network.

in Fig. 21 is obtained. Specifically, the node outputs are
expressed as

and

1 if 2 3 2 0
0 if z3 < 0

3:4 = f4(3:3) =

where f 3 is a linearly parameterized function and f 4 is a
step function which maps -c3 to either 0 or 1. The overall
function of this network can be viewed as a linear classi$er:
the first node forms a decision boundary as a straight line
in 11'1 - x2 space, and the second node indicates which half
plane the input vector (T I . ,c2) resides in. Obviously we
can form an equivalent network with a single node whose
function is the composition of f3 and f 4 ; the resulting node
is the building block of the classical perceptron.

Since the step function is discontinuous at one point and
flat at all the other points, it is not suitable for learning
procedures based on gradient descent. One way to get
around this difficulty is to use the sigmoid function:

which is a continuous and differentiable approximation to
the step function. The composition of f3 and this differ-
entiable f 4 is the building block for the back-propagation

0 neural network in the following example.

.

U

f t f
layer 0 layer 1 layer 2

(Input layer) (hidden layer) (output layer)

Fig. 22. A 3-3-2 neural network.

Example 5: A Back-Propagation Neurul Network: Fig. 22
is a typical architecture for a back-propagation neural
network with three inputs, two outputs, and three hidden
nodes that do not connect directly to either inputs or
outputs. (The term back-propagation refers to the way the
learning procedure is performed, that is, by propagating
gradient information from the network's outputs to its
inputs; details on this are to be introduced next.) Each node
in a network of this kind has the same node function, which
is the composition of a linear f 3 and a sigmoidal fi in
Example 4. For instance, the node function of node 7 in
Fig. 22 is

where x4, .c5, and :E6 are outputs from nodes 4, 5 , and
6, respectively, and (7 ~ 4 , ~ : 2115,~. ' u I ~ , J . t:.} is the parameter
set. Usually we view wi;j as the weight associated with
the link connecting node i and j and t j as the threshold
associated with node j . However, it should be noted that
this weight-link association is only valid in this type of
network. In general, a link only indicates the signal flow
direction and, the causal relationship between connected
nodes, as will be shown in other types of adaptive networks
in the subsequent development. A more detailed discussion
about the structure and learning rules of the artificial neural

0 network will be presented later.

JANG A h D SUN;: NEURO-FUZZY MODELING AND CONTROL 38Y

xo, 1

xo.2

t t t
layer 0 layer 1 layer 2 layer 3

(a)

n

0 .

(b)

Fig. 23.
sentation

Our notational conventions: (a) layered representation; (b) topological ordering repre-

B. Back-Propagation Learning Rule
The central part of a learning rule for an adaptive network

concerns how to recursively obtain a gradient vector in
which each element is defined as the derivative of an error
measure with respect to a parameter. This is done by means
of the chain rule, and the method is generally referred to as
the "back-propagation learning rule" because the gradient
vector is calculated in the direction opposite to the flow of
the output of each node. Details follow below.

Suppose that a given feedforward adaptive network in
the layered representation has L layers and layer 1(1 = 0,
1, L; I = 0 represents the input layer) has N (l) nodes.
Then the output and function of node i (i = 1, . . . , N (l))
of layer 1 can be represented as xl.? and .fl.z, respectively,
as shown in Fig. 23(a). Without loss of generality, we
assume there are no jumping links, that is, links connecting
nonconsecutive layers. Since the output of a node depends
on the incoming signals and the parameter set of the node,
we have the following general expression for the node
function fl,?:

5 1 , z = ~ / , ~ (x / - l , l , . . . ~ l - l , ~ (l - ~) , a , / ? , ~ , . . .) (19)

where a, /?, 7, etc., are the parameters pertaining to this
node.

Assuming the given training data set has P entries, we
can define an error measure for the p th (1 5 p 5 P) entry
of the training data as the sum of squared errors:

where d k is the kth component of the pth desired output
vector and X L , k is the kth component of the actual output
vector produced by presenting the pth input vector to the
network. (For notational simplicity, we omit the subscript p
for both d k and X L , ~ .) Obviously, when Ep is equal to zero,
the network is able to reproduce exactly the desired output
vector in the pth training data pair. Thus our task here is
to minimize an overall error measure, which is defined as

Remember that the definition of Ep in (20) is not uni-
versal; other definitions of Ep are possible for specific
situations or applications. Therefore we shall avoid using
an explicit expression for the error measure Ep in order to
emphasize the generality. In addition, we assume that Ep
depends on the output nodes only; more general situations
will be discussed below.

To use the gradient method to minimize the error mea-
sure, first we have to obtain the gradient vector. Before
calculating the gradient vector, we should observe that

P
E = C,=lEP.

/changein*rchangeintheourput/
parametera of node containing Q:

change in the output change in the output *[Fl*Fl
where the arrows * indicate causal relationships. In other
words, a small change in a parameter a will affect the

390 PROCEEDLNGS OF THE IEEE, VOL. 83, NO. 3. MARCH 1995

The error signal for the ith output node (at layer L) can
be calculated directly:

Fig. 24.
text for details).

Ordered derivatives and ordinary partial derivatives (see

output of the node containing a; this in turn will affect the
output of the final layer and thus the error measure. There-
fore the basic concept in calculating the gradient vector of
the parameters is to pass a form of derivative information
starting from the output layer and going backward layer by
layer until the input layer is reached.

To facilitate the discussion, we define the error signal
F L , ~ as the derivative of the error measure Ep with respect
to the output of node i in layer 1, taking both direct and
indirect paths into consideration. In symbols,

This expression was called the “ordered derivative” by
Werbos [107]. The difference between the ordered deriva-
tive and the ordinary partial derivative lies in the way
we view the function to be differentiated. For an internal
node output . c ~ , ~ (where 1 # L) , the partial derivative
(?lEP/axl,&) is equal to zero, since Ep does not depend on
~ 1 , ~ directly. However, it is obvious that Ep does depend
on ~ 1 , ~ indirectly, since a change in ~ 1 , ~ will propagate
through indirect paths to the output layer and thus produce
a corresponding change in the value of E p . Therefore

can be viewed as the ratio of these two changes
when they are made infinitesimal. The following example
demonstrates the difference between the ordered derivative
and the ordinary partial derivative.

Example 6: Ordered Derivatives and Ordinary Partial
Derivatives: Consider the simple adaptive network shown
in Fig. 24, where z is a function of x and y, and y is in
turn a function of x:

Y = f(x.). { 2 = d G Y) .

For the ordinary partial derivative (az/dz) , we assume that
all the other input variables (in this case, y) are constant:

ax ax .
In other words, we assume the direct inputs x and y are
independent, without paying attention to the fact that y is
actually a function of x. For the ordered derivative, we take
this indirect causal relationship into consideration:

az - a g (~ , y > -~ -

a+z - a d z , f (.)I -
i) X dX

Therefore the ordered derivative takes into consideration
both the direct and indirect paths that lead to the causal
relationship. 0

This is equal to EL,^ = - 2 (4 - Z L , ~) if Ep is defined as in
(20). For the internal (nonoutput) node at the ith position
of layer 1, the error signal can be derived by the chain rule:

error signal error signal
at layer 1+1 at layer 1

where 0 5 1 5 L- 1. That is, the error signal of an internal
node at layer 1 can be expressed as a linear combination
of the error signal of the nodes at layer 1+ I . Therefore
for any I and .i (0 5 I 5 L and 1 5 i 5 N (l)) , we
can find = (d+Ep/3xl,z) by first applying (22) once
to get error signals at the output layer, and then applying
(23) iteratively until we reach the desired layer 1. Since the
error signals are obtained sequentially from the output layer
back to the input layer, this learning paradigm is called the
“back-propagation” learning rule by Rumelhart, Hinton, and
Williams [78].

The gradient vector is defined as the derivative of the
error measure with respect to each parameter, so we have
to apply the chain rule again to find the gradient vector. If
a is a parameter of the ith node at layer I , we have

Note that if we allow the parameter a to be shared between
different nodes, then (24) should be changed to a more
general form:

where S is the set of nodes containing a as a parameter
and f* is the node function for calculating x*.

The derivative of the overall error measure E with respect
to a is

p=l

Accordingly, the update formula for the generic param-
eter a is

d+E
A a = - T) - atr

in which 71 is the leaming rate, which can be further
expressed as

(28)
K

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 39 I

where IC. is the step size, the length of each transition along
the gradient direction in the parameter space. Usually we
can change the step size to vary the speed of convergence;
two heuristic rules for updating the value of IE are described
in [30].

When an n-node feedforward network is represented in
its topological order, we can envision the error measure E,
as the output of an additional node with index n + 1, whose
node function fn+l can be defined on the outputs of any
nodes with smaller indexes; see Fig. 23(b). (Therefore Ep
may depend directly on any intemal nodes.) Applying the
chain rule again, we have the following concise formula for
calculating the error signal ti = 8Ep/i3x,:

or

where the first term shows the direct effect of 2, on Ep via
the direct path from node z to node n + 1 and each product
term in the summation indicates the indirect effect of x, on
Ep. Once we find the error signal for each node, then the
gradient vector for the parameters is derived as before.

Another simple and systematic way to calculate the
error signals is through the representation of the error-
propagation network (or sensitivity model), which is ob-
tained from the original adaptive network by reversing the
links and supplying the error signals at the output layer as
inputs. The reader is referred to [22] or [35] for a complete
coverage.

Depending on the applications we are interested in, two
types of leaming paradigms for adaptive networks are
available to suit our needs. In off-line learning (or batch
leaming), the update formula for parameter a is based on
(26) and the update action takes place only after the whole
training data set has been presented, that is, only after each
epoch or sweep. On the other hand, in on-line learning (or
pattern learning), the parameters are updated immediately
after each input-output pair has been presented, and the
update formula is based on (24). In practice, it is possible to
combine these two leaming modes and update the parameter
after k training data entries have been presented, where k
is between 1 and P and it is sometimes referred to as the
epoch size.

For a recurrent adaptive network that operates synchro-
nously, we can transform it into an equivalent feedfor-
ward network by a simple technique called “unfolding
of time” [78]. When applied to an unfold network, The
back-propagation learning algorithm is often referred to
as “back-propagation through time.” An improved on-line
version that is less memory-intensive, called “real-time
recurrent leaming” [112], is also available in the literature.
Due to space limitation, the reader is refer to [22] or [351
for a general coverage of applying back-propagation to
recurrent networks.

C. Hybrid Learning Rule: Combining BP and LSE
It is observed that if an adaptive network’s output (as-

suming only one) or its transformation is linear in some of
the network’s parameters, then we can identify these linear
parameters by the well known linear least-squares method.
This observation leads to a hybrid learning rule [251, [30]
which combines the gradient method and the least-squares
estimator (LSE) for fast identification of parameters.

I) 08-Line Learning (Batch Learning): For simplicity,
assume that the adaptive network under consideration has
only one output

output = F(I: S) (31)

where 9 is the vector of input variables and S is the set
of parameters. If there exists a function H such that the
composite function H o F is linear in some of the elements
of S , then these elements can be identified by the least-
squares method. More formally, if the parameter set S can
be decomposed into two sets

(where Q represents direct sum) such that H o F is linear in
the elements of S Z , then upon applying H to (31), we have

H(ou tpu t) = H 0 F (f , S) (33)

which is linear in the elements of Sz. Now given values of
elements of SI, we can plug P training data into (33) and
obtain a matrix equation:

AB = U (34)

where B is an unknown vector whose elements are param-
eters in SZ. This equation represents the standard linear
least-squares problem and the best solution for 8, which
minimizes ((AB - L?(I2, is the least-squares estimator (LSE)
e* :

where AT is the transpose of A and (ATA)-’AT is the
pseudo-inverse of A if A T A is nonsingular. Of course, we
can also employ the recursive LSE formula [l l , 1241, [591.
Specifically, let the ith row vector of matrix A defined in
(34) be U: and the ith element of B be bT; then B can be
calculated iteratively as follows:

where the least-squares estimator B* is equal to B p . The
initial conditions needed to bootstrap (36) are 80 = 0 and

392 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3. MARCH 1995

SO = 71, where y is a positive large number and I is the
identity matrix of dimension M x M . When we are dealing
with multi-output adaptive networks (output in (31) is a
column vector), (36) still applies except that bT is the ith
row of matrix B.

Now we can combine the gradient method and the least-
squares estimator to update the parameters in an adaptive
network. For hybrid learning to be applied in a batch mode,
each epoch is composed of a forward pass and a backward
pass. In the forward pass, after an input vector is presented,
we calculate the node outputs in the network layer by
layer until a corresponding row in the matrices A and B
in (34) are obtained. This process is repreated for all the
training data entries to form the complete A and B; then
parameters in S2 are identified by either the pseudo-inverse
formula in (35) or the recursive least-squares formulas in
(36). After the parameters in SZ are identified, we can
compute the error measure for each training data entry. In
the backward pass, the error signals (the derivative of the
error measure w.r.t. each node output, see (22) and (23))
propagate from the output end toward the input end; the
gradient vector is accumulated for each training data entry.
At the end of the backward pass for all training data, the
parameters in S1 are updated by the gradient method in
(27).

For given fixed values of the parameters in SI, the
parameters in Sz thus found are guaranteed to be the global
optimum point in the Sz parameter space because of the
choice of the squared error measure. Not only can this
hybrid learning rule decrease the dimension of the search
space in the gradient method, but, in general, it will also
substantially reduce the time needed to reach convergence.

It should be kept in mind that by using the least-squares
method on the data transformed by W(.), the obtained
parameters are optimal in terms of the transformed squared
error measure instead of the original one. In practice,
this usually does not cause a problem as long as H (.)
is monotonically increasing and the training data are not
too noisy. A more detailed treatment of this transformation
method can be found in [35].

2) On-Line Learning (Pattern Learning): If the parame-
ters are updated after each data presentation, we have an
on-line leaming or pattern learning scheme. This leaming
strategy is vital to on-line parameter identification for
systems with changing characteristics. To modify the batch
learning rule to obtain an on-line version, it is obvious
that the gradient descent should be based on Ep (see (24))
instead of E. Strictly speaking, this is not a truly gradient
search procedure for minimizing E, yet it will approximate
one if the learning rate is small.

For the recursive least-squares formula to account for
the time-varying characteristics of the incoming data, the
effects of old data pairs must decay as new data pairs
become available. Again, this problem is well studied in the
adaptive control and system identification literature and a
number of solutions are available [20]. One simple method
is to formulate the squared error measure as a weighted
version that gives higher weighting factors to more recent

data pairs. This amounts to the addition of a forgetting
factor X to the original recursive formula:

where the typical value of X in practice is between 0.9 and
1 . The smaller X is, the faster the effects of old data decay.
A small X sometimes causes numerical instability. however,
and thus should be avoided. For a complete discussion and
derivation of (3 3 , the reader is referred to [20], 1351, [59].

3) Different Ways of Combining GD and LSE: The com-
putational complexity of the least-squares estimator (LSE)
is usually higher than that of the gradient descent (GD)
method for one-step adaptation. However, for achieving
a prescribed performance level, the LSE is usually much
faster. Consequently, depending on the available computing
resources and required level of performance, we can choose
from among at least five types of hybrid leaming rules
combining GD and LSE in different degrees, as follows:

One pass of LSE only: Nonlinear parameters are fixed
while linear parameters are identified by one-time
application of LSE.
GD only: All parameters are updated by GD itera-
tively.
One pass of LSE followed by GD: LSE is employed
only once at the very beginning to obtain the initial
values of linear parameters and then GD takes over
to update all parameters iteratively.
GD and LSE: This is the proposed hybrid leaming
rule, where each iteration (epoch) of GD used to
update the nonlinear parameters is followed by LSE
to identify the linear parameters.
Sequential (approximate) LSE only: The outputs of
an adaptive network are linearized with respect to
its parameters, and then the extended Kalman filter
algorithm [21] is employed to update all parameters.
This method has been proposed in the neural network
literature [82]-[84].

The choice of one of the above methods should be
based on a tradeoff between computational complexity and
performance. Moreover, the whole concept of fitting data to
parameterized models is called regression in statistics liter-
ature, and there are a number of other techniques for either
linear or nonlinear regression, such as the Guass-Newton
method (linearization method) and the Marquardt procedure
[62]. These methods can be found in advanced textbooks on
regression and they are also viable techniques for finding
optimal parameters in adaptive networks.

D. Neural Networks as Special Cases ofAdaptive Networks
Some special cases of adaptive networks have been

explored extensively in the neural network literature. In
particular, we will introduce two types of neural networks:
the back-propagation neural network (BPNN) and the radial
basis function network (RBFN). Other types of adaptive

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 393

step function sigmoid function

21-----1 2r-----l
0 1/

node 4

hyper-tangent function identity function

I 1 -3 0 0 10 0 10

(c) (d)

Fig. 25. Activation functions for BPNN’s: (a) step function; (b)
sigmoid function; (c) hyper-tangent function; (d) identity function.

networks that can be interpreted as a set of fuzzy if-then
rules are investigated in the next section.

I) Back Propagation Neural Networks (BPNN’s): A back-
propagation neural network (BPNN), as already mentioned
in Examples 4 and 5, is an adaptive network whose nodes
(called “neurons”) perform the same function on incoming
signals; this node function is usually a composite function
of the weighted sum and a nonlinear function called the
“activation function” or “transfer function.” Usually the
activation functions are of either a sigmoidal or a hyper-
tangent type which approximates the step function (or hard
limiter) and yet provides differentiability with respect to
input signals. Fig. 25 depicts the four different types of
activation functions f(x) defined below.

Step function: 1 i f z > 0 .
0 i f x < O .

1

Sigmoid function:

Hyper-tangent function:
1 - e-”
1 + e-“

f(x) = tanh (2/2) = -.
Identity function: f(x) = 2.

When the step function (hard-limiter) is used as the acti-
vation function for a layered network, the network is often
called a “perceptron” [69], [77], as explained in Example 4.
For a neural network to approximate a continuous-valued
function not necessarily limited to the interval [0,1] or [I ,
-11, we usually let the node function for the output layer be
a weighted sum with no limiting-type activation functions.
This is equivalent to the situation where the activation
function is an identity function, and output nodes of this
type are often called linear nodes.

Fig. 26. A BPNN node

For simplicity, we assume the BPNN in question uses the
sigmoidal function as its activation function. The net input
Z of a node is defined as the weighted sum of the incoming
signals plus a threshold. For instance, the net input and
output of node j in Fig. 26 (where j = 4) are

where xi is the output of node i located in the previous
layer, wij is the weight associated with the link connecting
nodes i and j , and t j is the threshold of node j . Since
the weights wij are actually intemal parameters associ-
ated with each node j , changing the weights of a node
will alter the behavior of the node and in turn alter the
behavior of the whole BPNN. Fig. 22 shows a two-layer
BPNN with 3 inputs in the input layer, 3 neurons in the
hidden layer, and 2 output neurons in the output layer.
For simplicity, this BPNN will be referred to as a 3-3-
2 structure, corresponding to the number of nodes in each
layer. (Note that the input layer is composed of three buffer
nodes for distributing the input signals; therefore this layer
is conventionally not counted as a physical layer of the
BPNN.)

BPNN’s are by far the most commonly used NN structure
for applications in a wide range of areas, such as speech
recognition, optical character recognition (OCR), signal
processing, data compression, and automatic control.

2) The Radial Basis Function Networks (RBFN’s): The
locally tuned and overlapping receptive field is a well
known structure that has been studied in the regions of the
cerebral cortex, the visual cortex, and so forth. Drawing
on the knowledge of biological receptive fields, Moody
and Darken [65], [66] proposed a network structure that
employs local receptive fields to perform function map-
pings. Similar schemes have been proposed by Powell [73],
Broomhead and Lowe [7] , and many others in the areas
of interpolation and approximation theory; these schemes
are collectively called radial basis function approximations.
Here we shall call this network structure the radial basis
function network or RBFN. Fig. 27 shows a schematic
diagram of an RBFN with five receptive field units; the
activation level of the ith receptive field unit (or hidden
unit) is

394 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995

- f

Fig. 27. A radial basis function network (RBFN).

where 5 is a multi-dimensional input vector, G is a vector
with the same dimension as 5, H is the number of radial
basis functions (or equivalently, receptive field units), and
R,(.) is the ith radial basis function with a single maximum
at the origin. Typically, R;(.) is chosen as a Gaussian
function

or as a logistic function

Thus the activation level of the radial basis function w,
computed by the ith hidden unit is maximum when the
input vector 2 is at the center

The output of a radial basis function network can be
computed in two ways. In the simpler method, as shown in
Fig. 27, the final output is the weighted sum of the output
value associated with each receptive field:

of that unit.

H H

a = 1 2 = 1

where f, is the output value associated with the ith recep-
tive field. A more complicated method for calculating the
overall output is to take the weighted average of the output
associated with each receptive field:

H H

f2Wt ftRt(5)
(43) 1=1

H
- f(2) = 1=1 -

?W. ZRd4 .
I = 1 L = l

This mode of calculation, though has a higher degree of
computational complexity, possesses the advantage that
points in the overlapping area of two receptive fields
will have a well interpolated output value between the
output values of the two receptive fields. For representation
purposes, if we change the radial basis function &(2)
in each node of layer 2 in Fig. 27 by its normalized
counterpart R,(Z)/ E, Rt(2) , then the overall output is
specified by (43).

Several learning algorithms have been proposed to iden-
tify the parameters (6, o; and f;) of an RBFN. Note that the
RBFN is an ideal example of the hybrid learning described
in the previous section, where the linear parameters are f;
and the nonlinear parameters are ci and oi. In practice, the
6 are usually found by means of vector quantization or
clustering techniques (which assume similar input vectors
produce similar outputs) and the oi are obtained heuristi-
cally (such as by taking the average distance to the first
several nearest neighbors of Zi’s). Once these nonlinear
parameters are fixed, the linear parameters can be found
by either the least-squares method or the gradient method.
Chen et al. [8] used an alternative method that employs the
orthogonal least-squares algorithm to determine the c;’s and
fi’s while keeping the oi’s at a pre-determined constant.

An extension of Moody-Darken’s RBFN is to assign a
linear function as the output function of each receptive field;
that is, f i is a linear function of the input variables instead
of a constant:

f ; = r i a . .t + b, (44)

where Zi is a parameter vector and bi is a scalar parameter.
Stokbro et al. 1871 used this structure to model the Mackey-
Glass chaotic time series [60] and found that this extended
version performed better than the original RBFN with the
same number of fitting parameters.

It was pointed out by the authors that under certain
constraints, the RBFN is functionally equivalent to the the
zero-order Sugeno fuzzy model. See 1331 or 1351 for details.

IV. ANFIS: ADAPTIVE NEURO-FUZZY
INFERENCE SYSTEMS

A class of adaptive networks that act as a fundamental
framework for adaptive fuzzy inference systems is intro-
duced in this section. This type of networks is referred to
as “ANFIS” [25], 1261, 1301, which stands for Adaptive-
Network-based Fuzzy Inference System, or semantically
equivalently, Adaptive Neuro-Fuzzy Inference System. We
will describe primarily the ANFIS architecture and its
learning algorithm for the Sugeno fuzzy model, with an
application example of chaotic time series prediction.

Note that similar network structures were also proposed
independently by Lin and Lee 1571 and Wang and Mendel
[1041).

A. ANFIS Architecture
For simplicity, we assume the fuzzy inference system

under consideration has two inputs z and 1~ and one output
z . For a first-order Sugeno fuzzy model [89], [96], a typical
rule set with two fuzzy if-then rules can be expressed as

Ride 1 : If z is AI and is B1,

Rule 2 : If x is A2 and y is B2,
then f l = plz + y ~ g + TI ,

then f 2 = p 2 2 + q2y + 1.2.

Fig. 28(a) illustrates the reasoning mechanism for this
Sugeno model. The corresponding equivalent ANFIS archi-
tecture is as shown in Fig. 28(b), where nodes of the same

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 395

Y

layer 1

f2 = p2x +%Y +5 = w, f , + w2 f2

layer 4

X Y layer 5
layer 3 .1

.1 I I I

X

f

Y

(b)

Fig. 28.
architecture.

(a) A two-input first-order Sugeno fuzzy model with two rules; (b) equivalent ANFIS

layer have similar functions, as described below. (Here we
denote the output node i in layer 1 as Ol,i.)

Layer I: Every node i in this layer is an adaptive node
with a node output defined by

where z (or y) is the input to the node and A, (or
Bi-2) is a fuzzy set associated with this node. In other
words, outputs of this layer are the membership values of
the premise part. Here the membership functions for A,
and B, can be any appropriate parameterized membership
functions introduced in Section 11. For example, A, can be
characterized by the generalized bell function:

where {ai, bi, ci} is the parameter set. Parameters in this
layer are referred to as premise parameters.

Layer 2: Every node in this layer is a fixed node labeled
II, which multiplies the incoming signals and outputs the
product. For instance,

(47)

Each node output represents the firing strength of a rule. (In
fact, any other T-norm operators that perform fuzzy AND
can be used as the node function in this layer.)

Layer 3: Every node in this layer is a fixed node labeled
N . The ith node calculates the ratio of the ith rule's firing
strength to the sum of all rules' firing strengths:

0 2 , a = w, = p A z (Z) x p&(y), i = 1.2.

For convenience, outputs of this layer will be called nor-
malized jiring strengths.

Layer 4: Every node i in this layer is an adaptive node
with a node function

(49)

where E,i is the output of layer 3 and {pi, qi , ri} is the
parameter set. Parameters in this layer will be referred to
as consequent parameters.

04,a = Wafa = Ei(piX + qiy + Ti)

396 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995

Table 1 Two Passes in the Hybrid Learning Procedure for ANFIS

Signals
Fig. 29.
Sugeno fuzzy model.

Another ANFIS architecture for the two-input two-rule
Node Outputs Error Signals

- t
Premise Fixed Gradient

Parameters Descent

Parameters Estimate

h y e r 5 : The single node in this layer is a fixed node
labeled E, which computes the overall output as the sum-
mation of all incoming signals:

2

Thus we have constructed an adaptive network that has
exactly the same function as a Sugeno fuzzy model. Note
that the structure of this adaptive network is not unique; we
can easily combine layers 3 and 4 to obtain an equivalent
network with only four layers. Similarly, we can perform
weight normalization at the last layer; Fig. 29 illustrates an
ANFIS of this type.

Fig. 30(a) is an ANFIS architecture that is equivalent
to a two-input first-order Sugeno fuzzy model with nine
rules, where each input is assumed to have three associated
MF’s. Fig. 30(b) illustrates how the 2-D input space is
partitioned into nine overlapping fuzzy regions, each of
which is governed by fuzzy if-then rules. In other words,
the premise part of a rule defines a fuzzy region, while the
consequent part specifies the output within this region.

For ANFIS architectures for the Mamdani and Tsukamoto
fuzzy models, the reader is referred to [30] and [35) for
more detail.

B. Hybrid Learning Algorithm
From the ANFIS architecture shown in Fig. 28(b), we

observe that when the values of the premise parameters
are fixed, the overall output can be expressed as a linear
combination of the consequent parameters. In symbols, the
outpht f in Fig. 28(b) can be rewritten as

f 2
101 U’2

f=----- fl + ~

w1 + w 2 W l + W 2

=E1 f l + 732 f2

= @ l X h + (WlY)91 + (W1)Tl

+ (a 2 X) P z + (z2y)qz + (w 2) ~ (51)

which is linear in the consequent parameters p l , q1, r1.

pa, 92, and rg. Therefore the hybrid learning algorithm
developed in the previous section can be applied directly.
More specifically, in the forward pass of the hybrid learning
algorithm, node outputs go forward until layer 4 and the
consequent parameters are identified by the least-squares
method. In the backward pass, the error signals propagate

backward and the premise parameters are updated by gra-
dient descent. Table 1 summarizes the activities in each
pass.

As mentioned earlier, the consequent parameters thus
identified are optimal under the condition that the premise
parameters are fixed. Accordingly, the hybrid approach
converges much faster since it reduces the dimension of
the search space of the original back-propagation method.

If we fix the membership functions and adapt only
the consequent part, then ANFIS can be viewed as a
functional-link network [47], [70] where the “enhanced
representations” of the input variables are obtained via the
membership functions. These “enhanced representations,”
which take advantage of human knowledge, apparently
express more insight than the functional expansion and
the tensor (outer product) models 1701. I3y fine-tuning the
membership functions, we actually make this “enhanced
representation” also adaptive.

From (42), (43), and (50), it is not too hard to see
the resemblance between the radial basis function network
(RBFN) and the ANFIS for the Sugeno model. Actually
these two computing framework are functionally equivalent
under certain minor conditions [33]; this cross-fertilize both
disciplines in many respect$.

C. Application to Chaotic Time Series Prediction
ANFIS can be applied to a wide range of areas, such

as nonlinear function modeling [25] , [30], time series
prediction [30], [34], on-line parameter identification for
control systems [30], and fuzzy controller design [27], [29].
In particular, GE has been using ANFIS for modeling
correction factors in steel rolling mills [6]. Here we will
briefly report the application of ANFIS to chaotic time
series prediction [30], [34].

The time series used in our simulation is generated by
the Mackey-Glass differential delay [6Ol:

(52)
0.2z(t - 7)

1 + z y t - T)
i (t) = - O.lz(t).

The prediction of future values of this time series is a
benchmark problem that has been used and reported by a
number of connectionist researchers, such as Lapedes and
Farber [49], Moody [64], [66], Jones et al. [36], Crower
[76], and Sanger [80] . The simulation results presented
here were reported in [30], [34]; more details can be found
therein,

JANG AND SUN: NEUUO-FUZZY MODELING AND CONTROL 397

Y Y

Methods

ANFIS

AR Model

Cascade-Correlation NN

Back-Prop NN

6th-order Polynomial

Linear Predictive Method

Fig.

~~

Training Data NDEI

500 0.007

500 0.19

500 0.06

500 0.02

500 0.04

2000 0.55

30. ANFIS architec

f
Y

f
(a)

:ture for a two-input first-order Sugeno fuzzy
(b) partition of the input space into nine fuzzy regions.

Mackey-Glass Time Series 1.4, ,

1.2

1

0.8

0.6

0.4
200 400 600

time

(a)

pndictioo Ermrs 0.01 I

0.005 I II I

0

' 1'
I

m 400 600 800 1wO
-0.01 I

time

(b)

Fig. 31. (a) Mackey-Glass time series from t = 124 to 1123 and
six-step ahead prediction (which is indistinguishable from the time
series here); (b) prediction error. (Note that the first 500 data points
are training data, while the remaining are for validation.)

The goal of the task is to use past values of the time series
up to the point x = t to predict the value at some point in
the future z = t + P. The standard method for this type of
prediction is to create a mapping from D points of the time
series spaced A apart, that is, (z(t - (D - l)A) , . . . , z (t -
A), ~ (t)) , to a predicted future value z (t + P) . To allow
comparison with earlier work (Lapedes and Farber [49],
Moody [64], [66], Crower [76]), the values D = 4 and
A = P = 6 were used. All other simulation settings were
arranged to be as similar as possible to those reported in

From the Mackey-Glass time series ~ (t) , we extracted
~761.

1000 input-output data pairs of the following format:

[~ (t - 18), ~ (t - 12). ~ (t - 6) , 5 (t) : X (t + 6)] (53)

where t = 118 to 11 17. The first 500 pairs (training data
set) were used for training ANFIS, while the remaining 500

- f

model

:g
with nine

.#
1 4 7

1 - - - - m
(b)

rules;

Table 2 Generalization Result Comparisons for P = 6

pairs (checking data set) were used for validating the model
identified. The number of membership functions assigned
to each input of the ANFIS was set to two, so the number
of rules is 16. The ANFIS used here contains a total of 104
fitting parameters, of which 24 are premise parameters and
80 are consequent parameters

Fig. 3 1 shows the results after about 500 epochs of learn-
ing. The desired and predicted values for both training data
and checking data are essentially the same in Fig. 31(a);
the differences between them can only be seen on a much
finer scale, such as that in Fig. 31(b).

Table 2 lists the generalization capabilities of other
methods, which were measured by using each method to
predict 500 points immediately following the training set.
The last four row of Table 2 are from [76] directly. The
nondimensional error index (NDEI) [49], 1761 is defined
as the root mean square error divided by the standard
deviation of the target series. The remarkable generalization
capability of ANFIS is attributed to the following facts:

ANFIS can achieve a highly nonlinear mapping, there-
fore it is well suited for predicting nonlinear time
series.
The ANFIS used here has 104 adjustable parameters,
far fewer than those used in the cascade-correlation
NN (693, the median) and back-prop NN (about 540)
listed in Table 2.
Though not based on a priori knowledge, the initial
parameter settings of ANFIS are intuitively reasonable

398 PROCEEDINGS OF THE IEEE. VOL. 83. NO. 3. MARCH 1995

I -J

-
u(k)

plant
?r

Fig. 32. Block diagram for a continuous time feedback control
system.

-+ X(k+l)

U

Fig. 33. The inverted pendulum system.

and results in fast convergence to good parameter
values that captures the underlying dynamics.
ANFIS consists of fuzzy rules which are actually
local mappings (which are called local experts in [37])
instead of global ones. These local mappings facilitate
the minimal disturbunce principle [1091, which states
that the adaptation should not only reduce the output
error for the current training pattern but also minimize
disturbance to response already learned. This is partic-
ularly important in on-line learning. We also found the
use of least-squares method to determine the output
of each local mapping is of particular importance.
Without using LSE, the learning time would be ten
times longer.

Other generalization tests and comparisons with neural
network approaches can be found in 1301.

The original ANFIS C codes and several examples
(including this one) can be retrieved via anonymous
ftp in u se r / a i / a r eas / fuzzy / sys t ems /an f i s
at f t p . cs . cmu . edu (CMU Artificial Intelligence
Repository).

V. NEURO-FUZZY CONTROL
Once a fuzzy controller is transformed into an adap-

tive network, the resulting ANFIS can take advantage
of all the NN controller design techniques proposed in
the literature. In this section we shall introduce common
design techniques for ANFIS controllers. Most of these
methodologies are derived directly from their counterparts
for NN controllers. However, certain design techniques
apply exclusively to ANFIS, which will be pointed out
explicitly.

As shown in Fig. 32, the block diagram of a typical
feedback control system consists of a plant block and a
controller block. The plant block is usually represented by
a set of differential equations that describe the phy$ical sys-
tem to be controlled. These equations govern the behavior
of the plant state x (t) , which is assumed to be accessible in
our discussion. In contrast, the controller block is usually
a static function denoted by g; it maps the the plant state
x(t) into a control action ~ (t) that can hopefully achieve
a given control objective. Thus for a general time-invariant
control system, we have the following equations:

x(t) = f(x(t), u(t)) (plant dynamics),
u(t> = g(x(t)) (controller).

The control objective here is to design a controller function
g(.) such that the plant state x(t) can follow a desired
trajectory x d (t) as closely as possible.

A simple example of a feedback control system is the
inverted pendulum system (Fig. 33) where a rigid pole is
hinged to a cart through a free joint with only one degree of
freedom, and the cart moves on the rail tracks to its right
or left depending on the force exerted on it. Thc control
goal is to find the applied force 'U as a function of the state
variable x = [8 , 8, z , i] (where 8 is the pole angle and z is
the cart position) such that the pole can be balanced from
a given nonzero initial condition.

For a feedback control system in a discrete time domain, a
general block diagram representation is as shown in Fig. 34.
Note that the inputs to the plant block include the control
action u(k) and the previous plan1 output x(k), so the plant
block now represents a static mapping. In symbols, we have

x(k + 1) = f(x(k), u(k)) (plant),
u(k) = g(x(k)) (controller).

A central problem in control engineering is that of finding
the control action U as a function of the plant output
x in order to achieve a given control goal. Each design
method for neuro-fuzzy controllers corresponds to a way of
obtaining the control action; these methods are discussed
next.

JANG AND SUN: NEURO-FUZZY MODELING AND CONTROL 399

- I I L I I /

+i -
x(k+ 1) x(k) ANFIS

x, (k) controller plant

(b)

Fig. 35.
phase; (b) application phase.

Block diagram for inverse control method: (a) learning

A. Mimicking Another Working Controller
Most of the time, the controller being mimicked is an

experienced human operator who can control the plant
satisfactorily. In fact, the whole concept of mimicking a
human expert is the original intention of fuzzy controllers
whose ultimate goal is to replace human operators who
can control complex systems such as chemical reaction
processes, subway trains, and traffic systems. An expe-
rienced human operator usually can summarize his or
her control actions as a set of fuzzy if-then rules with
roughly correct membership functions; this corresponds to
the linguistic information. Prior to the emergence of neuro-
fuzzy approaches, relining membership function is usually
obtained via a lengthy trial-and-error process. Now with
learning algorithms, we can further take advantage of the
numerical information (input/output data pairs) and refine
the membership functions in a systematic way. Note that
the capability to utilize linguistic information is specific
to fuzzy inference systems; it is not always available in
neural networks. Successful applications of fuzzy controller
based on linguistic information plus trial-and-error tuning
includes steam engine and boiler control [61], Sendai
subway systems [1151, container ship crane control [1141,
elevator control [551, nuclear reaction control [5] , au-
tomobile transmission control [41], aircraft control [141,
and many others [88]. With the availability of learning
algorithms, a wider range of applications is expected.

Note that this approach is not only for control appli-
cations. If the target system to be emulated is a human
physician or a credit analyst, then the resulting fuzzy infer-
ence systems become a fuzzy expert system for diagnosis
and credit analysis, respectively.

B. Inverse Control
Another scheme for obtaining desired control action is

the inverse control method shown in Fig. 35. For simplicity,
we assume that the plant has only one state z (k) and one

I I

I I

(b)
Fig. 36.
ized learning with model reference.

Block diagram for (a) specialized learning; (b) special-

input u(k) . In the learning phase, a training set is obtained
by generating inputs u(k) at random, and observing the
corresponding outputs z (k) produced by the plant. The
ANFIS in Fig. 35(a) is then used to leam the inverse
model of the plant by fitting the data pairs (x (k) , z (k +
1); u(k):t. In the application phase, the ANFIS identifier is
copied to the ANFIS controller in Fig. 35 for generating
the desired output. The input to the ANFIS controller is
(~ (k) , z d (k)) ; if the inverse model (ANFIS identifier) that
maps (z (k) , x (k + l)) to u(k) is accurate, then the generated
u(k) should result in z (k + 1) that is close to zd(k). That
is, the whole system in Fig. 35 will behave like a pure
unit-delay system.

This method seems straightforward and only one learning
task is needed to find the inverse model of the plant.
However, it assumes existence of the inverse of a plant,
which is not valid in general. Moreover, minimization of the
network error I le, (k) 1 1 ’ does not guarantee minimization of
the overall system error llxd(k) - x(k)I l2 .

Using ANFIS for adaptive inverse control can be found
in [43].

C. Specialized Learning
The major problem with the inverse control scheme is

that we are minimizing the network error instead of the
overall system error. An alternative is to minimize the
system error directly; this is called “specialized learning”
[75]. In order to back-propagate error signals through the
plant block in Fig. 36, we need to find a model representing
the behavior of the plant. In fact, in order to apply back-
propagation learning, all we need to know is the Jacobian
matrix of the plant, where the element at row i and column
j is equal to the derivative of the plant’s ith output with
respect to its j th input.

400 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995

actual deslrsd
mjectoty ”tory

1 .1

Fig. 37. A trajectory network for control application (FC stands for “fuzzy controller”).

If the Jacobian matrix is not easy to find, an alternative
is to estimate it on-line from the changes of the plant’s
inputs and outputs during two consecutive time instants.
Other similar methods that aim at using an approximate
Jacobian matrix to achieve the same leaming effects can be
found in [111, [42], [1011. Applying specialized learning to
find an ANFIS controller for the inverted pendulum was
reported in [2 8] .

It is not always convenient to specify the desired plant
output z d (l c) at every time instant IC. As a standard approach
in model reference adaptive control, the desired behavior
of the overall system can be implicitly specified by a
(usually linear) model that is able to achieve the control
goal satisfactorily. This alternative approach is shown in
Fig. 36(b), where the desired output .ud(k + 1) is generated
through a desired model.

D. Back-Propagarion Through Time and
Real Time Recurrent Learning

If we replace the controller and plant blocks in Fig. 34
with two adaptive networks, we can duplicate and cascade
these networks to form a huge trajectory network, as shown
in Fig. 37, in order to find the trajectory of each node’s
output. And by applying back-propagation to the trajectory
network, we can force the plant block to generate a desired
trajectory. The operation to get trajectory networks is called
unfolding of time; the back-propagation used here is thus
referred to as back-propagation through time.

In particular, the inputs to the trajectory network are
initial conditions of the plant; the outputs are the state
trajectory from k = 1 to k = rn. The adjustable param-

eters are all pertaining to the FC (fuzzy controller) block
implemented as an ANFIS. Though there are m FC blocks,
all of them refer to the same parameter set. For clarity,
this parameter set is shown explicitly in Fig. 37 and it is
updated according to the output of the error measure block.

Use of back-propagation through time to train a neural
network for backing up a tractor-trailer system is reported
in [68]. The same technique was used to design an ANFIS
controller for balancing an inverted pendulum [29]. Note
that back-propagation through time is usually an off-line
leaming algorithms in the sense that the parameters will
not be updated till the sequence (k == 1 to m) is over.
If the sequence is too long or if we want to update the
parameters in the middle of the sequence, we can always
apply real time recurrent learning [1 121.

E. Feedback Linearization and Sliding Control
The equations of motion of a class of dynamic systems in

continuous time domain can be expressed in the canonical
form:

&(t) = f(z(t),.(t), . . 4 - ’) (t)) + b U (t) (54)

where f is an unknown continuous function, b is the control
gain, and U E R and y E R are the input and output of the
system, respectively. The control objective is to force the
state vector 2 = [x. X I . . . , 2(n-1)]T to follow a specified
desired trajectory z d = [~ d , X d 3 . . . , ~ r - ’)] ~ . If we define
the tracking error vector as e = x - xd. then the control
objective is to design a control law u (t) which ensures
e + 0 as t + cc. (For simplicity, we assume b = 1 in the
following discussion.)

JANC AND SUN: NEURO-FUZZY MODELING AND CONTROL 401

Equation (54) is a typical feedback linearizable system
since it can be reduced to a linear system if f is known
exactly. Specifically, the following control law

~ (t) = - f (z (t)) + zp) + kTe (55)

would transform the original nonlinear dynamics into a
linear one:

where k = [I C n , . . . , k1IT is an appropriately chosen vector
that ensures satisfactory behavior of the close-loop linear
system in (56).

Since f is unknown, an intuitive candidate of U would be

(57) U = - F (z , p) + xy) + kTe + v

where v is an additional control input to be determined later,
F is an parameterized function (such as ANFIS, neural
networks, or any other types of adaptive networks) that is
rich enough to approximate f . Using this control law, the
close-loop system becomes

e'") + + . . . + k,e = (f - F) + V . (58)

Now the problem is divided into two tasks:

so that F (z , p) z f (z) for all z.

is approximating f during the whole process.

How to update the parameter vector p incrementally

How to apply v to guarantee global stability while F

The first task is not too difficult as long as F , which
could be a neural network or a fuzzy inference system, is
equipped with enough parameters to approximate f . For the
second task, we need to apply the concept of a branch of
nonlinear control theory called sliding control [85], [loo].
The standard approach is to define an error metrics as

The equation s (t) = 0 defines a time varying hyper-
plane in R" on which the tracking error vector e (t) =
[e@), e (t) , . . . , e"-'(t)lT decays exponentially to zero, so
that perfect tracking can be obtained asymptotically. More-
over, if we can maintain the following condition:

then Is(t) I will approach the hyperplane Is@) I = 0 in a finite
time less than or equal to l s (O) l /q . For details about how to
maintain the above condition, the reader is referred to [MI.
Applications of this technique to neural and fuzzy control
can be found in [81] and [102], respectively. This approach
uses a number of nonlinear control design techniques and
possesses rigorous proofs for global stability. However, its
applicability is restricted to feedback linearizable systems.

F. Gain Scheduling
Under certain arrangements, the first-order Sugeno fuzzy

model becomes a gain scheduler that switches between
several sets of feedback gains. For instance, a first-order
Sugeno fuzzy controller for an hypothetical inverted pen-
dulum system with varying pole length may have the
following fuzzy if-then rules:

This is in fact a gain scheduling controller, where the
scheduling variable is the pole length and the control
action is switching smoothly between three sets of feedback
gains depending on the value of the scheduling variable.
In general, the scheduling variables only appear in the
premise part while the state variables only appear in the
consequent part. The design method here is standard in gain
scheduling: find several nominal points in the space formed
by scheduling variables and employ any of the linear control
design techniques to find appropriate feedback gains. If the
number of nominal points is small, we can construct the
fuzzy rules directly. On the other hand, if the number of
nominal points is large, we can always use ANFIS to fit
desired control actions to a fuzzy controller.

Examples of applying this method to both one-pole and
two-pole inverted pendulum systems with varying pole
lengths can be found in the demo programs in [32].

G. Others
Other design techniques that do not use the learning

algorithm in neuro-fuzzy modeling are summarized here.
For complex control problems with perfect plant models,

we can always use gradient-free optimization schemes,
such as genetic algorithms [19], [23], simulated annealing
[45], downhill Simplex method [67], and random method
[63]. In particular, use of genetic algorithms for neural
network controllers can be found in [1 111; for fuzzy logic
controllers, see [39], [40], [53].

If the plant model is not available, we can apply rein-
forcement learning [2] to find a working controller directly.
The close relationship between reinforcement learning and
dynamic programming was addressed in [3], [108]. Other
variants of reinforcement learning includes temporal dif-
ference methods (TD(X) algorithms) and Q-learning [1061.
Representative applications of reinforcement learning to
fuzzy control can be found in [4], [12], [521, [581.

Some other design and analysis approaches for fuzzy
controllers include cell-to-cell mapping techniques [131,
[86], model-based design method [97], self-organizing con-
trollers [74], [98], and so on. As more and more people are
working in this field, new design methods are coming out
sooner than before.

402 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995

VI. CONCLUDING REMARKS [lo], [1051, noise or echo cancelling [I lo], predictive
coding [54], and so on.

A. Current Problems and Possible Solutions
A typical modeling problem includes structure determi-

nation and parameter identijkation. We address the param-
eter identification problem for ANmS in this paper, which
is solved via the back-propagation gradient descent and the
least-squares method. The structure determination problem,
which deals with the partition style, the number of MF’s
for each input, and the number of fuzzy if-then rules, and
so on, is now an active research topic in the field. Work
along this direction includes Jang’s fuzzy CART approach
[31], Lin’s reinforcement learning method [56], Sun’s fuzzy
k-d trees [91], Sugeno’s iterative method [90] and various
clustering algorithms proposed by Chiu [151, Khedkar [44],
and Wang [1031. Moreover, advances on the constructive
and destructive learning of neural networks [18], [54] can
also shed some lights on this problem.

Though we can speed up the parameter identification
problem by introducing the least-squares estimator into
the learning cycle, gradient descent still slows down the
training process and the training time could be prohibitively
long for a complicated task. Therefore the need to search
for better learning algorithms hold equally true for both
neural networks and fuzzy models. Variants of gradient
descent proposed in the neural network literature; includ-
ing second-order back-propagation [7 I] , quick-propagation
[17], and so on, can be used to speed up training. A
number of techniques used in nonlinear regression can
also contribute in this regard, such as the Guass-Newton
method (linearization method) and the Marquardt proce-
dure [62]. Another important resource is the rich literature
of optimization, which offers many better gradient-based
optimization routines, such as quadratic programming and
conjugate gradient descent.

B. Future Directions
Due to the extreme flexibility of adaptive networks,

ANFIS can have a number of variants that are different from
what we have proposed here. For instance, we can replace
the II nodes in layer 2 of ANFIS with the parameterized T-
norm operator [I61 and let the learning algorithm decide
the best T-norm function for a specific application. By
employing the adaptive network as a common framework,
we have also proposed other adaptive fuzzy models tailored
for different purposes, such as the neuro-fuzzy classifier
[92], [93] for data classification and the fuzzy filter scheme
[94], [95] for feature extraction. There are a number of
possible extensions and applications and they are currently
under investigation.

During the past years, we have witnessed the rapid
growth of the application of fuzzy logic and fuzzy set
theory to consumer electronic products, automotive industry
and process control. With the advent of fuzzy hardware
with possibly on-chip learning capability, the applications
to adaptive signal processing and control are expected.
Potential applications within adaptive signal processing
includes adaptive filtering [21], channel equalization [SI,

ACKNOWLEDGMENT
The authors wish to thank Steve Chiu for providing

numerous helpful comments. Most of this paper was fin-
ished while the first author was a research associate at
UC Berkeley, so the authors would like to acknowledge
the guidance and help of Prof. Lotfi A. Zadeh and other
members of the “fuzzy group” at UC Berkeley.

REFERENCES

[I] K. J. Astrom and B. Wittenmark, Computer Controller Sys-
tems: Theory and Design. Englewood Cliffs, NJ: Prentice-
Hall, 1984.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron-
like adaptive elements that can solve difficult learning control
problems,” IEEE Trans. Syst., Man. and Cyhern.. vol. 13, pp.
834-846, Oct. 1983.

[3] A. G. Barto, R. S. Sutton, and C. J. C. H Watkins, “Learning and
sequential decision making,” in Lcarning and Coniputational
Neuroscience, M. Gabriel and J. W. Moore, Eds. Cambridge:
MIT Press, 1991.

[4] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy
logic controllers through reinforcements,” IEEE Trans. Neural
Networks, vol. 3, pp. 724740, May 1992,.

[5] J . A. Bernard, “Use of rule-based system for process control.”
IEEE Control Syst. Mugazine, vol. 8, no. 5, pp. 3-1 3, 1988.

[61 P. Bonissone, V. Badami, K. Chiang, P. Khedkar, K. Marcelle,
and M. Schutten, “Industrial applications of fuziy logic at
general electric,” in Proc. IEEE,this issue.

[7] D. S. Broomhead and D. Lowe. “Multivariable functional
interpolation and adaptive networks,” Complex Sysrems. vol.
2, pp. 321-355, 1988.

[8] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least
squares leaning algorithm for radial basis function networks,”
IEEE Trans. Neural Networks, vol. 2, pp. 302-309, Mar. 1991.

[9] S. Chen, G. J . Gibson, C. F. N. Cowan, and P. M. Grant. “Adap-
tive equalization of finite nonlinear channels using multilayer
perceptrons,” Sign. Proc. , vol. 20, pp. 107-1 19. 1990.

[IO] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant,
“Reconstruction of binary signals using an adaptive radial-
basis-function equalizer,” S i p . Proc. , vol. 22, pp. 77-93,
1991.

(111 V. C. Chen and Y. H. Pao, “Learning control with neural
networks,” in Proc. Int. Conf: on Rohotics arid Automcction,

1121 Y.-Y. Chen, “A self-learning fuzzy controller,” in Proc. IEEE
Int. Conf on Fuzzy Sy’st., Mar. 1992.

1131 Y.-Y. Chen and T.-C. Tsao, “A description of the dynamic be-
havior of fuzzy systems,” IEEE Trans. Sy’sf., Man. and Cyhern.,
vol. 19, pp. 745-755, July 1989.

1141 S. Chiu, S. Chand, D. Moore, and A. Chaudhary, “Fuzzy logic
for control of roll and moment for a flexible wing aircraft,”
IEEE Control Sysr. Magazine, vol. I I , no. 4, pp. 42 48, 1991.

[151 S. L. Chiu, “Fuzzy model identification based on cluster esti-
mation,” J . Intell. und F u z y Syst.. vol. 2, no. 3. 1904.

[I61 D. Dubois and H. Prade, Fuzzy Sets and Systems: ‘Thcop and
Applications. New York: Academic, 1980.

[171 S . E. Fahlman, “Faster-learning variations on back-propagation:
An empirical study,” in Proc. 1988 Connectioni.vt Models Sum-
mer School, D. Touretzky, G. Hinton, and T. Sejnciwski, Eds.
Camegie Mellon University, 1988, pp. 38-5 1.

[181 S. E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” in Advances in Neural Infbrmation P rocessing
Systems If, D. S. Touretzky, G. Hinton, and T. Sejnowski. Eds.
New York: Morgan Kaufmann, 1990.

[191 D. E. Goldberg. Genetic Algorilhms in Search, Optimi:ation,
and Machine Learning. Reading, MA: Addison-Wesley, 1989.

[20] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and
Control. Englewood Cliffs, NJ: F’rentice-Hall, 1984.

[21] S. S. Haykin, Adaptive Filter Theoy. Englewood Cliffs, NJ:
Prentice-Hall, 2nd ed., 1991.

1989, pp. 1448-1453.

JANG AND SUN, NEURO-FUZZY MODELING AND CONTROL 403

1261

I281

1291

1321

1331

(341

[351

I361

1421

1431

1461

~471

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the The-
oy~’ of Neural Computation. Reading, MA: Addison-Wesley,
1991.
J. H. Holland, Adaptation in Natural and Artificial Systems.
Ann Arbor, MI: Univ. Michigan Press, 1975.
T. C. Hsia, System Identijication: Least-Squares Methods.
New York: Heath, 1977.
J . 3 . R. Jang, “Fuzzy modeling using generalized neural net-
works and (K}alman filter algorithm,” in Proc. 9th Nut. Con$
on Artif: Intell. (AAAI-91), July 1991, pp. 762-767.
-, “Rule extraction using generalized neural networks,” in
Proc. 4th IFSA World Congress, July 1991, pp. 82-86 (Volume
for Artificial Intelligence).
__ , “A self-leaming fuzzy controller with application to auto-
mobile tracking problem,” in Proc. IEEE Roundtable Discussion
on Fuzzy and Neural Systems, and Vehicle Application, Tokyo,
Japan, Institute of Industrial Science, Univ. of Tokyo, Nov.
1991, page paper no. 10.
-, “Furzy controller design without domain experts,” in
Proc. IEEE Int. Coqf on Fuzzy Syst., Mar. 1992.
__ , “Self-learning fuzzy controller based on temporal
back-propagation,’’ IEEE Trans. Neural Networks, vol. 3, pp.
716723, Sept. 1992.
__ , “ANFIS: Adaptive-network-based fuzzy inference sys-
tems,” IEEE Trans. Syst., Man, and Cybern., vol. 23, pp.
665-685, May 1993.
-, “Structure determination in fuzzy modeling: A fuzzy
CART approach,” in Proc. IEEE Inr. Con$ on Fuzzy Syst.,
Orlando, FL, June 1994.
J . 3 . R. Jang and N. Gulley, The Fuzzy Logic Toolbox for Use
with MATUB.
J.-S. R. Jang and C.-T. Sun, “Functional equivalence between
radial basis function networks and fuzzy inference systems,”
IEEE Trans. Neural Networks, vol. 4, no. I , pp. 156-159, Jan.
1993.
-, “Predicting chaotic time series with fuzzy if-then rules,”
in Proc. IEEE Int. Cont on Fuzzy Syst., San Francisco, Mar.
1993.
__ , “Neuro-fuzzy modeling: an computational approach to
intelligence,” 1995, submitted for publication.
R . D. Jones, Y. C. Lee, C. W. Bames, G. W. Flake, K. Lee, and
P. S. Lewis. “Function approximation and time series prediction
with neural networks,” in Proc. IEEE In?. Joint Con$ on Neural
Networks, 1990, pp. 1-649-665.
M. 1. Jordan and R. A. Jacobs, “Hierarchical mextures of experts
and the EM algorithm,” MIT Tech. Rep., 1993.
A. Kandel, Ed., Fuzzy Expert Systems. Boca Raton, FL: CRC
Press, 1992.
C . I-. Karr. “GA’s for fuzzy controllers,” AI Expert, vol. 6, no.
2 , pp. 26-33, Feb. 1991.
c‘. L. Karr and E. J. Gentry, “Fuzzy control of pH using genetic
algorithms,’’ IEEE Trans. Fuzzy Syst., vol. 1, pp. 46-53, Feb.
1993.
Y. Kasai and Y. Morimoto, “Electronically controlled contin-
uously variable transmission,” in Proc. Int. Congress Transp.
Electronics. Dearbom, MI, 1988.
M. Kawato, K. Furukawa, and R. Suzuki, “A hierarchical
neural network model for control and learning of voluntary
movement,” Biological Cybern., vol. 57, pp. 169-185, 1987.
D. J. Kelly, P. D. Burton, and M. A. Rahman, “The application
of a neural fuzzy controller to process control,” in Proc. Int.
Joint Con$ cfthe N. Am. Fuzzy Inform. Processing Society Bian-
nual Con$, the Industrial Fu7.z~ Contr~~l and Intell. Syst. Con$,
und the NASA Joint Technol. Workshop on Neural Networks and
Fuzzy Logic, San Antonio, TX, Dec. 1994.
P. S. Khedkar, Learning as Adaptive Interpolation in Neural
Fuzzy Systems, Ph.D. dissertation, Computer Science Division,
Dept. EECS, Univ. Calif. at Berkeley, 1993.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Res. Rep. 9335, IBM, T. J. Watson
Center, 1983.
__, “Optimization by simulated annealing,” Science, vol.
220, no. 4598, pp. 671-680, May 1983.
M. S. Klassen and Y.-H. Pao, “Characteristics of the functional-
link net: A higher order delta rule net,” in IEEE Proc. In?. Con$
on Neural Networks. San Diego, June 1988.
B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical
Svsrems Approach. Englewood Ciffs, NJ: Prentice Hall, 1991.

Natick, MA: The Mathworks, Inc., 1995.

[49] A. S . Lapedes and R. Farber, “Nonlinear signal processing using
neural networks: Prediction and system modeling,” Tech. Rep.
LA-UR-87-2662, Los Alamos National Lab., Los Alamos, NM,
1987.

[50] C.-C. Lee, “Fuzzy logic in control systems: Fuzzy logic con-
troller-Part 1,” IEEE Trans. Syst., Man, and Cyhern., vol. 20,
pp. 404-418, Feb. 1990.

[51] -, “Fuzzy logic in control systems: fuzzy logic con-
troller-Part 2,” IEEE Trans. Syst., Man, and Cvbern., vol.
20, pp. 419-435, Feb. 1990.

[52] __ , “A self-learning rule-based controller employing approx-
imate reasoning and neural net concepts,” Int. J. Inte/Z. Syst.,
vol. 5, no. 3, pp. 71-93, 1991.

[53] M. A. Lee and H. Takagi, “Integrating design stages of fuzzy
systems using genetic algorithms,” in Proc. 2nd IEEE In?. Con$
on Fuzzy Syst., San Francisco, 1993, pp. 612-617.

[54] T.-C. Lee, Structure Level Adaptation for Arrz$cial Neural
Networks. New York Kluwer, 1991.

[55] Fujitec Company Limited, “FLEX-8800 series elevator group
control system,” Osaka, Japan, 1988.

[56] C.-T. Lin and C. S. G. Lee, “Reinforcement structurelparameter
leaming for neural-network-based fuzzy logic control systems,”
IEEE Trans. Fuzzy Syst., vol. 2, Jan. 1994.

[57] -, “Neural-network-based fuzzy logic control and decision
system,” IEEE Trans. Computers, vol. 40, pp. 1320-1336, Dec.
1991.

[58] __ , “Reinforcement structure/parameter learning for neural-
network-based fuzzy logic control systems,” in Proc. IEEE
In?. Con$ on Fuzzy Systems, San Francisco, Mar. 1993, pages
88-93.

[59] L. Ljung, System Identification: Theory for the User. Engle-
wood Cliffs, NJ: Prentice-Hall, 1987.

[60] M. C. Mackey and L. Glass, “Oscillation and chaos in physio-
logical control systems,” Science, vol. 197, pp. 287-289, July
1977.

[61] E. H. Mamdani and S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller,” Int. J. Man-Machine
Studies, vol. 7, no. 1, pp. 1-13, 1975.

[62] D. W. Marquardt, “An algorithm for least squares estimation of
nonlinear parameters,” J . Society of Ind. and Appl. Math., vol.
2, pp. 431-441, 1963.

[63] W. S. Meisel, “Computer-oriented approaches to pattem recog-
nition,” in Mathematics in Science and Engineering, Vol. 83.
New York: Academic, 1972.

[64] J. Moody, “Fast learning in multi-resolution hierarchies,” in
Advances in Neural Information Processing Systems I , D. S.
Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, chap. 1,

[65] J. Moody and C. Darken, “Learning with localized receptive
fields,” in Proc. 1988 Connectionist Models Summer School,
D. ’Touretzky, G. Hinton, and T. Sejnowski, Eds. Morgan
K a u f m d C a m e g i e Mellon Univ., 1988.

[66] __, “Fast learning in networks of locally-tuned processing
units,” Neural Computation, vol. 1 , pp. 281-294, 1989.

[67] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” Computer J., vol. 7, pp. 308-313, 1964.

[68] D. H. Nguyen and B. Widrow, “Neural networks for self-
leaming control systems,” IEEE Control Syst. Magazine, pp.
18-23, Apr. 1990.

[69] N. J. Nilsson, Learning Machines: Foundations of Trainable
Pattern Classifying Systems. New York: McGraw-Hill, 1965.

[70] Y.-H. Pao, Adaptive Pattern Recognition and Neural Nei-
works. Reading, MA: Addison-Wesley, 1989, chap. 8, pp.

[71] D. B. Parker, “Optimal algorithms for adaptive networks: Sec-
ond order back propagation, second order direct propagation,
and second order [HJebbian learning,” in Proc. IEEE Inc. Con$
on Neural Networks, 1987, pp. 593-600.

[72] N. Pfluger, J. Yen, and R. Langari, “A defuzzification strategy
for a fuzzy logic controller employing prohibitive information
in command formulation,” in Proc. IEEE frit . Conj: on Fuzzy
Syst., San Diego, Mar. 1992, pp. 717-723.

[73] M. J. D. Powell, “Radial basis functions for multivariable
interpolation: A review,” in Algorithms for Approximation, J.
C. Mason and M. G. Cox, Eds. Oxford, UK: Oxford Univ.

[74] T. J. Procyk and E. H. Mamdani, “A linguistic self-organizing
process controller,” Automatica, vol. 15, pp. 15-30, 1978.

pp. 29-39, 1989.

197-222.

Press, 1987, pp. 143-167.

404 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 3, MARCH 1995

[75J D. Psaltis, A. Sideris, and A. Yamamura, “A multilayered neural
network controller,” IEEE Control Syst. Magazine. vol. 8, no.
4, pp. 17-21, Apr. 1988.

[76] R. S. Crowder 111, “Predicting the Mackey-Glass timeseries
with cascade-correlation learning,” in Proc. I990 Connectionist
Models Summer School, D. Touretrky, G. Hinton, and T.
Sejnowski, Eds. Pittsburgh: Carnegie Mellon Univ., 1990. pp.
I 1 7-1 23.

[771 F. Rosenblatt, Principles of Neurodynunzics: PerceptronA und
the Theory of Brain Mechanisms.

[78] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learn-
ing internal representations by error propagation,” in furallel
Distributed Processing: E.rp1orarioti.s in the Microstructure of
Cognition, W. I , D. E. Rumelhart and James L. McClelland,
Eds. Cambridge, MA: MIT Press, 1986. chap. 8, pp. 3 18-362.

I791 T. A. Runkler and M. Glesner. “Defuzzification and ranking in
the context of membership value semantics, rule modality, and
measurement theory,” in Europe. Congress on Fuzzy und Intell.
Techno[., Aachen, Sept. 1994.

[801 T. D. Sanger. “A tree-structured adaptive network for function
approximate in high-dimensional spaces,” IEEE Trans. Neural
Nerworks. vol. 2, pp. 285-293, Mar. 1991.

(8 1 1 R. M. Sanner and J. J. E. Slotine, “Gaussian networks for direct
adaptive control.” IEEE Trans. Neural Networks. vol. 3 , pp.
837-862. 1992.

[82] S. Shah. F. Palmieri. and M. Datum, “Optimal filtering algo-
rithms for fast learning in feedforward neural networks.” Neural
Nijfworks, vol. 5, no. 5, pp. 779-787, 1992.

[83] S . Shar and F. Palmieri, “MEKA-a fast, local algorithm for
training feedforward neural networks,” in Proc. Int. Joirit Corcc
on Neural Networks, 1990, pp. 111 41-46,

[84] S. Singhal and L. Wu, “Training multilayer perceptrons with the
extended kalman algorithm,” in Advunces in Neural Information
Processing Systems I , David S. Touretzky, Ed. New York:
Morgan Kaufmann, 1989, pp. 133-140.

[U] J.-J. E. Slotine and W. Li, Applied Nonlineur Control. Engle-
wood Cliffs, NJ: Prentice Hall. 1991.

[86] S. M. Smith and D. J. Comer, “Automated calibration of a
fuzzy logic controller using a cell state space algorithm,” lEEE
Control Syst. Mugazine, vol. 1 1 . no. 5, pp. 18-28, Aug. 1991.

[E71 K. Stokbro, D. K. Umberger, and J . A. Hertz. “Exploiting
neurons with localized receptive fields to learn chaos,” Complex
SJstems, vol. 4, pp. 603-622. 1990.

[88] M. Sugeno, Ed.. Industria/ App/icutions of Fuzzy Control.
New York: Elsevier, 1985.

[89] M. Sugeno and G. T. Kang, “Structure identification of fuzzy
model,’’ Fuzz?; Sets and Systems, vol. 28, pp. 15-33, 1988.

[90] M. Sugeno and T. Yasukawa. “A fuzzy-logic-based approach
to aualitative modeling.” IEEE Truns. Fuzzv Svst., vol. I , UP.

New York: Spartan. 1962.

. , ..
7T3.1, Feb. 1993.

[91] C.-T. Sun, “Rulebase structure identification in an adaptive
network based fuzzy inference system,” lEEE Trans. Fuzzy
Syst., vol. 2, pp. 64-73. Feb. 1994.

R. Jang, “Adaptive network based fuz,zy
classification,” in P roc. Japan-L’SA Syrnp. on Flexible Automa-
tion. July 1992.

[93] ___ , “A neuro-fuzzy classifier and its applications,” in Proc.
IEEE Int. Conf on Fuzzy Sysr., San Francisco, Mar. 1993.

[94] C.-T. Sun, J.-S. R. Jang, and C.-Y. Fu. “Neural network analysis
ot plasma spectra,” in Proc. Int. Conj: on Arrlficial Neural
Networks, Amsterdam, Sept. 1993.

[95] C.-T. Sun, T.-Y. Shuai, and G.-L. Dai, “Using fuzzy filters
as feature detectors,” in Proc. IEEE Int. ConJ: on Fuzzy Syst.,
Orlando, FL, June 1994, vol. I , pp. 406410.

[96] T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its applications to modeling and control,” ZEEE Trans. Systems,
Man, and Cybernetics, vol. 15, pp. 116--132, 1985.

[97] K . Tanaka and M. Sugeno, “Stability analysis and design of
fuzzy control systems,” Fuzzy Set.v and Syst., vol. 45, pp.
135-156, 1992.

[98] R. Tanscheit and E. M. Scharf, “Experiments with the use of a
rule-based self-organizing controller for robotics applications,”
Fuzzy Sets und Syst.. vol. 26, pp. 195-214, 1988.

[99] Y. Tsukamoto, “An approach to fuzzy reasoning method,” in
Advunces in Fuzzy Set Theoq and Applications, Madan M.
Gupta, Rammohan K. Ragade, and Ronald R. Yager, Eds.
Amsterdam: North-Holland, 1979, pp. 137-149.

[1001 V. 1. Utkin, “Variable structure systems with sliding mode: A
survey,” IEEE Trunx Autom. Control, vol. 22, p. 212, 1977.

[92] C.-T. Sun and

lo l l K. P. Venugopal, R. Sudhakar, and A. S. Pandya, “An improved
scheme for direct adaptive control of dynamical systems using
backpropagation neural networks,” .I. Circ., Syst., Signal Proc.,
to be published.

1021 L.-X. Wang, “Stable adaptive fuzzy control of nonlinear sys-
tems” IEEE Trans. Fuzzy Syst., vol. I , pp. 146-155, Jan. 1993.

1031 -, “Traning fuzzy logic systems using nearest neighbor-
hood clustering,” in Proc. IEEE Int. Con$ on Furzy Syst., San
Francisco, CA, Mar. 1993.

[lo41 L.-X. Wang and J. M. Mendel, “Back-propagation fuzzy sys-
tems as nonlinear dynamic system identifiers,” in Proc. IEEE
Int. Cont on Fuzzy Syst., San Diego, Mar. 1992.

[1051 -, “Fuzzy adaptive filters, with application to nonlinear
channel equalization,” IEEE Trans. Fuzzy Sur., vol. 1, pp.
161-170, Mar. 1993.

(1061 C . J. C. H. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, pp. 279-292. 1992.

[lo71 P. Werbos. “Beyond regression: New tools for prediction and
analysis in the behavioral sciences,” Ph.11. dissertation, Harvard
University, 1974.

[IO81 -, “A menu for designs of reinforcement learning over
time,” in Neurtrl Networks for Conrrol. W. T. Miller 111, R.
S. Sutton, and P. J. Werbos, Eds. Bradford, MA: MIT Press,
1990.

[lo91 B. Widrow and M. A. Lehr. “30 years of adaptive neural
networks: Perceptron, madline, and backpropagation,” in Proc.
IEEE, vol. 78, pp. 1415-1442. Sept. 1990.

[I IO] B. Widrow and D. Steams, Adaptive Signal Proc,es.sing. En-
glewood Cliffs, NJ: Prentice-Hall, 19815.

[1 I 11 A. P. Wieland, “Evolving controls for unstable systems,’’ in
Proc. 1990 Connectionist Models Summer School, 11. Touretzky,
G. Hinton, and T. Sejnowski, Eds. Camegie Mellon Univ.,

[I 121 R. J. William and D. Zipser, “A learning algorithm for contin-
ually running fully recurrent neural networks,” Neural Compu-
tation, vol. I , pp. 270-280, 1989.

[I 13) R. R. Yager and D. P. Filev, “SLIDE: A simple adaptive
defuzzification method,” IEEE Tram. Fuzzy Syst., vol. I , pp.
69-78, Feb. 1993.

[1141 S. Yasunobu and G. Hasegawa, “Evaluation of an automatic
container crane operation system based on predictive fuzzy
control.” Control Theorv and Advanced Technol., vol. 2. no.

1990, pp. 91-102.

2, pp. 419432, 1986.
[I 151 S. Yasunobu and S. Miyamoto, “Automatic train operation by

predictive fuzzy control,” in Industrial Applications of Fuzzy
Control, M. Sugeno, Ed. Amsterdam: North-Holland, 1985.

[I 161 L. A. Zadeh, “Fuzzy sets,” Inform. and Contr.. vol. 8, pp.
338-353, 1965.

[1171 -, “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Trans. Sy.ct., Man. and
Cybern., vol. 3, pp. 2 8 4 4 , Jan. 1973.

p. 1-18.

Jyh-Shing Roger Jang (Member, IEEE) was
born in Taipei, Taiwan, in 1962 He received
the B S. degree in electrical engineering from
National Taiwan University in 1984, and the
Ph.D degree in the Department of Electrical
Engineering and Computer Sciences at the Uni-
versity of Califomla, Berkeley, in 1992.

During the summer of 1989, he was a sum-
mer student in NASA Arne\ Re5earch Center,
working on the deugn and implementation of
fuzzy controllers. Between 1991 and 1992 he

was a Rescarch Scienti5t in the Lawrence Livermore National Laboratory,
working on spectrum modeling and analysis using neural networks and
fuzzy logic. After receiving the Ph.D. degree, he was a Research Associate
in in the same department, working on machine learning techniques using
fuzzy logic Since 1993, he has been with The Mathworks. Inc., working
on the Fuzzy Logic Toolbox used with MATLAB Hir intents lie in the
area of neuro-fuzzy modeling, system identification, machine learning,
nonlinear regrewon, optimization, and computer aided control system
design

JANG AND SUN, YEURO-FL LLY MODELING AND CONTROL 405

Chuen-Tsai Sun (Member, IEEE) received the
B S degree in electrical engineering in 1979
and the M A degree in history in 1984, both
from National Taiwan University, Taiwan He
received the Ph D degree in computer science
from the University of Califomia at Berkeley in
1992

During 1989-1990 he worked as a consultant
with the Pacific Gas and ElectriL Company,
San Francisco, CA, where he was in charge of
designing and implementing an expert system

for protective device coordmation in electnc distribution circuits During
1901-1992 he was a research wentist in the Lawrence Livermore National
Laboratory, working on plasma analysis using neural networks and f u r y
logic Since 1992, he has been on the faculty of the Department of
Computer and Information Science at National Chiao Tung Univer\ity
His Lurrent research interests include computational intelligence, system
modeling, and computer assisted learning

Dr Sun was the Arthur Gould Tasheira Scholarship winner in 1986
He wab dso honored with the Phi Hua Scholar Award in 1985 for his
publications i n history

406 PROCEEDINGS OF THE IEEE, VOL.. 83. NO. 3. MARCH 1995

