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Abstract

Evolutions Strategies (ES) are a class of Evolutionary Computa-
tion methods for continuous parameter optimization problems founded
on the model of organic evolution. In this paper we present a novel
clustering algorithm based on the application of an ES to the search for
the global minimum of the C-Means (CM) objective functional. The
new algorithm is then applied to the clustering step of an interactive



system for the segmentation of multimodal medical volumes obtained
by different medical imaging diagnostic tools. In order to aggregate
voxels with similar properties in the different diagnostic imaging vol-
umes, clustering is performed in a multidimensional space where each
independent dimension is a particular volumetric image. As a con-
sequence, in this application clustering supports an inference process
based on complementary information carried by each image (e.g. func-
tional or anatomical) in oder to extract regions corresponding to the
different anatomical and/or pathological tissues. A quantitative com-
parison of segmentation results obtained by the original CM and by
the new algorithm is reported in the paper.

1 Introduction

C-Means (CM) [6] is a widely used clustering method based on a simple and
efficient numerical approximation to the maximum likelihood technique for
the estimation of probability mixtures parameters [6, 3].

The CM shows some intrinsic problems. In particular, it is subject to
the problem of trapping in local optima of its objective function. In the
clustering literature, many algorithms based on fuzzy set theory have been
proposed in order to overcome this limit of CM, among them the Fuzzy C-
Means algorithm [3], the Deterministic Annealing [20], and the Possibilistic
C-Means [12, 13]. As shown by Miyamoto and Mukaidono in [18], all those
methods are different kind of regularization [26] of the local optima problem
of CM. Nevertheless, even with these methods we have no guarantee of finding
the optimal solution of the problem of clustering.

In order to overcome this problem, in this paper we present a novel clus-
tering algorithm based on the application of a global search technique based
on an Evolution Strategy (ES) [19, 25, 1] to the minimization of the objective
function of the C-Means Algorithm [6].

Evolution Strategies are a class of methods for continuous parameter op-
timization problems founded on the model of organic evolution. In this paper
we present a novel clustering algorithm based on the application of a (u, A)-
ES to the search for the global minimum of the classical C-Means (CM) ob-
jective function [6, 3]. The new Evolution Strategy based C- Means (ESCM)
algorithm is applied to the clustering step of an interactive system for the
segmentation of multimodal medical volumes [22].

This computer-based system supports the clinical oncologist in the tasks



of delineating the volumes to be treated by radiotherapy and surgery, and
of quantitatively assessing (in terms of tumor mass or detection of metas-
tases) the effect of oncological treatments. In order to aggregate voxels with
similar properties in the different diagnostic imaging volumes, clustering is
performed in a multidimensional space where each independent dimension is
a particular volumetric image. Clustering algorithms can point out clusters
of close voxels in that multidimensional feature space representing the proba-
bility distribution of intensities in the different modalities, and therefore sets
of voxels with similar intensity values can be defined within the whole mul-
timodal medical volume. These sets of voxels can then be used to delineate
regions of interest, that is to make a segmentation of the multimodal vol-
umetric image. In this application clustering supports an inference process
based on complementary information carried by each image (e.g. functional
or anatomical), each of them considered as an independent dimension of
the input space, in order to extract regions corresponding to the different
anatomical and/or pathological tissues. A quantitative comparison of seg-
mentation results obtained by the original CM and by the new algorithm is
reported in the paper.

The paper is organized as follows. The next section introduces the C-
Means following the parametric learning framework. In Sect.s 3 and 4 we
give some material on Evolution Strategies and we present a novel application
of them to the clustering. In Sect. 5 we set clustering as the basic step of
an inference process that, starting from raw data, mines region of interest
in multimodal medical volumes. In Sect. 6, we present an experimental
comparison of the application of the CM and of the new clustering algorithm
to the segmentation of multimodal images. Conclusions are drawn in Sect.

7.

2 Parametric Learning Approach to Cluster-
ing
2.1 Maximum Likelihood estimation of cluster param-
eters

Let X = {xk |xx € R4 k=1,..., n} be a set of unlabeled random sampled
vectors Xi = (T1g, ..., Tax) or training set, and Y = {y; | y; € R%, j=1,...,c}



be the set of centers of clusters (or classes) w;. Following a parametric
learning approach, we make the following assumptions:

1. the samples come from a known number of ¢ classes w;, j € {1,...,c};

2. the a priori probabilities P (w;) (i.e. the probability of drawing patterns
of class w; from X) are known;

3. the form of class-conditional probabilities densities p (x | w;,©;) (i.e.
the probability density of sample x;, inside class w;) are known, while
the vectors of parameters ©; are unknown.

Note that the third assumption reduces the clustering problem to the problem
of estimation of the vectors ©; (parametric learning).

In this setting, we assume that samples are obtained by selecting a class w;
and then selecting a pattern x according to the probability law p (x | w;, ©;),
ie.

p(x1©) = 3 p(x | 1,0,) P () 0

where © = (01,...,0.). A density function of this form is called a mizture
density [6], p (xi | w;, ©;) are called the component densities, and P (w;) are
called the mizing parameters.

A well known parametric statistics method for estimating the parameter
vector O is based on mazimum likelihood [6]. It assumes that the parameter
vector O is fixed but unknown. The likelihood of the training set X is the
joint density

n

X‘@:H (xx | ©). (2)

Then the maximum likelihood estimate © is that value of © that maxi-
mizes the likelihood of the observed training set X.

If p(X | ©) is a differentiable function of ©, maximizing the logarithm
of the likelihood, we can obtain the following conditions for the maximum-
likelihood estimate (:)j:

Zi: (Wy | Xk, ) V@jlog (p (Xk | Wiaéj)> =0 Vj. (3)



Moreover, if the a priori class probabilities P (w;) are also unknown, the
clustering problem can be faced as the constrained maximization of the like-
lihood p (X | ©) over © and P (w;) subject to the constraints:

P(wj)>0 and i Pwy) = 1. (4)

If p (X | ©) is differentiable and the a priori probabilities estimate P (w;) #
0 for any j, then P (w;) and ©; must satisfy:

P (w;) = iznj P (wj | X, é) (5)
k=1
and
S0 o 1500) Vo los o 0)) =0 ©
k=1
where

_ p (Xk | Wi, @J) p (wj)
> he1P (Xk \ Wh éh) P (Wh).

Let we assume now that the component densities are multivariate normal,
ie.:

P (w; | xx,©) (7)

A 1 1
p (Xk | wi, 9;‘) = W exp[—i(Xk —y)' S (e — ;)] (8)
where d is the dimensionality of the feature space, y; is the mean vector, ¥;
is the covariance matriz, (x; —y;)" is the transpose of (x; — y;), Ej_l the
inverse of 3;, and | ¥; | the determinant of ¥;.

In the general case (i.e. y;, ¥;, and P (w;) are all unknown) the maximum
likelihood principle yields useless singular solutions. As shown by Duda and
Hart [6], we can obtain meaningful solutions by considering the largest of the
finite local maxima of the likelihood function.

The local-maximum-likelihood estimate for P (w;) is the same as Eq. 5,
while

T P e % 0y) %
Yi= ~ ~
ZZ:I P (wj | Xk @j>

(9)
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Table 1: C-Means (CM) Algorithm.

1. assign the number of clusters and the tolerance ¢; for the stop criterion;
2. initialize the centers of clusters;

3. do until any center changes less than ey;

(a) assign the samples to the clusters with smaller Euclidean distance
using Eq.s 12 and 14;

(b) recalculate the centers using Eq. 9;

4. end do.

S P (w; | %4, 0;) (x = 37) (x5 — 3;)"
>
Zk 1 (w] | Xk)@ )

where (from Eq.s 7, and 8)

. ) A
Py | %1, 6) = |3 |72 expl—5(xk — ¥,)" ]1( — Yl Plw)
(=306 = ¥0)'25" (k= ¥n)] P (wn)
(11)
The set of Eq.s 5, 9, 10, and 11 can be interpreted as a gradient ascent or
hill-climbing procedure for maximizing the likelihood procedure. A Lloyd-
Picard iteration can start with Eq. 11 using initial estimates to evaluate
Eq. 11 for P (wj | Xy, j) and then using Eq.s 5, 9, and 10 to update the
estimates.
Like all hill-climbing procedures the results of this iteration do depend
upon the starting point, and, moreover, the inversion of f)j is quite time
consuming, and there is the possibility of multiple solutions.

2.2 C-Means (CM) Algorithm

An efficient implementation of the previous procedure is based on the follow-
ing approximation of Eq. 11:



AN 1 if Dj(x) = minicj<c Dj (X)
P (wj | X’f’@j> - { 0 otherwise (12)

where D, (x;) is a local cost function or distortion measure and in many cases
can be assumed as the scaled Mahalanobis distance M ;(xy),

M(xp) = | S5 M (xi = 3,)'85 (xi — ). (13)

This observation is the rationale of the C-Means (CM), also named Basic
Isodata algorithm [6] and Hard C-Means [3]. It is worth noting that the usage
of the Mahalanobis distance still involves a heavy computational overhead. In

many implementations of CM a strong approximation of D; (x;) is adopted,
using the Euclidean distance £;(xy)

Ei(xx) =l xk =35 Il - (14)

The resulting CM algorithm is an efficient approximate way to obtain the
maximum likelihood estimate of the centers of clusters [6].

One implementation of the CM using the Euclidean distance is illustrated
in Tab. 1. In this algorithm the initialization of the number of clusters (Step
1) is performed by using the a-priori knowledge on the problem. At Step
2, the position of centers of clusters can be initialized either using a-priori
knowledge or at random in the d-dimensional hyperbox I:

I =M%, [ming(2y), maxg(zg)], Ic R (15)

As demonstrated by Bezdek [3], the CM, while maximizes the likelihood
of the training set, minimizes at the same time a global error function J,
defined as the expectation of the squared local cost function:

Jp =< D2 >= Z ZujkD?(Xk) (16)
k=1j=1

where u;; = P (w; | xx) or, in general, a membership value of pattern xy
(k={1,...,n}) to cluster w; (j = {1,...,c}).

The CM, while is an efficient approximation of the maximum likelihood
procedure for estimating the centers of clusters, shows some intrinsic prob-
lems. In particular, it is subject to the problem of trapping in local minima
of J, (i.e. on the local maxima of the likelihood).



This locality in searching for minima is its main limitation, in particular
when we try to apply this algorithm as the basis for inference procedures.

In order to overcome these problems, many attempt, based on differ-
ent fuzzy clustering paradigms, have been proposed in the literature. The
most popular fuzzy clustering method is the Fuzzy C-Means algorithm by
Bezdek [3] that is based on the constrained minimization of a generalization
of the CM global error expectation. We cite also the technique proposed
by Rose et al [20] based on the maximum entropy principle [9] and using a
Deterministic Annealing technique, and the Possibilistic C-Means algorithm
by Krishnapuram and Keller [12, 13].

In [18], Miyamoto and Mukaidono showed that the Fuzzy C-Means [3],
and the maximum entropy methods correspond to different types of applica-
tion of the regularization theory to the CM in order to reduce the problem
of local minima.

An alternative approach to the solution of the local minima problem of
CM can be based on the application of global search techniques. In [5]
we propose a global search method for the minimization of .J, based on
the Simulated Annealing technique [11]. In next sections we shall present
some search techniques based on Evolution Strategies, that will be applied
to clustering problem.

3 Evolution Strategies

Evolutions Strategies (ES) [19, 25, 1] are a class of Evolutionary Computa-
tion methods for continuous parameter optimization problems founded on
the model of organic evolution. During each generation (iteration of the ES
algorithm) a population of individuals (potential solutions) is evolved to pro-
duce new solutions. Only the highest-fit solutions survive to become parents
for the next generation.

In biological terms, the genetic encoding for an individual is called geno-
type. New genotypes are created from existing ones by modifying the genetic
material. The interaction of a genotype with its environment induces an
observed response called phenotype.

Reproduction takes place at the genotype level, while survival is deter-
mined at the phenotype level. Only highly fit individual survive and repro-
duce in future generations.



Individuals in the population are composed by object variables and strat-
eqy parameters. In basic ES, an individual is represented as a vector

a=(ry,..,2,,01,..,0,) €R*" (17)

consisting of n object variables and their corresponding n standard deviations
for individual mutations.

There are two variants of an ES. The multi-membered ES plus strate-
gies (denoted as (u + A\)-ES) and the multi-membered ES comma strategies
(denoted as (p, A)-ES). In (1 + X)-ES p parents create A > 1 offspring in-
dividuals by means of recombination and mutation. The u best parents and
offspring are selected to form the next population. For a (u, \)-ES, with
A > p > 1, the p best individuals are selected from offspring only. We shall
discuss now the ES operators, i.e. recombination, mutation, and selection.

3.1 Recombination

Recombination (or crossover) in ES is performed on individuals of the pop-
ulation. The most used recombination rules are:

1. no recombination;

2. discrete recombination: the components of two parents are selected at
random from either the first or the second parent to form an offspring
individual;

3. intermediate recombination: offspring components are somewhere be-
tween the corresponding components of the parents;

4. global and discrete recombination: one parent is selected and fixed and
for each component a second parent is selected anew from the popula-
tion to determine the component values using discrete recombination;

5. global and intermediate recombination: one parent is selected and fixed
and for each component a second parent is selected anew from the
population to determine the component values using intermediate re-
combination.

The recombination operator may be different for object variables and
strategy parameters.



3.2 Mutation

For mutations each z; is mutated by adding an individual, (0, o;)-normally
distributed random number. The o; themselves are also subject to muta-
tion and recombination (self-adaptation of strategy parameters [24]), and a
complete mutation step m(a) = a’ is obtained by the following equations:

s = exp(N(0,7)) (18)
O'; = 0; - exp(N;(0,7)) - s (19)
vy = x;+ N;(0,0,) (20)

Mutation is performed on the o; by multiplication with two log-normally
distributed factors, one individual factor, sampled for each o; (7 = 1/1/2y/n),

and one common factor s (7 = 1/4/2n), sampled once per individual. This
way, a scaling of mutations along the coordinate axes can be learned by the
algorithm itself, without an exogenous control of the o;.

More sophisticated ES using so-called correlated mutation are presented
in [1].

3.3 Selection

Selection for survival is completely deterministic, as it is only based on the
rank of fitness. It is called also an extinctive selection, as A — p worst in-
dividuals are definitively excluded from contribution offspring to the next
generation.

It is worth noting that (u + A)-ES is elitist and therefore, while perfor-
mance is monotonously improved, the implemented search is local and unable
to deal with changing environment.

On the contrary, (u, A)-ES enables the search algorithm to escape from
local optima, to follow a moving optimum, to deal with noisy objective func-
tion, and to self adapt strategy parameters effectively. The ratio pu/\ is
named the degree of extinctiveness and is linked to the probability to locate
the global optimum. If it is large there is a high convergence reliability,
whereas if it is small there is a high convergence velocity. Investigations
presented in [24] suggest an optimal ratio of p/\ = 1/7.
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Table 2: Evolution Strategy based C-Means (ESCM) algorithm.

1. assign p, A, the number of clusters, and the threshold e;
2. initialize the population;

3. evaluate J, for each individual (Eq. 16);

4. do until AJkst/ jbest s greater than ey;

5. count1=0;

(a) while countl less then y;

i. countl+—+;
ii. select by rank two individuals for mating;

iii. order consistently the centers of clusters in both selected in-
dividuals using algorithm RI (Tab. 3);

iv. crossover object variables (discrete recombination);
v. crossover strategy parameters (intermediate recombination);

vi. mutate individual as shown in Sect. 3.2;
(b) end do;
(c) evaluate J, for each individual (Eq. 16);
(d) select the p fittest individuals for next population;

6. end do.
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4 Evolution Strategy based C-Means (ESCM)
algorithm

In order to overcome the limits of C-Means, a (i, A\)-ES can be used to find
the global optimum of J,, (Eq. 16).

Tab. 2 illustrates the Evolution Strategy based C-Means (ESCM) algo-
rithm. Each genotype a is a list containing the object variables (i.e. the
centers of clusters) and the strategy parameters:

a= (yla"WYCaO-lw”ao-c) (21)

where ¢ is the number of clusters. ESCM works in a (¢ x (d+1))-dimensional
space, where d is the dimension of the pattern space.

After the initialization of parameters (step 1), the population is initialized
(step 2) in the following way: Centers of clusters (i.e. object variables) are
initialized at random in the hyperbox I (Eq. 15), while strategy parameters
are initialized at random in the range [0, a, where « is order of 1/10 the side
of L.

The remaining steps are quite standard for an (u, \)-ES, with the excep-
tion of Step 5(A)iii. In fact we must note that, before mixing object variables
of parents (centers of clusters) using discrete recombination crossover, they
must be re-indexed, in such a way centers with same index are likely to corre-
spond to the same cluster. The re-indexing algorithm is described in Tab. 3
and is modified by the RL algorithm proposed in [27]. Besides, the stop
condition (Step 4)

A Jbest

w
best
Jwes

is based on the ratio of normalized difference of objective function .J,, evalu-
ated on the fittest individual of two successive generations.

In principle, ESCM allows us to avoid local minima of J, and to find
the global optimum, improving in this way the reliability of inferential tasks
associated to the clustering procedure.

Moreover it is simple to create variants of the basic ESCM. For instance,
if we want to reduce the interference of big blobs to the localization of the
centers of small clusters, it is straightforward to change in the algorithm J,,
with the following scaled global error function J,:

< €9 (22)
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Table 3: Re-indexing (RI) algorithm.

1. compile the matrix of distances M among centers of clusters of the two
individuals;

2. count2=0;
3. while count2 less than c;

(a) count2-++;
(b) find the minimal item of the matrix;

(c) assign the same index to both centers of clusters in the two indi-
viduals;

(d) delete the corresponding row and column in the matrix of dis-
tances M,

4. end do.

Cc

= z:: C'zi: JkD Xk ), (23)

where C} is the cardinality of cluster wj.

5 Segmentation of multimodal medical vol-
umes

5.1 Multimodal medical volumes (MMYV)

Medical images are obtained by different acquisition modalities, including
X-ray tomography (CT), magnetic resonance imaging (MRI), single photon
emission tomography (SPECT), and positron emission tomography (PET),
ultrasounds (US), etc. [15]. Multimodal volumes can be derived from sets of
such different diagnostic volumes by spatial coregistration of volumes in order
to fully correlate complementary information (e.g., structural and functional)
about the same patient.
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The visual inspection of a large set of such volumetric images permits
only partially to the physician to exploit the available information. There-
fore, computer-assisted approaches may be helpful in the clinical oncologi-
cal environment as support to diagnosis in order to delineate volumes to be
treated by radiotherapy and surgery, and to assess quantitatively (in terms of
tumor mass or detection of metastases) the effect of oncological treatments.

The extraction of such volumes or other entities of interest from imaging
data is named segmentation and is usually performed, in the image space,
by defining sets of voxels with similar features within a whole multimodal
volume.

5.2 Clustering-based inference approach to MMYV seg-
mentation

It is worth noting that it is very difficult or impossible to settle the solution
of the multimodal volumes segmentation problem in a reliable rule based
systems framework, as physicians are hardly able, at least for low level steps
in image analysis, to describe the rationale of their decisions. Moreover, for
higher level in image analysis, rationales of physicians, even if more pre-
cise, strongly depend on many factors, such as different clinical frameworks,
different anatomical areas, different theoretical approaches, etc.

Inference procedures based on learning from data must be then employed
for design a computer-assisted systems for segmenting multimodal medical
volumes.

Actually, in such data based systems, a possible supervised approach has
two major drawbacks:

e it is very time-consuming (especially for large volumes), as it requires
the labeling of prototypical samples needed for applying the general-
ization process. Even if the number of clusters is predefined, a careful
manual labeling of voxels in the training set belonging with certainty
to the different clusters is not trivial, especially when it concerns mul-
timodal data sets and

e heavy biases may be introduced by physicians unskilled or fatigued
due to the large inter-user and intra-user variability generally observed
when manual labeling is performed.

14



On the contrary, unsupervised methods may fully exploit the implicit
multidimensional structure of data and make clustering of the feature space
independent from the user’s definition of training regions [2, 8] due to their
self-organizing approach.

A multimodal volume may be defined by the spatial registration of a set
of d different imaging volumes. As a consequence, its voxels are associated
with an array of d values, each representing the intensity of a single modality
in a voxel. From another point of view, the d different intensity values related
to the voxel in such multimodal volume can be viewed as the coordinates of
the voxel within a d-dimensional feature space where multimodal analysis
can be made.

An image space (usually 3D) defined by the spatial coordinates of the
data set, and a multidimensional feature space, as described before, must
be considered for a more complete description of the segmentation problem.
The interplay between these two spaces turns out to be very important in
the task of understanding the data structure.

Actually, the definition of clusters within the above described d-dimensional
feature space and the classification of all the voxels of the volumes to the re-
sulting classes are the main steps in segmenting multimodal volumes.

This approach, where an inference process based on clustering constitutes
the principal procedure for the MMV segmentation, has been followed in
many recent papers [4, 22, 17, 10, 14], and it has been shown to be more
robust to noise in discrimination of different tissues than techniques based
on edge detection [4].

Nevertheless, the used clustering method itself must be well founded in
statistics and must be not limited by intrinsic problems, such as the problem
of local optima in CM.

Moreover, many bias effects must be taken into account in considering
clustering for the segmentation of medical images. Actually, very heteroge-
neous clusters may be found in the feature space, with very different proba-
bility densities, and considering the cardinality of clusters may be necessary
in order to include in the analysis the statistical nature of the data set. Fur-
thermore, the partial volume effect during acquisition may produce a really
intrinsic ambiguity of borders between regions of interest. As a consequence,
unsupervised clustering based segmentation of medical images emerges as a
very difficult task, whose usefulness is related to the balance of two conflict-
ing actions, namely, the elimination of noise and redundancy from original
images and the preservation of significant information in the segmented im-
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age. These constraints may force users to introduce their knowledge in the
sequence of analysis and further refinements are often needed in order to
obtain meaningful and affordable results.

5.3 Interactive segmentation system

From all these considerations a correct architecture for a computer based
system for multimodal medical volumes segmentation should include a com-
putational core grounded on unsupervised clustering together with powerful
interactive tools for knowledge based refinements that physicians could tune
and organize to specific diagnostic tasks to be performed. This way, as re-
quested in the clinical practice, physicians can stay in control both of the
sequence of choices and of the results in the analysis process in order to
introduce in the segmentation process their theoretical and heuristic knowl-
edge.

A system based on those assumptions has been developed by our group
and is described in [22]. It is an interactive system with a friendly Graph-
ics User Interface, and supporting a full sequence of analysis of multimodal
medical images. The main functions performed by this system are: Feature
extraction, dimensionality reduction, unsupervised clustering, voxel classifi-
cation, and intra- and post-processing refinements.

The main component of this system is the clustering subsystem that
make possible to run in the feature space alternative clustering algorithms,
including the C-Means [6], the Capture Effect Neural Network [7], Fuzzy
C-Means [3], the Deterministic Annealing [20, 21|, and the Possibilistic C-
Means [12, 13]. In [16, 17] we report some comparisons of application of such
algorithms on clinical images.

6 Experimental analysis

6.1 Data set

We have implemented the Evolution Strategy based C-Means (ESCM) algo-
rithm as a clustering module of the previously described graphical interactive
system supporting the full sequence of analysis of multimodal medical vol-
umes.
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Figure 1: T1-weighted (a) and T2-weighted (b) MRI images of a patient with
glioblastoma multiforme in the right temporal lobe.

In order to illustrate in a specific case the inference task of MMV segmen-
tation based on clustering, and to show the gain in precision and reliability
obtained in this task using the ESCM instead of the original CM, let we
consider now a simple data set consisting of a multimodal transverse slice
of the head (Fig. 1) composed by spatially correlated T1-weighted and T2-
weighted MRI images from an head acquisition volume of an individual with
glioblastoma multiforme.

The images are 288 x 362 with 256 gray levels. The tumor is located in
the right temporal lobe and appears bright on the T2-weighted image and
dark on the T1-weighted image. A large amount of edema is surrounding the
tumor and appears very bright on the T2-weighted image. The lower signal
area within the mass suggests tissue necrosis. Each pixel in the above defined
two-modal slice is associated to an array of two intensity values (T1 and T2).
Therefore, each of these couples of pixel intensity is represented by a point
in a 2D feature space (Fig. 2), whose coordinates represent the intensity
values in that pixel of each modality belonging to the multimodal set. The
segmentation task consists in finding the main classes in this feature space
and in associating each pixel in image to one of this classes. The main classes

17
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Figure 2: Feature space (T2 versus T1) obtained from the MRI images in
Fig. 1.

in the data set are: white matter, gray matter, cerebro spinal fluid (CSF),
tumor, edema, necrosis, scalp. A slight mis-registration between images may
be responsible of some mis-classification errors in final results.

6.2 Methods

We give here some information on the implementation of clustering algo-
rithms used in the experimental analysis.

e The CM uses 7 clusters and a tolerance for the stop criterion €; = .01,
centers of clusters are initialized at random, and convergence is noticed
in 10-15 fast iterations.

e For the ESCM using J,, according to the u/A = 1/7 rule proposed
by Schwefel [24], we selected pn = 10 and A = 70. Moreover, we ini-
tialized ¢ = 7, e = .005, and the centers of clusters at random. We
implemented the selection by rank using a linear probability distri-
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Figure 3: Cost function of best individuals versus iteration of ESCM.

Figure 4: Segmentation obtained by the CM algorithm with 7 clusters.
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Figure 5: Segmentation obtained by the ESCM algorithm using .J,, and with
7 clusters.

bution with negative slope, while the intermediate recombination is
implemented as the average of components of parents.

e The implementation of ESCM using J; is identical to the previous one,
with the obvious exception of the objective function. A typical plot
of Jbst is presented in Fig. 3. Using AJY/J%st < ¢, as the stop
condition, the ESCM ends in 15 iteration.

6.3 Results and Discussion

Let us compare the results produced by the ESCM clustering algorithm and
by the standard C-Means (CM) algorithm.

In Fig. 4 the results of the unsupervised segmentation with the CM al-
gorithm are shown. CM almost correctly defines scalp and white matter.
Nevertheless it produces mistakes in classification of gray matter and edema
in the left side of brain, and especially is not able to separate tumor, necrosis
and CSF. Similar results are obtained by the basic ESCM with the standard
cost function J, (Fig. 5). Nevertheless, as an important difference, from
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Figure 6: Segmentation obtained by the ESCM algorithm using .J; and with
7 clusters.

a large number of tests, ESCM results to be largely more stable than CM
with respect to the positions of centroids and to the extension of clusters
in the feature space. Eventually, by using the newly defined scaled global
error function J, to take into account the cardinality of clusters, the results
of ESCM (Fig. 6) dramatically improve. Actually, we may notice that, in
comparison with CM, and with the basic version of ESCM, the final version
of ESCM correctly distinguishes between tumor and CSF, and within the
tumor region is able to find the necrosis region. Correct definition of scalp
and white matter and misclassification in the left side of the brain remains
as from CM.

7 Conclusions

The C-Means (CM) [6], while is an efficient approximation of the maximum
likelihood procedure for estimating the centers of clusters, shows some in-
trinsic problems. In particular, it is subject to the problem of trapping in
local minima of its objective function J, (Eq. 16). This locality in search-
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ing for minima is a main limitation, in particular when we try to apply this
algorithm as the basis for inference procedures.

In order to overcome the limits of C-Means, we have proposed in this
paper a novel clustering algorithm based on the application of an Evolution
Strategy (ES) [19, 25, 1] to the search for the global minimum (Evolution
Strategy based C-Means or ESCM algorithm).

The ESCM is based on a (i, A\)-ES strategy where the object variables
of genotypes are the centers of clusters. The implementation of the (u, A)-
ES strategy is quite standard, but before mixing object variables of parents
using discrete recombination crossover, they are re-indexed, in such a way
centers with same index are likely to correspond to the same cluster.

It is worth noting that it is easy to make variants to the basic ESCM. For
instance, with the straightforward change of J,, with the scaled global error
function Js (Eq. 23) it is possible to reduce the interference of big blobs to
the localization of the centers of small clusters.

In this paper we considered a complex inference processes based on clus-
tering consisting in multimodal medical volumes (MMV) segmentation. This
approach has been shown to be very robust to noise and able to process com-
plementary information carried by each image (e.g. functional or anatom-
ical) [4]. In this inference task, devoted to aggregate voxels with similar
properties (corresponding to the different anatomical and/or pathological
tissues) in the different diagnostic imaging volumes, clustering is performed
in a multidimensional space where each independent dimension is a partic-
ular volumetric image. Nevertheless, the used clustering method itself must
be well founded in statistics and must be not limited by intrinsic problems,
such as the problem of local optima in CM. Moreover, many bias effects (due,
e.g., to heterogeneous clusters and to partial volume effect during acquisition)
must be taken into account in considering clustering for the segmentation of
medical images.

We have implemented the ESCM algorithm as a clustering module of the
previously described graphical interactive system supporting the physician
for the full sequence of analysis of multimodal medical volumes.

In the experimental results presented in the paper, we have compared
the segmentation obtained by the application of CM, ESCM using .J,, and
ESCM using J,s to a simple data set consisting of a multimodal transverse
slice of the head (Fig. 1) composed by spatially correlated T1-weighted and
T2-weighted MRI images from an head acquisition volume of an individual
with glioblastoma multiforme.

22



The two implementations of ESCM give more stable solutions than CM
with respect to the positions of centroids and the extension of clusters in
the feature space. In particular, the ESCM using J,, as is able to take
into account the cardinality of clusters, dramatically improves the quality of
segmentation results.
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