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Abstract. Stability is an important property of machine learning algorithms. Sta-
bility in clustering may be related to clustering quality or ensemble diversity, and
therefore used in several ways to achieve a deeper understanding or better con-
fidence in bioinformatic data analysis. In the specific field of fuzzy biclustering,
stability can be analyzed by porting the definition of existing stability indexes to
a fuzzy setting, and then adapting them to the biclustering problem. This paper
presents work done in this direction, by selecting some representative stability in-
dexes and experimentally verifying and comparing their properties. Experimental
results are presented that indicate both a general agreement and some differences
among the selected methods.

1 Introduction

Many bioinformatic data sets come from DNA microarray experiments and are nor-
mally given as a rectangular m by n matrix X = (x;;),un, Where each column represents
a feature (e.g., a gene) and each row represents a data point or condition (e.g., a patient),
and value x;; is the expression of i-th gene in j-th condition. The analysis of microar-
ray data sets can provide valuable information on the biological relevance of genes and
correlations among them.

Biclustering (also known under other names like co-clustering and two-way clus-
tering) [17] is a methodology allowing for feature set and data points clustering simulta-
neously, i.e., to find clusters of samples possessing similar characteristics together with
features creating these similarities. In other words, biclustering answers the question:
What characteristics make “similar” objects similar to each other?

The output of biclustering is not a partition or hierarchy of partitions of either rows
or columns, but a partition of the whole matrix into sub-matrices or patches. We can ob-
tain different biclustering structures: single bicluster, different non-overlapping struc-
tures (as exemplified in Fig. 1), and overlapping with or without structure.

The goal of biclustering is to find as many patches as possible, and to have them
as large as possible, while maintaining strong homogeneity within patches. This task is
reported to be an NP-complete task [17,21].

In gene expression microarray data analysis biclustering methods allow us to iden-
tify genes with similar behavior with respect to different conditions. A single patch
represents a given subset of genes in a given subset of conditions.



Fig. 1. Example of biclusters, shown as “patches”.

Biclustering algorithms able to find largest biclusters from DNA microarray data
that do not exceed an assigned homogeneity constraint [3] are necessary as they convey
relevant biological information able to support important tasks, such as:

— identification of coregulated genes and/or specific regulation processes by identify-
ing sets of genes that, under specific conditions, exhibit coherent activations;

— gene functional annotation by extending the class label shared by the the majority
of genes in the bicluster to the remaining non-annotated genes of the same bicluster;

— sample and/or tissue classification, since considering the diagnosis of a specific
pathology biclusters identify the different responses to treatment, and then the
group of genes to be used as the most effective probe.

In the next section we introduce three non-pairwise indexes suited to studying the
stability of biclustering algorithms. In Sect. 3 after stating the fuzzy framework for
biclustering, we give a short overview of two biclustering algorithms based on this
approach. Sect. 4 presents the experimental study of their stabilities. In Sect. 5 we draw
the conclusions.

2 Stability Indexes

2.1 Stability of learning machines

In machine learning stability among solutions has been related to some important prop-
erties of learners, e.g., generalization [15,5].

When learning is formulated as an optimization process, the reliability of a solution
can be inferred from its robustness with respect to perturbations in the data, parameters,
or training process. A learning algorithm is stable if it produces robust solutions. If the
analysis of a cost function landscape is possible, this relationship can be proved, but
often we deal with difficult cost functions and then we must estimate the stability of a
learning machine from empirical observations.

In case of biclustering algorithms we can evaluate their stability by means of indexes
measuring the degree of similarity or overlap among solution sets, as for clustering,
but preferring computationally parsimonious indexes, as the dimension of the solution
space is very large (product of the row- and column-dimensions of the data matrix). We
shall now describe the stability indexes we have considered.



2.2 Normalized Mutual Information between partitions

The Normalized Mutual Information between partitions is a pairwise index defined
as [9]:
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where A and B are two partitions; |A| is the number of biclusters in partition A; |B| is
the number of biclusters in partition B (JA| and |B| can be different); i a bicluster in A; j
a bicluster in B; N; and N; are respectively the cardinalities of bicluster i and j; N;; the
cardinality of the intersection of bicluster i and bicluster j (i.e., number of data points
which are assigned to bicluster i in A and to bicluster j in B); and N is the cardinality of
the dataset.

Note that computation of NMI doesn’t involve relabeling of biclusters, moreover
we have NMI = 1 for perfect overlap and NMI = O (asymptotically) for completely
independent partitions

2.3 Jaccard coefficient

Jaccard coefficient is another pairwise index and is defined as the ratio of cardinalities
of the intersection of two sets to their union [12]:
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After Jaccard’s paper, this coefficient and some related ones have been proposed in
several occasions, see, e.g., [18,2,4].

2.4 Entropy of Consensus Matrix
(s)

The co-association matrix [20] is a N X N matrix M), Their elements m;; indicates
whether two matrix elements i and j are in the same bicluster in experiment number s.

The consensus matrix M averages co-association matrixes over all experiments [20].
Then: (a) if all the clusterers agree on joining objects i and j in the same bicluster,
m;; = 1; (b) if all clusterers agree that objects i and j are in different clusters, m;; = 0;
(c) otherwise, if there is disagreement on joint membership of the two objects, m;; be-
tween 0 and 1. Note that in the case of the largest disagreement, where i and j are in the
same biclusters in exactly L/2 of the partitions Py,...,Pr, m;j =0.5.

We can define a global index called the Entropy of Consensus Matrix as the aver-
aged entropy of the cells of M as [15]:
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3 Fuzzy biclustering

3.1 Fuzzy framework for biclustering

Let x;; be the expression level of the i-th gene in the j-th condition. A bicluster is

defined as a subset of the m x n data matrix X, i.e., a bicluster is a pair (g, ¢), where g C

{1,...,m} is a subset of genes and ¢ C {1,...,n} is a subset of conditions [3,11,16,24].

The size (or volume) n of a bicluster is usually defined as the number of elements

in the gene expression matrix X belonging to it, that is the product of the cardinalities
ng = |g| and n. = |c|:

n=ng-n, @)

The bicluster mean, bicluster row mean, and bicluster column mean are defined as:
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Hartigan [11] proposed the following definition for a biclustering residue:
dij = xij — X1J. (6)

A residue suited for general ’trends” of DNA microarray data analysis has been pro-
posed by Cheng and Church [3,7]:

dij = xij — (xiy + 0 + B ) = xij + x5 — xig — X1 (N

This definition takes into account that for ideal constant row biclusters, each element
x;j is equal to the bicluster mean x;; plus an offset o; = x;; — x;;, and similarly, for ideal
constant column biclusters, each element x;; is equal to the bicluster mean x;; plus an
offset Bj =X[j—X1J-

Following [3], we are interested in the largest biclusters from DNA microarray data
that do not exceed an assigned homogeneity constraint. To this aim we can utilize one
of those definitions of biclustering homogeneity, or better, of biclustering (crisp) het-
erogeneity:
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G measures the bicluster heterogeneity, i.e., the difference between the actual value of
an element x;; and its expected value as predicted from the corresponding row mean,
column mean, and bicluster mean.

Hartigan’s residue (Eq. 6) can capture constant biclusters only, while Cheng and
Church’s residue (Eq. 7) can capture biclusters with constant rows, constant columns,
and even coherent values (addictive models) and is then best suited for gene expression
data analysis [17].

In order to obtain a fuzzy formulation of the biclustering problem, we should first
set biclustering in a (crisp) set theory framework, and then we can extend this setting



to a fuzzy set formulation. To this aim, for each bicluster we assign two membership
vectors, one for the rows and one other for the columns, denoting them respectively a
and b. In a crisp sets framework row i and column j can either belong to the bicluster
or not. An element x;; of X belongs to the bicluster if both a; = 1 and b; = 1, i.e., its
membership to the bicluster is u;; = and(a;, b;). Therefore, we can define the cardinality

of a bicluster as follows:
=Y ¥u (10
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To proceed toward a fuzzy set theory framework, we allow membership u;;, a; and
b; to belong in the interval [0,1]. The membership u;; of an element x;; of X to the
bicluster can be obtained by the aggregation of row and column memberships, using,

e.g...

ujj = ab; (product) (11)
or
1D
uij = a'—'z_ J (average). (12)

The fuzzy cardinality of the bicluster is defined as the sum of the memberships u;; for
all i and j and, formally, is still given in eq. 10. The same happens for fuzzy residue
that is formally identical to the definitions in eq.s 6 and 7 (we will use the second one,
as we will work with DNA microarray data), but variables included in them must be
interpreted as fuzzy bicluster mean, fuzzy bicluster row mean, fuzzy bicluster column
mean:
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We can introduce now the definitions of Fuzzy Sum-squared residue g and Fuzzy
Mean Squared residue G that generalize the bicluster heterogeneity concept:
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3.2 Minimum Sum-squared Residue for Fuzzy Co-clustering Algorithm

We shall now present two fuzzy biclustering algorithms, namely the Minimum Sum-
squared Residue for Fuzzy Co-clustering (MSR-FCC) algorithm [23] and the Possi-
bilistic Biclustering (PCB) [8], that are inspired from the fuzzy central clustering algo-
rithms. In the versions applied in this paper, both methods employ the product aggrega-
tor (11) in the computation of the membership of an element of the data matrix X to a
bicluster. The former imposes the probabilistic constraint on memberships, used, e.g.,
in the Fuzzy C-Means [1], according to which the sum of the membership values of a
matrix element to all the biclusters must be equal to one. PCB, instead, applies more
relaxed constraints to the memberships, following the so-called possibilistic clustering
framework [13].



The Minimum Sum-squared Residue for Fuzzy Co-clustering (MSR-FCC) algo-
rithm [23] is based on the constrained minimization of a generalization of the fuzzy
central clustering objective function:
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where C is the number of data clusters; D is the number of feature clusters; the 1% term
is the Fuzzy Sum-squared residue g; the 2", 3" terms are fuzzy Gini indexes; while
the last two terms are Lagrange constraints due to the probabilistic constraints imposed
for row- and column-memberships normalization.

By setting the derivatives of J with respect to the memberships a; and b; to zero we
obtain these necessary conditions:
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Fig. 2 shows a generic algorithm for fuzzy biclustering iterating these necessary
conditions for minimizing the the objective function J. One thing that may be worth
noticing is that, in the MSR-FCC optimization process, iterations are not necessarily
contraction mappings, and hence convergence of the Picard iterations is not guaranteed
as required by related fixed-point theorems [6,10].

Initialize € and the memberships a.; by; Ve, d, i, j

Compute d2 edij Ve,d, i, j

Update a.; Ve, i

Update by; Vd, j

Compute Apax = max {{|aw~ —d,|Ve,i}u {lbaj — bi,j |Vd, ]}}
if Amax < € then stop

else jump to step 2

NN AW

Fig. 2. Generic fuzzy biclustering algorithm.

3.3 Possibilistic Biclustering Algorithm

The Possibilistic Biclustering (PCB) algorithm proposed by our group [8] is based
on the possibilistic clustering framework proposed by Krishnapuram and Keller in
1993 [13], that relaxes the clustering probabilistic constraint to:
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These minimal constraints say that clusters cannot be empty and each pattern must be
assigned to at least one cluster.
In PBC framework we can go to minimize this objective function [8,14]:
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where the first term is the fuzzy squared residue H, while the other two are penalization
terms. The parameters A and u control the size of the bicluster. Setting the derivatives
of J with respect to the memberships a; and b; to zero we obtain:
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These necessary conditions for the minimization of Jg together with the definition
of fuzzy residue d;; can be used by an algorithm able to find a numerical solution for
the optimization problem (Picard iteration), as show in Fig. 2.

4 Experimental analysis

We studied the stability and the performances of the Minimum Sum-squared Residue
for Fuzzy Co-clustering (MSR-FCC) algorithm and of the Possibilistic Biclustering
(PBC) algorithm using the Yeast data set [22] that is DNA microarray data set measur-
ing the gene expression of 2879 genes in 17 conditions.

We used this data set and some its modifications obtained by adding to it uniform
random noise of different levels. The two algorithms we initialized with random mem-
berships, € = 1070 and o-cut= .5 for defuzzification of data matrix elements’ member-
ship. The number of requested biclusters was 2 x 2 for MSR-FCC, and one for PBC.
Stability indexes were all evaluated in pairwise way, to assess the overlap between each
individual experiment and a reference solution (the one obtained without noise). The
heterogeneity index is defined as Q = G (Eq. 9).

Table 1 reports the experimental results of stability analysis. All presented results
are averaged on 10 runs. The Normalized Mutual Information (H), the Jaccard Co-
efficient (NMI), and the Entropy of Consensus Matrix (J) show a good concordance,
confirming in such a way their usefulness, but at the same time suggesting that the
information they provide is redundant. Concordance is to be expected at the extreme
values (partitions matching completely, partitions completely independent); however,
experimental results show that this holds even for intermediate values.

In general, the MSR-FCC method appears to be very stable. The possibilistic ver-
sion has a certain dependence from user-defined parameters, but Table 1 shows that



Table 1. Results on yeast data. Average indexes with uniform noise added.

Noise| H |NMI| J ||Largest n|avg.Q

0% 10.000/1.00|1.00|| 23518 |493.44

1% (0.002|0.96|0.99|| 23485 [491.75

PBC (u=0.6,AL=380) 2% |0.022|0.83(0.91|| 23309 [479.78
4% 10.057/0.5910.78|| 18576 |431.26

8% 10.136/0.20(0.28|| 6820 |[271.55

0% 10.000/1.00|1.00|| 15496 |330.5

1% |0.004|0.93]0.98|| 15470 |329.32

PBC (u=0.34,L=120) 2% 10.010|0.87(0.95|| 15236 [326.81
4% 10.022/0.75|0.88|| 14196 |313.27

8% 10.100{0.28|0.34|| 6320 [220.66

0% |0.000/1.00|1.00|| 15228 [935.43

1% |0.000/0.99|1.00|| 15228 [935.94

MSR-FCC (T, = 1000,T,, = 1000) 2% [0.001]/0.99(1.00| 15264 [935.74
4% 10.001/0.9810.99|| 15273 [936.35

8% 10.002|0.97]0.98| 15291 [936.63
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Fig. 3. Comparative performances of some biclustering techniques: heterogeneity Q (left), size n
(center), and synthetic indicator n/Q (right).
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Fig. 4. Synthetic performance (n/Q) as a function of Jaccard index J, computed from Table 1.
PBC (I) and (I) indicate PBC with the first and second sets of parameters respectively. MSR-FCC
is consistently worse.

heterogeneity is always better than for the competitive MSR-FCC method, even if sta-
bility is slightly lower. We can see from the table that the largest biclusters are obtained
by PBC with the first set of parameters (A = 0.6, u = 80); the heterogeneity of solutions
obtained with the other set of parameters is larger, but this is obvious for smaller biclus-
ters. On the other hand, MSR-FCC shows superior stability, but this is not associated to
equally high performance.

Figure 3, based on data from [8], shows the relationship between the two quality
criteria as obtained also on the other biclustering techniques outlined previously in this
paper (namely, DBF [26], FLOC [25], Cheng-Church [3], Single-objective GA [19],
and Multi-objective GA [19]). The first column graph shows the heterogeneity level
() and the second graph shows bicluster size (n), computed, in case of fuzzy bicluster-
ing algorithms, after the final defuzzication. The third graph concerns the value of the
performance index, defined as the ratio n/Q: the largest the ratio, the better the result.
Finally, as it is reasonable to expect, the value of the performance index shows low
correlation with respect to stability.

The experiments reported in Figure 3 are different from those of the present pa-
per, but the results on MSR-FCC and PBC are very similar. The competitive method is
clearly the most stable. However, by taking into account performance along with sta-
bility, we see that PBC with both sets of parameters performs consistently better than
MSR-FCC. This can be observed by computing the performance index n/< for the re-
sults in Table 1, as a function of stability. This is illustrated by the graphs in Figure 4,
where 1/ is plotted for the three methods as a function of J.

5 Conclusions

The stability of a learning algorithm is reported in the literature as related to is perfor-
mance, e.g. to the generalization capabilities in supervised algorithms [5]. In ensemble



methods diversity of base learners is often exploited to increase stability of the ensem-
ble.

In standard clustering complex relationships among stability indexes and perfor-
mances have been experimental shown in [15] using k-means algorithm. In this study
we have studied the relationships between similarity and performances in biclustering
that is a generalization of clustering as it is a methodology allowing for feature set and
data points clustering simultaneously.

While performances in clustering can be related to the representation error (that
is the count of data points in each cluster disagreeing with the majority label in that
cluster, summed over all clusters and expressed as a percentage), as done, e.g., in [15],
performances for biclustering can be related to bicluster cardinality and heterogeneity.

In this study we have employed the Normalized Mutual Information, the Jaccard
Coefficient, and the Entropy of Consensus Matrix as stability indexes and we have con-
sidered two fuzzy biclustering algorithms, namely the Minimum Sum-squared Residue
for Fuzzy Co-clustering (MSR-FCC) algorithm [23] and the Possibilistic Biclustering
(PBC) algorithm [8].

We noticed that for PBC there is a relationship between all stability indexes and the
performance index, while MSR-FCC is more stable, but shows a worse performance
index that does not depend on any stability index. Moreover, in general, the three con-
sidered stability indexes are strongly correlated.
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