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Abstract. Unsupervised machine learning methods are widely used in the analysis of
gene expression data obtained from microarray experiments. Clustering of data is one of
the most popular approaches of analyzing gene expression data. Recently, biclustering
approach which has shown to be remarkably effective in a variety of applications that
perform simultaneous clustering on the row and column dimension of the data matrix.
In this paper, we present a new approach to biclustering called the Modular Singular
Value Decomposition (M-SVD-BC) for gene expression. Experimental study on stan-
dard datasets demonstrated the effectiveness of the algorithm in gene expression data.

1 Introduction

DNA microarray technology is recent throughput and parallel platform that can pro-
vide expression profiling of thousands of genes in different biological conditions [19].
These samples may correspond to different environmental condition, time points, organ
and individuals. Examining and analyzing this kind of Bio-informatics data is a strong
challenge that can allow us to obtain a depended knowledge on biological phenomena.

DNA microarray data are usually arranged in a matrix, where each row corresponds
to a gene and each column an experimental condition. Each entry in the matrix records
the expression level of a gene as a real number, which is usually derived by taking the
logarithmic of the relative abundance of the mRNA of that genes in a specific condition
[14]. An important objective of analyzing this kind of data is the classification of genes
and conditions and the identification of regulatory process. With the aim of analyzing
such groups and samples, clustering has an important role in the exploratory analysis of
microarray data. Techniques derived by clustering can be applied to either genes or con-
ditions to investigate the underlying structure. The resultant clusters produce by these
methods reflect the global pattern of expression data, but an interesting cellular process
for most cases may be only involved in a subset of genes co-expressed only under a sub-
set of conditions. In order to obtain this kind of structure it is highly desirable to move
further and to develop approaches capable of discovering local pattern in microarray
data [4].

The term biclustering in gene expression analysis was first introduced in [4], which
inspired by Hartigan’s [8] so called direct clustering. In the last few years, research
on biclustering has gaining popularity for its various potential applications. A detailed
survey on biclustering algorithms for biological data analysis can be found in [13]; the
paper presents a comprehensive survey on the models, methods and applications in the
field of biclustering algorithms. Another interesting survey on biclustering algorithms
is also in [17].
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Many algorithms have been proposed in literature for biclustering gene expression
data. Spectral biclustering of microarray data is proposed in [9], which is based on the
observation that checkerboard structures in matrices can be found in eigenvectors corre-
sponding to characteristic expression patterns across genes or conditions. Biclustering
of gene expression data by tendency is described in [12]; that proposes a deterministic
biclustering model, namely Order Preserving (OP) clustering to capture the set of gen-
eral tendencies exhibited by a subset of genes along a subset of conditions. A linear
time biclustering algorithm for time series gene expression data has been proposed in
[14], by finding all maximal consecutive column biclusters under specific assumptions.
Experiments are conducted on synthetic and real data of yeast. Improved biclustering of
microarray data is presented in [18]; this approach is based on accelerating individual
differences clustering and apply binary least squares to update the cluster membership
parameters. Genetic algorithm based methods with local search strategy for identify-
ing overlapped biclusters in gene expression data is presented in [15]. An approach
to the biclustering problem using the Possibilistic Clustering paradigm is described in
[6]; this method finds one bicluster at a time, assigning a membership to the bicluster
for each gene and for each condition. The possibilistic clustering is tested on the Yeast
database, obtaining fast convergence and good quality solutions. A geometric bicluster-
ing algorithm based on the Hough transform for analysis of large scale microarray data
is presented in [19]. A method on discovering biclusters in gene expression data based
on high-dimensional linear geometries is described in [7].

SVD based methods has also been used in order to obtain biclusters in gene expres-
sion data and also in many potential applications [5, 11]. Applying SVD directly on the
data may obtain biclusters, but obtaining efficient biclusters on data is still a challenging
problem. Hence in this paper we propose modular SVD based method for biclustering
in gene expression data. The standard SVD based method may not be very effective
under different conditions of gene, since it considers the global information of gene and
conditions and represents them with a set of weights. While applying SVD on sub data,
local features of genes and conditions can be extracted efficiently in order to obtain
better biclusters.

The organization of the paper is as follows: in Sect 2, we explain proposed Modular
SVD based method. In Sect 3, we perform experiment on synthetic and real dataset.
Finally conclusions are drawn at the end.

2  M-SVD Biclustering Algorithm

In this section we describe our proposed method which is based on modular(sub-
data) SVD. The SVD is one of the most important and powerful tool used in numerical
signal processing. It is employed in a variety of signal processing applications, such
as spectrum analysis, filter design, system identification, etc. SVD based methods has
also been used in order to obtain biclusters in gene expression data and also in many
potential applications [5, 11]. Applying SVD directly on the data may obtain biclusters,
but obtaining efficient biclusters on data is still a challenging problem. The standard
SVD based method may not be very effective under different conditions of gene, since
it considers the global information of gene and conditions and represents them with a
set of weights.

Hence in this work, we made an attempt by overcoming the aforementioned problem
by partitioning a gene expression data into several smaller sub-data and then SVD is
applied to each of the sub-data separately. The three main steps involved in our method,
named M-SVD Biclustering, are:

1. An original whole pattern denoted by a matrix is partitioned into a set of equally
sized sub-data in a non-overlapping way.



Proceedings of CIBB 2009 3

116175013 -2.313322361 -1.0783060095 -0.006135928 0.565920399
-0.66251233 -0.935128396 -0.2352962494 -1.379284687 -1.048922567
-1.33707838 0.804363733 0.4772913445 0.559908788 0.525884589
-0.56617000 -0.770360720 0.1499698511 0.368045676 -1.441244816

Partition 1

0.95576921 1.202606123 -0.9594732865 0.344326704 0.578255336
-0.62179896 0.182017892 0.1109195350 -0.855266367 1.566795105
0.13760832 0.531482672 -2.4686166207 -0.131492390 -1.025829155
-1.45653095 0.153146269 -0.6640027483 2.199512893 0.649719200

Partition 2

0.31475552 0.298780325 2.4807386595 0.794016394 1.022588074
0.08360023 -1.038427158 -0.1227782049 -0.422578848 -0.186504481
0.08436036 -0.328423242 04751895002 -0.510729607 -0.351411349
1.70685160 0.122378852 0.2047809805 -0.413846054 -0.435951011

Partition 3

-1.45402151 0.232443301 -0.2242657967 0.986151546 0.287373979
-0.08692862 0.589879282 0.9998154749 -1.737941290 0.163774854
-0.10189404 -0.692012563 1.3484235720 1.286644697 1.770939490
-2.11802933 -0.492800245 -0.5092750588 -0.397324853 0.105599864

Partition 4

-0.98875128 -0.537124531 -0.3660464263 0.505587006 0.097513566
0.67982760 -1.432339446 1.4819152937 -0.649493194 0.242560057

-1.24509820 -3.231549662 -1.4574806367 -0.321458960 0.551617384 Ao
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Figure 1: Procedure of applying SVD on partitioned data

2. SVD is performed on each of such sub-data.

3. Atlast, a single global feature is synthesized by concatenating each sub-data’s.

In order to partition the data, we experimented in two ways. In the first type, we choose
rows which are similar by computing mean of the row data. In the second type, we
partitioned data in non-overlapping way, which is shown in figure 1. After thorough
study, we decided to work with second type of partitioning the data, which leads in
better result compared to first type.

Each step of the algorithm is explained in detail as follows:

Data Partition: Let us consider a m x n matrix A, which contain m genes and n
conditions. Now, this matrix A is partitioned into K d-dimensional sub-matrices of
similar sizes in a non-overlapping way, where A = (Aj, As, ..., Ax) with A being
the sub-data of A. Figure 1 shows a partition procedure for a given data matrix. Note
that a partition of A can be obtained in many different ways e.g., selection groups of
continuous rows or groups of continuous columns, or also randomly sampling some
rows or some columns.

Apply SVD on K sub-data: Now according to the second step, conventional SVD
is applied on K sub-pattern. The SVD provides a factorization for all matrices, even
matrices that are not square or have repeated eigenvalues. In general, the theory of SVD
states that any matrix A of size m xn can be factorized into a product of unitary matrices
and a diagonal matrix, as follows [10]:

A=UxvVT (1)

where U € R™ ™ is unitary, V' € R"*" is unitary, and ¥ € R™*" has the form
Y = diag(Ai, Ag, .....Ap), where p is the minimum value of m or n. The diagonal
elements of X are called the singular values of A and are usually ordered in descending
manner. The SVD has the eigenvectors of AA” in U and of AT Ain V.

The SVD are known to be more robust than usual eigen vectors of covariance matrix.
This is because, the robustness are determined by the directional vectors rather than
mere scalar quantity like magnitudes (Singular values stored in ). Since U and V
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matrices are inherently orthogonal in nature, these directions are encoded in U and
V matrices. This is unlike the eigenvectors which need not be orthogonal. Hence, a
small perturbations like noise have very little effect to disturb the orthogonal properties
encoded in the U and V matrices. This we believe could be the main reason for the
robust behavior of the SVD.

Finally, from each of the data partitions, we would expect that the eigenvectors cor-
responding to the largest eigenvalue would provide the optimal clusters. But we also
observed that an eignevector with with a small eigenvalue could yield clusters. In our
final experiment, instead of clustering each eignevector individually, we perform final
clustering step by applying the k-means to the data projected to the best three or four
eigenvectors. Finally, we will consider each bicluster size obtained from partitioned
data in order to find the final result of Homogeneity A and maximum bicluster size n.

More formally, the proposed method is presented in the form of Algorithm as shown
below.

Algorithm: Modular SVD
e Input: Gene Expression Data
e Output: Homogeneity /7 and Bicluster’s size n
e Steps:

— 1: Acquire gene expression matrix and generate /K number of d-
dimensional sub-data in a non-overlapping way and reshaped into K xn
matrix A = (A, As, ..., Ax) with Ay being the sub-data of A.

— 2: Apply standard SVD method to each sub-data obtained from the Step
1.

— 3: Perform final clustering step by applying the k-means to the data
projected to get the best three or four eigenvectors.

— 4: Repeat this procedure for all the partition present in the gene expres-
sion data.

— 5: At last, computation of Homogeneity H and size n, are done using
the resultant bicluster’s obtained from each partition matrix.

e Algorithm ends

3 Experiment Results and Comparative Study

In this section we experimentally evaluate the proposed method with pertaining to
synthetic and standard dataset. The proposed algorithm has been coded in R language
on Pentium IV 2 GHz with 756 MB of RAM under Windows platform. In order to show
the performance of the system, we considered two parameters, such as homogeneity H
and the maximum biclusters size n. The size n of a biclusters is usually defined as the
number of cells in the gene expression matrix X belonging to it that is the product of
cardinality n, = |g| and n, = |c|:

n=mng-n (2)

We can define H as the mean square residual, a quantity that measures the biclusters
homogeneity:
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Figure 2: (a):A synthetic dataset with multiple biclusters of different patterns (b-d):and the biclusters
extracted

H=) D d ®
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Where dfj = (zij + 215 — x5 — x15) /0, 1y, x1; and ;5 are the biclusters mean, the
row mean and the column mean of X for the selected genes and conditions respectively.

We compared our results with standard spectral method [9] using synthetic and stan-
dard dataset. We generated matrices with random values and the size of the matrices
varied from 100 x 10(rows X columns). Table 1 shows the results obtained from the
synthetic dataset. From the results it is clear that proposed method based on Modu-
lar SVD performs better compared to standard Spectral method which uses SVD for
computation.

We also tested our method on another synthetic data to this aim we generated matri-
ces with random numbers, on which 3 biclusters were similar, with dimensions ranging
from 3-5 rows and 5-7 columns. Homogeneity H and biclusters size n are tabulated in
Table 2. From this table it is ascertained that, the proposed modular approach performs
better results compared to standard technique. Figure 2 shows the example of biclusters
extracted using synthetic dataset.

Table 1: Homogeneity H and size n for Synthetic Dataset of size 100 x 10

Methods Homogeneity (H) | Size (n)
Spectral[9] — —
M-SVD-BC 0.90 70

Table 2: Homogeneity H and size n for Synthetic Dataset of size 10 x 10

Methods Homogeneity (H) | Size (n)
Spectral[9] 7.1 30
M-SVD-BC 7.21 51

We also tested our proposed method on the standard dataset of Bicat Yeast and Syn-
trenEcoli. Data structure with information about the expression levels of 419 probesets
over 70 conditions follow Affymetrix probeset notation is resulted in Bicat Yeast dataset
[2]. Affymetrix data files are normally available in DAT, CEL, CHP and EXP files.
Date containing in CDF files can also be used and containd the information about which
probes belong to which probe set. For more information on affymetrix can be found in
[1]. Results pertaining to this dataset is reported in Table 3. From the results it is clear
that the proposed method yields better bicluster size compared to standard method.
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Table 3: H and n for standard Bicat Yeast Dataset

Methods Homogeneity (H) | Size (n)
Spectral[9] 0.721 680
M-SVD-BC 0.789 2840

Another data structure with information about the expression levels of 200 genes
over 20 conditions from transcription regulatory network is also used in our experiment
[16]. Detail description about Syntren can be found in [3]. The results of Homogeniety
and bicluster size is tabulated in Table 4. From these results, it is clear that applying
SVD on modular approach yields better performance compared to standard approach.

Table 4: H and n for standard Syntren E. coli Dataset

Methods Homogeneity (H) | Size (n)
Spectral[9] 19.95 16
M-SVD-BC 7.07 196

4 Conclusions

In this paper, we described biclustering method for gene expression data based on
Modular SVD. The proposed method computes SVD on each partitioned data of a given
matrix. The standard SVD based method may not be very effective under different con-
ditions of gene, since it considers the global information of gene and conditions and
represents them with a set of weights. While applying SVD on modular way, local
features of genes and conditions can be extracted efficiently in order to obtain better bi-
clusters. Experiments on synthetic and standard dataset demonstrated the effectiveness
of the algorithm.
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