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Abstract

The Human Leukocyte Antigen (HLA) region is a part of genome which spans
over 4 Mbases of DNA. The HLA system is strongly connected to immunological
response and its compatibility between tissues is critical in transplantation. We have
developed an application of oligonucleotide microarrays to HLA typing. In this paper
we present a method based on a fuzzy system which interactively supports the user
in analyzing the hybridization results, speeding-up the decision process moving from
raw array data obtained from the scanner to their interpretation (genotyping). The
two-level procedure starts with evaluation of spot activity, then it estimates probe
hybridization levels from activity levels. The method is designed for being readily
usable by the biologist, by adopting fuzzy linguistic variables which are familiar to
the user and by featuring a standard and complete graphical interface.
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1 Introduction

The major histocompatibility complex, known as Human Leukocyte Antigen
(HLA) region, is a part of human genome which spans over 4 Mbases of DNA
on the short arm of chromosome 6 and consists of a large number of immuno-
logically relevant genes. HLA class I and class II regions encode cell surface
glycoproteins involved in the recognition by T cells [11]. One of the hallmarks
of HLA complex is the extensive polymorphism of its loci. The number of
HLA alleles reported in the last decade has risen at a rapid rate. More than
1700 HLA allelic variants have been described to date !.

The HLA system is strongly connected to immunological response. In trans-
plantation, the match between donor’s and receiver’s HLA is critical for histo-
compatibility (compatibility between tissues). Therefore, characterization and
identification (typing) of HLA is crucial for transplantation, as well as for
antigen presentation, autoimmune disease and many others areas of clinical
interest [11]. Among the molecular methodologies, DNA microarray technol-
ogy can provide a feasible and reliable approach for HLA typing.

Oligonucleotide microarrays [3] make it possible to perform a large quantity
(even thousands) of simultaneous experiments. Each experiment corresponds
to a given oligonucleotide probe, a DNA strand of 20-30 bases which selectively
combines with a complementary sequence in the target RNA sample (this
process is termed hybridization). The probes are affixed to specific positions
(spots) on the surface of a glass substrate, organized as an array. The target is
fluorescently labelled, therefore a fluorescence measurement by laser scanning
gives information about the amount of RNA hybridized at each spot, or specific
location on the chip.

The use of microarray technology in HLA typing is promising [18,6] but to date
not yet widespread. However, the high throughput provided by this method al-
lows the collection and analysis of thousand of single nucleotide polymorphism
in parallel [3,6]. This spot classification task on the basis of the microarray
images is complex and can be very time consuming.

Soft computing and artificial intelligence techniques are routinely proposed
for the analysis of microarray data (reviews can be found for instance in
[9,13,17,20]). The use of a fuzzy logic system is well matched to the inher-
ent uncertainty in data obtained by measurement of physical phenomena.
Nevertheless, while the most typical application of soft computing to mi-
croarray data aims at measuring gene expression levels, which are inherently
continuous-valued variables, the present work addresses a less typical microar-

! HLA sequences are available from the IMGT/HLA Sequence Database at
http://www.ebi.ac.uk/imgt/hla/, which is continuously updated.



ray problem. In our case, the aim is to model a situation which (in the ideal
setting) should feature binary variables, indicating hybridization. Fuzzy mod-
eling accounts for uncertainty in the representation of these quantities. The
system interactively supports the user in analyzing the hybridization results,
speeding-up the decision process moving from raw array data obtained from
the scanner to their interpretation, i.e., genotyping.

In this paper, after a description of our approach to HLA typing with microar-
ray (Sect. 2), we will describe in Sect. 3 the system supporting the measure-
ment of probe hybridization we have developed. In Sect. 4 we discuss a case
study for validation of the proposed approach. Discussion and Conclusions are
in Sect. 5. The Appendix presents the Fuzzy Basis Functions network that we
used in order to speed-up the spot activity labelling.

2 Procedure for HLA typing with microarrays

Our oligonucleotide array approach for HLA typing involves a fluorescently
labelled locus specific amplification of genomic DNA followed by hybridization
with a panel of probes selected to detect a specific pattern of sequence motifs
corresponding to an HLA allele.

The procedure starts with the design of a set of oligonucleotides, of about 15-20
bases, able to discriminate the alleles in high resolution. Each oligonucleotide
probe will only anneal to sequences that match it perfectly, a single mismatch
being sufficient to prevent hybridization under appropriate conditions [21]. In
such as way, to each gene allele to be discriminated we associate a code made
up by a list of positive or negative expected hybridization of the ordered set
of probes.

Then, oligonucleotide probes are synthesized and spotted on the microarray
(chip) using a spot printing robot, and then the microarray is hybridized using
the target DNA to be analyzed. After hybridization and stringent washing the
slide is scanned using a slide laser scanning system obtaining in such a way
the fluorescence image of the microarray.

In Fig. 1 there are the images of two microarrays produced by a Packard-
Bell Bioscience Division ScanArray 4000X. In the former image probes are
affixed in the central area of the array and their pattern is repeated twice. We
can distinguish spots with positive (lighter ones), intermediate, or negative
(darker ones) activities and outliers (noise) spread mostly in the border areas.
The latter image shows an enlarged detail of another microarray image, with
higher presence of outliers.



Fig. 1. Scanned images of two microarrays for HLA typing. — In (a) the probes
are affixed in the central area of the array. One can distinguish spots with positive
(lighter ones), intermediate, or negative (darker ones) activities and outliers (noise)
spread mostly in the border areas. The experiment is described in Sect. 4. — In (b)
there is an enlarged detail of another microarray image, with higher presence of
outliers.



HLA typing is then obtained by comparing the pattern of hybridization of the
ordered set of probes and the codes associated to gene alleles in the probe
design step.

The evaluation of probe hybridization is a complex task due to the presence
of spots with intermediate activity that must be ascribed either to the choice
of probes with too different melting temperatures ? in the probe design step,
or to other experimental problems like, e.g., the (partial) probe curling due
to the presence of auto-complementary sequences or to the bad anchorage of
the probe to the glass. As a consequence, the binary linguistic variable Probe
Hybridization (with { Positive, Negative} term set), must be obtained from the
the linguistic variable Spot Activation that can range in a term set containing
Positive value, Negative value and one or more Intermediate values (the last
ones usually corresponding to so-called False Negative/ False Positive spots).

Using the available knowledge about the specific probe and the experimental
conditions, Intermediate values of Spot Activity can be mapped into Posi-
tive/ Negative values of the Probe Hybridization. Moreover, one can exploit
the redundancies of the microarray (e.g., the repetitions of spots of the same
probe, such as in the case in Fig. 1(a)) in order to obtain a more reliable
estimation of Probe Hybridization.

3 Support to Probe Hybridization labelling

A typical HLA typing problem can require hundred of probes to be affixed to
the microarray that will contain at least a double number of spots. Because
of the large throughput typical of microarrays, evaluating probe hybridiza-
tion by the approach described in Sect. 2 will be very time consuming and
complex, computer-assisted analysis is of value in order to provide large-scale
allele typing, improve data management, and streamline overall quality control
processes.

A direct approach to computer-assisted labelling of Probe Hybridization can
consist in the definition of a bank of (fuzzy) rules evaluating the probe hy-
bridization on the basis of the image features obtained from the spots. But this
approach is not easy, as an expert biologist can discriminate the hybridization
level of a probe on the basis of the image produced by the scanner and of the
nature of the probe itself, while s/he cannot obtain a reliable classification

2 The melting temperature of a probe is the optimal temperature for its hybridiza-
tion and depends on its basis. The quantity of RNA hybridized can increase/decrease
if the hybridization experiment has been done at a temperature higher/lower that
the probe’s melting temperature.



i HLA Typing Tools

File  Wiew Settings Windows Help

: Editor Probes Database new Project open Scanner file..

f&]image browser

| Reset leatning Store learning Store learning ac .. Remove user labels Show resutts Xoff| 4.050 5 fYoffE 48.683 3 |Xrate| 10
Marme Activity Level  Oligo chi Intensity  ch1 Backgro... chi tensity... chi Backgro.. chi Diameter  chi Area chi Footprint - chl Circularty chi Spot U
ACES3 Positive ACGGCAAG. . |580 2553501 29276215 1141 603008 |1 776029 556 635315 |39100 13971435 0 638705 0.924713
ACES2 Positive CTACTACS... [S8EEB7988  |28.268541 951.158447 1947255 553.193604  |39100 14 66973 0549372 0.945633
ALMO 3 Positive GCAGGAGA . [107 593353 |27ETS192 19.98694 1 902596 561984985 39100 5.215409 0813205 0.998917
AL Positive CGAGCCAG. . (164595142 26606135 53 645209 1 768385 562 268127 |39100 5.215408 0600105 0.995255
ALMOE Positive TGGAGGGC... [92.476264 28.005116 15.802107 147108 555 63324 39100 5.215408 05358354 0.999145
ALMOME Positive GAGCAGTT... (31294128  [29.39642 2351.214844 |1 7698 557 492432 39100 912135 0540756 0.790649
ALMO S Positive CCATCCAG. . [154 570328 26107416 67 495626 1 60567 556 60156 |59100 5.215408 0525459 0996109
AL 2 Positive CAGCTCAG.. [167 601025  |25.520411 10479232 16568842 554 400635 |39100 24 56016 0536081 0.993225
LMD Positive GHAGGGCA . 116800514 (28186701 24790323 1921118 554 974487 39100 41 EOTT16 0858755 0.998611

GOAGGGUC.. (34719690 |29.023018 24506968 1669326 550 42767 15043275 0050831 [0.99748
TECET lg11 199405 | 3100
TGCGTGGA.. [53319567  [28.801433  [212353714 |1 853734 |669.487244 17753832 |0835745  [n.gsdsd

AEEOS
poEEm
DEEED
ol W]
EREDD

i

Meqgative
Medium

LU
oo
)
|
(0

Fig. 2. The interactive user interface. Each row of the table corresponds to a spot
and contains the values of its features, and other information, including the class of
membership (Positive, Medium, Negative, Outlier, and Reject). On the bottom, the
squares overimposed to the scanned image represent the positions of spots, and the
color of their contours indicate the associated class. The experiment is described in
Sect. 4.

of spots using only spots’ features. As a consequence, a machine learning ap-
proach trying to correlate spots’ features (inputs) and the Probe Hybridization
classification made by the biologist (labels) can be more fruitful in supporting
the user’s labelling task.

In principle, if the microarray shows a sufficient spot redundancy (e.g., if each
probe has been spotted many times), a learning machine can help modeling
the Probe Hybridization of each probe by evaluating its memberships to fuzzy
sets (terms) Positive and Negative on the basis of the spot’s sub-image features
(inputs) and the expert biologist’s classification (labels). But, since usually a
probe is spotted few times on the microarray, the spot redundancy is not
sufficient to guarantee a reasonable generalization.



The approach we followed to design a system for the support to probe hy-
bridization labelling is based on two sequential interactive steps:

(1) A Spot Labelling Step modeling the Spot Activity of a probe by evaluating
the memberships of spots to terms (fuzzy sets) Positive, Negative and (one
or more) Intermediate. Moreover, an additional term Outlieris considered
grouping spots contaminated by noise. To this aim we use a learning
machine that takes as input patterns the values of the spot’s sub-image
features and as labels the expert biologist’s classification based on visual
inspection of the spot sub-image.

(2) A Probe Labelling Step supporting the biologist in the association of Spot
Activity values to those of Probe Hybridization. Positive and Negative val-
ues of Spot Activity are univocally associated to the same terms of Probe
Hybridization, while Intermediate values of Spot Activity are associated
by the biologist to either Positive or Negative values of the Probe Hy-
bridization on the basis of the available knowledge on the specific probe
and on the experimental conditions and exploiting the spot redundancy.

We have developed the system on a 500 MHz Pentium PC in Sun Java 2,
providing it with an interactive graphical user interface making use of pure
Sun Java Swing graphical components such as tables, trees, menus and image
panels (see Fig. 2). In this way, the user has access to a familiar look-and-feel
which helps keeping the user training curve smooth.

For each spot we considered its position onto the microarray and the fol-
lowing features computed on the spot’s sub-image: average intensity, average
background intensity, intensity standard deviation, diameter, circularity, and
uniformity. All those data are a sub-set of those produced by the ScanArray
Express software equipping the ScanArray 4000X. If necessary, when using a
different scanner type, these features can be evaluated directly from the spot
sub-image.

The learning machine used in the Spot Labelling step is a network of Fuzzy Ba-
sis Functions (FBF) [16,22,23] that is a Mamdani fuzzy logic system [14] with
singleton fuzzification, max-product composition, product inference and height
defuzzification, equivalent to the ANFIS model [7]. A FBF network can learn
its parameters from a labelled data set using a gradient descent procedure. A
description of the FBF network and of its learning rules is presented in the Ap-
pendix and a Java implementation is available at http://misc.disi.unige.it/HLA/FBF/.

For each class to be modeled we use a FBF network whose task is the discrimi-
nation of that class against the remaining others on the basis of the considered
spot sub-images features. We use the mean square error (MSE) as a cost func-
tion (empirical risk) to be minimized by the gradient descent procedure. In
this way the FBF network estimates the posterior class conditional probability



of any spot [2,15], that we can consider as the fuzzy membership to the class.

Fig. 2 shows an example of interaction in the Spot Labelling Step. The user
starts by selecting a small set of spots for each Spot Activity class: Positive,
Medium, Negative, and Outlier. In few seconds the FBF networks generalize
the classification to all spots in the image. Labels are assigned to spots by
using a Winner Take All (WTA) rule that associates the spot to the highest
membership class. If the user accepts the classification, the step terminates.
Otherwise, the user can either explicitly change the membership class of some
spots and terminate the step, or prepare a new sample and retrain. Moreover,
every time the user can mark a spot as Reject. Rejected spots will not be
considered in the Spot Labelling and Probe Labelling Steps.

Note that many outlier points in the microarray image are implicitly filtered
out as they are outside the spots’ sub-images. Concerning the outliers belong-
ing to spots’ areas, the hosting spot areas are grouped in the class Qutlier
during the previously described interactive learning procedure and, moreover,
we add to this class also the spots with low membership to the other classes.
The spots assigned to class Outlier will not be considered in the subsequent
Probe Labelling Step.

As our main goal is the development of a system for computer-assisted analysis
of scanned images of microarrays for HLA typing in order to speedup the
usual manual labelling task, there are not any strict generalization or speed
requirements for the learning machine to be used in Spot Labelling Step, but,
obviously, the higher those performance indexes, the faster the whole HLA

typing.

To this aim we have performed a model selection on the FBF networks using
a K-fold validation method [1,19] that is particularly suitable when only a
small data set is available, as in the present application. We considered a data
set of 50 vectors of spot features randomly extracted from a scanned image
of a microarray for HLA typing. The data vectors are labelled with 3 classes
Spot Activity: Positive, Medium, and Negative. The best generalization results,
using 5 folders of 10 patterns each, have been obtained with FBF networks
with 8 hidden units (i.e., 8 rules), and this is the architecture we selected for
implementation in the system.

Concerning spot redundancy, there are two typical cases that arise from mi-
croarray design. The first one (local redundancy) is due to a constraint of
some spot printing robots (e.g. the Packard-Bell Bioscience Division SpotAr-
ray 24) that cannot print single spots but only groups of 5 adjacent spots, in
order to prevent printing errors and to consume all the probe “ink” loaded
by pins. The second source of redundancy (global redundancy) is a microarray
designer’s shrewdness consisting in spotting the same probe in several regions



of the slide, in order to prevent the effects of local experimental problems due
e.g. to low quality zones in hybridization process.

As already stated, the Probe Labelling Step supports the biologist in mapping
the Spot Activity values already evaluated into the two values of the Probe
Hybridization. To this aim the biologist exploits the spot redundancy using
a choice of operators including maximum, minimum, averaging, and voting,
in order to fuse the Spot Activity values corresponding to all instances of a
given probe, and then he will exploit his knowledge about the probes and the
experimental conditions in order to map Intermediate values of Spot Activity
to either Positive or Negative values of the Probe Hybridization.

After the Probe Labelling Step, we obtain the typing of the target HLA allele
by comparing the ordered list of Probe Hybridization levels obtained with the
list of alleles” codes produced during probe design.

4 Case study: validation of the system

In this section we describe an experimental validation of our procedure for
HLA typing with microarrays and of our system assisting probe hybridization
labelling. We used a small number of probes organized in two identical squares
of 5x5 spots (see Figure 1(a)).

A panel of 20-mer oligonucleotide probes was designed for identifying poly-
morphic positions located in exon 2 and exon 3 of HLA-A and B loci and in
exon 2 of HLA-DRBI1 locus (see Tab. 1). Each probe contained a 5" aminolink
for immobilization chemistry and a 12-mer spacer, followed by the 20-mer hy-
bridization sequence. The polymorphic sequence was situated near the center
of each hybridization sequence.

Oligonucleotide probes were synthesized and spotted on an array by MWG
Biotech Srl. The microarray was hybridized with single strand PCR product
amplified from human genomic DNA.

The target DNA was previously HLA typed as A*0216/0301 HLA with an
independent approach (high-resolution sequencing with a capillary sequencer,
for different HLA loci) and was prepared as follows: double stranded PCR
product first generated using locus specific primers and then purified to remove
the excess primers. Single stranded DNA molecules were then generated from
asymmetric PCR using one 5’ Cyb5-labelled primer as described in [21].

After hybridization and stringent washing the slide was scanned using a Sca-
nArray 4000XL and the fluorescence image was analysed using the interactive



Table 1

List of probes spotted in the HLA typing microarray. The table shows the name
assigned to probes, theirs bases sequence with DNA orientation (5" and 3’) and their
deployment position in the microarray.

PROBE | Sequence Array deploy

ACES2 | 5" CTA CTA CAA CCA GAG CGA GG ¥ Al; A19
ACES3 | 5 ACG GCA AGG ATT ACA TCG CC & A2; A20
ALMR1 | 5 G TAT TTC TAC ACC TCC GTG TC 3’ | A3
ALM4R | 5 GGG ACC GGA ACA CACGGA A ¥ A4

ALMR6 | 5 TC ACA TCC ATG TCC CGG CC ¥ A5
ALMR2 | 5 CAC TCA CAG ATT GAC CGA GTG 3’ | A6
ALMR3 | 5 GAC GGG CGC CTC CTC CGC 3 AT
ALMRS5 | 5 GG AGG GCG AGT GCG TGG A ¥ A8
ALMD1 | 5 TG CGT GGA CGG GCT CCG C 3’ A9
ALMD2 | 5 TG CGT GGA GTG GCT CCG C 3’ A10
ALMD3 | 5 GG AGG GCC GGT GCG TGG A ¥ All
ALMD4 | 5 GG AGG GCA CGT GCG TGG A ¥ A12

ALMO12 | 5 CAG CTC AGA TTA CCA AGC GC ¥ A13
ALMO15 | 5° C CAT CCA GAT GAT GTA TGG CT 3’ | Al4
ALMO016 | 5 GA GCA GTT GAG AGC CTA CCT & A15
ALMO18 | 5 TGG AGG GCT GGT GCG TGG ¥ A16
ALMO11 | 5 CG AGC CAG AAG ATG GAG CC ¥ A17
ALMO13 | 5 GCA GGA GAG GCC TGA GTATT 3° | A18
ALMO014 | 5 AGG TAT TTC TCC ACA TCC GTG 3’ | A21
ALMO17 | 5 GAC ACG GAA TGT GAA GGC CC 3" | A22

system described in the previous section.

We expected to get positive hybridization with the following probes: ACES2,
ACES3, ALMR5, ALMD2, ALM016, ALMO017 and negative with the others.
The analysis with the support of the interactive system leads to the expected
results with few user interactions. Fig. 2 shows a screen-shot of the interaction
with the system 3.

3 A detailed description of the interaction with the system is presented on the the
web site http://misc.disi.unige.it/HLA/DSS/.
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5 Discussion and conclusions

We have described a system for assisting the biologist in the analysis of oligonu-
cleotide microarray images for HLA typing [11]. Because of the large number
of probes used in HLA typing computer-assisted analysis is of value in order to
provide high-throughput allele typing, improve data management, streamline
overall quality control processes. In Sect. 4 we have shown an experimental
verification of the system.

The approach we followed is based on a fuzzy modeling of spot activity and the
mapping of spot activity evaluations into the evaluation of the hybridization
of related probes. The system interactively supports the user in analyzing the
hybridization results. The spot activity evaluations made by the biologists
on a sub-set of spots are generalized to the other spots by means of learning
machines based on FBF networks [16,22,23] that relate the labels of spots given
by the biologist with a set of features measured on the spots’ sub-images. In
this way we obtain a significant speeding-up of the decision process moving
from raw array data obtained from the scanner to their interpretation, i.e.

genotyping.

Concerning the set of features used as the input vectors of the learning ma-
chine, in the experiments reported in this paper we have used a subset of those
produced by the ScanArray Express software equipping the ScanArray 4000X.
Obviously, other, (if possible more specific) sets of features can be considered
in its place to improve the classification results (see, e.g., [5]).

On the basis of the promising results obtained with the method described
in this paper, we have started the development of a decision-support system
for the full processing of HLA typing using the oligonucleotide microarrays
technology. Note that the proposed computer-assisted approach increases in
relevance while the complexity of the typing task increases and hundred or
thousand of spots have to be labelled.

Although (to the best of our knowledge) the complete system we are imple-
menting is a novel realization, the design of a decision-support system is a
natural choice in this application field. Computer assistance in decision mak-
ing (expert systems, decision-support systems [24]) is especially widespread in
medical practice.

As an example, related to applications of our work, in transplantation there
are two main scenarios, related to the type of transplant. Transplantation
of solid organs usually require fast access to information and donor-receiver
compatibility. Decision-support systems in this scenario should enable fast
decision making in ubiquitous computing environments [12]. Very close match
between the immune systems is somewhat less critical in this case. In contrast,

11



when it comes to bone marrow transplantation, even small mismatch can
result in unacceptably increased risk [4]. In this case molecular technologies
(based on Polymerase Chain Reaction, sequencing, or microarrays) have to be
adopted. The methods described in this paper can be fruitfully exploited in
this scenario.
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Appendix

Fuzzy Logic Systems (FSL) with singleton fuzzification, maz-product compo-
sition, product inference and height defuzzification can be represented as [16]

y=[f(x) ZZ?%(X) (1)

where 77 ! denote the center of gravity of the output fuzzy sets, | = 1,2, ..., M,
x = (;),1=1,2,...,p, are the input patterns, and ¢;(x) are called fuzzy basis
functions and are given by

_ [T K (:)
S T HRt (z:)

di1(x) (2)

We can refer to those FLS as fuzzy basis expansions or networks of fuzzy basis
functions (FBF network) *.

It is worth noting that the FLS with universal function property studied by
Mendel and Wang [23], which is a singleton FLS using product inference,
product implication, Gaussian membership and height defuzzification, can be
rewritten as a FBF network expansion. The universal function approximation
property gives a strong mathematical ground when applying FLSs in criti-

4 The relationships between fuzzy basis expansions and other basis functions have
been extensively studied in [10].

12



cal applications, ranging from control, to time series prediction, to pattern
recognition.

Let us consider a fuzzy logic system based on a multi-input-multi-output ver-
sion of this FBF network. Specifically, if there are K units in the input layer,
J fuzzy inference rules and I outputs, the rule activations can be expressed
as r; = [ pjk(zk), where the quantity s, (z;) represents the value of the
membership function of the component x;, of the input vector for the jth rule
and is defined as:

pj () = exp <_M> : (3)

2
205,

and myj, and o7, are the means and variances of the Gaussian membership
functions. The values of the output units are:

_ 25Tl

i = > :;?z’j%’(x) ) (4)

where 7;; is the center of gravity of the output fuzzy membership function of
the jth rule associated with the output y;, and

1k k()
%= 5, el )

is the fuzzy basis function associated to rule j, and represents its normalized
activation. Moreover, without loss of generality, we can assume that the fuzzy
membership functions are singletons, i.e., ¥;; = ;5.

Note that, the FBF network can be regarded as a feedforward connectionist
system with one hidden layer whose units correspond to the fuzzy rules and
it can be identified [14] both by exploiting the linguistic knowledge available
(structure identification problem) or by using the information contained in a
data set (parameter estimation problem), as we done in this paper.

As shown in [15], in order to obtain a "fuzzy” classifier approximating the
Bayes discriminant functions in the large training set size limit, we must find

the values of the parameters (or weights) that minimize the mean square error
(MSE) defined as

n o 4n)\2
VSE — an(?/;[ tr) ’ (6)

where N is the size of the training set, y” = (y}) is the network output, and
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t" = (t7) is the n-th label of the associative pair of the training set. The
components of t" are defined as follows:

1 if the pattern belongs to class 7,
ty = (7)
0 otherwise.

The cost function (6) can be minimized by many different techniques. In our
experiments, the FBF network parameters (i.e., mj, oj, and 7,;) were ob-
tained by performing a gradient descent with respect to the MSE across the
training set.

The learning formulas are as follows [8,22]:

AT = nslti — yil ¢, (8)
A = nmd; D[t — il [Fi; — willex — M) /o5 (9)
Aoji = Ne0; Y [t — yillUi; — villwr — mal?/ o) (10)

7

where 7, 7, and 7, are the learning rates of g,;, m;x, and ojy,.
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