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Abstract

In this paper, we study a kernel extension of the classic possibilistic clustering. In the proposed

extension, we implicitly map input patterns into a possiblyhigh dimensional space by means of positive

semidefinite kernels. In this new space, we model the mapped data by means of the Possibilistic

Clustering algorithm. We study in more detail the special case where we model the mapped data using

a single cluster only, since it turns out to have many interesting properties. The modeled memberships

in kernel-induced spaces, yield a modeling of generic shapes in the input space. We analyze in detail

the connections to One-Class SVM and Kernel Density Estimation, thus suggesting that the proposed

algorithm can be used in many scenarios of unsupervised learning. In the experimental part, we analyze

the stability and the accuracy of the proposed algorithm on some synthetic and real data sets. The results

show high stability and good performances in terms of accuracy.

Index Terms

possibilistic clustering, kernel methods, outlier detection, regularization.

I. I NTRODUCTION

Unsupervised learning is an important branch of Machine Learning dealing with the problem

of analyzing unlabeled data. In this context, learning algorithms can provide useful insights

about structures in data and produce results than can help the process of decision making. This

situation occurs in several applications; popular tasks belonging to unsupervised learning are

density estimation, clustering, and outlier detection. Indensity estimation, one is interested in

modeling the probability density function generating the data. Clustering algorithms, instead,

aim to find groups of data points that are similar on the basis of a (dis-)similarity criterion.

Outlier detection identifies data points that share few similarities with the others.

Focusing on clustering, central clustering algorithms belonging to the K-means family [1]

are widely used. All these algorithms are based on the concept of centroids and memberships,

and the solution is obtained by solving an optimization problem. Centroids are also known as

prototypes, or codevectors, and are representatives of theclusters. In this paper, data points will

be also referred to as patterns. Memberships measure quantitatively the degree of belonging of

patterns to clusters. Among the central clustering algorithms, we can find many modifications to

the K-means algorithm. Popular fuzzy central clustering algorithms are the fuzzy versions of K-

means with the probabilistic and possibilistic description of the memberships: Fuzzyc-means [2]
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and Possibilisticc-means [3]. In many applications, the extension of the concept of membership

from crisp to fuzzy is particularly useful. Let’s consider some scenarios where clusters are

overlapped or when data are contaminated by the presence of outliers. In such situations, it

is more appropriate to allow pattern memberships to represent the degree of belonging to the

clusters.

The main drawback of the possibilisticc-means, as well as of most central clustering methods,

is its inability to model in a non-parametric way the densityof clusters of generic shape

(parametric approaches such as Possibilistic C-Spherical Shells [3], instead, have been proposed

for some classes of shapes). This problem can be crucial in several applications, since the

shapes of clusters are not hyper-spherical in general. Also, in all the central clustering algorithms

belonging to the K-means family, it is needed to specify the number of clustersc in advance. In

many cases, there is little information about the number of clusters; some methods have been

proposed to find it automatically [2], but often it is required to run the algorithms for different

values ofc, and select the one that maximizes a suitable score function. In order to overcome

these limitations, several modifications of the central clustering algorithms using kernels have

been proposed [4].

In this paper, we study an extension of the classic possibilistic clustering by means of kernels1.

In particular, we introduce the Possibilisticc-means (PCM) algorithm in kernel-induced spaces

PCMΦ, that is an application of the PCM proposed in Ref. [6] in the space induced by positive

semidefinite kernels. As we will see shortly, the proposed extension is in the direction of

providing a framework where both the shape and the number of clusters do not need to be

specified, but only the spatial resolution at which data haveto be analyzed. This extends the

classes of problems where the possibilistic paradigm for data analysis can be employed.

In the classical PCM, the memberships modeling the data follow a Gaussian function, centered

in the centroids, with covariance matrix proportional to the identity matrix. In the proposed

extension, we implicitly map input patterns into a possiblyhigh dimensional space by means of

kernels. In this new space, also known asfeature space, we model the mapped data by means of

the PCM algorithm. We make use of the theory of positive semidefinite kernels to show how it

is possible to obtain an iterative algorithm for the computation of the memberships of the input

1The algorithm has been proposed in Ref. [5]; in this paper, we report more theoretical results and experimental validations
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data points. Effectively, the resulting algorithm models patterns in feature space by means of

memberships that follow a Gaussian distribution centered in the centroids in the feature space.

We note here that another possibilistic clustering algorithm making use of kernels has been

proposed [4], [7]. It belongs, however, to the family of methods where kernels are used to

compute distances between the centroids and the patterns. This technique is the so called

kernelization of the metricand differs substantially from the technique we present here. In

other words, in those algorithms the centroids lie in the input space and kernels play a role only

in the computation of distances. In the proposed method, instead, kernels induce an implicit

mapping of the input patterns and the algorithm is applied insuch a new space; therefore, the

centroids will live in the induced space as well.

AlthoughPCMΦ is an important extension of the classical PCM algorithm, we realize that in

practical applications the lack of competition among clusters leads all the centroids in feature

space to collapse into a single one. This property of the PCM algorithm characterizes the

possibilistic paradigm and is a direct consequence of the lack of probabilistic constraint on

the memberships. Therefore, we propose a more detailed study of PCMΦ, where we model the

mapped data using a single cluster only. The One Cluster PCM in feature space (1-PCMΦ)

turns out to have many interesting properties. Remarkably, we show that the objective function

optimized by1-PCMΦ is closely related to that of One-Class SVM (1-SVM). Also, we show

that the role of the memberships in1-PCMΦ is dual with respect to the Lagrange multipliers

in 1-SVM, and the objective function contains a further term that works as regularizer; both

these facts give good robustness properties to the proposedalgorithms, as we will see shortly.

1-PCMΦ models the memberships of data points in feature space by means of a Gaussian; in

the input space, this results in a non-linear modeling of densities. In fact, the resulting density

in input space is expressed in terms of memberships and cannot be thought in probabilistic

terms, since it is not a proper probability density function. Despite that, we can still make use

of the memberships to obtain a quantitative measure on the density of regions in the input

space. We provide an approximate result, however, showing the formal connections with Kernel

Density Estimation (KDE). The modeling stage by means of thememberships leads naturally

to a clustering algorithm in the input space where we connectthe regions of the space where

the memberships are above a selected threshold. Finally, the analysis of the memberships can

be used to obtain an outlier detection algorithm; patterns having low membership with respect

December 17, 2009 DRAFT



5

to others lie in low density regions, and can be considered asoutliers.

In the experimental part, we analyze the behavior of the proposed algorithm on some applica-

tions. We first show an example of density estimation and clustering. Then, we introduce a test

of stability for outlier detection based on [8]. We modify such test to compare1-PCMΦ, 1-SVM,

and KDE for outlier detection, by making use of a score based on the Jaccard coefficient. Finally,

we compare stability and accuracy of1-PCMΦ, 1-SVM, and KDE on three real data sets.

The paper is organized as follows: In Section III we briefly review the classical PCM, in

Section III we introduce the kernel extension of PCM, in Section IV we study the connections

of the proposed model with1-SVM and KDE, and in Section V we report the experimental

analysis. Finally, we report the conclusions in Section VI.

II. POSSIBILISTIC CLUSTERING

Given a setX = {x1, . . . ,xn} of n patternsxi ∈ R
d, the set of centroidsV = {v1, . . . ,vc}

and the membership matrixU are defined. The setV contains the prototypes/representatives of

the c clusters.U is a c × n matrix where each elementuih represents the membership of the

patternh to the clusteri. In the PCM,uih ∈ [0, 1] and memberships of a pattern to all thec

clusters are not constraint to sum up to one. In other words, in the possibilistic clustering, the

following constraint:
c
∑

i=1

uih = 1 ∀k = 1, . . . , n (1)

also known asProbabilistic Constraint, is relaxed, leading to an interpretation of the membership

as a degree of typicality.

In general, all the K-means family algorithms are based on the minimization of an objective

function based on a measure of the distortion (or intra-cluster distance), that can be written as:

G(U, V ) =
c
∑

i=1

n
∑

h=1

uθ
ih‖xh − vi‖

2 (2)

with θ ≥ 1. Also, an entropy termH(U) can be added to the objective function to avoid trivial

solutions where all the memberships are zero or equally shared among the clusters. For the

algorithms having a constraint onU , the Lagrange multipliers technique has to be followed in

order to perform the optimization, leading to a further termin the objective function that is also

called Lagrangian (for a complete derivation of some central clustering algorithms based on this

concept see [9]).
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The technique used by these methods to perform the minimization is the so called Picard

iterations technique [2]. The LagrangianL(U, V ) depends on two groups of variablesU andV

related to each other, namelyU = U(V ) andV = V (U). In each iteration one of the two groups

of variables is kept fixed, and the minimization is performedwith respect to the other group. In

other words:
∂L(U, V )

∂vi

= 0 (3)

with U fixed, gives a formula for the update of the centroidsvi, and:

∂L(U, V )

∂uih

= 0 (4)

with V fixed, gives a formula for the update of the membershipsuih. The algorithms start by

randomly initializingU or V , and iteratively updateU and V by means of the previous two

equations. It can be proved that the value ofL does not increase after each iteration [10].

The algorithms stop when a convergence criterion is satisfied on U , V or G. For instance, the

following stopping criterion can be considered:

‖U − U ′‖p < ε (5)

whereU ′ is the updated version of the memberships and‖‖p is a p-norm.

The objective function of the PCM does not contain any terms due to the probabilistic

constraint, thus becoming [6]:

L(U, V ) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 +

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) (6)

The second term in the equation is an entropic term that penalizes small values of the member-

ships.

Setting to zero the derivatives ofL(U, V ) with respect to the membershipsuih:

∂L(U, V )

∂uih

= ‖xh − vi‖
2 + ηi ln(uih) = 0 (7)

we obtain:

uih = exp

(

−
‖xh − vi‖

2

ηi

)

(8)

Setting to zero the derivatives ofL(U, V ) with respect tovi, we obtain the update formula

for the centroidsvi:

vi =

∑n

h=1 uihxh
∑n

h=1 uih

(9)
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It has been suggested [6] that the value ofηi can be estimated as:

ηi = γ

∑n

h=1 uih‖xh − vi‖
2

∑n

h=1 uih

(10)

Intuitively, ηi is an estimate of the spread of thei-th cluster, andγ can be set to have a better

control on it.

III. POSSIBILISTIC CLUSTERING IN FEATURE SPACE

In this Section, we extend the possibilistic approach to clustering in kernel induced spaces

PCMΦ. It consists in the application of the PCM in the feature spaceF obtained by a mapping

Φ from the input spaceS (Φ : S → F). The objective function to minimize is then:

LΦ(U, V Φ) =
n
∑

h=1

c
∑

i=1

uih‖Φ(xh) − v
Φ
i ‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) (11)

Note that the centroidsvΦ
i of PCMΦ algorithm lie in the feature space. We can minimize

LΦ(U, V Φ) by setting its derivatives with respect tovΦ
i anduih equal to zero, obtaining:

v
Φ
i = bi

n
∑

h=1

uihΦ(xh), bi ≡

(

n
∑

h=1

uih

)−1

(12)

uih = exp

(

−
‖Φ(xh) − v

Φ
i ‖

2

ηi

)

. (13)

In principle, the necessary conditions in Eq.s 12 and 13 can be used for a Picard iteration mini-

mizing LΦ(U, V Φ). Let’s consider Mercer Kernels [11], i.e. symmetric and positive semidefinite

kernels; they can be expressed as:

K(xi,xj) = Φ(xi)
TΦ(xj) (14)

Note that the choice ofK implies Φ; for many kernel functions, the mappingΦ is implicit

(and possibly high dimensional). In this case, this means that we cannot compute the centersv
Φ
i

explicitly. Despite that, we can obtain an optimization scheme by making use of the properties

of kernels. Eq. 14 yields the following, also known askernel trick [12]:

‖Φ(xi) − Φ(xj)‖
2 = K(xi,xi) +K(xj,xj) − 2K(xi,xj) (15)

The last equation shows that it is possible to compute the distance between mapped patterns

without knowing explicitlyΦ; this is a crucial aspect in algorithms using kernels [13]. Distances
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in F are only function of the kernel function between input data.In our case, the kernel trick

allows us to obtain an update rule for the memberships by plugging Eq. 12 into Eq. 13:

uih = exp

[

−
1

ηi

(

khh − 2bi

n
∑

r=1

uirkhr + b2i

n
∑

r=1

n
∑

s=1

uiruiskrs

)]

. (16)

Note that in Eq. 16 we introduced the notationkij = K(xi,xj). The Picard iteration then reduces

to the iterative update of the memberships only by using Eq. 16. We can stop the iterations when

an assigned stopping criterion is satisfied (e.g., when memberships change less than an assigned

threshold, or when no significant improvements ofLΦ(U, V Φ) are noticed).

For what concerns the parametersηi, we can apply in feature space the same criterion suggested

for the PCM obtaining:

ηi = γ bi

n
∑

h=1

uih

(

khh − 2bi

n
∑

r=1

uirkhr + b2i

n
∑

r=1

n
∑

s=1

uiruiskrs

)

(17)

The parametersηi can be estimated at each iteration or once at the beginning ofthe algorithm.

In the latter case the initialization of the memberships, that allows to provide a good estimation

of the ηi, can be obtained as a result of a Kernel Fuzzyc-Means [14].

Note that if we choose a linear kernelkij = x
T
i xj, PCMΦ reduces to the standard PCM.

Indeed, using a linear kernel is equivalent to setΦ ≡ I, whereI is the identity function. In the

following, we will consider the Gaussian kernel:

K(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

(18)

that is characterized by the fact that the induced mappingΦ maps the data space to an infinite

dimensional feature spaceF [15], and by the following:

‖Φ(xi)‖
2 = Φ(xi)

TΦ(xi) = kii = 1. (19)

As a consequence, patterns are mapped by the Gaussian kernelfrom data space to the surface

of a unit hyper-sphere in feature space. Centroidsv
Φ
i in F , instead, are not constrained to

the hyper-spherical surface. Therefore, centroids would lie inside this hyper-sphere, and due

to the lack of competition among clusters, they often collapse into a single one, with slight

dependency on the value of the cluster spreadsηi. This effect is a direct consequence of the

lack of probabilistic constraint, and characterizes the possibilistic clustering framework [6], [16].

Such a drawback motivates our analysis of the case where we model data in feature space by

means of a single cluster only, namely where we setc = 1.
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IV. ONE CLUSTER PCM IN KERNEL-INDUCED SPACES

In this Section, we study the connections between thePCMΦ with c = 1, that we will call the

One Cluster PCM in feature space1-PCMΦ and the One-Class SVM (1-SVM). In particular,

we show the formal analogies between the two objective functions, highlighting the robustness

of the proposed method against1-SVM. We will also show a connection between1-PCMΦ and

Kernel Density Estimation (KDE).

A. One-Class SVM

One among the approaches using kernels in unsupervised learning, is based on the support

vector description of data [13], [17]. We will start by following the presentation given in Ref. [17]

based on the Support Vector Domain Description (SVDD). The aim of this approach is to look

for an hyper-sphere with centerv containing almost all data, namely allowing some outliers.

Such approach leads to possibly non-linear surfaces separating the clusters in the input space.

The optimization problem is the following:

min
α1,...,αn

(

n
∑

r=1

n
∑

s=1

αrαskrs −
n
∑

h=1

αhkhh

)

subject to :

n
∑

h=1

αh = 1 and 0 ≤ αh ≤ C

The variablesαi are the Lagrange multipliers that are introduced in the constrained optimization

problem. The optimization stage is carried out by a quadratic program that yields a sparse

solution. In other words, manyαi result to be zero, thus providing a compact representation of

the data set. This aspect is very important from the computational point of view [13]. At the

end of the optimization, the following facts hold:

• when αh = C, the image ofxh lies outside the hyper-sphere. These points are called

bounded support vectorsand are consideredoutliers;

• when 0 < αh < C, the image ofxh lies on the surface of the hyper-sphere. These points

are calledsupport vectors.

• whenαh = 0, the image ofxh is inside the hyper-sphere.
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The computation of the center of the sphere is a linear combination of the mapped patterns,

weighted by the Lagrange multipliers:

v =
n
∑

h=1

αhΦ(xh) (20)

The last expression, combined with the kernel trick, leads to the computation of the distance

between a pattern and the center:

dh = ‖Φ(xh) − v‖2 = khh − 2
n
∑

r=1

αrkhr +
n
∑

r=1

n
∑

s=1

αrαskrs (21)

The radiusR is the distance between a support vector and the centerv.

In Ref. [18] it has been proposed an SVM-based approach to separate data in feature space

from the origin by means of an hyper-plane. Interestingly, in the case of kernels that are functions

of difference between patterns (as in the Gaussian case, forexample), the two approaches yield

the same optimization problem. In Ref. [18], the parameterν is used in place ofC, since it has

a more direct interpretation on the fraction of the outliers. In particular, the relation between the

two parameters is:

C =
1

n ν

with ν ∈ [0, 1]. In this parameterization, it can be proved thatν gives the upper bound on the

fraction of outliersand a lower bound on the fraction of support vectors on the data set [18].

In the remainder of this paper, we will refer to these algorithms as1-SVM, and we will useν

for the parameterization2.

B. One-Cluster PCM in Feature Space

We show now an alternative view of the optimization problem of 1-PCMΦ, starting from a

formulation in input space to keep the notation uncluttered. Let’s considerPCMΦ with c = 1.

We represent the memberships as a vectoru, whereuh is the membership of theh-th pattern

to the cluster.

The objective function of1-PCMΦ becomes:

L =
n
∑

h=1

uh‖xh − v‖2 + η

n
∑

h=1

(uh ln(uh) − uh) (22)

2We used the implementation of1-SVM in the R package e1071, that is based on LIBSVM [19].
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The possibilistic constraint on the memberships is the following:

0 ≤ uh ≤ 1 (23)

Setting to zero the derivatives ofL with respect tov:

∂L

∂v
= −

n
∑

h=1

uih (xh − v) = 0 (24)

we obtain the update formula for the centroidv:

v =

∑n

h=1 uhxh
∑n

h=1 uh

(25)

Substitutingv in L, and expanding the norm, we obtain:

L =
n
∑

h=1

uh‖xh − v‖2 + η

n
∑

h=1

(uh ln(uh) − uh)

=
n
∑

h=1

uhx
T
hxh −

∑n

r=1

∑n

s=1 urusx
T
r xs

∑n

h=1 uh

+ η

n
∑

h=1

(uh ln(uh) − uh)

The last equation can be extended by means of positive semidefinite kernels, leading to the

following optimization problem:

min

(

n
∑

h=1

uhkhh −

∑n

r=1

∑n

s=1 uruskrs
∑

h uh

+ η

n
∑

h=1

(uh ln(uh) − uh)

)

subject to :

0 ≤ uk ≤ 1

With this extension, the proposed algorithm models all datapoints by means of a single cluster

in F . If we add the constraint
∑

h uh = 1, the problem becomes the following:

min

(

n
∑

h=1

uhkhh −
n
∑

r=1

n
∑

s=1

uruskrs + η

n
∑

h=1

uh ln(uh)

)

subject to :

0 ≤ uh ≤ 1 and
n
∑

h=1

uh = 1

In the Appendix, we will show that the introduction of the last constraint does not change

the results of the optimization procedure, since it just corresponds to scale the values of the

memberships (and the position of the centroid is not affected by that). This result shows that

the objective function of the1-PCMΦ is closely related to that of1-SVM. The centerv in

both cases is a linear combination of the mapped patterns; in1-SVM the weights of the sum

are provided by the Lagrange multipliersαh, whereas in1-PCMΦ by the membershipsuh.
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We notice, however, that the role of theαh is the dual with respect to theuh. In 1-SVM the

values ofαh, and therefore the weights of the sum, are high for the outliers; in 1-PCMΦ the

memberships are high for patterns in regions of high density. The result is that in1-SVM the

center of the sphere is computed as combination of outliers,whereas in1-PCMΦ, the center of

the Gaussian modeling the data is computed as a combination of typical patterns. This can lead

to a more reliable estimation for the centroidv in 1-PCMΦ. Moreover, in1-PCMΦ we can see

the presence of a regularization term, which is an entropy based score of the memberships. In

the experimental analysis, we will see that these properties give to the proposed method good

performances in terms of robustness.

We note that the algorithms we are comparing are based on different ideas.1-SVM looks

for the centerv and the radiusR of the enclosing sphere,1-PCMΦ looks for a centroid in

feature space and computes the memberships on the basis ofv. The parameterη works as the

width of the membership function, and corresponds to the square of the radiusR2. 1-PCMΦ

yields the memberships of the patterns, and it is possible toset a threshold to obtain a decision

boundary. This corresponds to select a sphere in feature space that is the intersection between

the multivariate Gaussian describing the memberships and the hyper-plane corresponding to a

specific threshold on the membership.

We report here the resulting update equation, representingthe core part of the1-PCMΦ (in

the unconstrained case):

uh = exp

[

−
1

η

(

khh − 2b
n
∑

r=1

urkhr + b2
n
∑

r=1

n
∑

s=1

uruskrs

)]

, b ≡

(

n
∑

h=1

uh

)−1

(26)

The iterative application of such equation leads to a solution of the optimization problem of the

1-PCMΦ. The parameterη can be estimated from the data set in the following way:

η = γ b

n
∑

h=1

uh

(

khh − 2b
n
∑

r=1

urkhr + b2
n
∑

r=1

n
∑

s=1

uruskrs

)

(27)

As we have just seen,η can be also interpreted as a regularization parameter. Therefore, the

value ofγ can be set so as to enhance the regularization properties of the algorithm. The whole

derivation of the update equation, along with a discussion about the role played by the constraint

on the sum of the memberships, can be found in the Appendix. Before closing this section, we
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report the equation allowing to compute the membership value for a test pointx∗:

u(x∗) = exp

[

−
1

η

(

K(x∗,x∗) − 2b
n
∑

r=1

urK(x∗,xr) + b2
n
∑

r=1

n
∑

s=1

urusK(xr,xs)

)]

(28)

The elements ofu in Eq. 28 are the memberships of the training points obtainedafter the training

stage, andb is the inverse of the sum of theuh (Eq. 26). Eq. 28 can be readily obtained from

u(x∗) = exp(− 1
η
‖Φ(x∗) − v

Φ‖), by expandingvΦ in terms of the mapped training data points

and using the kernel trick.

C. Connections to Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric methodthat yields a probability density

function (pdf) given a set of observations{x1, . . . , xn} [20]. For the sake of presentation, let

xi ∈ R. The resulting pdf is the sum of kernel functions centered inthe data points. In the

simplest form of KDE, the weights given to the kernels are equal, as well as the parameters of

the kernelsG:

p̂(x) =
1

n

n
∑

i=1

G(x, xi) (29)

whereG(x, xi) is a kernel function such that:

G(x, xi) ≥ 0 ∀x, xi ∈ R

∫

R

G(x, xi)dx = 1 (30)

Despite its simplicity, this form of KDE has nice theoretical properties in terms of consis-

tency [20]. Several modifications have been proposed to KDE,in order to improve the per-

formances in applications; in particular, the weighted KDEassigns a different weight to the

kernels:

p̂(x) =
n
∑

i=1

wiG(x, xi) (31)

where
∑

iwi = 1.

We now give an interesting interpretation of the1-PCMΦ, in the context of KDE. Let’s rewrite

Eq. 26 showing explicitly the dependence from a test pointx and considering kernels that are

functions of the difference between the arguments:

u(x) = ψ exp

[

2b

η

n
∑

r=1

urK(x, xr)

]

. (32)
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TABLE I

PSEUDO-CODE OF THE CORE PART OF1-PCMΦ

1) Initialize the kernel parameterσ, and the parameterγ;

2) Initialize all the membershipsuh = 1/n;

3) Compute the regularization parameterη using Eq. 27;

4) Initialize the convergence parameterε;

5) repeat

a) Update the membershipsuh using Eq. 26

b) Computeδ =
P

n

h=1 |uh − u′

h|;

6) until (δ < ε)

whereψ is a multiplicative term that is independent fromx. If we consider a test pointx∗ that is

far away from all the training points, its membership would be u(x∗) = ψ, since all the values

K(x, xr) ≃ 0. In order to turn the memberships into probabilities, we would need to set the

probability of x∗ to zero. This suggests to consider:

f(x) = u(x) − u(x∗) = ψ

(

exp

[

2b

η

n
∑

r=1

urK(x, xr)

]

− 1

)

(33)

A first order approximation of the exponential gives:

f(x) ≃
n
∑

r=1

wrK(x, xr) (34)

where we absorbed all the constants and the normalization terms needed to makef(x) integrate

to one overR into the weightswr. Note also that whenη is very large, all the memberships

tend to one (see Eq. 26). Therefore, in this limit the weightsof the approximation become equal,

leading to the KDE solution:

f(x) ≃
1

n

n
∑

r=1

K(x, xr) (35)

D. Applications of1-PCMΦ

TheCorepart of the algorithm produces a fuzzy-possibilistic modelof densities (membership

function) in the feature space. It is initialized by selecting astop criterion(e.g., when member-

ships change less than an assigned threshold, or when no significant improvements ofLΦ(U, V Φ)
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are noticed), setting the value ofσ for the Gaussian kernel (in order to define the spatial resolution

of density estimation), and initializing the membershipsuh. Then, after estimating the value of

η using Eq. 17, we perform the Picard iterations using Eq. 26. In absence of prior knowledge

on the data set, we suggest to set all the memberships to the same value. Note also that the

initialization value of the memberships is arbitrary. Thiscan be easily seen by noticing that in

fact the first iteration updates the centroidv and the memberships in one step via Eq. 26. The

centroidv is implicitly computed as a weighted combination of the mapped patternsΦ(xr),

where the weights are the memberships divided by their sum. Therefore, if we initialize the

memberships to the same value, their sum does not influence the implicit computation ofv that

is the used to compute the updated version of the memberships.

Density Estimation:At the end of theCore step, we have modeled the density of patterns

in feature space. These memberships, back to the input space, represent a density estimation in

input space based on a specific kernel. Again, we stress that the density estimation is expressed

in terms of memberships, and it cannot be interpreted as a density in a probabilistic sense. The

value of the parameterη plays the role of a scaling factor on the range of membership values

that can be obtained by the algorithm.

Outlier Detection: Once the memberships are obtained, it is possible to select athreshold

α ∈ (0, 1) and use it to define anα-cut (or α-level set) on data points:

Aα = {xh ∈ X | uh > α} (36)

This can be considered as aDefuzzificationstep. Note that given the form ofuh (Eq. 13) the

thresholdα defines a hyper-circle which encloses a hyper-spherical cap. Aα is then the set of

data points whose mapping in feature space lies on the cap, whose base radius depends onα.

Points outside theα-cut are considered to be outliers. We can setα on the basis of the rejection

rate that we are interested in by using the quantiles of the histogram of the memberships.

When we assume that we are dealing with a training set without outliers, the rejection rate

can be set as a measure of the false positive rate. This is because some “normal” data points

would still fall in the region where their membership is lower than the threshold. This procedure

is similar to setting a confidence level in statistical testing.

When training data are contaminated by the presence of outliers, it is necessary to specify

their fraction with respect to the size of the training set. From the analysis of the histogram of
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the memberships it is possible to obtain a rough estimate on the number of outliers, since they

will have far lower memberships than the normal patterns.

Clustering: Once we have the results from theCore part of the algorithm, we can perform

clustering by applying an idea similar to that in Support Vector Clustering [21]. It uses a convexity

criterion derived from the one proposed for1-SVM [21] assigning the same label to a pair of

points only if all elements of the linear segment joining thetwo points in data space belong

to Aα. In order to check that the points of the linear segment belong to Aα, we compute the

memberships of a set of them (typically twenty [21]) using Eq. 28. If none of the selected points

has membership below the selected thresholdα, two points will be considered belonging to the

same cluster. In practice, we construct an unweighted undirected graph, where the nodes are the

data points, and an arc connects two nodes when the corresponding data points have a joining

linear segment in the data space that belongs toAα. The labeling procedure amounts in finding

the connected components of such a graph, assigning the samelabels to the nodes, and therefore

to the data points, in the same connected component of the graph. This procedure separates the

data points belonging to the single cluster in feature space, in a set of non-convex clusters in data

space, thus avoiding the need to specify the number of clusters in advance. We will illustrate

this procedure with a simple example in the experimental section. The selection ofα can follow

different approaches. In our experience, we found thatα can be set, as in outlier detection, on

the basis of how many patterns we intend to reject from the training; the computation can be

performed by looking at the quantiles of the memberships of the training points.

We recall here the formal analogy between KDE and1-PCMΦ in the case of kernels that are

functions of the difference between the arguments. In such cases, we might as well use KDE for

modeling densities, clustering, and outlier detection in the same spirit of1-PCMΦ. In KDE, we

would have a modeling in terms of probabilities of data points instead of memberships, and we

could still mimic the procedures to achieve clustering or outlier detection. We note, however, that

the applicability of1-PCMΦ is more general than KDE. As a simple example, we can consider

the case of a linear kernel. In such a case,1-PCMΦ is equivalent to modeling the data with a

single Gaussian in the data space, whereas there is no corresponding KDE solution. In general,

1-PCMΦ requires only that kernel values among training data and kernel values between training

and test data are available; this is always the case when pairwise dissimilarities are available

among data points [9]. Also, any positive semidefinite kernel can be employed, depending on the
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modeling requirements of the system, since the kernel function implies the mappingΦ. KDE is

applied to data represented in terms of feature vectors and kernels are functions of the difference

(see e.g. [20]) or scalar product (when data are on hyper-spherical surfaces [22]) between data

points.

V. EXPERIMENTAL ANALYSIS

In this Section, we report the experimental analysis showing the properties of1-PCMΦ. We

first show its ability to model densities and to perform clustering on an illustrative example. In

the second part, we focus on a comparison of the stability andthe accuracy of1-PCMΦ with

1-SVM and KDE in the context of outlier detection.

A. Density Estimation and Clustering

As an example of use of1-PCMΦ for estimation of densities and clustering, we applied the

proposed algorithm to the data set shown in Fig. 1. The data set is composed by six clusters of

different shapes and densities, and some outliers. In particular, the spherical, the banana-shaped,

ring-shaped clusters contain respectively 30 (each of the four spherical clusters), 60, and 80

points; the number of outliers is 30. We run our algorithm using a Gaussian kernel, and setting

γ = 1. The stop criterion was
∑

h |∆uh| < ε with ε = 0.01. In Fig. 1, we can see the role played

by the parameterσ of the kernel. The first row shows the contour plot of the memberships for

σ = 1 andσ = 2. The left plot of the second row of Fig. 1 shows the caseσ = 0.5. It is possible

to see howσ selects the spatial resolution in the analysis of densities. Selecting a rejection rate

of 10%, we computed the corresponding quantiles of the memberships (in the caseσ = 0.5),

thus obtaining a decision boundary in the input space. As we can see in the right plot of the

second row of Fig. 1, the resulting boundary identifies correctly the shapes of the clusters. The

labeling step would yield six clusters corresponding to thesix connected regions and the outliers

(denoted by crosses).

As shown in this experiment,1-PCMΦ shows robustness to outliers and the capability to

model clusters of generic shape in the data space (modeling their distributions in terms of fuzzy

memberships). Moreover, it is able to findautonomouslythe natural number of clusters in the

data space. The outliers rejection ability is shared also bythe PCM, but is limited to the case

of globular clusters.
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Fig. 1. First row - Contour plot of the memberships forσ = 1 andσ = 2. Second row - left - Contour plot of the memberships

for σ = 0.5. right - Cluster boundaries forσ = 0.5 with a 10% rejection rate.

In all the runs of1-PCMΦ the Core step, which involves the minimization ofLΦ(U, V Φ)

(Eq. 11), resulted to be very fast, since few tenths of iterations of Eq. 16 where enough.

B. Stability Validation for Outlier Detection

We want to compare the stability of the solutions of1-PCMΦ, 1-SVM and KDE for outlier

detection. In order to do that, we propose a modified version of the method in Ref. [8], where it

has been used to estimate the natural number of clusters in a data set. We first report the general

ideas underpinning the method, and then we will detail how weintend to modify it to use it in

the context of outlier detection.

The general procedure presented in Ref. [8] starts by splitting the original data set in two
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disjoint subsetsX(1) andX(2). The cardinality ofX(1) andX(2) is half the cardinality of the

original data set, and data are picked at random to form the two sets. By applying a clustering

algorithm onX(1), it is possible to assign the cluster labels toX(2). This mechanism is called

Transfer by Predictionand can be formalized by a classifierφ trained onX(1) that allows to

predict the labels ofX(2). Here the term classifier denotes the fact that a decision onX(2) can be

taken on the basis of the clustering algorithm trained onX(1). On the other hand, it is possible to

apply directly the clustering algorithm onX(2) obtaining a set of labelsz(2). The labelsφ(X(2))

andz(2) can then be compared using, for instance, the Hamming distance. Such distance has to

take into account the possible permutations of the cluster labels, since the labelsφ(X(2)) and

z(2) are not necessarily in a direct correspondence. The expected value of this distance, that in

practice is evaluated an the average over several repetitions, can be considered as a stability

measure of the clustering solution. This distance requiresa normalization dependent from the

number of clusters.

Now we present a modified version of that algorithm to deal with outlier detection instead

of clustering. Again, we split the data setX in two halvesX(1) andX(2) as discussed before.

Now we can apply an outlier detection algorithm onX(1) and use this to take a decision on the

patterns inX(2); in this way we obtain the labelsφ(X(2)). The decision on the data inX(2)

is taken by comparing their membership values, as computed through Eq. 28, to the threshold

on the memberships of the training patterns (the threshold is selected using their quantiles as

explained in Section IV-D). Then, we apply the outlier detection algorithm onX(2) directly,

thus obtaining the set of labelsz(2). Note that the labels are of the type0− 1 meaning “normal”

and “outlier” respectively.

To evaluate the stability of an outlier detection algorithm, we propose a matching of the labels

φ(X(2)) andz(2) based on the Jaccard coefficient. For two binary variablesξ andχ, the Jaccard

coefficient is a measure of their concordance on positive responses. Given the confusion matrix:

χ

0 1

ξ 0 a00 a01

1 a10 a11
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TABLE II

PSEUDO-CODE OF THE STABILITY VALIDATION PROCEDURE FOR OUTLIER DETECTION

1) Repeatr times:

a) split the given data set into two halvesX(1) andX(2);

b) apply the outlier detection algorithm onX(1) and predict the labels onX(2) obtainingφ(X(2));

c) apply the outlier detection algorithm onX(2) obtainingz(2);

d) compute the Jaccard coefficient betweenφ(X(2)) andz(2);

The Jaccard coefficient is defined as:

J(ξ, χ) =
a11

a01 + a10 + a11

(37)

The motivation for the use of the Jaccard coefficient, instead of the simple matching, is that we

want to measure the concordance between the solutionsφ(X(2)) andz(2) in the identification of

outliers. We want to give more importance to the fact thatφ(X(2)) andz(2) match on the outliers,

rather than normal patterns. Also, since we are dealing withtwo classes (outlier vs non-outliers)

we don’t need to normalize this score as in the case of clustering [8]. The steps of the stability

validation procedure for outlier detection are outlined inTab. II.

We decided to evaluate the stability for different values ofν in 1-SVM. As we have seen

before,ν gives the upper bound on the fraction of outliers that we flag in the data set. For

this reason, to compare correctly1-SVM with 1-PCMΦ for different values ofν, we decided to

set a threshold on the memberships obtained by1-PCMΦ and a threshold on the probabilities

obtained by KDE, in order to reject exactly the same number ofpatterns rejected by1-SVM

with that particular value ofν.

C. Results

1) Synthetic data set:The synthetic data set used in our experiments is shown in Fig. 2. It is

a two-dimensional data set composed by400 points. They have been generated using a Gaussian

distribution centered in(0, 0) having unit variance along the two axes. Other20 points have been

added sampling uniformly the set[3, 10] × [−10, 10] and 10 points sampling uniformly the set

[−10,−3] × [−10, 10] thus obtaining a non-symmetric outlier distribution.
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Fig. 2. A two dimensional synthetic data set. Data are generated from a Gaussian and a non-symmetric distribution of outliers.
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Fig. 3. Synthetic data set - Comparison of1-SVM, 1-PCMΦ, and KDE using box-and-whisker plots of the Jaccard coefficient

over 500 repetitions. All the methods use a Gaussian kernel; in the three plots the width of the kernel has been set respectively

to: σ = 0.5, σ = 1, andσ = 5. The regularization parameterη in 1-PCMΦ has been set using Eq. 27 withγ = 1.

We tested the stability of1-SVM and 1-PCMΦ for outlier detection using the algorithm

presented in Tab. II. We used a Gaussian kernel with three different values ofσ: 0.5, 1, and 5;

the regularization parameterη has been set automatically using Eq. 27, where we set the value

of γ to 1. The results are summarized in Fig. 3, where the box-and-whiskers plot of the Jaccard

coefficient over 500 repetitions (r = 500) for different values ofν. In each plot of Fig. 3, we

report a comparison among1-SVM, 1-PCMΦ, and KDE.

We can see that the performances of1-PCMΦ and KDE are comparable in terms of stability,

as we expect from the analysis on the connection between them. The analogy lies in the the
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Fig. 4. Synthetic data set - Box-and-whisker plots of the difference between the stability scores for1-PCMΦ and KDE with

kernel parameterσ = 1 over1000 repetitions for different values ofγ. The two plots correspond to1% and10% rejection rates

respectively.

regularization properties parameterized byη that can be computed automatically from the data

set. In Eq. 27 we introduced the multiplicative termγ in the computation ofη to have a better

control on the regularization properties of the algorithm.It is interesting to analyze the behavior

of 1-PCMΦ with respect to KDE for different values ofγ. In Fig. 4 we report two box-and-

whisker plots of the difference between the stability of1-PCMΦ and KDE’s (evaluated using the

algorithm in Tab. II) over1000 repetitions. The two plots correspond to1% and10% rejection

rates respectively. As we can see from the Fig. 4, for high values of γ, the stabilities are

comparable, while for very small values ofγ 1-PCMΦ overfits the training data. This is expected

from the theoretical analysis, since the regularization term vanishes for small values ofη.

2) Real data sets:We compared the stability and the accuracy of1-PCMΦ, 1-SVM, and

KDE for outlier detection on three real data sets taken from the UCI repository [23]: Breast,

Ionosphere, and Iris. The accuracy has been evaluated by considering some of the classes as

normal, and the remaining ones as containing the outliers3. We considered500 repetitions where

we trained the outlier detection algorithm on a subsets of size n of the normal class. When

comparing the stability and the accuracy, we fixedν in 1-SVM that resulted in a fraction of

outliers. As in the synthetic case, in1-PCMΦ and KDE we chose to reject the same fraction of

outliers as in1-SVM. The multiplicative termγ in the computation ofη in Eq. 27 for1-PCMΦ

3A similar experimental setting has been proposed in [17], [18].

December 17, 2009 DRAFT



23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν

S
ta

bi
lit

y 
sc

or
e 

(J
ac

ca
rd

)

KDE
1−PCM
1−SVM

0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν

S
ta

bi
lit

y 
sc

or
e 

(J
ac

ca
rd

)

KDE
1−PCM
1−SVM

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ν

S
ta

bi
lit

y 
sc

or
e 

(J
ac

ca
rd

)

KDE
1−PCM
1−SVM

10 20 50 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

Ja
cc

ar
d 

ac
cu

ra
cy

KDE
1−PCM
1−SVM

10 20 30 50 75 125 175

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

Ja
cc

ar
d 

ac
cu

ra
cy

KDE
1−PCM
1−SVM

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

Ja
cc

ar
d 

ac
cu

ra
cy

KDE
1−PCM
1−SVM

Fig. 5. Stability and accuracy of1-SVM, 1-PCMΦ, and KDE; all the methods use a Gaussian kernel. We report the results on

Breast, Ionosphere, and Iris in the three columns respectively. The value of the kernel parameter is: Breastσ = 10, Ionosphere

σ = 1, Iris σ = 0.5. In all the data sets, the regularization parameterη in 1-PCMΦ has been set using Eq. 27 withγ = 1. The

stability is evaluated over500 repetitions using the method of Tab. II and is shown in the first row. The second row shows the

accuracy (evaluated as the Jaccard coefficient between predicted and actual labels) of the three methods over500 repetitions

(ν = 0.1 for Breast andν = 0.2 for Ionosphere and Iris).

has been set to one in all the experiments.

The study of the stability follows the same steps as in the synthetic data set. The study of the

performances has been done in terms of accuracy in identifying outliers for the three algorithms.

In this case, we show a comparison of accuracy with respect tothe size of the data set. In

particular, we train the outlier detection algorithms on a subsetX(1) of the entire data set, and

we predict the labels onX(2) using the decision function learned onX(1), thus obtaining the

labelsφ(X(2)). Let t(2) be the vector of true labels ofX(2); we evaluate the accuracy computing

the Jaccard coefficient betweenφ(X(2)) andt(2):

accuracy = J(φ(X(2)), t(2))
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For each size value ofX(1), we resampled500 times. The results are shown in the bottom row

of Fig. 5 for different values ofn (the size of the training setX(1)).

The Breast Cancer Wisconsin (Original) Data Set was obtained by the University of Wisconsin

Hospitals, Madison from Dr. William H. Wolberg [24]. The data set is composed by 699 nine-

dimensional patterns, labeled as benign or malignant. Since there are some missing values, we

decided to remove the corresponding patterns, obtaining 683 patterns. The class distribution is

65% for the benign class and 35% for the malignant class. In the comparison of stability and

accuracy, we used a Gaussian kernel withσ = 10. The stability of the solutions is shown in

the top panel of the first column of Fig. 5. The accuracy has been evaluated by considering the

benign class as normal and the malignant class as the one containing the outliers. The plot of

the accuracy corresponds toν = 0.1.

Ionosphere is a collection of radar data, collected by a phased array of 16 high-frequency

antennas in Goose Bay, Labrador having the free electrons in the ionosphere as target [25]. The

class labels are two: “Good” radar returns are those showingevidence of some type of structure

in the ionosphere, while “Bad” returns are those that do not; their signals pass through the

ionosphere. Received signals were processed using an appropriate autocorrelation function. The

system used17 pulse numbers and the patterns in the data set are described by two features

per pulse number. In the comparison of stability and accuracy, we used a Gaussian kernel with

σ = 1. The stability of the solutions is shown in the top panel of the central column of Fig. 5.

The accuracy has been evaluated by considering the class “Good” as normal and the class “Bad”

as the one containing the outliers. The plot of the accuracy corresponds toν = 0.2.

The Iris data set is one of the most popular data sets studied by the Machine Learning

community [1], [26]. It contains three classes of50 patterns each; each class refers to a type of iris

plant. The class “setosa” is linearly separable from the other two (“versicolor” and “virginica”)

that are overlapped. The features are four: sepal length, sepal width, petal length, and petal

width. In the comparison of stability and accuracy, we used aGaussian kernel withσ = 0.5.

The stability of the solutions is shown in the top panel of theright column of Fig. 5. The

accuracy has been evaluated by considering the classes “setosa” and “versicolor” as normal and

the class “virginica” as the one containing the outliers. The plot of the accuracy corresponds

ν = 0.2.

As we can see from these results, the proposed method achieves good performances both in
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terms of accuracy and in terms of stability of the solutions,compared to1-SVM. This effect can

be seen especially for small values ofn and for small rejection rates. This can be particularly

useful in some applications where the cardinality of the data set might be small. Stability and

accuracy of1-PCMΦ are comparable to those of KDE.

VI. CONCLUSION

In this paper, we introduced the possibilistic clustering in kernel-induced spaces, and we

analyzed some of its theoretical properties. In particular, we highlighted the connections of the

1-PCMΦ with 1-SVM and KDE. This suggests that1-PCMΦ can be used to model densities in a

non-parametric way, perform clustering, and to detect outliers. In the comparison with KDE, we

focused on kernel that are function of the difference between patterns. We showed that in this

case, the limit for a large value of the regularization parameter yields an interpretation of1-PCMΦ

in terms of a KDE solution. In the comparison with1-SVM, we noticed the similarity between

the optimization problems. The1-PCMΦ objective function, however, contains an additional

term that can be interpreted as a regularizer, and is an entropy based score computed on the

memberships. Also, we noticed the dual role of the memberships in 1-PCMΦ with respect to

the Lagrange multipliers in1-SVM. These differences give to the proposed algorithm the ability

to avoid overfitting and to enhance the stability of the foundsolutions.

All these considerations are fully confirmed by the tests conducted on synthetic and real data

sets on the stability and the accuracy in outlier detection problems. Especially for small values of

ν, that correspond to the rejection of few outliers, the stability of 1-PCMΦ is on average higher

than1-SVM’s. In 1-PCMΦ, the selection of the regularization parameter is not critical, and the

stability is achieved forη in a wide range of values. Moreover, the optimization procedure is

iterative and very fast, since few iterations are needed.

The performances in terms of accuracy and stability of1-PCMΦ and KDE resulted to be

comparable. We discussed, however, that the applicabilityof 1-PCMΦ is more general than

KDE. 1-PCMΦ can be employed with any positive semidefinite kernel, and inany application

where pairwise dissimilarities are available among data points.

It is important to remark the weak points of1-PCMΦ as well. The main drawback is related

to the complexity in the testing stage. The representation of the data set in1-SVM is sparse,

thanks to the description of the data in terms of the support vectors only. In many cases, the
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reduction given by this compact description leads to a remarkable computational advantage when

testing new patterns. In the proposed algorithm, instead, we need to use all the patterns, and

hence the full kernel matrix, to compute the membership of a new test pattern. Sparsification

schemes could reduce the computational complexity in the testing stage.

APPENDIX I

A. Optimization Algorithm - The Unconstrained Case

Let’s analyze the procedure to optimize the objective function:

L =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh) (38)

The optimization technique that we use is the so called Picard iterations technique.L depends

on u andv that are related to each other, namelyu = u(v) andv = v(u). In each iteration one

of the two groups of variables is kept fixed, and the minimization is performed with respect to

the other. The update equation can be obtained by setting thederivatives ofL to zero:

∂L

∂v
= 0,

∂L

∂uh

= 0 (39)

These equations lead to the following:

uh = exp

(

−
‖xh − v‖2

η

)

(40)

v =

∑n

h=1 uhxh
∑n

h=1 uh

(41)

The constraint0 ≤ uk ≤ 1 is satisfied, since the form assumed by the update equations.

B. Optimization Algorithm - The Constrained Case

We show now that constraining the sum of the memberships doesnot affect the behavior of

the optimization procedure. In other words, the results of the constrained and unconstrained case

differ only in the scaling factor of the memberships. Let’s start with the objective function:

L =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh) (42)

subject to:
∑

h

uh = 1 (43)
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Following the Lagrange multipliers technique, the optimization ofL with the constraint on the

memberships requires the optimization of the Lagrangian:

L′ =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh) + γ

(

∑

h

uh − 1

)

(44)

that is a combination ofL and the constraint equation weighted by the Lagrange multiplier γ.

Setting the derivatives ofL with respect touh to zero:

∂L′

∂uh

= ‖xh − v‖2 + η ln(uh) + γ = 0 (45)

we get:

uh = exp

(

−
‖xh − v‖2

η

)

exp

(

−
γ

η

)

(46)

Substitutinguh into the constraint equation, we obtain:

∑

h

exp

(

−
‖xh − v‖2

η

)

exp

(

−
γ

η

)

= 1 (47)

that gives:

γ = η ln

(

∑

h

exp

(

−
‖xh − v‖2

η

)

)

(48)

Finally, substituting Eq. 48 into Eq. 46:

uh =
exp

(

−‖xh−v‖2

η

)

∑

r exp
(

−‖xr−v‖2

η

) (49)

From this result, it is clear that the update ofv is the same as in the unconstrained case,

since the normalization in Eq. 49 cancels out in the computation of v. This means that starting

from the same memberships, the constrained and unconstrained cases give the samev, and the

memberships are only scaled to sum up to one.
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