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Abstract

In this paper, we study a kernel extension of the classicilpidistic clustering. In the proposed
extension, we implicitly map input patterns into a possihiyh dimensional space by means of positive
semidefinite kernels. In this new space, we model the mappea Iy means of the Possibilistic
Clustering algorithm. We study in more detail the specialecavhere we model the mapped data using
a single cluster only, since it turns out to have many interggroperties. The modeled memberships
in kernel-induced spaces, yield a modeling of generic shapéhe input space. We analyze in detail
the connections to One-Class SVM and Kernel Density Estimathus suggesting that the proposed
algorithm can be used in many scenarios of unsuperviseditearin the experimental part, we analyze
the stability and the accuracy of the proposed algorithmasnessynthetic and real data sets. The results

show high stability and good performances in terms of aagura

Index Terms

possibilistic clustering, kernel methods, outlier detatt regularization.

. INTRODUCTION

Unsupervised learning is an important branch of Machinerieg dealing with the problem
of analyzing unlabeled data. In this context, learning atgms can provide useful insights
about structures in data and produce results than can helprtitess of decision making. This
situation occurs in several applications; popular taskeriggng to unsupervised learning are
density estimation, clustering, and outlier detectiondémsity estimation, one is interested in
modeling the probability density function generating tretad Clustering algorithms, instead,
aim to find groups of data points that are similar on the basia ¢dis-)similarity criterion.
Outlier detection identifies data points that share few lairties with the others.

Focusing on clustering, central clustering algorithmsobging to the K-means family [1]
are widely used. All these algorithms are based on the corafegentroids and memberships,
and the solution is obtained by solving an optimization peob Centroids are also known as
prototypes, or codevectors, and are representatives aflulseers. In this paper, data points will
be also referred to as patterns. Memberships measure @igety the degree of belonging of
patterns to clusters. Among the central clustering algord, we can find many modifications to
the K-means algorithm. Popular fuzzy central clusterirgpathms are the fuzzy versions of K-

means with the probabilistic and possibilistic descriptd the memberships: Fuzzymeans [2]
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and Possibilistie-means [3]. In many applications, the extension of the cpnoémembership
from crisp to fuzzy is particularly useful. Let's consideonse scenarios where clusters are
overlapped or when data are contaminated by the presencetladrs. In such situations, it
is more appropriate to allow pattern memberships to reptebe degree of belonging to the
clusters.

The main drawback of the possibilisiemeans, as well as of most central clustering methods,
is its inability to model in a non-parametric way the dengity clusters of generic shape
(parametric approaches such as Possibilistic C-SphereiIsS 3], instead, have been proposed
for some classes of shapes). This problem can be crucialvieraeapplications, since the
shapes of clusters are not hyper-spherical in general, Asall the central clustering algorithms
belonging to the K-means family, it is needed to specify thenber of clusterg in advance. In
many cases, there is little information about the numberlwdters; some methods have been
proposed to find it automatically [2], but often it is require run the algorithms for different
values ofc, and select the one that maximizes a suitable score fundmoarder to overcome
these limitations, several modifications of the centrabtting algorithms using kernels have
been proposed [4].

In this paper, we study an extension of the classic possiisilclustering by means of kernéls
In particular, we introduce the Possibilisiemeans (PCM) algorithm in kernel-induced spaces
PCMsg, that is an application of the PCM proposed in Ref. [6] in thecepaduced by positive
semidefinite kernels. As we will see shortly, the proposettresion is in the direction of
providing a framework where both the shape and the numbeilusters do not need to be
specified, but only the spatial resolution at which data havee analyzed. This extends the
classes of problems where the possibilistic paradigm fta daalysis can be employed.

In the classical PCM, the memberships modeling the datadal&aussian function, centered
in the centroids, with covariance matrix proportional t@ tidentity matrix. In the proposed
extension, we implicitly map input patterns into a possibigh dimensional space by means of
kernels. In this new space, also knownfeature spacewe model the mapped data by means of
the PCM algorithm. We make use of the theory of positive sefimide kernels to show how it

is possible to obtain an iterative algorithm for the compataof the memberships of the input

The algorithm has been proposed in Ref. [5]; in this paper, we reporé ineoretical results and experimental validations
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data points. Effectively, the resulting algorithm modedterns in feature space by means of
memberships that follow a Gaussian distribution centenethé centroids in the feature space.

We note here that another possibilistic clustering algaritmaking use of kernels has been
proposed [4], [7]. It belongs, however, to the family of nmdk where kernels are used to
compute distances between the centroids and the pattehis.tdchnique is the so called
kernelization of the metriand differs substantially from the technique we present.hér
other words, in those algorithms the centroids lie in thaitrgpace and kernels play a role only
in the computation of distances. In the proposed methodeans kernels induce an implicit
mapping of the input patterns and the algorithm is applieduoh a new space; therefore, the
centroids will live in the induced space as well.

Although PCMg is an important extension of the classical PCM algorithm, eadize that in
practical applications the lack of competition among @ustleads all the centroids in feature
space to collapse into a single one. This property of the PClorihm characterizes the
possibilistic paradigm and is a direct consequence of thk & probabilistic constraint on
the memberships. Therefore, we propose a more detailegt sfudCMg, where we model the
mapped data using a single cluster only. The One Cluster PCMatufe spacel{PCMsg)
turns out to have many interesting properties. Remarkaldyskow that the objective function
optimized by1-PCMy is closely related to that of One-Class SVM{VM). Also, we show
that the role of the memberships IRPCMg¢ is dual with respect to the Lagrange multipliers
in 1-SVM, and the objective function contains a further term thatksoas regularizer; both
these facts give good robustness properties to the promgedthms, as we will see shortly.
1-PCMg models the memberships of data points in feature space bypsnaaa Gaussian; in
the input space, this results in a non-linear modeling ofsdexs. In fact, the resulting density
in input space is expressed in terms of memberships and tdmenthought in probabilistic
terms, since it is not a proper probability density functi@espite that, we can still make use
of the memberships to obtain a quantitative measure on thesitgleof regions in the input
space. We provide an approximate result, however, shoiadarmal connections with Kernel
Density Estimation (KDE). The modeling stage by means ofrttemberships leads naturally
to a clustering algorithm in the input space where we conttextregions of the space where
the memberships are above a selected threshold. Finadyartalysis of the memberships can

be used to obtain an outlier detection algorithm; pattensny low membership with respect
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to others lie in low density regions, and can be considereduders.

In the experimental part, we analyze the behavior of the gweg algorithm on some applica-
tions. We first show an example of density estimation andteting). Then, we introduce a test
of stability for outlier detection based on [8]. We modifycbutest to comparé-PCMg, 1-SVM,
and KDE for outlier detection, by making use of a score basethe Jaccard coefficient. Finally,
we compare stability and accuracy biPCMg, 1-SVM, and KDE on three real data sets.

The paper is organized as follows: In Section Il we brieflyieas the classical PCM, in
Section Il we introduce the kernel extension of PCM, in SettV we study the connections
of the proposed model with-SVM and KDE, and in Section V we report the experimental

analysis. Finally, we report the conclusions in Section VI.

II. POSSIBILISTIC CLUSTERING

Given a setX = {xy,...,x,} of n patternsx; € R?, the set of centroid¥ = {v;,...,v.}
and the membership matriX are defined. The sét contains the prototypes/representatives of
the ¢ clusters.U is a c x n matrix where each element;, represents the membership of the
patternh to the clusteri. In the PCM,w;, € [0,1] and memberships of a pattern to all the
clusters are not constraint to sum up to one. In other word#he possibilistic clustering, the

following constraint:
dun=1 Vk=1,...n 1)
=1

also known a$’robabilistic Constraintis relaxed, leading to an interpretation of the membership
as a degree of typicality.

In general, all the K-means family algorithms are based ennimimization of an objective
function based on a measure of the distortion (or intratetugistance), that can be written as:

GUV)=> Y ulllxy — vil> ()

i=1 h=1
with 6 > 1. Also, an entropy ternH (U) can be added to the objective function to avoid trivial

solutions where all the memberships are zero or equallyeshamong the clusters. For the
algorithms having a constraint di, the Lagrange multipliers technique has to be followed in
order to perform the optimization, leading to a further temthe objective function that is also
called Lagrangian (for a complete derivation of some céttestering algorithms based on this

concept see [9]).
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The technique used by these methods to perform the miniimizéd the so called Picard
iterations technique [2]. The LagrangidriiU, V') depends on two groups of variabl&sand V/
related to each other, namdly= U(V) andV = V(U). In each iteration one of the two groups
of variables is kept fixed, and the minimization is performgth respect to the other group. In

other words:

L
8V,»
with U fixed, gives a formula for the update of the centroidsand:
OL(U,V) _0 (@)
O,

with V' fixed, gives a formula for the update of the memberships The algorithms start by
randomly initializingU or V, and iteratively updaté/ and VV by means of the previous two
equations. It can be proved that the value Iofdoes not increase after each iteration [10].
The algorithms stop when a convergence criterion is saligiie/, V' or GG. For instance, the

following stopping criterion can be considered:
U —=U'l, <e (5)

whereU’ is the updated version of the memberships &fglis a p-norm.
The objective function of the PCM does not contain any terme thu the probabilistic
constraint, thus becoming [6]:

Z Zuthxh —V; ’ + an Z Usip, hl uzh) - uzh) (6)

h=1 i=1 =1
The second term in the equation is an entropic term that Eesatmall values of the member-

ships.
Setting to zero the derivatives @f(U, V') with respect to the memberships,:
YD — g vill + i) = 0 @
we obtain:
= exp (- 22 20I0) ©

Setting to zero the derivatives @f(U, V') with respect tov;, we obtain the update formula

for the centroidsv;:
_ Zh:l UinXn (9)

v, =
' > he Uih
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It has been suggested [6] that the valueyptan be estimated as:

> e Uinlxn — vil[?
n =y =EE (10)
> het Uih
Intuitively, n; is an estimate of the spread of th¢h cluster, andy can be set to have a better

control on it.

[11. POSSIBILISTIC CLUSTERING IN FEATURE SPACE
In this Section, we extend the possibilistic approach teteling in kernel induced spaces
PCMs. It consists in the application of the PCM in the feature spAcebtained by a mapping
® from the input spacé (¢ : S — F). The objective function to minimize is then:

L U Vq) Zzulhufb Xh _V¢||2+ZUZZ uzhln u,h) uih) (11)

h=1 =1 i=1

Note that the centroids® of PCMg algorithm lie in the feature space. We can minimize

L®(U,V?) by setting its derivatives with respect ¢ andu;, equal to zero, obtaining:
n n -1
V? = bz Z uihi)(xh), bz = (Z uih> (12)
h=1 =

tip = oxp ( ”Cb(xh)n,_ VQHQ)- (13)

In principle, the necessary conditions in Eg.s 12 and 13 eauded for a Picard iteration mini-

mizing L®(U, V?). Let's consider Mercer Kernels [11], i.e. symmetric andifdees semidefinite

kernels; they can be expressed as:
K (xi,%;) = ®(x;)" D(x;) (14)

Note that the choice of{ implies ®; for many kernel functions, the mapping is implicit
(and possibly high dimensional). In this case, this meaatwle cannot compute the center$
explicitly. Despite that, we can obtain an optimizationatie by making use of the properties

of kernels. Eq. 14 yields the following, also known leernel trick [12]:
[@(x;) — 2(x))|I* = K (i, %) + K (x;,%;) — 2K (xi, x;) (15)

The last equation shows that it is possible to compute thertie between mapped patterns

without knowing explicitly®; this is a crucial aspect in algorithms using kernels [13§té&hces
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in F are only function of the kernel function between input ddtaour case, the kernel trick
allows us to obtain an update rule for the memberships bygohggEqg. 12 into Eq. 13:

Uip = €XP [_771 (k’hh — 2b; i Wipkpy + b? zn: i uiruiskrs>] . (16)
¢ r=1

r=1 s=1

Note that in Eq. 16 we introduced the notation = K (x;, x;). The Picard iteration then reduces
to the iterative update of the memberships only by using BqWe can stop the iterations when
an assigned stopping criterion is satisfied (e.g., when meeships change less than an assigned
threshold, or when no significant improvementsIdf(U, V?®) are noticed).

For what concerns the parametgyswe can apply in feature space the same criterion suggested
for the PCM obtaining:

n; =" b; z": (7 (khh — 20 2”: Uirkiny + b z": z”: uiruiskrs) (17)
h=1 r=1

r=1 s=1

The parameters; can be estimated at each iteration or once at the beginnitigeadlgorithm.
In the latter case the initialization of the membershipaf tidlows to provide a good estimation
of the n;, can be obtained as a result of a Kernel Fuz#yleans [14].

Note that if we choose a linear kerng), = xiij, PCMs reduces to the standard PCM.
Indeed, using a linear kernel is equivalent to $et I, where! is the identity function. In the

following, we will consider the Gaussian kernel:

X; — X 2
K(x;,x;) = exp (—%) (18)

that is characterized by the fact that the induced mapgpingaps the data space to an infinite

dimensional feature spacg [15], and by the following:
(i) |> = ®(x:) " P (xi) = kg = 1. (19)

As a consequence, patterns are mapped by the Gaussian fkemealata space to the surface
of a unit hyper-sphere in feature space. Centroiffsin F, instead, are not constrained to
the hyper-spherical surface. Therefore, centroids woigdnside this hyper-sphere, and due
to the lack of competition among clusters, they often calianto a single one, with slight
dependency on the value of the cluster spregdshis effect is a direct consequence of the
lack of probabilistic constraint, and characterizes thesgmlistic clustering framework [6], [16].
Such a drawback motivates our analysis of the case where wielndata in feature space by

means of a single cluster only, namely where wecset1.
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IV. ONE CLUSTERPCM IN KERNEL-INDUCED SPACES

In this Section, we study the connections betweenit@dls with ¢ = 1, that we will call the
One Cluster PCM in feature spatePCMg and the One-Class SVMI{SVM). In patrticular,
we show the formal analogies between the two objective fanst highlighting the robustness
of the proposed method agairissVM. We will also show a connection betweéPCMg and
Kernel Density Estimation (KDE).

A. One-Class SVM
One among the approaches using kernels in unsupervisaudngais based on the support
vector description of data [13], [17]. We will start by foling the presentation given in Ref. [17]
based on the Support Vector Domain Description (SVDD). Tine @ this approach is to look
for an hyper-sphere with center containing almost all data, namely allowing some outliers.
Such approach leads to possibly non-linear surfaces depathe clusters in the input space.
The optimization problem is the following:

n n n
almuén <Z Z oy orskys — ; ahkhh> subject to :

r=1 s=1

n

Zahzl and 0<a,<C
h=1

The variablesy; are the Lagrange multipliers that are introduced in the ttaimed optimization
problem. The optimization stage is carried out by a quacirptogram that yields a sparse
solution. In other words, many; result to be zero, thus providing a compact representation o
the data set. This aspect is very important from the comiouiat point of view [13]. At the
end of the optimization, the following facts hold:
. when o), = C, the image ofx,, lies outside the hyper-sphere. These points are called
bounded support vectomnd are consideredutliers
. when(0 < 5, < C, the image ofx, lies on the surface of the hyper-sphere. These points
are calledsupport vectors

. whenqy, = 0, the image ofx;, is inside the hyper-sphere.
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The computation of the center of the sphere is a linear coatioim of the mapped patterns,

weighted by the Lagrange multipliers:

VvV = Z Oéhq)(Xh) (20)
h=1
The last expression, combined with the kernel trick, leadshe computation of the distance
between a pattern and the center:

dh = H(I)(Xh) - VH2 = khh -2 Z arkhr + Z Z araskrs (21)
r=1

r=1 s=1

The radiusR is the distance between a support vector and the center

In Ref. [18] it has been proposed an SVM-based approach taaepdata in feature space
from the origin by means of an hyper-plane. Interestinglythie case of kernels that are functions
of difference between patterns (as in the Gaussian casexé&mple), the two approaches yield
the same optimization problem. In Ref. [18], the parametes used in place of’, since it has
a more direct interpretation on the fraction of the outliénsparticular, the relation between the
two parameters is:

c— L

nv
with v € [0, 1]. In this parameterization, it can be proved thagives the upper bound on the
fraction of outliersand a lower bound on the fraction of support vectors on the datd183.
In the remainder of this paper, we will refer to these aldgons as1-SVM, and we will usev
for the parameterizatién

B. One-Cluster PCM in Feature Space

We show now an alternative view of the optimization probleml-CMg, starting from a
formulation in input space to keep the notation uncluttetegt’s considerPCMg with ¢ = 1.
We represent the memberships as a veatowherew, is the membership of thé-th pattern
to the cluster.

The objective function ofl-PCM¢ becomes:

L=> upllxn = vI*+ 1) (unIn(uy) - up) (22)
h=1 h=1

2We used the implementation @£SVM in the R package e1071, that is based on LIBSVM [19].
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11

The possibilistic constraint on the memberships is theovalhg:
0<u,<1 (23)

Setting to zero the derivatives @f with respect tov:

oL =
—:—Zuih(xh—V):O (24)
ov —
we obtain the update formula for the centraid
v = —Zizl % (25)
h=1 Uh

Substitutingv in L, and expanding the norm, we obtain:

L = Zuthh — VH2 -+ T]Z (uh ln(uh) - Uh)
h=1 h=1

n n n T n
= Z UpX, Xp — Zormt dac Uty X +1n Z (un In(up) — up)
h=1

22:1 Up h=1
The last equation can be extended by means of positive seniieekernels, leading to the

following optimization problem:

] - Zn—l Zn—l uruskrs " .
ki — == 1 - bject to :
min (; UnKnh Zh un, +1n ; (Uh H(uh) uh) subject to

With this extension, the proposed algorithm models all gtiamts by means of a single cluster

in . If we add the constrain} , v, = 1, the problem becomes the following:

n

min <z”: upkny — Z z”: UpUskys + 1 z”: up, ln(uh)> subject to :
h=1

r=1 s=1 h=1
n
0<u,<1 and Zuhzl
h=1

In the Appendix, we will show that the introduction of the tlanstraint does not change
the results of the optimization procedure, since it justresponds to scale the values of the
memberships (and the position of the centroid is not aftettg that). This result shows that
the objective function of the-PCMsg is closely related to that of-SVM. The centerv in
both cases is a linear combination of the mapped patterns;SiviM the weights of the sum

are provided by the Lagrange multipliets,, whereas in1-PCMg by the memberships,.
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We notice, however, that the role of the is the dual with respect to the,. In 1-SVM the
values ofq;, and therefore the weights of the sum, are high for the ostlim 1-PCM4 the
memberships are high for patterns in regions of high densitg result is that in-SVM the
center of the sphere is computed as combination of outivengreas inl-PCMg, the center of
the Gaussian modeling the data is computed as a combindtiypiocal patterns. This can lead
to a more reliable estimation for the centraidn 1-PCMg. Moreover, in1-PCMg we can see
the presence of a regularization term, which is an entropgdacore of the memberships. In
the experimental analysis, we will see that these progediee to the proposed method good
performances in terms of robustness.

We note that the algorithms we are comparing are based oeretiff ideas1-SVM looks
for the centerv and the radiusik of the enclosing spherd-PCMg looks for a centroid in
feature space and computes the memberships on the bagisToe parameter, works as the
width of the membership function, and corresponds to theusgof the radiusk??. 1-PCM,
yields the memberships of the patterns, and it is possibket@ threshold to obtain a decision
boundary. This corresponds to select a sphere in featuiee dpat is the intersection between
the multivariate Gaussian describing the memberships laachyper-plane corresponding to a
specific threshold on the membership.

We report here the resulting update equation, represettimgore part of thd-PCMg (in

the unconstrained case):

n

n n n -1
Up = €Xp [_% <khh - 2bz urkhr + 62 Z Z uruskrs>] ) b= (Z uh) (26)
h=1

r=1 r=1 s=1
The iterative application of such equation leads to a smiutif the optimization problem of the
1-PCMg. The parameten can be estimated from the data set in the following way:

n=7vyb i up, (k:hh — szn: Uy kpy + b i zn: uTuskm) 27)
h=1 r=1

r=1 s=1

As we have just seem; can be also interpreted as a regularization parameterefdrer the
value of~ can be set so as to enhance the regularization propertiée aigorithm. The whole
derivation of the update equation, along with a discusstwutthe role played by the constraint

on the sum of the memberships, can be found in the AppendixorBelosing this section, we
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report the equation allowing to compute the membershipevédu a test poini,:

1
u(x,) = exp [——( (X4, X4) —2b2ur (X4, X,) +b2ZZuTUS (X, X )] (28)
n

r=1 s=1

The elements ofi in Eq. 28 are the memberships of the training points obtaafest the training
stage, and is the inverse of the sum of the, (Eq. 26). Eq. 28 can be readily obtained from
u(x,) = exp(——||<I>(X*) —v?|)), by expandingv® in terms of the mapped training data points

and using the kernel trick.

C. Connections to Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric methioat yields a probability density
function (pdf) given a set of observatiods, ..., z,} [20]. For the sake of presentation, let
x; € R. The resulting pdf is the sum of kernel functions centeredhm data points. In the
simplest form of KDE, the weights given to the kernels areadgas well as the parameters of
the kernelsg:

1 n
= —Zg(x,xi) (29)
n =1
whereG(z, x;) is a kernel function such that:
G(r,z;) >0 Va,x; €R /Q(a:,:ci)dx =1 (30)
R

Despite its simplicity, this form of KDE has nice theoretiqgagoperties in terms of consis-
tency [20]. Several modifications have been proposed to KiDEgrder to improve the per-
formances in applications; in particular, the weighted KB&Signs a different weight to the

kernels:

= Z w;G(z, x;) (32)

where) " w; = 1.
We now give an interesting interpretation of th& CMg, in the context of KDE. Let’s rewrite
Eq. 26 showing explicitly the dependence from a test poirind considering kernels that are

functions of the difference between the arguments:

u(z) d)exp[ ZUT xx,]. (32)
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TABLE |

PSEUDO-CODE OF THE CORE PART OH-PCMg

1) Initialize the kernel parameter, and the parametey;
2) Initialize all the memberships, = 1/n;
3) Compute the regularization parameteusing Eq. 27;
4) Initialize the convergence parameter
5) repeat

a) Update the memberships, using Eq. 26

b) Computed = >, _, |un — uj;
6) until (§ <e¢)

where is a multiplicative term that is independent framIf we consider a test point, that is
far away from all the training points, its membership woullljz,) = 1, since all the values
K(x,z,) ~ 0. In order to turn the memberships into probabilities, we Moweed to set the

probability of z, to zero. This suggests to consider:

flz) =u(z) —u(z,) = (exp [%b iurK(x,azr)] — 1> (33)

A first order approximation of the exponential gives:
flz) ~ Zer(iU,%r) (34)
r=1

where we absorbed all the constants and the normalizatiorsteeeded to makg(x) integrate
to one overR into the weightsw,. Note also that whem is very large, all the memberships
tend to one (see Eg. 26). Therefore, in this limit the weiglfthe approximation become equal,

leading to the KDE solution:
1 n
flx) ~ - Z K(z,x,) (35)
r=1

D. Applications ofl-PCMg

The Core part of the algorithm produces a fuzzy-possibilistic moofetlensities (membership
function) in the feature space. It is initialized by selegtiastop criterion(e.g., when member-

ships change less than an assigned threshold, or when rificeighimprovements of. ¢ (U, V%)
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are noticed), setting the value @ffor the Gaussian kernel (in order to define the spatial réisolu
of density estimation), and initializing the membershigs Then, after estimating the value of
n using Eq. 17, we perform the Picard iterations using Eq. BGaldsence of prior knowledge
on the data set, we suggest to set all the memberships to the walue. Note also that the
initialization value of the memberships is arbitrary. Then be easily seen by noticing that in
fact the first iteration updates the centraidand the memberships in one step via Eq. 26. The
centroid v is implicitly computed as a weighted combination of the meppatternsb(x,),
where the weights are the memberships divided by their sumréefore, if we initialize the
memberships to the same value, their sum does not influeecengtlicit computation ofv that
is the used to compute the updated version of the memberships

Density Estimation:At the end of theCore step, we have modeled the density of patterns
in feature space. These memberships, back to the input,smgresent a density estimation in
input space based on a specific kernel. Again, we stresshbatensity estimation is expressed
in terms of memberships, and it cannot be interpreted as sitgen a probabilistic sense. The
value of the parametey plays the role of a scaling factor on the range of membershipes
that can be obtained by the algorithm.

Outlier Detection: Once the memberships are obtained, it is possible to selgoeshold

a € (0,1) and use it to define aa-cut (or a-level se} on data points:
Ay ={xp € X |up, > a} (36)

This can be considered asDefuzzificationstep. Note that given the form of, (Eq. 13) the
thresholda defines a hyper-circle which encloses a hyper-spherical 4aps then the set of
data points whose mapping in feature space lies on the capsembase radius depends @n
Points outside the-cut are considered to be outliers. We cansen the basis of the rejection
rate that we are interested in by using the quantiles of te®dpiam of the memberships.

When we assume that we are dealing with a training set withotliecs, the rejection rate
can be set as a measure of the false positive rate. This isigEc®mMe “normal” data points
would still fall in the region where their membership is lavikan the threshold. This procedure
is similar to setting a confidence level in statistical tegti

When training data are contaminated by the presence of mjtlieis necessary to specify

their fraction with respect to the size of the training sebri the analysis of the histogram of
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the memberships it is possible to obtain a rough estimatdv@mumber of outliers, since they
will have far lower memberships than the normal patterns.

Clustering: Once we have the results from tk®re part of the algorithm, we can perform
clustering by applying an idea similar to that in Supporttde€lustering [21]. It uses a convexity
criterion derived from the one proposed foiSVM [21] assigning the same label to a pair of
points only if all elements of the linear segment joining the points in data space belong
to A,. In order to check that the points of the linear segment lgetonA,,, we compute the
memberships of a set of them (typically twenty [21]) using E8, If none of the selected points
has membership below the selected threshgltivo points will be considered belonging to the
same cluster. In practice, we construct an unweighted ecitgid graph, where the nodes are the
data points, and an arc connects two nodes when the cordisgotiata points have a joining
linear segment in the data space that belongd toThe labeling procedure amounts in finding
the connected components of such a graph, assigning thelsbeig to the nodes, and therefore
to the data points, in the same connected component of tipd.gfhis procedure separates the
data points belonging to the single cluster in feature sgace set of non-convex clusters in data
space, thus avoiding the need to specify the number of chugteadvance. We will illustrate
this procedure with a simple example in the experimentai@®c The selection ofr can follow
different approaches. In our experience, we found thaan be set, as in outlier detection, on
the basis of how many patterns we intend to reject from thiaitrg; the computation can be
performed by looking at the quantiles of the membershipsefttaining points.

We recall here the formal analogy between KDE darCM in the case of kernels that are
functions of the difference between the arguments. In saskes; we might as well use KDE for
modeling densities, clustering, and outlier detectionh@a $ame spirit of -PCMs. In KDE, we
would have a modeling in terms of probabilities of data pwinstead of memberships, and we
could still mimic the procedures to achieve clustering dtieudetection. We note, however, that
the applicability ofl-PCMg¢ is more general than KDE. As a simple example, we can consider
the case of a linear kernel. In such a cas&CMy is equivalent to modeling the data with a
single Gaussian in the data space, whereas there is no pondisag KDE solution. In general,
1-PCMjy requires only that kernel values among training data andetealues between training
and test data are available; this is always the case whewipaidissimilarities are available

among data points [9]. Also, any positive semidefinite keca@ be employed, depending on the
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modeling requirements of the system, since the kernel iemainplies the mapping. KDE is
applied to data represented in terms of feature vectors amls are functions of the difference
(see e.g. [20]) or scalar product (when data are on hypesrggath surfaces [22]) between data

points.

V. EXPERIMENTAL ANALYSIS

In this Section, we report the experimental analysis shgwite properties of-PCMg. We
first show its ability to model densities and to perform cdustg on an illustrative example. In
the second part, we focus on a comparison of the stabilitythadaccuracy ofi-PCMg with
1-SVM and KDE in the context of outlier detection.

A. Density Estimation and Clustering

As an example of use of-PCMg for estimation of densities and clustering, we applied the
proposed algorithm to the data set shown in Fig. 1. The dats semposed by six clusters of
different shapes and densities, and some outliers. Incpéati the spherical, the banana-shaped,
ring-shaped clusters contain respectively 30 (each of thee $pherical clusters), 60, and 80
points; the number of outliers is 30. We run our algorithhrmgsa Gaussian kernel, and setting
v = 1. The stop criterion wa§ _, |Au,| < € with ¢ = 0.01. In Fig. 1, we can see the role played
by the parametes of the kernel. The first row shows the contour plot of the mensitips for
o =1 ando = 2. The left plot of the second row of Fig. 1 shows the case 0.5. It is possible
to see how selects the spatial resolution in the analysis of densiBesecting a rejection rate
of 10%, we computed the corresponding quantiles of the meships (in the case = 0.5),
thus obtaining a decision boundary in the input space. As avesee in the right plot of the
second row of Fig. 1, the resulting boundary identifies adlyethe shapes of the clusters. The
labeling step would yield six clusters corresponding todtxeconnected regions and the outliers
(denoted by crosses).

As shown in this experimentl-PCMg shows robustness to outliers and the capability to
model clusters of generic shape in the data space (modéleigdistributions in terms of fuzzy
memberships). Moreover, it is able to fiaditonomouslythe natural number of clusters in the
data space. The outliers rejection ability is shared alseheyPCM, but is limited to the case

of globular clusters.
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-10

X2

Contour plot of the memberships for= 1 ando = 2. Second row - left - Contour plot of the memberships

Cluster boundaries far = 0.5 with a 10% rejection rate.

In all the runs of1-PCMg the Core step, which involves the minimization of® (U, V?)

(Eq. 11), resulted to be very fast, since few tenths of itenstof Eq. 16 where enough.

B. Stability Validation for Outlier Detection

We want to

compare the stability of the solutionslePCMg, 1-SVM and KDE for outlier

detection. In order to do that, we propose a modified versidhemethod in Ref. [8], where it

has been used to estimate the natural number of clustersataaset. We first report the general

ideas underpi

nning the method, and then we will detail howintend to modify it to use it in

the context of outlier detection.

The general procedure presented in Ref. [8] starts by sgjittihe original data set in two
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disjoint subsetsX(;) and X(,). The cardinality ofX ;) and X(,y is half the cardinality of the
original data set, and data are picked at random to form tloeskets. By applying a clustering
algorithm onX(y), it is possible to assign the cluster labelsXg,. This mechanism is called
Transfer by Predictiorand can be formalized by a classifigrtrained onX, that allows to
predict the labels of,). Here the term classifier denotes the fact that a decisioN @ncan be
taken on the basis of the clustering algorithm trainedk@p. On the other hand, it is possible to
apply directly the clustering algorithm akKi,y obtaining a set of labels,). The labels)(X )
andz can then be compared using, for instance, the Hamming dist&uch distance has to
take into account the possible permutations of the clustieels, since the labels(X ) and
z(2) are not necessarily in a direct correspondence. The expeatae of this distance, that in
practice is evaluated an the average over several repstitman be considered as a stability
measure of the clustering solution. This distance requare®rmalization dependent from the
number of clusters.

Now we present a modified version of that algorithm to deahwatitlier detection instead
of clustering. Again, we split the data sé&t in two halvesX(;) and X(,) as discussed before.
Now we can apply an outlier detection algorithm &h;) and use this to take a decision on the
patterns inX,; in this way we obtain the labelg(X (). The decision on the data i)
is taken by comparing their membership values, as comphtedigh Eq. 28, to the threshold
on the memberships of the training patterns (the threstwokeiected using their quantiles as
explained in Section IV-D). Then, we apply the outlier détat algorithm on.X,) directly,
thus obtaining the set of labels,). Note that the labels are of the type- 1 meaning “normal”
and “outlier” respectively.

To evaluate the stability of an outlier detection algorithwee propose a matching of the labels
#(X(2)) andz,) based on the Jaccard coefficient. For two binary variaplasd y, the Jaccard

coefficient is a measure of their concordance on positiveareses. Given the confusion matrix:

X
0 1

§10]ap an

1]ao an
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TABLE I

PSEUDO-CODE OF THE STABILITY VALIDATION PROCEDURE FOR OUTLIER DETETION

1) Repeat- times:
a) split the given data set into two halvés ) and X ,);
b) apply the outlier detection algorithm 0¥,y and predict the labels 0/ (5, obtaining¢ (X 2));
c) apply the outlier detection algorithm oX,) obtainingz,);

d) compute the Jaccard coefficient betweggiX ;) andz(,);

The Jaccard coefficient is defined as:

11
ap1 + @10 + a1

J(€x) = (37)

The motivation for the use of the Jaccard coefficient, inst@fathe simple matching, is that we
want to measure the concordance between the solufiNs,)) andz, in the identification of
outliers. We want to give more importance to the fact th@X ,)) andzg,, match on the outliers,
rather than normal patterns. Also, since we are dealing tmithclasses (outlier vs non-outliers)
we don’t need to normalize this score as in the case of ciugt¢8]. The steps of the stability
validation procedure for outlier detection are outlinedlab. Il.

We decided to evaluate the stability for different valuesvoh 1-SVM. As we have seen
before, v gives the upper bound on the fraction of outliers that we flaghe data set. For
this reason, to compare correctlySVM with 1-PCMg for different values ofv, we decided to
set a threshold on the memberships obtained ¥CMgs and a threshold on the probabilities
obtained by KDE, in order to reject exactly the same numbepaiferns rejected by-SVM

with that particular value of.

C. Results

1) Synthetic data setThe synthetic data set used in our experiments is shown in2Fig is
a two-dimensional data set composeddby points. They have been generated using a Gaussian
distribution centered ii0, 0) having unit variance along the two axes. OtBempoints have been
added sampling uniformly the sét, 10] x [—10,10] and 10 points sampling uniformly the set

[—10, —3] x [—10, 10] thus obtaining a non-symmetric outlier distribution.
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Fig. 2. A two dimensional synthetic data set. Data are generated from ssi@awand a non-symmetric distribution of outliers.
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Fig. 3. Synthetic data set - ComparisonlefVM, 1-PCMg4, and KDE using box-and-whisker plots of the Jaccard coefficient
over 500 repetitions. All the methods use a Gaussian kernel; in the thrisetipdbowidth of the kernel has been set respectively

to: 0 = 0.5, 0 = 1, ando = 5. The regularization parameterin 1-PCMgq has been set using Eq. 27 with= 1.

We tested the stability of-SVM and 1-PCMg for outlier detection using the algorithm
presented in Tab. Il. We used a Gaussian kernel with thréerelift values ot: 0.5, 1, and 5;
the regularization parameterhas been set automatically using Eqg. 27, where we set the valu
of ~ to 1. The results are summarized in Fig. 3, where the box-andkehs plot of the Jaccard
coefficient over 500 repetitions: (= 500) for different values ofv. In each plot of Fig. 3, we
report a comparison amornigSVM, 1-PCMg, and KDE.

We can see that the performancesld?CMg and KDE are comparable in terms of stability,

as we expect from the analysis on the connection between. thbm analogy lies in the the

December 17, 2009 DRAFT



22

1.0
1.0

0.5
1
0.5
1

.

ilig

T T T T T T T T T T T T T T T T T T
0.01 01 05 1 5 10 50 100 0.01 01 05 1 5 10 50 100

0.0

Jaccard 1-PCM - Jaccard KDE
0.0
||
[
+[J4
Jaccard 1-PCM - Jaccard KDE

-0.5
1

-1.0
-1.0

Y Y

Fig. 4. Synthetic data set - Box-and-whisker plots of the difference dmtvihe stability scores fd-PCMg and KDE with
kernel parametes = 1 over 1000 repetitions for different values of. The two plots correspond tB8% and10% rejection rates

respectively.

regularization properties parameterizeds/pyhat can be computed automatically from the data
set. In Eq. 27 we introduced the multiplicative termn the computation of) to have a better
control on the regularization properties of the algorithims interesting to analyze the behavior
of 1-PCMg4 with respect to KDE for different values of. In Fig. 4 we report two box-and-
whisker plots of the difference between the stabilityld?CMg and KDE’s (evaluated using the
algorithm in Tab. 1l) overl000 repetitions. The two plots correspond % and10% rejection
rates respectively. As we can see from the Fig. 4, for higlueslof v, the stabilities are
comparable, while for very small values 9fl-PCMg overfits the training data. This is expected
from the theoretical analysis, since the regularizatiomteanishes for small values ot

2) Real data setsWe compared the stability and the accuracylePCMg, 1-SVM, and
KDE for outlier detection on three real data sets taken from WCI repository [23]: Breast,
lonosphere, and Iris. The accuracy has been evaluated lsidesimg some of the classes as
normal, and the remaining ones as containing the outli§¥e considered00 repetitions where
we trained the outlier detection algorithm on a subsets o si of the normal class. When
comparing the stability and the accuracy, we fixedn 1-SVM that resulted in a fraction of
outliers. As in the synthetic case, IRPCMg and KDE we chose to reject the same fraction of

outliers as inl-SVM. The multiplicative termy in the computation of) in Eq. 27 for1-PCMg

3A similar experimental setting has been proposed in [17], [18].
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Fig. 5. Stability and accuracy dFSVM, 1-PCMg, and KDE; all the methods use a Gaussian kernel. We report the results o
Breast, lonosphere, and Iris in the three columns respectively. dlue wf the kernel parameter is: Breast 10, lonosphere

o =1, Iris 0 = 0.5. In all the data sets, the regularization parametér 1-PCMq has been set using Eq. 27 with= 1. The
stability is evaluated ove500 repetitions using the method of Tab. Il and is shown in the first row. Thergkrow shows the
accuracy (evaluated as the Jaccard coefficient between predidedctral labels) of the three methods 0%€0 repetitions

(v = 0.1 for Breast andr = 0.2 for lonosphere and Iris).

has been set to one in all the experiments.

The study of the stability follows the same steps as in théhgfit data set. The study of the
performances has been done in terms of accuracy in idemdiyutliers for the three algorithms.
In this case, we show a comparison of accuracy with respethecsize of the data set. In
particular, we train the outlier detection algorithms onuasetX ;) of the entire data set, and
we predict the labels oiX ;) using the decision function learned ofy,), thus obtaining the
labelsp(X(2)). Let t(;) be the vector of true labels of,); we evaluate the accuracy computing

the Jaccard coefficient betweeii.X ) andty:
accuracy = J(¢(X(2)), t(2))
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For each size value ok(;), we resampled00 times. The results are shown in the bottom row
of Fig. 5 for different values of. (the size of the training seX|;)).

The Breast Cancer Wisconsin (Original) Data Set was obtaigedeoUniversity of Wisconsin
Hospitals, Madison from Dr. William H. Wolberg [24]. The daset is composed by 699 nine-
dimensional patterns, labeled as benign or malignant.eSinere are some missing values, we
decided to remove the corresponding patterns, obtainil3gpé@dterns. The class distribution is
65% for the benign class and 35% for the malignant class. éncttimparison of stability and
accuracy, we used a Gaussian kernel with= 10. The stability of the solutions is shown in
the top panel of the first column of Fig. 5. The accuracy has les@luated by considering the
benign class as normal and the malignant class as the onairdogtthe outliers. The plot of
the accuracy corresponds #o= 0.1.

lonosphere is a collection of radar data, collected by a guhasray of 16 high-frequency
antennas in Goose Bay, Labrador having the free electrorgirohosphere as target [25]. The
class labels are two: “Good” radar returns are those shoemdence of some type of structure
in the ionosphere, while “Bad” returns are those that do nmjrtsignals pass through the
ionosphere. Received signals were processed using an ajppecgutocorrelation function. The
system used7 pulse numbers and the patterns in the data set are descybedobfeatures
per pulse number. In the comparison of stability and acgunae used a Gaussian kernel with
o = 1. The stability of the solutions is shown in the top panel & tentral column of Fig. 5.
The accuracy has been evaluated by considering the classl"@Gs normal and the class “Bad”
as the one containing the outliers. The plot of the accuratsesponds tor = 0.2.

The Iris data set is one of the most popular data sets studiethd Machine Learning
community [1], [26]. It contains three classesiofpatterns each; each class refers to a type of iris
plant. The class “setosa” is linearly separable from thewtivo (“versicolor” and “virginica”)
that are overlapped. The features are four: sepal lengfial seidth, petal length, and petal
width. In the comparison of stability and accuracy, we usedaaissian kernel witlr = 0.5.
The stability of the solutions is shown in the top panel of tight column of Fig. 5. The
accuracy has been evaluated by considering the classeséd3etnd “versicolor” as normal and
the class “virginica” as the one containing the outlierse ot of the accuracy corresponds
v =0.2.

As we can see from these results, the proposed method aslgeeel performances both in
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terms of accuracy and in terms of stability of the solutiammnpared td-SVM. This effect can
be seen especially for small valuesrofand for small rejection rates. This can be particularly
useful in some applications where the cardinality of theadsdt might be small. Stability and

accuracy ofl-PCMg are comparable to those of KDE.

VI. CONCLUSION

In this paper, we introduced the possibilistic clusteringkernel-induced spaces, and we
analyzed some of its theoretical properties. In particuar highlighted the connections of the
1-PCMg with 1-SVM and KDE. This suggests thatPCMg4 can be used to model densities in a
non-parametric way, perform clustering, and to detectienstl In the comparison with KDE, we
focused on kernel that are function of the difference betwme&tterns. We showed that in this
case, the limit for a large value of the regularization pagtanyields an interpretation ¢fPCMg
in terms of a KDE solution. In the comparison withSVM, we noticed the similarity between
the optimization problems. Thé&-PCMg objective function, however, contains an additional
term that can be interpreted as a regularizer, and is anpntvased score computed on the
memberships. Also, we noticed the dual role of the membessim 1-PCMg with respect to
the Lagrange multipliers in-SVM. These differences give to the proposed algorithm thetgbili
to avoid overfitting and to enhance the stability of the fowatutions.

All these considerations are fully confirmed by the testsdomted on synthetic and real data
sets on the stability and the accuracy in outlier detectr@blems. Especially for small values of
v, that correspond to the rejection of few outliers, the ditgtof 1-PCMg is on average higher
than1-SVM’s. In 1-PCMs, the selection of the regularization parameter is notaaifiand the
stability is achieved for in a wide range of values. Moreover, the optimization praceds
iterative and very fast, since few iterations are needed.

The performances in terms of accuracy and stabilityl dfCMg and KDE resulted to be
comparable. We discussed, however, that the applicalofity-PCMg is more general than
KDE. 1-PCMs can be employed with any positive semidefinite kernel, andrny application
where pairwise dissimilarities are available among datatpo

It is important to remark the weak points tfPCM4 as well. The main drawback is related
to the complexity in the testing stage. The representatiothe data set inl-SVM is sparse,

thanks to the description of the data in terms of the suppectors only. In many cases, the
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reduction given by this compact description leads to a rkaide computational advantage when
testing new patterns. In the proposed algorithm, insteaneed to use all the patterns, and
hence the full kernel matrix, to compute the membership obw test pattern. Sparsification

schemes could reduce the computational complexity in thintg stage.

APPENDIX |
A. Optimization Algorithm - The Unconstrained Case

Let's analyze the procedure to optimize the objective fiomct
L:Zuhﬂxh—V||2+772(uhln(uh) — up) (38)
h h

The optimization technique that we use is the so called ®Ritarations techniquel depends
onu andv that are related to each other, namaly- u(v) andv = v(u). In each iteration one
of the two groups of variables is kept fixed, and the minimirais performed with respect to

the other. The update equation can be obtained by settindettieatives of to zero:

0L 0L
— =0 — =0 39
ov ’ ouy, (39)

These equations lead to the following:
o 2

Uy = exp (_M) (40)

n
v = Zzzl UnXp, (41)

D het Un

The constraint) < u; < 1 is satisfied, since the form assumed by the update equations.

B. Optimization Algorithm - The Constrained Case

We show now that constraining the sum of the memberships doeaffect the behavior of
the optimization procedure. In other words, the result$efdonstrained and unconstrained case

differ only in the scaling factor of the memberships. Letarswith the objective function:
L:Zuthh—VHQ—I—nZ(uhln(uh) — up) (42)
h h
subject to:

» up=1 (43)
h
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Following the Lagrange multipliers technique, the optiatian of L with the constraint on the

memberships requires the optimization of the Lagrangian:

= Zuthh—vHQ—l—'nZ(uhln(uh) —up) + (Zuh— 1) (44)
h 3 h

that is a combination of. and the constraint equation weighted by the Lagrange nheltip.
Setting the derivatives of. with respect tou, to zero:

oL’
8uh

up = exp (—M> exp (—1) (46)
n n

Substitutingu,, into the constraint equation, we obtain:

Zexp ( (L0 ; vi* ) exp (-%) —1 (47)

(e 1) »

Finally, substituting Eqg. 48 into Eq. 46:

= [|xn — v|* +nln(us) +v =0 (45)

we get:

that gives:

exp —M
S eXI() (_ XTV) ) (49)

From this result, it is clear that the update vfis the same as in the unconstrained case,

Up =

since the normalization in Eqg. 49 cancels out in the comjartadf v. This means that starting
from the same memberships, the constrained and uncorestraases give the same and the

memberships are only scaled to sum up to one.
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