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Abstract

The pattern recognition problem in Ring Imaging CHerenkov (RICH) counters con-
cerns the identification of an unknown number of rings whose centers and radii are
assumed to be unknown. In this paper we present an algorithm based on the possi-
bilistic approach to clustering that automatically finds both the number of rings and
their position without any a priori knowledge. The algorithm has been tested on
realistic Monte Carlo LHCb simulated events and it has been shown very powerful
in detecting complex images full of rings. The tracking-independent algorithm could
be usefully employed after a track based approach to identify remaining trackless
rings.
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1 Introduction

The LHCb experiment [2] (A Large Hadron Collider Beauly Experiment for
Precision Measurements of CP-Violation and Rare Decays) at CERN (Gen-
eve, Switzerland) is dedicated to the study of CP-Violation in the B-meson
system [1].
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Two Ring Imaging CHerenkov (RICH) counters [3] will carry the very impor-
tant task of identifying the type of stable charged particles (7, K, p, u and e)
for LHCb.

If a charged particle goes through a dielectric material at a speed greater than
the speed of light in this material, photons are emitted at a characteristic angle.
This characteristic Cherenkov angle 6, is given by cosf. = 1/(/n) where (¢
is the velocity of the charged particle in the medium with index of refraction
n. By a clever arrangement of mirrors, the radiated Cherenkov photons are
reflected and focused on a detector plane keeping their circular distribution.
To optimally carry on the identification task, LHCb is instrumented with two
RICHes [7,8]. RICH1 has two radiators (Aerogel with n = 1.03 and C4Fg
with n = 1.0014) while RICH2 has only one radiator (C'Fy with n = 1.0005).

In LHCb collaboration an algorithm based on the knowledge of the particle
track has been already prepared [4,5] for the Cherenkov rings detection. Its
performances are satisfactory except while the information about the tracks
are unreliable or completely missed.

In this paper, we present a new approach to the pattern recognition in RICH
counters based on the possibilistic approach to clustering [6,13]. This algorithm
works without tracking information and is able to find automatically the num-
ber of rings and their position without using information given by the tracking
system.

In the next section, relevant aspects of RICH1 and RICH2 for the pattern
recognition problem will be summarized. In section 3, we will present the
generic clustering problem and we will describe in details the possibilistic
algorithm we developed for the pattern recognition problem. In section 4, we
will describe the realistic LHCb simulated data used while in section 5 we
will develop the application of the clustering algorithm and we will present
results. In section 6, a comparison between the possibilistic and the track
based algorithm performances will be given. Finally, we will summarize the
main results achieved in section 7.

2 RICH1 and RICH2

2.1 Detectors

RICHI1 provides the identification of low-momentum tracks [7-9]. The detector
is split into two halves on either side of the beam axis. The optical system
consists of a single focusing mirror, tilted, reflecting Cherenkov photons onto a



photodetector plane. Unfortunately, for a tilted mirror, the focal surface is no
longer spherical and as a result distortions are introduced to the ring image:
rings take roughly elliptical shapes. Moreover, the presence of two focusing
mirrors, one for each side of the beam pipe, causes that tracks passing close
to their interface could generate images in both photodetectors. The detector
layout leads to the consequence that the produced rings could be incomplete
and then the pattern recognition must be able to recognize not only distorted
rings but simple arcs too. From simulation studies [10], for § ~ 1 tracks
(saturated tracks) the mean number of detected photoelectrons is estimated
to be 6.9 for the aerogel and 35.3 for the CyFyy. Taking into account that for
these tracks Cherenkov angles are about 242 and 53 mrad respectively and the
azimuthal distribution of photons is stochastic, a typical event in the RICH1
is a collection of small diameter somewhat densely populated rings from the
C,4Fo radiator and larger but more sparsely populated rings from the aerogel
radiator.

RICH2 provides the identification of high-momentum tracks. The optical sys-
tem consists of a spherical mirror and a flat mirror for each side of the beam
pipe. For a saturated ring, 19.1 detected photoelectrons and a Cherenkov an-
gle of about 32 mrad are expected [10]. As a consequence a typical event in
the RICH2 is a collection of only one type rings radiated from the gas.

Obviously, noisy signals are expected such as backscattered charged particles
whose signal will be galaxy-like with a radius between about 1/2 (RICH1) and
about 1/10 (RICH2) of the typical radius of a regular ring. Another important
difference in shape between noisy galaxies and rings is that the first ones are
filled with detected photons.

The Monte Carlo studies presented in this paper are related to the state of
apparatus as of the Technical Proposal. Since then, an optimization process
undertaken by the collaboration and principally aimed to reducing materials
in the experiment has slightly changed the typical numbers given above but
without significant effects for this presented study.

2.2 Pattern recognition in RICH counters

The pattern recognition problem in RICH counters can be stated as to identify
an unknown number of imperfect but roughly elliptical rings made of a low
number of discrete hits in presence of background.

An algorithm using the knowledge of the particle track has been developed
inside LHCb collaboration [4,5]. It compares the number of detected photo-
electrons in the photodetectors with the expected number based on the tracks
reconstructed. Assignments to all tracks are treated simultaneously (global ap-



proach) and a global log-likelihood fit function minimized. For each track, 5
mass hypothesis can be made (u, 7w, K, e, p). For n tracks in a given event the
number of possible event hypothesis becomes 5". It is therefore infeasible to
fully investigate the hypothesis space due to the exponential growth in the
number of combinations to be checked. Since the most numerous particles are
pions, the global algorithm starts by assuming that all tracks in the event are
pions and the log-likelihood for such an event is calculated. For each track
the mass hypothesis is then changed and the track is successively supposed
to be muon, kaon, electron or proton. The 4n new log-likelihood for the 4n
corresponding hypothesis are recalculated. The mass hypothesis causing the
highest increase in the likelihood is accepted and the procedure is repeated
until no further improvement in the likelihood is achieved. Doing so, the al-
gorithm converges to the local maxima close to the starting hypothesis. The
global algorithm gives good but not perfect results, because it requires to
know the reconstructed tracks and hence is sensitive to the tracking system
efficiency.

3 Possibilistic Clustering

Clustering is a computer-science and mathematical notion for the broad idea of
grouping similar objects in the same set. In the frame of Pattern Recognition,
such an object is named data point and the set is named class or cluster. The
whole set of all data points under consideration is a database. The grouping
operation aims to recognize common traits shared by the data points of a given
class and to group peculiar data points contained in an unlabeled database
(training set) into different classes. In the case of pattern recognition in RICH
counters, a database is a list of hits in a given photodetector plane, a data
point is a single hit and a cluster is a ring. To perform this classification, in
this paper, we will present a fully automatic algorithm, a so called unsuper-
vised technique. The grouping is obtained via the minimization of a given cost
function on the basis of an assigned criteria of similarity among data points.
The notion of similarity is practically anchored by defining a distance between
data points.

Supposing that N data points must be classified into C' classes, the Possibilis-
tic Clustering formulation [6,13] assumes that each data point could belong
simultaneously to several clusters but with a different degree of membership. So
it is possible to introduce a fuzzy membership matriz, U = [uj], of dimension
N x C, whose elements u;;, represent the membership of the k-th data point
to the j-th cluster and whose values belong to the continuous range (0, 1].
This approach is based on the assumption that the membership value of a
data point in a cluster is absolute and it does not depend on the membership
values of the same data point in any other cluster, in other words each cluster



existence is independent of the other ones. The possibilistic constraint is the
set of the following conditions:

Uk € [O, 1] \V/], k
0<YN, ujp <N Vj (1)
max; uj; > 0 Vk.

The third constraint in Eq. 1 is a relaxation of the probabilistic constraint
(chzl ujr = 1 Vk) that would introduce, via the summation, a dependence
of membership values on the relative distances among classes — which is a
feature that we want to discard in this paper.

By choice, noise figures are not grouped in a dedicated class, hence, a noise
data point should have a low membership in all clusters. Representative data
points of rings could have high memberships to several clusters non exclusively.

In the next subsection we show the main characteristics of the Possibilistic
C-Spherical Shells (PCSS) algorithm [6], introduced in 1993 for the spherical
shell clusters detection problem, and we discuss its main aspects. For the RICH
rings clustering we had to face some peculiar problems and we developed an
algorithm by extending the PCSS. In subsection 3.2 we present the enhance-
ments we added in order to face the particular problem of the Cherenkov
rings.

3.1 Possibilistic C-Spherical Shells algorithm

The Possibilistic C-Spherical Shells algorithm searches for cluster prototypes
B, consisting of the couple (c;,7;), where c; is the geometrical center and r;
the radius of the j-th ring. The algorithm aims to find a partition of the given
training set, by minimizing an ad hoc function iteratively.

Given a generic xj, belonging to a set 'Y of N data points, an Euclidean
distance measure from the j-th prototype can be defined as:

djy, = d*(xi; ¢5,m5) = (||xi — 51 = 75)° (2)

The objective function iteratively minimized is:

C N

JUY) =D uwdy + > 0y Y (wje Inwe — ugy). (3)

j=1k=1 j=1 k=1



Table 1
The PCSS Algorithm.

(1) Initialize the number of rings;

(2) Initialize the centers coordinates and radii values;
(3) Estimate 7; parameters values;
(4)

do until no more prototype changes (within a fixed preset threshold)

(a) update the centers coordinates and radii values using Egs. 5 and 6;
(b) update the membership values of all data points to all rings using Eq. 7;

(5) end do
(6) assign the data points with high membership values to the corresponding rings;

(7) do not assign the data points with low membership values to any ring (noise).

where the first term demands the minimization of the distance from the data
points to the prototypes (with weighting factors u;;) while the second one,
independent of the prototype parameters and the distance measure, is a mono-
tone function in (0, 1] that forces the membership values uj; to be as large
as possible in order to avoid the trivial solution 0. Finally the n; parameters
must be chosen a prior: and play a central role; formally they are regulariza-
tion parameters. They represent the weight of the second term in the objective
function with respect to the first one. In order to weight the two terms equally,
n; should be chosen of the order of d%,. If clusters with similar distributions
are expected, the various 7; should have similar values.

Rewriting the distance (2) in the so called algebraic form:

d?k = p]TMkpj +Vvipj + bk (4)
where
Xk

be = (x4 xp)%; Vi = 2(X{Xp)yR Ve = ) ;. My =yryr

(5)

—2Cj
b =
cjc;—r?

the vectors p; minimizing the objective function (3) are given by:

1. N -
p; = —§(H]~) twj; Hj = uMy; wj = D UKV (6)
k=1 k=1



while the update equations for uj; are:

wop = exp <_d_) (")

Tab. 1 shows the main steps of the basic PCSS algorithm. In particular we
want to point out that the initial number of rings has to be (over)estimated.
In the possibilistic frame, each prototype is independent of the other ones
and then more than one prototype may converge into the same cluster. The
identification of identical solutions leads to the automatic determination of
the number of clusters present in the database.

3.2 Extended PCSS algorithm

For the RICH rings clustering we developed an algorithm whose core is the
PCSS. In particular we embedded the PCSS inside an iterative loop. At each
iteration a certain number of rings is detected and data points with a high
membership removed from the database. In the following we will describe
briefly the additional steps. For a fully detailed description of the whole ex-
tended algorithm see [14].

3.2.1 Heuristics for evaluating n; parameters

For the n; parameters, we introduced an ad hoc definition for the case of
spherical shell detection. Interpreting the distance of a generic data point x
from the center of the cluster as function of a radius percentage p (||x—c;||? =
7“]2 + pr?) and using Eq. 7, we can link the n; with the value for which the
membership value of a point to a cluster becomes 1/2. Accordingly, we set:

= 15" (8)

Hence, tuning the p parameter is analogous to controlling the fuzziness of the
clusters and then the smearing of the hits across the rings. In other words, 7;
corresponds to a zone of influence of the cluster. Moreover, we inserted the
computation of the n; parameters inside the do loop of the PCSS in order to
update the corresponding values at each iteration.



3.2.2  Space transformation

We introduced a pre-processing step on the data by a space transformation:

' =ax+0b

(9)

y = \/1aie2y + \/16_62

where e is the expected eccentricity (e ~ 20%) of the detected elliptical rings
and a, b and c are scale and translation parameters.

Because of the influence of the parameters 7;, the algorithm is not really sensi-
tive to non-circularity of the figures looked for, but the above transformation
reshapes ellipse-like figure in a non-perfect ring which helps the algorithm.
Another way would be to change the d?k formula (Eq. 2) to take directly into
account the actual elliptic shape. It would have the disadvantage to make
Eq. 4 much more complex.

3.2.8 Initialization step

The initialization step is necessary to set an initial overestimated number of
rings and their prototypes as starting point. The PCSS is very sensitive to the
initialization step, an inaccurate initialization can degrade its performances.
We chose the analytic initialization suggested by Muresan in [15].

Given three non collinear points A(xy,y1), B(z2,y2) and C(z3,ys), there is

only one ring passing through them. Its center coordinates (g, yo) and radius
r are given by the formulas:

1(z3— a3+ y3 —y3) (i — v2) — (2 — a3+ yi — v3) (2 — y3)

o 2 (z2 — 23) (Y1 — y2) — (21 — 22) (Y2 — Y3) (10)
C 1@} —af yi —yd) (e — w3) — (23 — 23 +y3 — u3) (21 — @)

70 (z2 — 23) (1 — y2) — (21 — 22) (Y2 — Y3) (1)

r= /(2 — 20)? + (y; — y0)? i=1,2,3. (12)

For each data point in the database, the algorithm looks for the two nearest
neighbors and proceeds to (zg, yo, ) calculation using Eqgs. 10, 11 and 12. Only
if 7 assumes a physically possible value (z¢, yo, ) is taken as initial prototype.



3.2.4  Cardinality and collapse criteria

After the basic PCSS, with the realistic Monte Carlo data, in the set of recon-
structed ring candidates, usually the number of correct ones are less than the
expected ones and a certain number of them are completely wrong. To dis-
tinguish between good and bad rings, we introduced the so called Cardinality
Criterion. We have observed that noisy rings are generally less densely popu-
lated than the right ones. Via a threshold parameter, an automatic selection
of right rings is possible. If the cardinality of a ring is greater than the thresh-
old, the ring is accepted, otherwise it is rejected. Besides that, in the set of
accepted rings, the algorithm may find many times the same ring. A Collapse
Criterion is introduced to identify coincident rings: two rings are identical if
their distance in a three-dimensional space (c;,r;) is less than another fixed

threshold.

3.2.5 «-cut and stop condition

After the previous double selection, hits belonging to good rings have very
high membership values and can be removed from the database if overpassing
a threshold, the so called a-cut. Doing so, the database is cleaned from the data
points associated to unquestionable rings. In order to find the remaining rings,
it is necessary to reiterate the PCSS algorithm on the new cleaned database
(the number of rings to be found now depends on the surviving hits).

At each step, the algorithm can find a certain number of correct rings and
at each step the database cardinality and the number of undetected rings
progressively diminish. The algorithm ends up when the remaining patterns
are supposed to be outliers (the number of surviving data points is less than
some fixed threshold) or when the cardinality threshold, decreased step by
step, reaches a minimal value that we set to 6. The algorithm is rather sensitive
to this value.

Note that the cardinality threshold is progressively decreased to allow the
algorithm to find, first of all, well defined rings, and then the less populated
ones. In particular, in the last iterations, the cleaned database may consist of
rings with holes and arcs that are fragments of rings already recognized and
removed. It is worth noting that the algorithm can infer perfectly valid rings
from points forming partial rings (arcs).

3.2.6 Filters

At the very end, two filters examine the whole set of recognized rings and
eventually reject ghosts or contaminations. One filter rejects rings with points
too close in azimuth, the other one rejects rings sharing their whole set of hits



with other valid rings.

4 Application to LHCb Simulated Data

The algorithm depends on 10 critical parameters: number of initial rings,
threshold for the cardinality, updating rule for the cardinality threshold, th-
reshold for the collapse, accuracy in the PCSS stop condition, threshold for
the a-cut, influence region for the prototypes, minimum number of surviving
data points, filter on the azimuthal distribution and filter on shared points.

Hence, the algorithm has to be tuned first by using synthetic databases [11,12],
and next by using more realistic data coming from LHCb Monte Carlo simu-
lation. The data refer to the Monte Carlo simulation as of April 2000.

4.1 Data Analysis

We tested the algorithm on the whole database but, in principle, it is an
intrinsic limit of the algorithm, to find rings populated by less than 6 hits, in
fact, as we explained previously (section 3.2.5) we had to fix a lower limit for
the minimal cardinality of the rings to be detected and we set this parameter
to that value. Close inspection of Figs. 1(a) and (b), allows to evaluate the
percentage of expected rings with more than 6 hits per ring and then the
realistic potentialities of the algorithm. In RICHI, from gas 83% of rings
verify this condition, while this percentage is only 13% for the aerogel. In
RICH2, the distribution of hits per ring is rather uniform (no evident peak),
71% of rings have more than 6 associated hits. Note that the same ring could
have several hits in a photodetector plane and very few in the other one. We
consider images, from each photodetector plane, separately. As a consequence,
a ring, giving less than 6 hits in a photodetector plane (that we can not find),
may have a twin ring very populated in the other one (and then detectable).

4.2 Sources of noise

Noise is included in the Monte Carlo (photoelectrons from backward track,
incident background photon, photoelectrons/background from incident back-
ground non-photon, Rayleigh scattering, backscattered photoelectrons and
other stochastic noise). The main source of noise are galaxies-like figures on
the detector planes.
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Table 2
Efficiency. Values refer to the set of detectable rings, excluding rings with less than
6 hits per ring.

Expected rings in RICH1 (GAS) || 312 Expected rings in RICH2 || 141
Detected rings in RICH1 (GAS) || 241 Detected rings in RICH2 || 141
Efficiency 7% Efficiency 100%

In a preliminary study [11,12], we have proven that the PCSS algorithm, and
the extended ring detector algorithm we prepared, are very robust to the
presence of uniform noise (no degradation up to 80% of noise). However their
performances could be dramatically degraded by the presence of localized clus-
ters of noise data points. These galaxies, in fact, constitute strong attraction
poles that could induce the algorithm to place rings across them. It is then
necessary to reject them, at least partially. In a pre-processing step, the algo-
rithm looks for these galaxies, by searching for small areas, characterized by
high density of points. This procedure is rather efficient in RICH2 data but
not in RICH1 where the overlapping among rings is such that the distinction
between high density due to galaxies or ring superposition is ambiguous.

This brief discussion about the strong presence of noise in RICH1 images and
previous remarks about the number of hits per ring, leads to an important
conclusion: it is practically impossible, for our algorithm, to detect rings ra-
diated from aerogel. As we have remarked, only 13% of such rings have more
than 6 hits per ring (but at most 10-11) and, furthermore, RICH1 images
are generally affected by hundreds of noisy data points, not always rejectable.
It is impossible to distinguish a circular long radius shape, made of only 7-8
hits. For these reasons, in the following, we will waive to detect aerogel rings.
Undetectable aerogel hits constitute an additional source of noise.

5 Results on RICH Data

In the previous section, we have quantified the percentages of rings effectively
detectable by the algorithm. Its performance is then evaluated with respect
to these values and then summarized in Tab. 2. Performances are excellent
in detecting RICH2 rings, finding all the expected rings (efficiency of 100%).
The performances are poorer in RICH1, where the number of detected rings
corresponds to an efficiency of 77%.

In RICH2 the algorithm is able to find the correct solution in almost any
conditions: huge overlapping, presence of galaxies, few points per ring, presence
of arcs instead of complete rings. However, we should not forget that RICH2
data are nearly free of noise and the few present galaxies can be easily rejected.
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Table 3
Comparison between Possibilistic and Global algorithm performances. Values refer
to the whole set of rings to be found, including rings with less than 6 hits per ring.

Global || Possibilistic

Lost rings in RICH1 (GAS) || 35% 36%

Lost rings in RICH2 29% 29%

Processing RICH1 data, the algorithm faced more difficulties than in RICH2.
As previously described, the presence of a high level of noise and its localization
in galaxies turned out to be the limiting factor. Analyzing the output of the
algorithm, we can say that its performances are still very good in presence of
very populated rings, even in presence of overlapping. But it shows problems
in recognizing rings with less than 10 hits. Moreover, differently from RICH2
data, the overlapping among rings can be of an unacceptable level for the
algorithm.

In Figs. 2, 3 and 4, three examples of clustering are shown. Fig. 2 refers
to a RICH2 image while the other ones refer to different difficulty levels in
detecting rings in RICH1. All the graphics are plotted in the transformed
space (section 3.2.2) in arbitrary units.

6 Possibilistic versus Global algorithm

In the previous section we have shown the algorithm potentialities. We have
underlined the quality of the performed clustering in RICH2 counter and high-
lighted its limits in clustering RICH1 data. But how may it be effectively useful
in Pattern Recognition in RICH counters?

The usual algorithm for the Pattern Recognition in RICH counters inside
LHCD collaboration is the global approach based on the knowledge of the par-
ticle track (section 2.2). This algorithm, however, is not able to detect rings
generated by tracks that the tracking system did not reconstruct. It is com-
pletely dependent of the tracking system. We postulated that our algorithm
could be usefully employed in a second step after the global approach. Hence
using track information several rings could be detected, and then removed
from the database by the global approach algorithm. At this stage the possi-
bilistic algorithm could detect the remaining ones. For this reason, we have,
first, compared the results of the algorithm with the output of the global al-
gorithm, and, then, evaluated its performances when applied in sequence to
the global approach.

As we can see in Tab. 3, in RICH1 35% of the rings are associated to tracks
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not reconstructed, while for RICH2 the corresponding value is 29%. Using
the possibilistic algorithm, we reach values absolutely comparable taking into
account the undetectable rings too (the ones with less than 6 hits per ring). It
is worth noting that our algorithm reaches these values without using any kind
of information about the track and then about the position of centers. Besides
that, values for wrong/lost rings from global approach dramatically increase
considering the cases in which the particle assignment is wrong. Supposing
that the possibilistic algorithm would be applied in a second step, after the
global approach, let consider the case in which the global algorithm seems to
give the worst results. In Fig. 5(a) the whole database is shown. 45 rings are
expected (35 with more than 6 hits) and PCSS algorithm alone finds 27 when
applied to the whole dataset (Fig. 5(b)). The global algorithm alone detects
17 rings and misses 28. In Fig. 5(c) we plotted the new database obtained
considering only the 28 rings not detected by the global approach and all the
noise sources. Among them, 19 have more than 6 points. The possibilistic
algorithm applied to this reduced database detects now 16 rings (Fig. 5(d)).
Hence, the two algorithms in sequence detect 33 rings with more than 6 hits.
From this example, it is evident that by using the two algorithms in sequence,
it is possible to solve also very complicated cases that, separately, none of
them could solve well. Besides that, we would underline, once more, that
fragments of very few points in a plane (and then not detectable or lost) could
be associated to well populated rings in the other one. Hence, even though we
can not detect them in a plane, we can do it in the other one.

7 Conclusions

In this paper, we addressed the pattern recognition problem in RICH counters.

In the case of Cherenkov rings detection we have presented results using a clus-
tering algorithm, whose core is the Possibilistic C-Spherical Shell algorithm,
to recognize rings on images without any preliminary knowledge of number
and position of the rings. The algorithm has been shown very powerful in de-
tecting complex images full of rings. Besides that, the rings are not requested
to be complete, only arcs are sufficient to recognize the underlying rings. The
fuzziness included in the algorithm adds tolerance to the imperfect circular
shape of the rings and to the intrinsic scattering of Cherenkov photons. The
algorithm has been tested on realistic Monte Carlo LHCDb simulated events.
Its performances are excellent in detecting RICH2 rings. It is able to find
the correct solution in almost any conditions: huge overlapping, presence of
galaxies, few hits per ring, presence of arcs instead of complete rings. Pro-
cessing RICH1 data, the first conclusion we have made is that because of the
strong presence of noise in RICH1 images and low number of hits per ring, it
is impossible, for the proposed algorithm, to detect rings from aerogel radi-
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ator. On the contrary, its performances are still very good in detecting rings
from gas radiator, even in presence of overlap. Anyway the presence of a high
level of noise and its localization in galaxies, turned to be a limiting factor
in RICH1 images. The usual algorithm for the Pattern Recognition in RICH
counters inside LHCDb collaboration is the so called global approach based on
the knowledge of the particle track. This algorithm, however, is not able to
detect rings generated by tracks that the tracking system did not reconstruct.
We have shown that the algorithm described in this paper could be usefully
employed in a second step after the global approach. Hence, using track in-
formation several rings could be detected by the global algorithm, and then
removed from the database. At this stage the extended PCSS algorithm could
detect the remaining ones.
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Fig. 1. (a) RICHI. Histogram of the number of hits per ring from GAS and AERO-
GEL. Total rings are 377 for GAS and 363 for AEROGEL. (b) RICH2. Histogram
of the number of hits per ring from GAS. Total rings are 200.
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Fig. 2. RICH2. (a) Input database. (b) Solution found superimposed to the database.
In this example 13 rings were expected, but only 12 with more than 6 points. The
algorithm finds all the 12 well populated rings. The quality of the solution is evident,
especially in the region of high overlapping and in the border regions where hits

describe arcs and not complete rings.
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Fig. 3. RICHL. (a) Input database. (b) Solution found. The expected rings are 10,
while the algorithm finds 9. In this simple example, there is no high overlapping
among rings, but we can appreciate how the algorithm is able to approximate the
ellipses by rings, in the upper part of the image (b). We can also appreciate the
presence of two big galaxies in the left upper part of the figures and a general level

of noise higher than the one of Fig. 2.
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Fig. 4. RICH1. (a) Input database. (b) Solution found. This example is a very
complicated case with high overlap and high number of rings to be found. The
overlap is huge and it seems impossible, in some regions, to distinguish different
circular shapes. The expected rings were 42 but the algorithm finds 33. The lost
rings are populated, in most cases, by less than 10 hits.
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Fig. 5. The PCSS algorithm may be usefully applied in sequence after the track
based algorithm.
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