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Abstract
In this tutorial, we present a constructive methodology for shaping neural networks mod-
els of non-linear dynamical systems on the basis of their output signals. The method is
supported by results and prescriptions related to the Takens-Mané theorem, including the
evaluation of the time delay using the measurement of the first minimum of the mutual
information of the signal, and in the estimation of the embedding dimension using the
method of global false nearest neighbors. We present some numerical experiments to assess
this constructive approach to the identification of the Mackey—Glass chaotic system and a
non-linear dynamic system, and its application to the design of a neural network to fore-
casting a time series generated by an accelerometer coupled to a 150 MW steam turbine.
We present also an extension of this approach to discontinuous or intermittent signals pre-
diction. As the universal function approximation theorem for neural networks and fuzzy
systems requires the continuity of the function to be approximate, we apply the Singular-
Spectrum Analysis (SSA) to the original raw signal, in order to obtain a family of time
series components that are more regular than the original signal and can be, in principle,
predicted one at a time using the mentioned methodology. On the basis of the properties
of SSA, the prediction of the original series can be recovered as the sum of those of all
the individual series components. We show then an application of this prediction approach
to a hydrology problem concerning the forecasting of daily rainfall intensity series, using a
database collected for 10 years from 135 stations distributed in the Tiber river (Italy) basin.

Keywords: Neuro-Fuzzy Systems, Multi-Layer Perceptrons, Time Series Forecasting, Em-
bedding Method, Singular Spectrum Analysis, Chaotic Signals Forecasting, Steam Turbines
Identification, Rainfall Forecasting.



1 Introduction

In the last decade, neural networks have been widely tested on non-linear dynamic systems
modeling and forecasting. Existence theorems, stating that Multi-Layer Perceptrons (MLPs)
and Neuro-Fuzzy Systems are universal approximators of any arbitrary continuous function,
have been demonstrated [4, 12, 15, 36]. However, from theory no information can be obtained in
order to define the structure of the approximator based on neural network.

Applying Multi-Layer Perceptrons or Neuro-Fuzzy Systems to the problem of time series
forecasting implies the setting of the number of units in the input layer, the structure and
dimension of the hidden layers, the size of the training set. The neural network theory gives only
general suggestions in order to choose these numbers. The specificities of data set have to be
taken into account at this level to tailor the neural network to the time series which have to be
forecasted.

Results achieved in the theory of chaotic systems point out very relevant elements which can
be extracted from the measurement of one-variable time series of the non-linear dynamic system.
One of these results is given by the Takens-Mané theorem about the sufficient dimension of an
Euclidean space to guarantee a fair representation of the true strange attractor of the underlying
System.

In this tutorial, that is based on a series of recent results obtained our group [28, 22, 25, 21,
3], we present a constructive methodology for shaping a neural model of a non-linear process,
supported by results and prescriptions related to the Takens-Mané theorem: they are based on
the measurement of the first minimum of the mutual information of the output signal and on
the application of the method of global false nearest neighbors to estimating the embedding
dimension.

Even if many other neural networks have been applied to time series forecasting, we shall
consider only Neuro-Fuzzy Systems and Multi-Layer Perceptrons because, although their appli-
cations are simple, they are powerful enough as time series forecasters.

Some examples of application of the constructive methodology for time series forecasting will
be presented:

e the modeling of a chaotic system;
e the identification of a non-linear dynamic system;

e the forecasting of the vibration dynamic of a steam turbine.

We will present also an extension of this approach to the prediction of discontinuous or
intermittent signals. In this case the application of the Singular-Spectrum Analysis (SSA) [16,
26, 33] to the original raw signal permits to deal with a family of series components (reconstructed
waves) that are more regular signals. Each reconstructed wave can be, in principle, predicted
separately either by a neural network or by another forecasting method. Thanks to the properties
of SSA, the prediction of the original series can be recovered as the sum of prediction of the
reconstructed waves.

We show an application of all presented methods in the hydrology field, consisting in the
neural forecasting of rainfall intensity series collected by 135 stations distributed in the Tiber
basin for a period of 10 years.
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Figure 1: A MLP with 7 nodes in the input layer, 3 nodes in the output layer and one hidden

layer with 5 nodes.

In the next Sect. we present the Multi-Layer Perceptron and the Neuro-Fuzzy System that we
will apply to Time Series Forecasting. The constructive methodology for time series forecasting

based on Dynamical Systems Theory is shown in in Sect.

3, while in Sect.

4 we illustrate

its applications to some simple cases, namely a chaotic dynamics, a non-linear system and a
steam turbine. In Sect. 5, the extension of the methodology to discontinuous and intermittent
signals based on Singular-Spectrum Analysis is presented, and in the following Sect. we show an
application to rainfall intensity series. In Sect. 7, we draw the conclusions.

2 Neural Networks for Time Series Forecasting

2.1 Multi-Layer Perceptrons

Artificial neural networks are made up of simple nodes or neurons interconnected to one another.
Generally speaking, a node of a neural network can be regarded as a block that measures the



similarity between the input vector and the parameter vector, or weight vector, associated to
the node, followed by another block that computes an activation function, normally not linear
[20, 11]. The transfer function of an artificial neuron is given by the equation:

Y= H(Z w;x; — 0) (1)

where y is the output of the neuron, H is an activation function, w; are weights, z; are the inputs,
and @ is the threshold.

The most used neural network is the Multi-Layer Perceptron (MLP) that is a feed-forward
model based by layers of neurons (see Fig. 1). Nodes of each layer are interconnected with all
nodes of the following layer. In this way Multi-Layer Perceptrons perform non-linear maps from
an input space to an output space. Moreover, as demonstrated by the Universal Approximation
Theorem [4, 12], an MLP with a single hidden layer !, and using sigmoid activation functions
H(z) = 1/(1 + exp(—ax)), with slope parameter a, is sufficient to uniformly approximate any
continuous function with support in a unit hypercube.

The non-linear map can be automatically learned from data by a MLP thought supervised
learning techniques based on the minimization of a cost function, such as the Mean Square
Error. The most diffused learning technique is the Error Back-Propagation that is an efficient
application of the Gradient Descent method [27, 11].

2.2 Neuro-Fuzzy Systems

Fuzzy set theory [37, 14] is an extension of the conventional (crisp) set theory. A fuzzy set
A is defined via a membership function pua(z) which gives the membership grades of elements
x to the fuzzy set A. By construction, fuzzy sets are very convenient to numerically capture
linguistic concepts such as “large”, “warm”, or “cold”. The form of the membership function is
arbitrary and has to be determined in function of the problem. Methods have been devised for
this determination, inspired from knowledge engineering or statistics.

Fuzzy logic relates these linguistic variables (i.e. fuzzy sets) through operations. Fuzzy logical
operations between fuzzy sets are extensions of classical connectives such as intersection, union,
set-complement, AND, OR, THEN etc.

Fuzzy logical operations are not uniquely definite. In fact, for one given fuzzy logical operation
(let say intersection) there is an infinite family of usable operations. Fuzzy intersection can be
represented by min or product, fuzzy union can be maz, or sum operations (among others). Fuzzy
complement is appropriately represented by complement to 1 of the membership function. As in
classical logic, logical conjunctive operation (AND) is implemented by an intersection between
sets; disjunction by union and negation by set-complement.

Fuzzy Inferential Systems (or Fuzzy Systems) are constituted by four components:

e The fuzzification module that transforms the crisp (i.e. not-fuzzy) input data coming from
the real world into membership values.

!The output nodes constitute the output of the MLP. The remaining nodes constitute hidden layers of the
network.



e The fuzzy rule base with a bank of fuzzy if-then rules or fuzzy conditional statements, of
the type: IF A AND B THEN C, where A, B and C are fuzzy sets.

e The decision making unit or fuzzy inference engine performing the inferences on the rules
following the selected approximate reasoning method.

e The defuzzification module that transforms the fuzzy sets resulting from fuzzy inference
into crisp outputs.

One interesting fuzzy system is the neuro-fuzzy system (NFS)[36] that is a fuzzy system
based on the following assumptions: height defuzzification, sum composition, product inference
rules, Gaussian membership functions, and singleton fuzzifier. The NFS can be associated to a
feedforward connectionist system with only one hidden layer. More specifically, if there are K
units in the input layer, J fuzzy inference rules and I outputs, the rule activations can be written

| ri = I (). (2)

The quantity p,,(zg) is the value of the membership function of the component z; of the
input vector for the j-th rule, and is defined as:

(z — mjk)2> ’ 3)

ik (Tr) = exp <—
2‘7;2'k
where m;;, and ajz-k are the means and the variances. The values of the output units are:
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and s;; is the fuzzy singleton of the j-th rule associated with the output y;.

We notice that this implementation mapping a Fuzzy Inference System in a Radial Basis
Functions Neural Network (RBFNN) [11] is a very interesting case of Computing with Words [38].
In fact, the NFS has been proven to be an Universal Approximator[36] on any real continuous
function on a compact support to an arbitrary precision. Moreover, some other advantages of
using a NF'S are:

Yi

1. The possibility to easily input some a priori knowledge (from an expert) to bias the NFS
towards the problem to be solved.

2. By training, NF'S can learn internal relations in numerical data sets.

3. Extraction of learned rules by a trained NFS is possible in form of meaningful linguistic
(fuzzy) relations.

In the experiments shown in Sect. 4.1, no a priori knowledge has been used to enforce (before
the learning phase) some fuzzy if-then rules in the NFS. We obtained the NFS parameters (namely
m,k, o, and s;;) by performing a gradient descent across the training set with respect to the
Mean Square Error (MSE). The formula for the gradient descent is shown, e.g., in [36].
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2.3 Universal Approximation Property

The universal approximation property, that holds for MLPs, NFSs and other neural networks,
implies that, if the non-linear dynamical process can be represented by a continuous function, an
efficient non-linear model can be built from data using one of those neural networks. In this way
the costly detailed design step of the first principles model usually implemented in the non-linear
system identification is transformed in a more simpler structuring step of the neural network plus
an optional pre-processing (eventually driven by any understanding of the physical model of the
process) of the raw data coming from the field.

Even if, in principle, the function approximation property guarantees the feasibility of data-
based models of non-linear dynamical systems, the neural network theory doesn’t give any sug-
gestion about many details. For example no general prescriptions are available concerning the
dimension of the data window (i.e. input layer of the MLP), the sampling rate of the input data,
the dimension of the hidden layer, and the dimension of the training set, and then most of time
those fundamental design parameters have to be obtained by experiments and heuristics [11].

3 A Methodology based on Dynamical Systems Theory

3.1 Dynamical Systems and Chaos Theory
3.1.1 State Space

A deterministic dynamical system is described by a set of differential equations. Its evolution is
represented by the trajectory in state space (of dimension n) of the vector Q = (z,%,y,v, 2, 2,...) "
where z,2,9,7, 2, 2, . . . are the variables of the system and their derivatives. The figure made in
state space by Q is the attractor of the system.

For non-linear systems, the dynamical variables (z,y, z,...) are coupled. The evolution of
one variable (let say ) is not independent of all the other ones (y, 2, ...). Except for few simple
phenomena, the set of differential equations is unknown. Even, often the whole set of relevant
effective dynamical variables is not always well defined. But, as the variables are interdependent,
the observation of only one of those brings information, even if in an implicit way, on the other
ones and consequently on the complete dynamical system. This is the reason why time series of
non-linear dynamic systems are so useful.

3.1.2 Embedding Theorem

The question can be put now as: “How to reconstruct the complete dynamical system with only
the one-variable time series (s1, $2, 83,...) ?” Here the Embedding Theorem, proposed indepen-
dently in 1981 by Takens and Mané [29, 18|, gives an answer.

In the Takens-Mané theorem we consider an augmented vector S built with d elements of the
time series. The dimension of the vector d has to be greater than two times the box-counting
dimension Dy of the attractor of the system:

d > 2D, (5)



A vector S satisfying this bound will evolve in a reconstructed state space, and its evolution
will be in a diffeomorphic relation with the original Q state space point (a diffecomorphism is a
smooth one-to-one relation). In other words, for every practical purposes the evolution of S is a
fair copy of the evolution of Q.

It is worth noting that there is a distinction between the order n of the differential equation
which is the dimension of the state space where live the true state vector Q and the sufficient
dimension of a reconstructed state space d where the reconstructed vector S lives.

3.1.3 The Method of Embedding

In order to reconstruct the reconstruct the dynamical system we can use the ttme delay embedding
method [1]. This method consists in building d-dimensional state vectors S; = (si, Si+1, .- ; Sit(d—1)1)-
In principle, it suffices that d > n. But, the effective dimension d is not directly related to the
dynamical dimension n — as in the case of weak coupled variables.

3.2 Choosing the time delay

The time delay T (or time lag) used in the embedding has to be chosen carefully. If it is too long,
the samples s;, Siy 1, ... , Sit(a1)T are not correlated? and then, in general, the dynamical system
can not be reconstructed. If it is too short, every sample is essentially a copy of the previous
one, bringing very little information on the dynamical system.

We use the Shannon’s mutual information concept to quantify the amount of information
shared by two samples in order to get an useful estimation of the time lag 7T'. Let’s defined the
average mutual information between measurements a; drawn from the set A and measurements
b; drawn from set B. The set of measurements A is made of the values of the observable s; and
the set B is made of the values s;4; (¢ is a time interval). Average mutual information is then :

P(s4,5i41)
I(t) = P(si, 8i41) X logg—~———, (6)
S¢6A§}_tEB o QP(Si)P(S'i+t)

where P(...) are probabilities distributions based on frequency observations.

It has been suggested [8, 7, 31, 1] to take the time where the first minimum of I(t) occurs, as
the value to use at the time delay 7" in the phase space reconstruction. In this way the values of
s; and s; 17 are the most independent of each other in an information-theoretic sense.

Moreover the first minimum of average mutual information is a good candidate for the interval
between the components of the state vectors that will be input to the neural network model of
the non-linear dynamical process.

3.3 Evaluating the Global Embedding Dimension

From the Embedding Theorem, the box counting dimension Dy should be evaluated. In principle,
it can be estimated directly from the time series itself, but this task is very sensitive to the noise
and needs large set of data points (order of 1070 data points) [1].

2This happens in particular for chaotic systems, for which even two initially close chaotic trajectories will
diverge exponentially in time.



In order to avoid those problems, we can estimate the embedding dimension dg, defined as
the lowest (integer) dimension which unfolds the attractor, i.e. the minimal dimension for which
foldings due to the projection of the attractor in a lower dimensional space are avoided. The
embedding dimension is a global dimension and in general is different from the local dimension
of the underlying dynamics.

The Embedding Theorem guarantees that if the dimension of the attractor is Dy, then we
can unfold the attractor in a space of dimension dg (dg > 2D,). It is worth noting that dg is
not a necessary condition for unfolding, but is sufficient.

The dimension of input layer of the Multi-Layer Perceptron will be then of dimension high
enough in order that the deterministic part of the dynamics of the system is unfold.

3.3.1 Global False Nearest Neighbors

In practice, the method of Global False Nearest Neighbors proposed by Abarbanel [1], can be
used to evaluate the embedding dimension dg. Given a data space reconstruction in dimension

d, with data vectors S; = (s;, Siy1; - , Sit(da—1)r), Where the time delay T is the first minimum
of average mutual information (Eq. 6).
Let be SMV = (sMV NV ..., sﬁ\frj&fl)T), the nearest neighbor vector in phase space. If the

vector SNV is a false neighbor (FNN) of S;, having arrived in its neighborhood by projection
from a higher dimension because the present dimension d does not unfold the attractor, then by
going to the next dimension d + 1 we may move this point out of the neighborhood of S;.

We define the distance £ between points when seen in dimension d+ 1 relative to the distance
in dimension d as

_ | RE(6) — R3(9)
"= J R v
then | VN |
_ |SitdT — Siyar

As suggested by Abarbanel [1], S¥V and S; can be classified as a false neighbor if &; is a
number greater than a threshold 6 (& > 6). In many applications a good value for 6 is 15.

In case of clean data from a dynamical system, we expect that the percentage of FNNs will
drop from nearly 100% in dimension one close to zero when dg is reached.

It is worth noting that, as we go to higher dimensional spaces the volume available for data
grows as the distance to the power of dimension, and no near neighbor will be classified close
neighbor. In this case we can modify the Eq. 8 as

£ = |Siar — Siar|
7

o, )

where A is the nominal “radius” of the attractor defined as the root mean square (RMS) error
value of data about its mean, e.g.:

1 N
Ry = N; |Si — Sawl, (10)
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av = 7 i 11
s N Z:ZI s (11)

We can list now some bells whistles and pitfalls of FNN method:

e The global FNN calculation is simple and fast 3.

e The FNN calculation applied to signals coming from two different outputs of the same
dynamical system gives, in general, two different values of dg. Then from each signal we
will obtain different reconstructed coordinate systems, but both consistent with the original
dynamical system.

e FNN method is valid even if the signal of interest results from a filtered output of a dy-
namical system [1, 5.

e If the signal is contamined by noise (assumed to be generated by an high dimensional
system), it may be that the contamination will dominate the signal of interest and FNN
will show the dimension required to unfold the contamination. Here, a simple byproduct
of FNN calculation is an indication of noise level in a signal.

4  Test of the Constructive Methodology

4.1 Application to a Chaotic System

In [28], to shed more lights on the optimal values for m and T', we have chosen to use a synthetic
chaotic time series based on the Mackey—Glass (MG) equation: z(t) = azx(t—A)/ (1 + z(t — A)°)—
bxz(t) with @ = 0.2, b = 0.1 and ¢ = 10. Varying A from 17 to 100 let vary D from 2.1 to 10
([6]). We used MG time series with A = 17 (D7 ~ 2.1 and my7 > 5) and A = 30 (D3 = 3.6
and mgy > 8).

We have trained our NF'S with a training set of 6000 patterns v; and we have used a test set
of 1000 vectors. Initial values of the parameters to be adjusted were set randomly. We noticed a
fast convergence in the learning phase. For instance, the normalized generalization error is less
than 1% after only 10 training epochs, for a 4-8-1 network, which is quite good. The training
procedure was left running for 500 epochs, where usually the MSE was still decreasing but in
small proportion. No sign of overfitting was observed.

The configuration of the NFS was d input nodes, 2d hidden nodes and 1 output node, (d-2d-
1) while d scanned the range 2 to 15. Time delay T between measurements was also tested for
values between 1 and 24.

In Fig. 2, a sharp decreasing of log(error) can be noticed, as soon as d is big enough. About
T, no clear value seems optimal for low forecasting errors: apparently, best results are achieved
for short 7. Indication from dynamical systems literature based on the evaluation of the first

minimum of the average mutual information of the time series would have suggested a value of
T of about 11.

3We notice a very efficient implementation of FNN algorithm developed by by F. Montarsolo [23], on the basis
of the work by Nene and Nayar [24].
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Figure 2: Dependence of the forecasting error in function of the number d of inputs and of the
time delay 7. Takens-Mafié theorem requires d > 5 (left) or d > 8 (right).

4.2 Application to a Non-Linear System
4.2.1 MATLAB/Simulink model

In [25], another dedicated computer experiment has been developed in order to test the con-
structive methodology for time series prediction. A non-linear dynamic system able to show
different dynamic behavior for different amplitude of its input has been implemented using a
Matlab/Simulink environment (Fig. 3).

The target of this experiment was to build-up a non parametric model using only knowledge
extracted from output signals of the simulated system.

In preliminary experiments, the application of classical linear identification methods lead to
poor results, such as a strong dependency of the model from the working point, and impredictable
results in connection with changes on time scale.

4.2.2 Data Set

A possible approach to study the input/output relations of a system is to input it a random series
(random stimulation input - RSI), and then to study its inputs and outputs. This approach is
mimicking a blind acquisition on a real plant where it is very easy to collect data but it is very
difficult to have any control of the system inputs shape and amplitude.

In the numerical experiment, the input of the system was a train of steps with random

10
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Figure 3: MATLAB/SIMULINK representation of the non-linear system.

amplitudes. The length of the plateau was 3 times the period of the fundamental frequency of
the dynamical system.

4.2.3 Data Analysis

If we stimulate the circuit with RSI changing every 1/5 Hz, the power spectrum shows a peak at
the left end, in correspondence of the frequency of changing of the RSI.

In Fig. 4, we present the plot of average mutual information I(7") of the output signal. The
first minimum of I(7T) is for T = .16 sec.

As shown in Fig. 5, the FNN ratio goes to a minimum for d > 4. Also, as the input signal is a
train of steps, two past inputs are sufficient to describe the external excitation signal. d > 4 and
two past inputs imply then that we should use two past outputs to reconstruct the dynamical
system.

4.2.4 Neural Network Design

The model of the dynamical system was made up by a Multi-Layer Perceptron with d inputs 2d
sigmoidal nodes in a first hidden layer, d sigmoidal nodes in a second hidden layer, and 1 output

11
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Figure 6: Above: Output signal from the simulated non-linear system AND its estimation by
a 4-8-1 MLP. The training set was the 5000 first steps (i.e. up to 50 sec). Below: Difference
between the system output and its MLP approximation. Notice the different vertical scales.

linear node (d-2d-d-1). The dimension of the input layer d of the MLP was set equal to the
dimension of the reconstructed space of the dynamical system, so [ = 4.

4.2.5 Results

A data base of labeled patterns P, = [(ug, UgiT, Sk, Sk+T); Sk+or) Was obtained by stimulating
the non-linear circuit with a RSI of 2 sec. 7' = .16 sec (u are the inputs and s the outputs of the
system). The data base was subdivided in a learning, a test and a validation sets of 5000, 1000,
and 1000 patterns. Then, the learning set was shuffled and a 4-8-4-1 MLP was trained on it.

In Fig. 6, the very good quality of approximation of the behavior of the dynamical system
obtained by the MLP is shown.

4.3 Application to a Steam Turbine

In [21], the constructive methodology was applied to the design of a Neural Network for forecast-
ing the vibration corresponding to the correct working state of 150 MW Siemens steam turbine
at a given running point.

13
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Figure 7: Power Spectrum of the time series of 1024 points used for training the MLP. The series
has been recorded in 400 ms by an accelerometer coupled to a 150 MW steam turbine.

Information of the working state of the turbine are obtained through the measurements of
piezoelectric accelerometers coupled to part of the turbine and collecting the various vibrations.

The considered data were two time series of 400 ms (1024 points each) recorded with an
interval of 8 hours.

4.3.1 Data Analysis

The power spectrum of the first time series is displayed in Fig. 7. The main period of the time
series is clearly visible, but a lot of secondary frequency peaks should be noticed, apart of the
harmonics of the main period. The multiplicity of the secondary peaks and the decay of the
power spectrum is a sign of the nonlinearity of the system [1].

The time lag corresponding to the first minimum of the average mutual information is T =
4.68ms (Fig. 8). This interval is a candidate for the time lag between the components of the
state vectors to be input to the neural network forecaster.

The False Nearest Neighbors algorithm leads to an estimate of the embedding dimension of

4.3.2 Neural Networks Forecaster Design and Results

The Multi-Layer Perceptron forecaster was designed using the previous evaluations of the optimal
time lag 7" and the minimal embedding dimension dg, we can design now The number of inputs

14
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Figure 9: Steam turbine time series (continuous line) and its forecast (dotted line) by a 5-7-1
sigmoidal Multi-Layer Perceptron.
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of the network was set to 5. The training patterns were the 5-dimensional state vectors with
components separated by 4.68 ms. The requested output was the value of the time series 1.56 ms
later than the most recent component of the state vector. The best results were obtained using
a 5-7-1 MLP.

The training set of the network consisted of 600 vectors. A test set of 379 vectors was used
in order to stop before over-training. These two sets were built with the first time series.

The obtained forecaster was then validated with 977 vectors built on the second time series
(which was recorded 8 hours after the first one, and shows a slightly different power spectrum).
In Fig. 9 we can seen that the forecaster is able to follow the second time series.

5 Singular Spectrum Analysis and Time Series Forecast-
ing
5.1 Singular Spectrum Analysis

The proposed constructive methodology can not be directly applied to forecasting discontinuous
or intermittent signals, as the universal function approximation theorems for neural networks [4]
and fuzzy systems [35] require the continuity of the function to be approximate.

In [3], it has been proposed an extension of the proposed approach to the design of neural net-
works base time series forecaster to prediction of avoid the effect of discontinuous or intermittent
signals using a pre-processing of the raw time series based on the Singular-Spectrum Analysis
(SSA) [16, 26, 33, 17].

In SSA the state vector S; = (s;, Sit1, --- ,Sitm—1) is an augmented vector of the series s,
made up by a given number of samples M.

The cornerstone of SSA is the Karhunen-Loeve expansion or Principal Component Analysis
(PCA) [30] that is based on the eigenvalues problem of the lagged covariance matrix Z;.

The original series can be expanded with respect to the orthonormal basis corresponding to
the eigenvectors of Z;

M
Sivj =y piuf, 1<j<M, 0<i<N-M (12)
k=1

where pF are called principal components (PCs) and the eigenvalues uf are called the empirical
orthogonal functions (EOFs) *.
In [32, 10, 33, 13, 17, 9] many applications of Singular Spectrum Analysis have been presented,

including noise reduction, detrending, spectral estimate, and prediction.

5.2 Reconstructed components and reconstructed waves

Following Vautard and Ghil [33], suppose we want to reconstruct the original signal s; starting
from a SSA subspace A of k eigenvectors. By analogy with Eq. 12, the problem can be formalized
as the search for a series § of length N, such that the quantity

4The EOFs constitute an orthonormal basis.
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N-M M
Ha(3) = 3 > (8 — Y piub)? (13)
i=0 j=1 keA

is minimized. In other words, the optimal series s is the one whose augmented version S is the
closest, in the least-squares sense, to the projection of the augmented series S onto EOFs with
indices belonging to A. The solution of the least-squares problem of Eq. 13 is given by

ﬁzjﬂilzk@pi&ju? for M<i{<N-M-+1
§ = : ;:1 Shea Dy jul for 1< <M-—-1 (14)

N_1i+1 Y Niam LkeaPrjuf for N—M42<i<N.

When A consists on a single index k, the series § is called the kth RC, and is denoted by 3*.
RCs have additive properties, i.e.

§=Y & (15)

s=Y & (16)

Note that, despite its linear aspect, the transform changing the series s into §* is, in fact, non-
linear, since the eigenvectors u* depend non-linearly on s.

If we truncate this sum to an assigned number of RCs, the explained variance of the related
augmented vector S is the sum of the eigenvalues associated to those RCs, while the estimation
of the resulting reconstruction error is the sum of the eigenvalues corresponding to the remaining
RCs. As a consequence, it is suitable to order the RCs following the value of the eigenvalues.

Let be A;, Ay, ..., A, disjoint subspaces, then a reconstructed wave (RW) @, (I =1,...,L) is
defined as [3]:

o=> s 1<i<IL, (17)
keA,

and, from Eq.s 16 and 17, one can obtain:

L
s=> (18)
=1

id., the original series s can be recovered as the sum of all the individual RWs.

5.3 Reconstructed Waves Forecasting

Concerning the application of SSA to time series prediction, that is the main interest of the
present tutorial, it is supported by the following argument [33]: Since the PCs are filtered version
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Figure 10: Mean Station: Daily rain millimeters. Period 01/01/1958 - 12/31/1967.

of the signal and typically band-limited, their behavior is more regular than that of the raw series
s, and hence more predictable.

Vautard and Ghil in [33] fit an autoregressive (AR) model for each individual PC using the AR
coefficient estimate of Burg [2], while Lisi, Nicolis and Sandri [17] used Multi-Layer Perceptrons
in order to estimate the PCs.

In order to reduce the computational costs, in [3] it has been suggested:

e to decompose the raw series s in RWs corresponding to SSA subspaces with equivalent
explained variance, and then

e to predict each RW using Multi-Layer Perceptrons designed following the constructive
approach described in Sect. 3; and finally

e to obtain the prediction of the raw signal by addition of the forecasts of the RWs.

6 Application to Rainfall Forecasting

6.1 Data Set and Methods

In [3] the application of the previous described forecasting approach concerns the forecasting of
daily rainfall intensities series was presented. The series were collected by 135 stations located
in the Tiber river (Italy) basin in the period 01/01/1958 - 12/31/1967.
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Figure 12: Mean Station: Global False Nearest Neighbors.
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Figure 13: Mean Station: Explained variance of the augmented vectors related to an increasing
number of RCs.

The data processing started by considering the series of the Mean Station (MS), defined as
the average of all 135 rainfall intensity series (Fig. 10). We notice the high discontinuity of the
obtained signal.

Fig. 11 shows the graph of the mutual information of the MS’s time series. Its first minimum
is for T" = 7. This value has been used as the time lag for the computation of Global False
Nearest Neighbors. The graph of FNN is shown in Fig. 12. Till d = 6 the curve decreases with
the growing of dimension, and then reaches a plateau of 20%. The plateau is the symptom of
the presence of high dimensional noise. The evaluation of the embedding dimension is dg = 6.

Following the constructive approach described in Sec. 3, predictor based on a Multi-Layer
Perceptron has been designed. The MLP was made up by two hidden layers of 5 units, an input
layer of 6 inputs spaced by a time lag of 7 days. The obtained results were very poor, due to the
discontinuity of the hydrological variable.

In order to reduce the effects of the discontinuities, the Singular-Spectrum Analysis to MS
series was then applied. A window length M = 256 was select. Fig. 13 presents the explained
variance of the reconstructed signal using an increasing number of RCs.

Then, using the method shown in Sec. 5.2, from the raw MS series we obtained 10 waves
Q4, ..., Q9 reconstructed from 10 disjoint sub-spaces, each of them representing a 10% of the
explained variance (see Tab 1). Waves ), ..., Qg (corresponding to the first 76 RCs), are enough
regular, while the remaining waves (corresponding to subspaces with low eigenvalues) are more
complex.

We designed a neural predictor based on a MLP for each individual wave of the MS, following
the constructive approach described in Sect 3. For each wave we obtained 7' =7 and dg = 6, as
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Table 1: Reconstructed waves (RWs) from disjoint SSA subspaces (each of them corresponding
to 10% of the explained variance) and corresponding reconstructed components (RCs).

| RWs | RCs |

Q, | 16

Q, 7-16

Q3 17-27
Q4 28-40
Qs 41-56
Qs 57-76
Qy T7-97
Qs 98-137
Qo | 138-181
Oy | 182-256

for the raw MS, and the best results were obtained by MLPs with two hidden layers of 5 neurons,
and a size of the input layer of five neurons 5.

For each wave (corresponding to 3652 daily samples), we obtained 3645 associative couples,
each of them consisting of a window of 6 elements delayed 7 days, as input, and the next-day
rainfall intensity, as output.

Each MLP was trained using the first 2000 associative couples (training set), using the error
back-propagation algorithm with momentum [34], and batch presentation of samples. The follow-
ing 1000 associative couples (validation set) were used in order to implement an early stopping of
the training procedure. The remaining 645 were used for measure the quality of the forecasting
of the reconstructed wave (test set).

6.2 Results

The prediction results on waves 1, .., Q, corresponding to 60% of the explained variance (first
76 RCs), are good. Fig.s 14 and 15 show the results obtained for wave (25, while for waves
Q7, .., Q4, corresponding to subspaces with low eigenvalues, the predictions are unsatisfactory.

Following the criteria of the best prediction [17] in the Eq. 18 7, .., Q¢ were excluded, as if
enclosed in the addition, made worse the overall prediction.

The sum of the prediction of the 6 waves at 1 day ahead gives a signal well correlated with the
original rainfall intensity of the MS, as shown in Fig. 16 and Fig. 17. Note that in the comparison
shown in Fig. 16 the predicted signal is set to 0 when negative.

Moreover, preliminary results for the forecasting of the rainfall series of individual stations
are also in good agreement with data [23]. We notice that in some cases the best forecasting
results have been obtained using the SSA space generated by the MS instead of the one obtained
from data of the individual station.

5dg is an upper bound for the size of the input layer of the MLP.
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Figure 14: Mean Station: 1 day ahead forecasting for wave Q5. Period 3/19/66 - 12/4/66.
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Figure 15: Mean Station: scatter plot - 1 day ahead forecasting wave {25 on the test set.
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Figure 16: Mean Station:

Figure 17:
test set.
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7 Conclusions

In the last years, neural networks have been extensively tested on non-linear dynamic systems
modeling and forecasting [11]. Those applications are supported by the universal approzimation
theorems [4, 12, 35, 36], that, unfortunately, are not constructive: In facts, no information can be
extracted from the theory in order to define the structure of the neural network based approx-
imator. In other words, the neural network theory doesn’t give any general suggestion about:
dimension of the data window (i.e. input layer of the MLP), sampling rate of the input data,
dimension of the hidden layer, dimension of the training set.

On the other hand, results achieved in the theory of chaotic systems point out very relevant
elements which can be extracted from the measurement of time series of one variable of the
non-linear dynamic system. One of these results is given by the Takens-Mané theorem [29, 18|
about the sufficient dimension of an Euclidean space to secure a fair representation of the true
strange attractor of the underlying system.

In this tutorial, we have examined pragmatically the sensitivity of the method to the exact
value of the embedding dimension for the case of the chaotic system obtained by the Mackey-
Glass equation[19, 28]. As expected, this dimension is set by the lower bound in the number of
components of the state vector as given by the Takens-Maiié theorem. The relevant observable for
neural models of non-linear dynamic systems is a sharp transition in the quality of the forecaster
in function of the number of components of the temporal window

On the contrary, the quality of the forecaster is less sensitive to the time lag between the
components of the state vector. This apparent lack of sensitivity is directly related to the
Takens-Mané theorem which, by hypotheses, is valid for any time lag. In practice, it can be
expected that the time lag depends of the noise affecting the dynamical system.

Supported by results and prescriptions related to the Takens-Mané theorem [29, 18], our
constructive methodology for shaping a neural model of a synthetic non-linear process has been
applied to the design neural model of the vibration dynamic of a Siemens steam turbine [21].
The proposed constructive methodology has been shown to be very easy to use, leading to useful
results.

We extended our methodology for signal forecasting to the case of discontinuous and inter-
mittent signals [3]. In order to avoid the effect of the discontinuities, we have proposed the
application of the Singular-Spectrum Analysis (SSA) [16, 26, 33, 17] that permits to decompose
the original signal in a family of more regular temporal series (reconstructed waves). This ex-
tended methodology has been successfully applied to the forecasting of rainfall intensities series
collected by 135 stations distributed in the Tiber river basin for a period of 10 years.

The integration of the Neural Network estimation and the Chaos Theory proposed in the
present work should be very useful in order to develop the new generation of the predictive state
estimator for non linear dynamic systems.
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