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Abstract

The problem of clustering is often addressed with techridugesed on a Voronoi partition
of the data space. Vector quantization is based on a similaciple, but it is a different
technical problem. We analyze some approaches to the sysithiea vector quantization
codebook, and their similarities with corresponding atisig algorithms. We outline the
role of fuzzy concepts in these algorithms, both in datagsgmtation and in training. Then
we propose an alternative way to use fuzzy concepts as a imgdedl for physical vector
quantization systems, Neural Gas with a fuzzy rank functia apply this method to the
problem of quality enhancement in lossy compression anohegruction of images with
vector quantization.
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1 Introduction

The problem of clustering [1] is often addressed with theipas, centroid-based ap-
proach of thec-Means procedure and many other derived algorithms. Inapsoach
clustering is viewed afinding the reference vectors (centroids) which best erpilae
input data distribution according to some cost criteridrhis goal is best achieved with
a small or moderate number of centroids (clusters), to nlaanodel for the data under
study which is as simple and understandable as possible.

Vector quantization [2,3] is a different technical problestich can be stated as follows:
find the reference vectors (codevectors) which approximédte the minimum error the
input data according to some distortion criteriddsually the problem is also constrained
by some resource limits. This is the rationale for the scedaRate-Distortion theory. In
this case, the number of codevector is to be maximized witerallowed constraints, to
keep distortion as low as possible.
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The typical application of vector quantization is in sigaatl image processing, although
alternative applications have been proposed [4,5]. Vapiantization provides a form of
lossy block coding [6], whereby blocks of samples in a seqaar blocks of pixels in
an image, represented as vectors in a suitably dimensiqeegk sare approximated by
replacing them with a single codevector, selected to mirgnai given distortion (quanti-
zation error) measure. Block coding is more efficient thajusatial coding. Due to the
higher correlation between nearby samples, in bidimemsisignals (images) the tech-
nique is even more effective, and accordingly it is oftendusemoderate quality, very
low bit rate applications.

In this work, we analyze some approaches to the synthesisaftar quantization code-
book, and their similarities with corresponding clustgraigorithms. We outline the role
of fuzzy concepts (such as membership in more than one Vopatghedron) in the per-

formance of these algorithms. Then, we propose an altemasie of the fuzzy paradigm
in the vector quantization training algorithm by Martinetal, the “Neural Gas” [7]. The

techniques and concepts discussed will be applied in th@ogex formulation of Neural
Gas vector quantizer design.

2 Clustering, vector quantization, and fuzzy concepts

2.1 The goals of clustering and vector quantization

We have outlined some differences between clustering aatvguantization, yet the
synthesis of a codebook for vector quantization is ofterr@gghed with algorithms de-
rived from c-Means (a standard clustering technique). This is the @gbrantroduced
by Linde, Buzo and Gray [8] and is therefore often referrecsathe LBG approach.
One usual feature of the LBG-style techniques with respediustering is that, since
vector quantization is typically adopted for large-sizealrting sets and reference vec-
tor sets, minimization is performed by stochastic gradaedcent @¢nline training) [9]
rather than by batch algorithms. This is because the cudeeaffminima is worsened by
the moderate-to-large dimensionality and larger codelsozd Stochastic optimization
[10,11] helps escaping local minima by adding errors (dumtmlom sampling of pat-
terns) to the current estimate of the cost function. Theedfloere is a nonzero probability
of taking steps in directions other than that of the “closkestal minimum.

The similarity between the clustering and quantizatiorbfgms is of a geometrical na-
ture. In both cases, the input space is partitioned Ysgranoi tessellatiofl 2], represent-
ing regions of data sharing similar properties by means aiglesreference point or site
or, in the respective jargons of vector quantization andteling,codevectoor centroid
Furthermore, in both cases the reference points obey theiple of being the barycenter
of all points included in a given cluster or Voronoi region.

This is a necessary condition for optimality in the case ofjaased error measure of



distortion:
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where the data point, is compared to reference poings, j € {1,c} and its nearest
reference point is denoted I6)(x).

However, there is a distinction in the goal to be achievede®aly speaking, in clustering

we want to define a cluster as the largest group of data thdieasasonably gathered in
a single group: clusters should be as few as possible to@naberstanding the structure
of data. However, in vector quantization, points in a regiunst be so similar that the

approximation error obtained by substituting these data wie nearest codevector is
negligible. Thus in the case of vector quantization codmrecshould be as many as
possible, within the resource limits imposed by the ovesydtem design.

2.2  Why fuzzy versions?

When designing a fuzzy algorithm, for instance the fuzzysiaer of an existing crisp
technique, the technical problems we want to address dezedit in the case of clustering
and vector quantization.

Several clustering algorithms have been modified in thectioe of incorporating fuzzy
concepts (starting with the FuzeyMeans algorithm [13]). A review of fuzzy concepts in
clustering is provided in [14,15]. In the large majority @fses, fuzziness means that any
point can belong to more than one cluster, to different degre

The introduction of a fuzzy membership has a twofold meammglustering. On one
side, data can be partially belonging to more than one clustel this has a conceptual
interpretation: it is possible to analyze and quantify vieetpoints are clearly clustered
or there is any ambiguity in cluster attribution. On the otbide, fuzziness is a way to
fight local minima during optimization.

In vector quantization, the first aspect is irrelevant, siat the end of training a crisp
decision must always be made. The other aspect is more iampsince in the typical
vector quantization application local minima are a serisgse.

3 Codebook design methods

In the following we briefly review how typical algorithms ftre synthesis or “training” of
vector quantization codebooks introduce fuzzy conceptierminimization procedure,
and what is their effect. We will assume thvatraining points (individually denoted with
x) of dimensionalityd are used to design a codebofk,...y.} of c reference points.



The distorsion assumed is the squared Euclidean distnee||x — yj||? yielding the
squared-error distortion already introduced.

3.1 Lloyd’s and MacQueen’s methods

The classical approach is Lloyd/MacQueen’s method [18]1The standard-Means
clustering procedure. Thieth input vector is attributed to the Voronoi polyhedron de-
fined by reference vectoy; if ujx = 1, whereujx is a membership indicator, a crisp
value which is 1 ifdj = min{dy,...,dnk} and O for all other reference vectors, so that
Q(xk) = Z?:l ujkyj. The closest reference vectgr= Q(xx) for a data point wil be called
the “winner” for that point, The updating rule is:
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This rule defines a minimization by Picard iterations, in ethat each step a necessary
minimum condition is satisfied. This algorithm finds the mMinim of a cost function
based on the mean square error as a distortion criterioweltsknown drawback lies in
the huge number of local minima (for practickhndN).

Note that membership indicataug obey the following normality condition:

c
uj =1 vke {1,n}, (3)
=1

that is, each point can belong only to one cluster.

The on-line version ot-Means training is due to MacQueen. It transforms the Picard
iteration of the standard version in a stochastic optinoraprocess. Input vectors are
randomly selected, adding noise to the cost function, naiwmoped on the average. The
updating rule is therefore:

()

yi =y§ +nOup (e —yj) (4)

wheret indexes the training stepg'!) is an updating coefficient, arids a random func-
tion of t.

Convergence is usually much slower, although this may ndtue= for very large and
redundant data sets. However, the advantage is that lonahaare escaped thanks to the
“statistical” behaviour of the updating procedure, whidesd not necessarily reduce the
cost at each step and therefore does not necessarily ge¢tlato sub-optimal basins.

The law for varyingn®) to ensure convergence (annealing schedule) has beendstudie
in [18] for the Gibbs sampler. MacQueen [17] adopts an irtlial coefficient for every



reference vector, equal tg'tk wheret; is the number of updates for reference vegtoso
far, thus retaining the exact equivalence between the®ald batch versions ofmeans.
Ritteret al.[19] propose instead a faster exponential decayrféte=n; (r]f/r]i)t/tmaX from

Ni to ns in tmax Steps. This law has been used also in the Neural Gas algorithm

3.2 Fuzzy c-Means

The most popular algorithm for clustering in the fuzzy framek, the “Fuzzyc-Means”

[13] or “Fuzzy ISODATA’ [20], has no direct counterpart inglvector quantization prac-
tice. Here the standard (crisp)Means membership is replaced by a fuzzy membership
defined as a function of the point-prototype distance:
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In this case, it turns out that membership values are no lodge 1: we have instead
ujk € [0,1] C RVj,k.

The centroids are still computed according to the baryegriaciple, although in this
case we have actual weights instead of indicators (binduoesx

N U
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and the memberships still obey the normality condition {@)ich in this case it is also
termed “probabilistic constraint” since it makes membgrstalues equivalent to a set of
probabilities for mutually exclusive events.

The parametem € [1,o] C R is a fuzziness index which has a direct influence on the
actual values obtained for the memberships. Witmea 1, the patrtition is crisp, whereas
for m— oo the memberships tend to have all the same valu¢d. Irhis index may be set

to incorporate a-priori knowledge on the problem, but inabsence of such knowledge
there is no established way to assess its value, althougly agproaches are possible
(e.g., by cluster validation).

3.3 Maximum Entropy approach (the Deterministic Annealimeghod)

The maximum entropy approach of the Deterministic Annggleéchnique by Rose [21]
builds on a different concept. Here a fuzzy membership istels is introduced by sub-
stituting the “min” selection criterion, by which a singleference vector is selected for



updating on a minimum-distance basis, with a “softmin”emiin:

e_di/[3

| z(j::l e*dj/B ( )

The parametep governs the fuzziness of this criterion; fdr— 0 it turns back into the
crisp “min” criterion. The Deterministic Annealing appabais a sequence of minimiza-
tions (made by Picard iterations), wihdecreasing at each minimization. Therefore the
first minimizations are done with a high degree of fuzzindsat is, highp (with few lo-

cal minima), whereas the last minimizations, wth- 0, are potentially subject to local
minima, but they take advantage of the good initializatioovpled by previous steps.

Memberships are again subject to (3), and this is justifiethis case by the explicit
treatment of memberships as formal probabilities. Poindsveewed as abstractions of
physical particles. The approach is based on minimizatf@aaost functional which in-
cludes entropy of the partitions as a cost term, and energgrtitions as a constraint. By
gradually lowering energy, a simulated annealing proocedupbtained. However, since
the energy is updated only at convergence of the previoumattion step, the proce-
dure is termed “deterministic annealing”. The fuzzinesapeeter here is interpretable as
a formal temperature, and it is the responsible for fixingghergy level of each step.

The specific form of memberships in (7) is derived from neagssonditions for mini-
mum of the cost function just described, with the additiothaf probabilistic constraint

(3)-
3.4 Possibilistic approach

Another popular fuzzy clustering approach which is not caniy used in vector quan-
tization practice is the Possibilistic Approach by Krishpeam and Keller [22]. We cite
it here for completeness.

In the possibilistic case, a higher level of fuzziness isodticed by relaxing the require-
ment of memberships to all prototypes for each point summingo 1 (3), which is
enforced in all other methods. This changes considerablptimciple of operation of the
method, and is not compatible with vector quantization ggoBhe possibilistic approach
is aimed at data understanding, featuring robustness pirepeavith respect to outliers
[23].

The memberships in this case are subject to the followingfsgeak constraints:

Ujk € [0,1] Vj VK (8)
n
0< zUjk<n V] 9)
k=1
vk3j:uk>0 (10)



which only imply that no cluster be empty and each patterndsggaed to at least one
cluster.

In principle, a point can now be attributed to more than onestelr with a high level of

membership, although additional penalty terms in the amsttion may impose a bias
toward the normality condition. However, this is not a haodstraint, and it can be vio-
lated. Therefore it may not be possible to perform a finaludezification of the resulting

memberships, and a single best approximating codevectpnotade found.

3.5 The Neural Gas algorithm

The Neural Gas algorithm by Martinetzal.[7] combines fuzzy membership in partitions
with stochastic minimization. This algorithm has the ie&ting feature that membership

in a Voronoi polyhedron is not defined as a direct functionhaf distance from the data
point to the reference vector, as in previously cited mesh&ather, it is a function of its
rank with respect to the list of distances from all refereweetors. Distancel; has the
rankp; in the set{ds, ...,dy} when ordered decreasingly with respect to values, and this
value can be written in an algebraic fashion as:

piz.z e(di—dj) (11)

B(x) is the Heaviside step function, taking on the values xfar0O, 1 forx > 0, and 05
for x = 0. This extension is needed in the case of ties, very uncomhtbe distances
are real numbers; however this is the standard way to delltigd in rank tests (such as
Spearman’s rank correlation or Kendall's rank correlatiod coefficient of concordance).
Notice thatpwinner = O rather than 1, sp; € {0,...,c— 1} Vi€ {1,...,c}.

The membership of the data point to ki encoding polyhedron is:

u(x) = e Pi/A (12)

whereA is a parameter which is annealed (made smaller) duringitigithereby pro-
gressively reducing the extent to which reference vectoitser than the nearest (the
“winner”), are included in the updating process.

The annealing of the two parameteds (nfluence of prototypes other than the “win-
ner”, and learning coefficient) can be interpreted from ta@dpoint of learning machine
capacity. When vectors other than the winner get updatedralation is introduced be-
tween reference vectors, thus effectively reducing thanlag capacity of the vector quan-
tizer. As the annealing proceeds, the range of the corelatnrinks gradually, and the
capacity is correspondingly increased; however, at theegdane the learning coefficient
is reduced, so that it is progressively more difficult to fato local minima. (To relate
vector quantization, an approximation procedure, to tleeh of learning capacity it is
necessary to adopt a threshold-based criterion. This sisay/introduced in [24].)



3.6 Kohonen's Self-Organizing Maps

In this review, we must also mention Kohonen'’s Self OrgargzMaps [25], in which
fuzziness is of the same nature as in the Neural Gas technfatas, in the influence of
non-winners on the update of the winner. This method is eei#éhclustering algorithm
nor a vector quantization algorithm; it is rather conceiasca multidimensional scaling
technique, but we cannot avoid mentioning it due to its ingrore and influence on the
subject, and particularly on many vector quantization algms, including Neural Gas
itself.

3.7 Interval Vector Quantization

A different way to include fuzziness into vector quantieatis making thecodevectors
themselvefuzzy. Although adopting this formulation can lead to a comapionally inef-
ficient algorithm, this approach can be simplified by repnésg uncertainty by means
of interval values. This has been done in [26]. Uncertainegedtors can be defuzzified
by applying some additional criterion (for instance, regity or smoothness of the over-
all reconstructed image), which acts as a constraint arkladdtaining better perceived
quality.

4 Image compression by vector quantization

When performing the specific task of image compression, &t imasic procedure is as
follows. The description is for single channels of an RGBgmar for gray/level images.

For images encoded according to other formats (e.g. HSVmoposite video) there may
be additional processing steps to take advantage of themmeaaingful structure of pixel

representation.

First, the image is split into square blocks of a given sizaally 4, 8, or 16 pixels. Then,
each block is preprocessed to reduce inter-block vartghiisual preprocessings include
subtracting the block average (which will be stored and dadmn its own), trimming the
extreme values to predefined limits (on the basis of the denaiion that details in very
light or very dark areas are not as distinguishable as tho#eei middle of the intensity
range), normalizing the values into a given range.

Each block is finally rasterized, and its linearized vergiwmns obtained is regarded as a
data vector. Therefore we may have typical vector sizes p646or 256 (for 4, 8, and
16 pixel block sizes respectively). These data vectors angpared to codevectors in a
codebook (which is tailored on the specific signal stattiEach data block is encoded
(approximated) with the best matching vector in the cod&bddis results in vector
indexes to be transmitted in place of whole data vectors.



At this phase, the compression ratio attained is expresstgims of block sizelN, bits
per pixelby in the original image, and bits per codevector indgxn the compressed
image:

_ Nbp

Note that, of courseh. = [log, c| wherec is codebook cardinality, and on the practical
side this mandates the use of numbers of codevectors whicpawers of 2 to avoid
wasting code space.

We must add for completeness that there is usually an addltsbep consisting of channel
encoding (e.g., Huffmann compression), and also the bleekages should be transmit-
ted, so that the actual compression ratio is not given sitoypthe ratio data size/codebook
index size.

Image reconstruction is performed by retrieving each iedecodevector from the code-
book, for use in place of the image blocks they approximasehEpreprocessing step
should be reversed (e.g., the respective block averagesbawwmimmed again to block
values) and the resulting blocks are then displayed.

5 A fuzzy mode of the ranking function
5.1 Fuzzyranks

The performance of the Neural Gas algorithm is remarkabbtdgas found in previous
research by the present and other authors. This is probabliodhe combination of fuzzy
membership, stochastic optimization and robust evalodhimugh ranking. Therefore it
IS not surprising that this algorithm has been used as the fe@smprovements [27,28] as
well as hardware implementations [29]. In the case of anhéygware implementations,
other algorithms either perform worse, as we have reviearad)ply very complex circuit
structures. The Neural Gas seems the best choice in viewsofrétte-off, also because
the sorting step can be simplified with little performances|{30].

In a fuzzy perspective, it is more natural to define the refatlarger” among two (con-
ventional) numbers as a degree to which one number is langeranother. We should
mention that the problem of ranking fuzzy quantities hasbegiewed for instance by
Bortolan and Degani [31], and, more recently, by Wang and&[2,33]. However, we
are not dealing with fuzzy quantities, but withuzzy evaluationf crisp quantities. This
approach is reasonable in very common situations such asmpre of noise or other un-
certainties in the measure of signals. In this case, twoegalhich are very close cannot
be reliably ranked, and a statement sucheas farger tharb” is more naturally expressed
in fuzzy terms.



Fig. 1. Comparing crisp and fuzzy rank functions.

As a numerical illustration, suppose that we are to compatartes in two cases: (a)
d1 = 3 with do = 4, and (b)d; = 3 with d, = 3.01. Clearly in both case (a) and case (b)
we can rightfully say thatl, > d1, but it is also clear that in (a) this is “more true” than
in (b). With a given level of uncertainty (for instance dueatgiven quantity of additive
noise) it is also possible to quantify how much (a) or (b) drae”.

Therefore, we can make the following substitution:

1

6(dj—d)~ PEECIRAYE (14)

and
. o (d; —d) (15)

1+edi—d)/Bpo VI

so the computation of fuzzy rank can be expressed as
n
1
Pj = (16)

b 10 A

The parametef here acts as a fuzzification parameter, such that for |ardpe ranking
function is definitely fuzzy, while fof3 = 0 we obtain the original, crisp ranking function.

The two expressions (11) and (16) for the rank funcigr are compared in a simple
example, illustrated in Figure 1, where the following setvafues is used{d, 2, 3,5}.
The diagram is a plot gb(d) (in the two expressions, crisp and fuzzy) tbim the range
[0,7]. Two plots are shown for the fuzzy expression, oneffet 0.05 and another for
B = 0.25 (smoother).
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Fig. 2. An analog VLSI realization of a vector quantizatiorceder.

5.2 Implications of fuzzy ranking

Analyzing the diagram in Figure 1, we may gain insight on tfieat of fuzzy ranks, as
proposed above.

The main consequence of introducidig- O consists in points which are closer (in terms
of distance) having converging rank values, with the liroitf — O being the average
of the two corresponding crisp ranks.

Note that this limit reproduces the usual choice of rankisttas to resolve ties by aver-
aging the ranks, so that, for instance, if we have two datatpait ranks 3 and 4 with the
same value, instead of assigning arbitrarily the two poinesshould use the rank 3.5 for
both. From this viewpoint, fuzzy ranking represents a galieation of the concept dfe,
whereby with growind3 points are more and more likely to be deemed equal in a fuzzy
sense.

Conversely, the fuzzy ranking scheme does not have anyt eff@oints which are suffi-

ciently far away. When ranks are usedtead of original valueto exploit the robustness
inherent in the rank operator, as for instance in rank catia analysis, the introduction
of fuzzy ranks does not influence points which are sufficiefiatl away, and only modifies
ranks for points which are close to each other.

The fuzziness parametpris related to the desired resolution, in that it establishseft
form of thresholding for deciding whether points are cldseZy ties) or distant.

5.3 A note about hardware vector quantization

Since the authors have published some works about an imptatien of Neural Gas
in analog hardware, based on the VLSI chip shown in Figure€2camment about the
implementation of the proposed fuzzy ranking function ia tiase of analog circuitry.

11
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Fig. 3. A low-performance operational amplifier implemeaswsapproximate step function.

In analog hardware, when the functions implemented areideal-there can be a vari-
able effect on training performances. In particular, thekreunction (11) often uses the
Heaviside step as a crisp distance comparison.

The step function in analog hardware is simply built by meaha saturating ampli-
fier with large gain, which means typically an open-loop apienal amplifier. However,
Equation (11) has & space complexity, so circuit topologies should be made ery-
pensive in terms of silicon area. This means very simpleltgpes (typically two stages).
Consequently, the operational amplifier will feature a @rgi&in which implies a deviation
from the ideal behavior.

The mid-frequency input-output relationship of an openadi amplifier is a hyperbolic
tangent saturating (approximately) at theand— power voltages.

The fuzzy ranking function described is directly implenezhby the op-amp-based cir-
cuitry outlined above. The fuzzification parameter is theeise of the amplifier gain (the
crisp and fuzzy version coincide for gain o« or for 3 — 0). Therefore the fuzzy Neural
Gas is simply a realistic model for the hardware impleméonadf the algorithm, without
requiring any circuit modification.

6 Fuzzy ranksin image reconstruction

The fuzzy model for the ranking function makes it possibletbance the reconstruction
step in the process of image compression as described ilm®dciThe procedure we are
going to describe is similar to the one introduced in [34]pa# main drawback was due
to its crisp nature.

12



6.1 Multiple codevectors

When dealing with a limited codebook, it is often the case kihacks cannot be recon-
structed with high accuracy due to the absence of a codevedo sufficiently good
match, i.e., whose appearance is sufficiently similar tdtbek to be approximated.

In principle, as done for instance in Singular Vector Decosifon image reconstruction,
this problem could be attenuated if several elementaryepedtcould be combined to
obtain an output block as their average.

The “Multibest” technique [34] combines a standard vectaugization procedure with
the principle of combining patterns. The outline of the t@gie is very simple: when
approximating an image, we do not use only the best matctudgwector, but the set of
n best matching codevectors.

A combination of these patterns may then be obtained bypatation of thesa vectors.
There are several possible techniques for performingpotation, but those which are
more feasible for their efficiency can be simply approxirdatéh codevector averaging.

The main strength of this technique is the ability to repnésmage blocks which are
considerably different from those used for training, thuskmg the overall procedure
both more robust with respect to the image set used for cadetraining, and more
performing in terms of quality on new images (generalizgtidrhe improved quality
can be assessed by objective measures, such as MSE or RMbBEasm®experimentally
observed by inspection.

A drawback of the method as originally presented is that wodés to be transmitted or
stored to encode blocks are not simply composed of a singdkexim the codebook, but
of all nindexes, thus compromising the compression performantieedechnique. This

problem is related to the fact that the per-block overheéidesl and equal to the number
of additional indexes required for reconstruction. The pogssion ratio in this case is

_ Nbp

Rvs b

(17)

6.2 Fuzzy combinations of multiple codevectors

The use of fuzzy ranks in Neural Gas codebook design proadeshnique to overcome
the fixed overhead problem in the multiple codevector tespini

The procedure is as follows. Lef(x) be the membership of pattern (image blogkp
Voronoi polyhedron (codevectoy). As we have seen, Neural Gas defines this quantity
as

uj(x) =e P2, (18)

13



Standard Neural Gas has fixed, integer valuespforso memberships have the same
values for each pattern (these values are only permutedoog®vectors). In contrast,
Neural Gas with fuzzy ranks have real values @y so that different situations may be
obtained.

In particular, we define a threshaydso thatall codevectors with membership values over
g are used in reconstruction. The valuega$ in the range [0,1]; it should usually be close
to 1, and the lower the value, the larger the number of codexsased in reconstruction.

For blocks for which there is a clear best match, the list afes@ctors includes only the
best match. However, if more than one codevector has simeganbership (when no good
match is found this will be the case), these are selectectmmstruction.

In this way, the number of codevectors in the multiple beataning technique is variable
rather than fixed, and compression performance will be ingntoThe actual improve-
ment, however, cannot be estimated in advance since thearwhbodevectors needed
for encoding any block is variable with the nature of the immagd the codebook.

7 Experimental performance

7.1 Experimental setup

The fuzzy model for the Neural Gas has been tested by coropangh the standard
version on some problems, with both artificial and real dzttas

(1) Centers-only (toy problem, very trivial): place threglevectors on three points. For
initial “consistency checks”.

(2) Centers-plus-noise (toy problem): place three codeveon a set of points gener-
ated by a superposition of three Gaussians plus 60% randormspo

(3) Lena (real dataset). Vector quantization of the stashth@nchmark image “Lena”,
shown in Figure 4, with codebooks of size 16 and 256.

(4) Four images (real datasets). Vector quantization oenbenchmark images, shown
in Figure 5.

(5) Detall quality in reconstruction with the proposed teicjue, shown in Figure 7.

The training of both algorithms was performed with iderniticatialization parameters
(scheduling of updating coefficient and of range of influeniceon-winners) and starting
values (prototypes at first iteration).

7.2 Experimental results

The first problem was used to ensure that the training steps a@ too different, to
validate the software (written in C). F@r= 0 the two algorithms are indeed identical.

14



Fig. 5. Four benchmark images (frdmtp: //links.uwaterloo.ca/bragzone.base.html).

The second problem highlighted that, for low valuegpthere are no significant differ-
ences in performance between the two algorithms. In somererents the fuzzy version
outperformed the standard version, but this is not a tyjneahvior.

The training on the Lena image was a test of these outcomeg&al problem. In Fig-
ure 6 is shown a typical training trace (mean square err@ugetraining steps), put on
a logarithmic scale to compensate for the (approximatelyatithmic decreasing in con-
vergence with time. This shows that the two traces are @iffeibut converge to the same
solution. The thin trace is standard Neural Gas and the thade (only slightly different
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Fig. 6. Trace of mean square error during training on the &’@émage. (Note that, for ease of
visualization, the x-axis is logarithmic and the y-axis sloet start at 0.)

in some locations) is the fuzzy modification.

The four additional images, which are greyscale and arezef 266x256, were used to
confirm the previous results. The images were obtained frarf\Waterloo Repertoire”,
available online altittp://links.uwaterloo.ca/bragzone.base.html. Codevector
sizes used are 16, 64 and 256. Results on the concordaneetaidtimethods are outlined
in Table 7.2. For each test, the maximum deviation of theyfwezsion over the standard
version (in percentage of RMS error) is indicated. The fimalabooks have always been
found to be equal according to the following definition. Twadebooks A and B are
considered equal if, for any codevector in codebook A, theedt codevector in codebook
B is within a preselected distance threshold. This threthas to be selected case by case,
taking into account codebook cardinality and making it s the minimum distance
between two codevectors of any codebook.

The remarkable fact that final codebooks were always caogmtics a confirmation of
the good properties of the Neural Gas algorithm, which paeebe stable under the
perturbations induced by reasonable value.of

Finally, a quality verification on the “Lena” image was perfeed to compare the result
of vector quantization compression and multiple codeva&ioonstruction on a complex
detail (Figure 7, left). Neural Gas training was performédtiines and the best cross-
validation result was picked, for both the standard and tlezyf-rank versions of the
algorithm. A test set was obtained by extracting a smallgraage of the image blocks
from the training set (these blocks were deleted from theitrg set and did not take part
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Table 1
Verification of convergence between crisp and fuzzy rarkingNeural Gas training

Test Max. discordance in RMS Error
goldhill 16 0.8%
goldhill 64 0.9%
goldhill 256 1.3%
bridge 16 0.0%
bridge 64 0.5%
bridge 256 0.5%
bird 16 0.2%
bird 64 1.0%
bird 256 2.1%
camera 16 1.7%
camera 64 1.7%
camera 256 1.1%

in Neural Gas training).

Since a 8« 8 block size was selected, and the image is6522 pixels, 4096 blocks were

obtained, of which 4000 were in the training set and 96 in ds¢det. These blocks were
selected randomly. This very small percentage was decideduse of the small dataset
size.

The value of3d was also selected by evaluating cross-validation RMSE isrirdining/test
set split, whereaq was arbitrarily set at 0.9. The codebook size was set at 3@
a small value, to obtain lower quality images for which thgiovement could be more
easily appreciated.

The result can be observed in Figure 7. The left image is tiggnait detail, an eye from
the “Lena” image. The center image is the result of standagdr&l Gas training. The
right image is the result obtained with fuzzy ranks and rplédtoutput vectors.

The main feature appearing from this demonstration is tleptoposed technique is able
to create more varied patterns with respect to standardgodevector version. Although

this does not imply that the reconstruction is very faithbdth RMSE and visual inspec-

tion confirm the improved quality obtained with the techraqu

7.3 Choice of parametef$and q

The acceptable value @f depends linearly on the difference between distances #sat h
to be resolved. A method to select the accept@lidan be based on the distribution of the
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Fig. 7. Detail from the “Lena” image: left, original; centestandard VQ reconstruction; right,
multiple-codevector training and reconstruction.

distance differences in the training set. Th¢'s are tabulated and sorted; then a given
tolerance is selected (for instance, 1%) and the correspgrguantile is identified on
the table. This corresponds to a given valudaind therefore to the required acceptable
value off3.

However, to relate the parameter value to actual performancgeneral it is probably
better to select it by cross-validation or other empiric@igedures based on measuring
the actual reconstruction performance. In the image reaatgn experiments the value
of 3 has been assessed with this technique.

The value ofg should be left up to the user, since it represents the dedreemiom
which is always present in lossy compression techniqushoitld be viewed as a “knob”
to be turned for tuning the quality/compression tradeoud the user’'s needs.

8 Conclusion

In this paper we have reviewed some uses of fuzzy concepectorvquantization train-
ing. We have presented the novel concept of fuzzy ranks apliedpt to Neural Gas

codebook design algorithm. The experiments presentedsstiat, for reasonably cho-
sen uncertainty level$], the Neural Gas algorithm is remarkably stable.

The technique has been applied to image reconstructionawithltiple codevector strat-
egy, whereby codevectors to be used are selected accoadanthteshold over rank val-

ues. This produces a variable overhead strategy for whiafpoession is not easy to
assess in advance, but quality of reconstruction is imptove
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