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Abstract

Due to the difusion of large-dimensional data sets (e.g., in DNA microarray or document
organization and retrieval applications), there is a growing interest itecing methods
based on a proximity matrix. These have the advantage of being basedatanstrdcture
whose size only depends on cardinality, not dimensionality. In this paperemose a
clustering technique based on fuzzy ranks. The use of ranks helpstoome several
issues of large-dimensional data sets, whereas the fuzzy formulatioafig usencoding

the information contained in the smallest entries of the proximity matrix. Comparative
experiments are presented, using several standard hierarchidakidggechniques as a
reference.
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1 Introduction

Data clustering is traditionally studied in the hypothessmetimes implied, that
data themselves are available in large quantities, or,ast,léhat cardinality is
larger than dimensionality. However in recent years martg daquisition tech-
niques have been made available that produce large geartftobserved variables
for each observation. Therefore, the cardinality-dimemnality relation has some-
times been inverted. Two prominent examples of high-thinpug techniques are
DNA microarrays and document collections for informatietrieval. In this situa-
tion, as it had already happened for classification withulesss approaches [10]
and kernel methods [11], there is a growing interest in eliisg methods based
on a proximity matrix, which share the obvious advantage ehdp based on a
data structure whose size only depends on cardinality, ine¢msionality. Among
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these approaches we can mention primarily the traditioleahichical agglomera-
tive techniques [14] and the more recent spectral methdds [9

Proximity- (or dfinity-)based methods rely on an appropriate definition ofricet

or distance, and it is known [3,1] that in high dimensioryatite behaviour of large

classes of metrics is not as intuitive as it may appear. Rerréason, we propose
to base our data representation on distance ranks rathredigtance values.

2 Theproximity matrix approach

We adopt a proximity matrix representation, whereby the aaatrix is replaced
by a pairwise dissimilarity matriD. Let X be a data set of cardinality, X =
{X1,X2,...,X%n}. We start by computing the dissimilarity matm = d(x;, x) Vi,k
according to the dissimilarity measuiéx,y) between pointx andy (e.g, the Eu-
clidean distance). The dissimilarity matrix may as well ng2g as input (for in-
stance when obtained from subjective measurements by & plexperts, or in
the behavioral sciences, or with uncalibrated sensor s)raywhich case it could
not even be a symmetric matrix and no explicit functigr, y) may exist. The ma-
trix D may now be used as the representation of all points of th& seta space
with dimensiom. Dissimilarity-based clustering algorithms can be agpéeen to
non-metric data, e.g. categorical or mixed.

3 Clustering with ranks

Problems may arise in high dimensionality also for otlfEgats, especially (but not
exclusively) with Minkowski norms as dissimilarity [1]. Aipical countermeasure
also found in traditional statistics is moving from the as#& of values (in our
case, distances) to the analysis of thiaitks Rank is the position of a given value
in the ordered list of all values. However in this work we adapuzzy definition
of the concept of ranks. This definition has already been ts@thprove image
reconstruction after lossy compression [8]; here it is used starting point for a
data analysis procedure.

Let d; be thei-th row of D (storing the dissimilarities of points X from x; € X).
The corresponding ranks, or positions in the list of comptmefd; when sorted
in ascending order, are then stored in the vegter|pi1, ..., pin]. We call these the
D-ranksfor point x;. A D-rank can be written in an algebraic fashion as:

Pij =29(dij—dik), 1)

k=1



where the functiod(x) is an extended Heaviside step, taking on the values 0 for
x<0,1forx>0, and 05 for x=0, sopj; €[0,...,n—-1] Vi € {1,...,n}. This exten-
sion of the Heaviside step represents the standard way tavdeaies in rank-order
statistics. (Note that we define ranks to start at O, so thatriB-1 refers to the near-
est neighbour.) It is now possible to measure the closerfatsa® pointsxy, ..., X,

by the concordance of their respective D-rank vectess .,rn. Therefore for this
purpose a data poing is represented by the vector of its D-ranks.

This definition has several advantages. It embeds the prabte a space of dimen-
sionn, which, by assumption, is smaller than the cardinality & thiginal data.

Metric and non-metric cases are treated alike, since thenmeagure is numeric in
both cases. Using this representation of data, any metrgtazing algorithm can
be applied. In the experiments, we will refer to the specifacpdure illustrated in
the following section.

Obviously, ranks also discard information, and this is mariglent when the dis-
tribution of points is uneven. In this case, points in a demggon and points in
a sparse region may be represented with similar rank pattémnthe following
section, we introduce a fuzzy definition of rank that is ablpreserve more infor-
mation in these cases.

4 Fuzzy ranks

In a fuzzy set-theoretic perspective, it is more naturalefing the relation “larger”
among two numbers as a degree to which one number is largeati@her. The
problem of ranking fuzzy quantities has been reviewed fstaince by Bortolan and
Degani [4] and, more recently, by Wang and Kerre [15,16].iRstance, suppose
that we are to compare (d) = 3 withd, = 4, and (b)d; = 3 with d, = 3.01. Clearly
in both case (a) and case (b) we can rightfully say that d;, but it is also clear
that in (a) this is “more true” than in (b). Therefore, we caakea the following
substitution:

1
Q(dij —dik) — m (2)
where:
li —1 =0(d;j — di 3
/3I—>rg+ 1+ gldij—di)/8 ~ 9( e 'k) (3)



So the computation of fuzzy rank can be expressed as

pPij = 4)

n
= 1+ e(dlj dik)/B8
The parameteg is a fuzziness parameter: for largehe ranking function is def-
initely fuzzy, while forg = 0 we obtain the original, crisp ranking function. The
two expressions (1) and (4) for the rank function are congare simple exam-
ple, illustrated in Figure 1, where we assudje- [d, 2, 3,5] and the first valueli;
sweeps from 0 to 7. We plot the corresponding (in the two expressions, crisp

and fuzzy). Two fuzzy plots are shown, one fo& 0.05 and another fg8 = 0.25
(smoother).

This new definition of rank allows us to integrate into a rdrdsed clustering ap-
proach the notion that two ranks may be clearly defined (thpkns when com-
paring very diferent values), and in this case the soft rank behaves siynitathe
standard, crisp definition of ranks; or they may be less jledafined (when the
values to be compared are not verytelient), and in this case the soft rank takes
into account the degree of closeness between the valuel|Ugtering algorithm
we applied in the new representation is #gnesprocedure [6] that is an agglom-
erative hierarchical clustering algorithm.

5 Experiments

The proposed soft rank clustering algorithm was tested ansimthetic problems
and then applied to a publicly available bioinformaticsadat: the Colon data by
Alon et al. [2]. Data sets are described in Table 5. The sywthoblems have

been used to check the properties and consistency of theagpr

The tests were performed according to the proposed methadfomber of dier-

ent fuzziness level8. and diagrams were compared for several linkage methods.
Specifically, the linkage methods used are: single (or seareighbor linkage);
average (UPGMA); complete (or farthest neighbor linkageighted (WPGMA);
ward (Ward’s method with analysis of cluster variance). \&eus on the results
obtained by the Ward method only, since it is known to yieldabrand compact
clusters not fiected by the “chaining” fect, and this was fully confirmed by the
experimental analysis.

For the purpose of this study, valuesgifiave been selected by hand-tuning on the
basis of experimental results (we used the available taa).ddore sound tech-
niques may be based on the quality of clustering obtainemeasured for instance
by the codicient of agglomeration or other citeria.



Table 1
Data sets used for experiments

Dimensionality | Cardinality | Class balance

Synthetic data 1 2 100 1:1
Synthetic data 2 20 100 11
Colon cancer 2000 62 2:1

The first synthetic problem consists in classifyng two-disienal points obtained
from two Gaussian distributions. Noise is added to eachtpoiordinates to obtain
a sequence of increasingly random data sets. The methodppasdfor several
values off3 and for distances (not distance ranks). We obtain a numbexymér-
imental results, one for each noise level, representingeth@r percentage as a
function of 8. These results are shown in Fig. 2 for selected, values serlevel,
namelyo = 0.5 ando = 1. The values are not shown directly, but as ratio of error
reduction with respect to the results on distances, usedasaine. The box-and-
wiskers plot has been obtained on the basis of 1@@rmint runs, with varying
random generation. From the plot, it can be seen the erractiea over the base-
line.

The second synthetic data set is composed of two 10-dimegist@aussian dis-
tribution centered respectively irL,...,—1) and (1...,1). Both the distributions
have standard deviation 2. Ten unformly distributed fesgtinrave been added to the
data set. We tested the proposed method fieréint subsamples of the features. In
Fig. 3 we report the box-and-wiskers plot obtained fdfedent numbers of selected
features over 100 trials. Fig. 3 shows the results for twaesbif3, namelys = 0.1
andg = 1. Also in this situation, it is possible to see that the uséuaty ranks
outperforms the clustering of the distances dfiedent subsamples of the data set.

The Colon cancer data is again a collection of expressiorisidoe 2000 genes
measured with the DNA microarray technique. They have bet&t®d as those
having the highest minimum intensity across all samples.rékio between classes
is approximately 2 tumor to 1 normal. Here we focus on whattees called the
“class discovery” problem (unsupervised categorizatian, clustering), but we
exploit the diagnostic information to assess the goodnigb& @lustering obtained,
thereby evaluating clustering in a transductive settings Biagnostic information
is the distinction between normal and cancer tissue labedsn the analysis of the
dendrogram, we decided to set the number of cluster to 3.gn4we show the
reduction in the error achieved by the use of fuzzy ranks mmarison with the
clustering of the distances (thick dotted line) and theteliisg using crisp ranks
(light dotted line).

The results on the Colon data set are resumed in fig. 4 wherdusiering using
fuzzy ranks achieves better classification errors witheesm the methods used
for comparison. In particular the figure shows that the usarms (crisp and fuzzy)



performs better with respect to the clustering of pattemsput space and in many
cases with respect to the clustering of distances. Heregbefithe fuzzy ranks
improves the classification error achieved by the crispsank

6 Conclusions

We have presented a technigue to perform clustering of digiensional data sets
by mapping these data in a lower dimensional space, the spécezy D-rank vec-
tors. Several clustering techniques can be applied, ancsee the standaragnes
procedure to obtain an indication of the best value for tlezifess parametgr.
The analysis confirms the quality of the proposed procedum@inparison to the
knowledge available in the literature, and its superiorityhe other methods ex-
perimented. The overall method is closely related to notrimmultidimensional
scaling (MDS) techniques based only on dissimilarity raagk®pposed to metric
distances[7,12,13]. The fuzzy rank mapping itself in thepmsed method plays
the role of a multidimensional embedding. Oné&elience is that MDS provides
a mapping by pointing out possibly interesting relatiopshiand the subsequent
data analysis is left to the researcher, whereas clustanmg directly at outlining
a structure in the form of suggested categories.
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Fig. 1. Comparing crisp and fuzzy rank functions.
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Fig. 4. Results on the Colon data set. Vertical bars: error level as tidaraf the fuzziness
parametes. Thin dotted line: the error obtained by clustering in the data space directly.
Thick dotted line: the error obtained by clustering in the space of distances.



