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Abstract

Clustering algorithms are routinely used in biomedicatighines, and are a basic tool in
bioinformatics. Depending on the task at hand, there aremast popular options, the cen-
tral partitional techniques and the Agglomerative Hieharal Clustering techniques and
their derivatives. These methods are well studied and w&lbdéished. However, both cate-
gories have some drawbacks related to data dimensiongitpdrtitional algorithms) and
to the bottom-up structure (for hierarchical agglomermtilgorithms). To overcome these
limitations, motivated by the problem of gene expressiocalyais with DNA microarrays,
we present a hierarchical clustering algorithm based onnaptaiely different principle,
which is the analysis of sharddrthest neighborsWe present a framework for clustering
using ranks and indexes, and introduce the Shared Fartlegghors clustering criterion.
We illustrate the properties of the method and present @rpatal results on different data
sets, using the strategy of evaluating data clustering bynsic knowledge given by class
labels.

1 Introduction

Data clustering is a routine step in biological data analyend a basic tool in bioin-
formatics [1-4]. Depending on the task at hand, there arertast popular options,
provided by several commercial or professional systerke Qiluster/Treeview [5],
Agilent GeneSpring, Data Mining Tool by Affymetrix , often with the additional
choice of one or two less common techniques.
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When the data cardinality is high and the dimensionality is not very large, it
is possible to use iterative, partitional algorithms sush-&eans [6] or one of its
many variations (a frequent choice is Self Organizing MafisWwhich continues
to be used as a clustering method). When data dimensionslitgry large, or
the number observations is comparatively small, then tibieal agglomerative
algorithms are normally used [5].

The set of available tools is often limited to these categgooinly, probably because
they are available in widespread software and, in the cabeéeddrchical agglom-
erative clustering, they can be easily interpreted and rigeeto visually appealing
representations like dendrograms [8] or color diagramsAS]a matter of fact,
also other techniques like Spectral Clustering [9, 10] sqaite adequate for tasks
in bioinformatics [11].

However, both categories have some drawbacks relateddaaldaensionality (for
partitional methods) and to the bottom-up structure (ferdwichical agglomerative
methods) [12].

The objective of this paper is to introduce the Shared FartNeighbors cluster-
ing technique, a hierarchical clustering algorithm base@ movel agglomeration
principle.

The proposed method is motivated by a typical unsupervisetdigm in bioin-
formatics: clustering of tissue profiles or cell lines in no@rray analysis of gene
expression. Its applicability and its properties will beiskrated on a selection of
diverse problems in the biomedical disciplines.

The approach shares some similarities with Jarvis-Patliegtering [13], which
however is based on the analysis of sharedrest neighborand is not a hierarchi-
cal method.

We apply a validation method which is not typical of methadptal research in
the general field of data clustering, but rather of the speeifiplication area of
bioinformatics and medicine: namely, we compare the ctimieesult to super-
vised information available for the problems.

This paper is structured as follows. Section 2 describesd#onality issues in
data clustering and how rank-based techniques can be dppéetion 3 introduces
the Shared Farthest Neighbor technique and Section 4 sepothe experimental
verification. The last section summarizes the results aad/sliconclusions about
the presented method.



2 Propertiesof clustering techniques

2.1 Clustering problems in genomic data analysis

We are given a set of experimental observations = {z;, s, -, z,}, Where
each observation comprisé®bserved variables; = {z;1, s, . ..,z }. Suppose
further that we are given a proximity criterion to evaludie tlata, either in the
form of a proximity functiond(x, y) (distance or similarity) or as@x d proximity
matrix D.

We are addressing low-cardinality, high-dimensionalégkis and we need to es-
tablish parameters to decide whether we are in this scenadociding whether
the cardinality of a given data set is large or small is a mobtependent task
[14-16]. However, we propose the following, arbitrary ernibn: we examine the
ratior = log, n/d (obviouslyn > 2). We can assume that cardinality is (relatively)
high whenr >> 1. Forr around or below unity, we are in the low-dimensional,
high cardinality case.

Under these assumptions, it is easy to see that typicalgmebin tissue clustering
with DNA microarray gene expression data fall in this catgg@/ith reference to
the two problems described in the experimental part (seedbet for details), we
have for the Leukemia problem,= 7192 andn = 72 (r = 0.86 - 10~?), and for
the Genoa lung cancer probleth= 1920 andn = 5 (r = 1.21 - 107?). As we can
infer from numbers, gene clustering can be an easier profstemthe standpoint
of dimensionality, since andn should be transposed.

2.2 A brief review of some clustering techniques

There is a vast literature about data clustering, and extaléviews and introduc-
tions to the topic are provided in [6,17,18].

Partitional clustering methods [17-24] are usually basedentroids. They are
especially suited to the case of small number of centroidsaasufficient number
of data objects. The issue here is local minima. Availabhee@ies include using
fuzzy memberships [21, 25] and on-line optimization [2§, 27 the general case
of biomedical data, where observations are costly, andcespein microarray
experiments, many variables are observed in relativelyefgreriments. This raises
the issue of the curse of dimensionality [19, 28].

In some cases (with very low) n is even less thad. The data span only a sub-
space of the data space. In these conditions, it is not ewsrieaefine the concept
of density. This makes-Means type techniques typically adequate for clustering



variables across experiments (e.g., gene clusterindglerahan clustering exper-
iments. There have been many efforts in solving the dimesadity problem for
clustering [29]. Another drawback is related to the problermodel order selec-
tion (number of clusters).

With reference to hierarchical methods [30—32], divisipp@aches [18] can gen-
erally exploit more global information in data with respectgglomerative meth-
ods [17], and therefore yield better quality models. Howda@tom-up methods
are generally more time-efficient.

The standard hierarchical approach does not require teetsal of model order,

simply because it makes no attempt at defining clusters. €wgift proximity ma-

trix analysis [17], or agglomerative coefficients [18] aeeded for an a-posteriori
estimate.

Another, related problem is that the taxonomy obtained ts/agy stable. Usually
this problem is tackled with resampling approaches [33,843imply by trying all
possible combinations of parameters available in the Bpeaftware used [35].

Clusters based on distances also suffer from the nonwufigict [36] that, when
space dimensionality is high or even moderate (as low asb)0Hie distance of a
guery pointz, to its farthest neighbat - and to its nearest neighboxy tend to
become statistically equal:

lim P{(S(ZE(),{ENN) = 5(1’0,1’1:1\])} =1. (l)

d—oo

This causes the actual distance values, and the conceptafe'st neighbor” itself,
to become less and less meaningful with growing dimensigndhis last obser-
vation has been described as the “boundary phenomenon7jn$8e also [38].

Finally, agglomerative algorithms cannot produce a plaft@ugh) result, to be
refined only if needed (“anytime” algorithms in the data mijargon).

3 Shared farthest Neighbors: principle of operation, algorithm, and proper-
ties

3.1 Design goals for a rank-based clustering method

Based on the previous discussion, we summarize our maigrdgsials (similar
sets of design goals have been outlined for instance in.[39])

To avoid the model order selection problem, we should deslgararchical method.
Hierarchical techniques often provide easier interpi@tat



At the same time, it should allow for more than two objectsrat kevel in the
hierarchy. Interpretation is even easier if the hieraraytd is reduced by allowing
for splits that are more than dichotomic.

The procedure will be divisive rather than agglomeratinehis way, the criterion
used to divide each cluster into (possibly more than two}dubters provides an
indication of the “appropriate” number of clusters for tietel in the hierarchy,
although assessing that this number is the true number ofalatlusters would
typically require further analysis.

3.2 Use of the proximity matrix

Whend is large butn is comparatively small it is known that clustering based on
a proximity matrix [17] may be preferable. It is an efficienayto reduce the di-
mensionality of the working space frotito »n, since a proximity matrix) can be
interpreted as an embedding of a setxadata vectors in a space of dimension
Kernel methods [40,41] are also a generalization of the gpinaf proximity. Stud-
ies [42] show how methods exploiting proximity informatiare able to perform
better than generally expected. In some applications datab®a directly available

in the form of a proximity matrix [43].

The only assumptions we will make about the proximity fuoictd is that it is
defined for all pairs of objects iX and it is reflexive {(z, ) = 0 Vz € X).

3.3 The rank matrix and the index matrix

Proximity data may not be reliable. In microarray experitsgsources of error
include contamination due to washing, imperfect hybritiorg variations of hy-
bridization level across different chips, noise in the ogitiacquisition, effects of
normalization method and parametefsmay also contain non significant infor-
mation due to arbitrary design choices or ambiguous data.

To increase robustness, we can niamto R°, the rank matrix induced by the prox-
imity 6. The rankp;s(z;, z;, X) is the position of object; in the list of all objects
in X sorted by their proximity ta;, 6(x;, ;). The matrixR?’, a transformation of
the proximity matrix, is a proximity matrix itself; it is tlefore another possible
embedding of the data s&t. (From now on, sinc& andJ are given, we simplify
the notation by writings(z;, z;, X) = p;; andR’ = R.)

This change in measurement level, from metric to ordinaluaes a loss of in-
formation that may or may not be significant. Other examplethis technique
include Spearman’s rank-correlation index[44], Kendall's correlation index



and coefficient of concordand®& [45], and Goodman and KruskaRsassociation
statistics [46].

R provides a new representation of data objedas the rank vectar;, thei-th row
of R:

Ti = [Pi1; Pizs - - -+ Pin) - (2
The rank matrixk can thus be considered as a transformed dat@ sef{r,, rs, ..., 7, };
clustering will be based on grouping objects by similarityh®ir rank vectors:;,
and the specific clustering criterion depends on the defimif this new proximity
measure between rank vectors. We also define the index nidtsiting, for each
object, the inexes of all objects in order of distance:

Iipij :n_.]+17 (3)

In the first position we have the index of the point with maximrank (the farthest
pointzgy), in the (n — 1)-th position the index of the nearest pointy, and in the
n-th position the index of the pointz; itself.

3.4 Techniques based on rank or index

The matricesk and I convey essentially the same information; their use influ-
ences the algorithmic implementation of clustering meshoather than the meth-
ods themselves. Usually rank-based methods are intenthedajoplied after a clus-
tering has been obtained, as validity criteria, due to tb@mputational weight. A
clear example of this is Hubertss statistics [47] [17] or Kendall's coefficient of
concordancéV as a cluster validity index [48], for which partitions af should

be exhaustively investigated.

Techniques based on tlie mapping are presented in [49], for an iterative proce-
dure, and in [50] for a rank-based hierarchical method. dusth be noted that a
simplified rank analysis is provided by methods based ores¢aeighbors. An in-
teresting related method is the Shared Near Neighbors (8Niddering by Jarvis
and Patrick [13]. Heré is partitioned according to the following principle: thesta

k components of patterns andl,

{fm, Litn—1), - - - Ii(n—k-i—l)} (4)
{Lim: Lin-ys -+ Linki) (5)

are compared, and, andz; are in the same cluster if at ledss indexes are com-
mon to these two sub-patterns of lengthrhe parameterk andk depend on the
application and on the data, have to be selected by the uskk amposes a bias
toward elongatedi, — 1) or globular &, — k) cluster shapes.



u
"2
"3

s 4
Datapoints| 1|2 |3 |4
| Neighbor (31|13
Il Neighbor [ 23| 2|2
[l Neighbor |4 |4 4|1

Fig. 1. An example data set to illustrate the “Points in pecsige” principle. For each point
the table lists the distance ranks of all other points.

The Jarvis-Patrick method is based on the consideratianpthiats sharing the
same near neighbors should belong to the same cluster. [dowes approach is
not necessarily reliable for very sparse data.

The SNN produces the following odd result. The higher th& @meighbors, the
larger their “agglomerative” significance. Two points tlaaé very close to each
other and distant to other data points should be considexedgmod cluster. But
since the (first) nearest neighbor of either point is the roploént, the first nearest
neighbor isalways differentThis of course is not a major drawback (SNN simply
countsk > 1 neighbors), but it offers some evidence that the princifgeli may
be only partially justified.

As a last remark, we recall that we are interested in a hikieat method, and
SNN provides only partitional clustering, although in thegmal presentation the
authors suggest repeated applications of the method tindbee-structured clus-
ters.

3.5 The “Points in Perspective” principle

We propose to adopt the following principle of operatidwo points should be
considered similar if they share the same farthest pointragradl remaining data.

We term this the “Points in Perspective” principle, since points are examined
not with reference to their neighborhood (locally), butlwieference to far-away
points in the data set, therefore in perspective. The exarsipbwn in Figure 1
clarifies the approach.



Fig. 2. The example data set clustered according to the pespmethod.

The proposed “Points in Perspective” principle of operateelds a hierarchical
clustering procedure, which proceeds as follows. Fipsis computed or obtained
as input. ThenR is computed fromD and/ from R.

All points sharing the same farthest point are in the samstefof level 1. So, a
cluster in the first level is defined as the set of points withdame value in the first
column of. In general, at level, thek-th cluster is defined as

X = {w; € X|Iip = vi} . (6)

The procedure is recursively repeated until no furtheredétiation is found (all
points within a level — 1 cluster share the sant¢h farthest neighbor), or until a
predefined maximum level is reached.

We term this techniqu8hared Farthest Neighbalustering (SFN). The example
shown in Figure 2 illustrated the result of applying the Skhicedure to the data
of Figure 1.

3.6 Algorithm structure and complexity considerations

Here a proposed implementation of the SFN algorithm is $leetcThe algorithm
starts by computing the proximity matriX. This is the phase where, if required, we
can take care of missing data by adequately definirfrom the time complexity
standpoint, computation of the proximity matriXis the most demanding part of
the algorithm, requiring:(d) - O(n?) time (andO(n?) space) for a proximity com-
putation requiring:(d) time for a pair of data objects. For instané¢d) = O(d)

for a large number of proximities, including Euclidean diste and all Minkowski
metrics, Hamming distance, cosine distance, and manystiibe space required
is f - n%/2 for symmetric proximities (metrics), - n? for the general case, whefe

is the storage space for a floating point value.



Once we haveD, which may also be given as the input to the algorithm, we pro-
ceed as follows. For each point in the data set (a ro@pthe distances to other
data points are ordered and the corresponding rank is wiittplace of the actual
distance, obtaining the rank matix

Now each row of this matrix should be “inverted”, that is,|@&ntents should be
swapped with the corresponding cell indexes to obtain tdexmmatrix/ listing,
for each data point, all point labels in order of distances™an be done simply
looking up ranks inR and writing point labels in the corresponding positionof
according to the definition given in Equation (3).

Clustering is now performed simply by sorting the rows of mxaf. This requires
O(n) additional space, either for row swapping or for an auxjliendex vector.
Conceptually, this sorting is done according to each colwstarting from the last
(nearest neighbors) up to the first. This procedure may Hempeed inO(n?log n)
time and requires a stable sorting algorithm. Stoppingtetirsy at depth level’
implies starting from column’ rather tham, and a decrease in time complexity to
O(nn'logn) (marginal, since presumably is proportional taz).

However, we can decrease the algorithm complexity as aifumof data cardinal-
ity, and at the same time allow for a partial clustering,stepping before reaching
a given level of the hierarchy if there is no further diversit values. This can
be obtained if we start sorting from the farthest neightoentpartially sort the
rows within each individual cluster, and so on. In the woestecthe time needed
is still O(n?logn), but on average it is probably(nlog n) or better (depending
on the data), while space requirements are at most the sabefaas. Any sorting
algorithm may now be used, without requirement of stability

If the above considerations about time and space complasetyapplied to the ac-
tual numbers presented in the experimental part (Sectionelyan appreciate that
the actual time and space requirements for real problemsaneery demanding.
In particular, as in any proximity matrix-based approatieré is no dependence
ond after the proximity matrix has been computed. Therefommfthe standpoint
of complexity, the techniqgue becomes more and more ap@tepss- is reduced,
which corresponds for instance to microarray experimeniaer and larger sets
of genes.

Pseudocode and a C language implementation are availabihe ateb address
http://mlisc.disi.unige.it/C/sfn/.

3.7 Properties of the proposed approach

In this section we highlight some features of the approa@semted and of the
resulting algorithm.
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Fig. 3. Empirical stability analysis of the nearest- andfast-neighbor criteria: histograms
of obtained partitions on 50 random data sets.

The algorithm implemented according to the above desonp$ of the “anytime”
type, since it is divisive. We can decide to stop it when therdrichy is partially
built, and obtain a usable clustering result. Usually itdsiaable to make use of
this property, so that the result is more understandable{farger clusters). It also
makes little sense to split clusters into extremely smatif@ens when the data set
is already scarce.

With respect to the position of points and to its perturbaidhe hierarchy of di-
chotomies is more stable than in hierarchical agglomerativstering algorithms.
This is because clustering is based on the largest distamasswhich the effect of
small perturbations is usually negligible, rather thantmgmallest. This is easily
demonstrated by a simple experiments on a tiny problem &vith 1 andn = 4.
The data set used {2, 4, 6, 8}. Uniform noise in the intervgl-1, +1] was added
to these points 50 times, and each time the partition reguftom applying the
nearest neighbor and the farthest neighbor criteria haga bealuated. In all the
experiments four different partitions were found with restrneighbor and tree
with farthest neighbor. We are not interested in the actagitpns, but only in the
distribution of their frequency across the 50 random samggli Therefore we have
simply labeled the partitions with letters.

Figure 3 shows that the farthest neighbor criterion is muohenstable, obtaining
the same partition on 88% of the trials, whereas the neaeggtinor criterion does
not go beyond 44% for the most frequent partition (the seaondt frequent is
obtained 34% of the time).

Another feature of the SFN technique is the following. A tduss not constrained
to be separated in exactly two sub-clusters, and the clogtstructure is therefore
allowed to fit the natural structure of data (that can be nichatomic). According
to this feature, SFN clustering is superior to agglomeeatiustering. It is more
similar to partitional clustering, although the abilitytinild a hierarchy is not found
in standard partitional techniques.
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After the proximity matrixD has been obtained, the algorithm operation (and com-
putational complexity) is independent on data dimension@n the other hand,
the dependence on the data cardinality (number of pointsptismportant, since

by design we are in the case of small cardinality. Moreovistadces in the data
space are used only for computing ranks and not for estigpdensities or approx-
imating region geometries.

An interesting property of the method is that very imbalahclesters are possible.
This is useful in the task of outlier detection. Due to ther®oin Perspective prin-
ciple, a point which is very far from other data will be put irtlaster on its own,
since it will be the common farthest neighbor of all othemsj and it will be the
only one with a different farthest neighbor. Therefore yMenbalanced clusters at
the top levels in the hierarchy are a signal of the presenoettiers.

The outlier detection property can be illustrated by logkaigain at Figure 1. Point
4 is clearly the farthest point for all other points in theadsg¢t. Accordingly, in the
table, the last row (Il Neighbor) provides a labeling thaemtifies 4 as an outlier,
since it is the only one with a different label. Outlier ars$ycan therefore be
based on the identification of a sufficiently imbalancedcttee at the top level,
with singletons or very small clusters along with othersm@ably sized clusters.

According to these features, the SFN technique is compatabhgglomerative
hierarchical clustering, and therefore applicable to tirees class of problems, es-
pecially tissue clustering in microarray experiments. ldeer, in general, many
bio-medical data analysis problems are characterizedwy-J@and the algorithm
can be successfully applied.

4 Experimental validation

4.1 Experimental setup

We have validated the SFN algorithm on genomic data anadysisnedical diag-
nosis problems, some of which are publicly available. Tine @i the experiments
is to demonstrate that the method performs comparativellywith respect to pub-
lished results (we don’t aim at proving its superior perfanoe, since this is not
reasonable) while featuring the desirable propertiesweahave listed as design
goals. The data sets used include the following.

The first problem is labele@enoa lung cancerlt is included as a verification
of consistency of the technique, since it is a real probletrhbs a very reduced
number of instances. Five patients with lung cancer have aealyzed with a DNA

microarray technique. These are preliminary results fromragoing study and are
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Fig. 4. Dendrogram obtained on the Genoa lung cancer probjeinerarchical agglomer-
ative clustering and hierarchy obtained with the SFN atboni

not publicly available. Given the very small cardinalityese data have been used
to validate the method against the results obtained wittarghical agglomerative
clustering. The problem has 1920 attributes and 5 instarcesl.21 - 10~3).

Please note that the Genoa lung cancer dataetréhe same as the Lung cancer
data set available from the UCI repository.

We have applied the technique to a set of problems for whittighed results are
available. They are described in the following, in order odvgng dimensional-
ity/cardinality ratio. The value of is also expressed, and only in the first problem
itis larger than 1.

(1) Pima Indians diabetefs1]. Pima Indians are affected by an endemic form
of diabetes, which is found with much higher frequency thawother pop-
ulations, and have agreed to be the subject of a study. Tlze atdiected
have been put in the public access on the UCI repository ohmadearn-
ing databases [52].

The problem has 768 instances, corresponding to patiestigiésns, of
which 500 classified as “Negative” and 268 as “Positive” bgst for diabetes.
There are 8 numerical attributes-£ 1.2).

(2) Wisconsin diagnostic breast canc@rewer dataset) [53]. Samples of breast
mass are microscopically analyzed. The data are obtaindaliizing an im-
age from each sample. Features describe the cell nuclarngresthe image.
These data are from the UCI repository as above.

The problem has 30 attributes and 569 instances, of whichhage& been
diagnosed as “Benign” and 212 as “Malignant™ 0.3).
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(3) Lyme diseaspb4,55]. A disease discovered in the relatively recent.palkas
initial effects on skin, then it can reach the nervous systesart, connective
tissue (Lyme arthritis). In regions where it is not endentie diversity of
signs can be confusing even to medical professionals titgirtjagnose it, if
they are not specifically trained. One of the authors has &buda this data
set, which is currently not publicly available.

The problem has 684 instances, corresponding to patiestigiésns, of
which 446 have been diagnosed as “Unaffected” and 238 ag¢adtl” by
experts (according to criteria based on clinical and bidaigobservations).
Each instance has 54 numerical attributes-(0.17).

(4) Molecular classification of leukemi@]. DNA microarray are used to char-
acterize two forms of leukemia at the molecular level (adwbephoblastic
leukemia, labeled as “ALL", and acute myeloid leukemiaglal as “AML”)
and within one of the two forms to separate two further s@sss that are not
distinguishable at the morphologic or serological levat, iave dramatically
different prognoses. There are a training set and a tedici®tavailable from
the web addredst t p: / / ww. br oad. mi t. edu/ cgi - bi n/ cancer/ dat aset s. cgi .
The problem has 7192 attributes. The training set has 38nnss, of which
27 are classified as “ALL" and 11 as “AML"(= 0.73 - 10~3), and the test set
has 34 instances, of which 20 are “ALL" and 14 are “AME"£ 0.71 - 1073).

The last problem is included to test the performance of ttlertiegue on non-metric
data. The problem is label&plice-junction Gene Sequengb6]. Splice junction
sites are pointin the genome where introns (hon-codingeseops) and exons (cod-
ing sequences) are joined together. The task is to idergligisg sites. These data
have been obtained from the UCI repository as above.

The problem has 60 categorical attributes, representiotgatides in a DNA se-
guence, that can contain at its middle point an exon-intrmumblary (labeled as
“El”), an intron-exon boundary (labeled as “IE”), or neithaf the previous (la-
beled as “Neither”). There are 3190 instances, of which 76 tkassified as “El”,
768 as “IE”, and 1655 as “Neither”.

The first experiment consists in validating the clusterieguit on the Genoa lung
cancer problem. This is to achieve a first indication thatthsters we get are rea-
sonable. This problem has a very small data cardinalityhemtimber of possible
clusterings is limited and, arguably, there is only one feot’ result.

Samples in the Genoa lung cancer dataset are individuahtified by the follow-
ing numeric labels: 1157, 1227, 3154, 3285, 3329.

Figure 4 show the dendrogram obtained with hierarchicalamgerative clustering
(left) and the hierarchical tree obtained with the SFN atpar (right). Proximity

is defined as the correlation between data vectors. Notettlahdrogram retains
proximity information in the length of the branches, whitethe hierarchical tree
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on the right this information is not present. Labels on th&l$fee are formed by
the prefix “cluster” followed by a list of numbers uniquelydadssing a cluster
within the hierarchy.

We obtain the same result in both cases. In the dendrograrheoleft, leafs are
sample labels. In the tree on the right, the cluster labehohdeaf cluster (which
in principle can contain more than one sample) is followedheaylist of contained
objects, in this case only one per cluster. By reading thegmam, we can exam-
ine the cluster containing samples 3285 and 3329 and theeclksntaining 3154
and 1157. These two clusters are almost vertically alighkt means that they are
split at different hierarchical levels only on the basis diféerence that is probably
non-significant. If the hierarchical agglomerative prasedwvere able to form clus-
ters of more than 2 objects, these would probably be at the &&ral. On the other
hand, SFN has this ability, so these two clusters are foutitkagame hierarchical
level in the SFN tree on the right.

4.2 Evaluation of experimental results

To evaluate the quality of clustering, we adopt the appradadomparing the re-
sults to a “ground truth”. This is not a common approach ingéeeral area of data
clustering, but it is the standard way to proceed in the taagelication area of
bioinformatics.

In general, the result of clustering is usually assessecherbasis of some ex-
ternal knowledge about how clusters should be structurki. hay imply evalu-
ating separation, density, connectedness, diameter,caod.However, these are
all evaluations of results against a given expectationctvimay not translate into
good performance when the method is applied to a problem[&aije importantly,
they allow clustering results to be validated against stilje hypotheses of the re-
searcher. This should be avoided if at all possible. Thelprols also discussed in
a recent editorial of the present journal [58].

The only way to assess the usefulness of a clustering resuldirect validation,

whereby clusters are applied to the solution of a problemthedcorrectness is
evaluated against objective external knowledge. thisemore is defined by Jain
and Dubes [17] as “validating clustering by extrinsic cifasation”, and has been
followed in many other studies [2, 10, 39]. We feel that thpgmach is the only
reasonable one if we don’t want to judge clustering resyltsdme cluster validity
index, which is nothing but a bias toward some preferredtetusroperty (e.g.,

compact, or well separated, or connected).

Therefore, to adopt this approach we need labeled dataveletse the external
(extrinsic) knowledge is the class information provideddlyels. The experiments
are all performed on supervised problems.
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We expect that, if the algorithm finds significant structureghe data, these will
be reflected by the distribution of classes. Therefore weatpe “calibration” [7]

step for clusters and compare them to the behavisupérviseanethods from the
literature.

The so-called calibration step consists in the following.
For each clustey:

e Count the number of patterns of each clagsall it n;;).

e Count the total number of patterns (call\t).

e Compute the proportion of patterns of each class (calkit= n;,/N;).

e Assign to the cluster the label of the most represented ¢assuch thatt =

arg;nax {pjr})-

A clusterj for which p;, = 1 for somek is usually termed a “pure” cluster, and
a purity measure can be expressed as the percentage of &emhdime assigned
class in a cluster. During this procedure we can also obtaifidence estimates,
on the basis of cluster cardinalitié§. The experimental results are then expressed
as the fraction of points falling in clusters which are laakeWith a class different
from that of the point. This quantity is expressed as a peéagenand termed “error
percentage” (indicated as “Error %” in the results).

Adopting this strategy, we cannot obtain a direct assessofahe goodness of
clusters per se; in exchange, we obtain valuable informatbmut how these clus-
ters map on the natural structure of the problem, somethiagrhay be more in-
teresting than evaluating a single or few indirect perfarogaparameters.

Regarding the evaluation method, we choose not to perfoossevalidation or
similar procedures, considering that the algorithm isitied” in a completely un-
supervised manner, and calibration already occurs (inge3em an external valida-
tion data set, that is the set of class labels. Cross-vaidat resampling methods,
however, could be very useful to assess the stability of thpgsed method, by
comparing clustering structures in repeated experiments.

Table 1 lists the published results of machine learningriggles, available at the
respective sources of the datasets.

The experimental results reported on Table 2 are obtaingar@emsPima di-
abetes Wisconsin breast cancekyme diseaseandLeukemiaall with Euclidean
distance.

Table 3 and Figure 6 show results for the splicing junctid@ssproblem.
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Table 1

Results from the literature for the experimental problesupérvised methods)

Problem Error %
Pima diabetes 24%
Wisconsin breast cancer 0%
Lyme disease 7.2%
Leukemia (training set) 0%
Splice-junction sites 6.3%
Table 2
Experimental results on probler®ma, Breast cancerLyme Leukemia
Problem Preprocessing Error %
Pima Normalized with respect to 12.40%
average/stdev
Wisconsin Normalized with respect to 5.60%
average/2*stdev
Lyme Normalized with respect to 6.00%
average/2*stdev
Leukemia None 0.00%
(training setyn = 38)
Leukemia None 6.90%
(training+test setg; = 72)

Table 3
Performance on th8plicing-junction siteproblem.
Labd Cardinality Class Purity
Cluster.1 2495 Splicing 63.8%
Cluster.1.1 902 Non-Splicing | 100.0%
Cluster.1.2 1593 Splicing 100.0%
Cluster.2 695 Non-Splicing | 100.0%

4.3 Comments to the results

The results we achieve may be compared with those obtainedifisgrvised ap-
proaches proposed in the literature (see Table 1). We magrabshat the results
are generally similar, although usually better, with thegte exception of the Wis-
consin diagnostic breast cancer problem for which a pedesskification was not

achieved.

This should be a confirmation of the validity of the methoadc®iclustering is done



Table 4
Details of clusters for the Leukemia problem

Cardinality | Clusters | Class
10 1 AML
5 1 ALL
4 1 ALL
2 5 ALL
1 4 ALL

in a completely unsupervised manner, finding that the algstecture is reasonably
mapped onto the true classes supports the hypothesis éhalgibrithm is capable
of discovering the “true” structure, the one that is inhérerdata.

In particular, the results on the Leukemia dataset showtktigamethod compares
favorably with the approach by Golub et al. [2]. For instaneben comparing

unsupervised methods, performance on the training set siBles is errorless
in our case, whereas the original Self-Organizing Map (S@pproach yielded 4
misclassified samples.

It is not easy to compare the deeper trees obtained by sthagglomerative hier-
archical clustering to those obtained with the proposedotktthat may be much
shallower and still convey significant structure, since/th&e no constraint on the
number of sub-clusters. In the case of Leukemia data, tleedepth for standard
hierarchical clustering is at least 6 (for instance, with #verage linkage method
we obtain a tree depth of 9). For SFN, splitting stopped atlldy although only
1 cluster was split up to the fourth level, whereas 11 clgstgth no further sub-
structure were present at level 1. Calibration itself isanatell-defined process for
a binary tree, since the structure of clusters is not relaigtie depth of the tree,
but rather to the linkage value. The tree should thereforeub¢o a given linkage
value before assigning class labels and computing perfacenendexes (e.g. clus-
ter purity). As already noted, to find this value we need toargeria that are, at
least to a certain extent, arbitrary.

We can comment further on the clusters obtained by takingiat® account the
class labels, that are “ALL” for 27 acute lymphoblastic leaka patients and “AML”
for 11 acute myeloid leukemia. The distribution of cardityaghmong the clusters
at level 1 is as detailed in Table 4.

To allow for a comparison with the originally presented fes(obtained with a
SOM, therefore non-hierarchical), we have also plotteddpeevel clusters using
the same conventions as in Reference [2]. See Figure 5.

All leaf clusters (those which are not further split) areguhat is, homogeneous
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Fig. 5. Top-level clusters obtained for the Leukemia prohle@resented with the same
conventions as in Reference [2]. Note that the first clustert is not homogeneous, is
further split into homogeneous sub-clusters (not shown).

with respect to the diagnosis. The single cluster havingeéestructure has cardi-
nality 5 and contains one data object of class AML; its pulétyel as defined in
Subsection 4.2 is therefore 80%. (Note that its sub-clastethe leaf level are all
pure.) All other AML are in the largest level 1 cluster, theeamith cardinality 10.

This suggests a structure in data whereby AML profiles areebeharacterized
than ALL profiles. This is clearly true when we notice thatrthare two sub-classes
of ALL, which are T-cell ALL and B-cell ALL.

The distribution in general is well represented by a panii clustering (this is
a confirmation of the already good result obtained by Goludl.ewith the SOM
approach), however there is a subset of the data that neesspardstructure for
adequate representation. After the calibration step, welss this subset contains
a sample diagnosed as AML that is correctly separated fraother samples.
Cluster structure is again confirmed by the class labels.

The splice-junction sites problem is of a different natuinethat it involves non-
metric data, i.e., strings of DNA sequences, 60 bases lodgeantered around the
candidate splicing site. We use the (generalized) Hammistgrite, defined as the
number of mismatches between bases in correspondinggras(only the 40 cen-
tral bases have been considered). We also simplify the @mobly discriminating
splicing/non-splicing sites, without distinction betweEl and IE boundaries, ob-
taining a dichotomic classification problem. However trogslnot affect our ability
to compare the results with those from the literature, sthese are reported with
error percentages class by class, and therefore it is pessibggregate them.

Here the result is very good: Figure 6 illustrates the h@rarobtained (graphics

from a program by the authors). Fixing the maximum level ah®, structure is
very simple, with a cluster further split into two sub-clerst and another cluster
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Fig. 6. Hierarchy obtained on the splice-junction sitesbfgm. The cluster in slanted font
is further split into sub-clusters.

without sub-clusters. Clusters at the deepest level (lesters) are all pure, and
the resulting classification, after performing the calilona step, is errorless, as
indicated in the figure.

These data should be compared to results of other methodse$hlts reported in
the accompanying documentation to the data set are all fopersised techniques.
No supervised method is reported as capable of errorlefsrpemce.

Comparison with centroid-based clustering methddé/1éans) is not possible,
since a proper centroid (barycenter) is not obtainable fnmm-metric data. It is
also difficult to compare the obtained tree to that given leystandard agglomera-
tive hierarchical methods, since, in contrast to the Geuaog tancer problem, here
the cardinality is high as an absolute value (although\stily low when related to
the dimensionality). Trees obtained with these methodisbeiimuch deeper; they
may or may not be comparable to the one presented, and, iflsoafter extracting
significant clusters by pruning the tree at an appropriatel Jas already indicated.

5 Conclusion

The clustering algorithm presented here is based on a navelfe of operation,
and as such has properties not found in other more commoatymgthods. With
respect to standard hierarchical agglomerative clugjeniaethods:

e top-down, rather than bottom-up operation; hence thetgloifistopping cluster-
ing at a given level in the hierarchy;
e clusters are non-dichotomic, so that the resulting tre¢hdeyay be much lower.

With respect to partitional methods:

e itis not centroid-based;

e complexity is independent of data dimensionality;

¢ local anomalies found in the Shared Near Neighbors appr@axhcoped with
by setting user parameters, here are not present due thatiopdvased on far-
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thest points.

It is especially designed for the analysis of data sets wijh dimensionality-to-
cardinality ratio, and is therefore well suited to DNA miarcay data analysis, as
demonstrated by the experiments. However it is more gdgexpplicable in the
field of biomedical data analysis, where these conditiossadien met, and this
was also experimentally shown in the present work.

We have observed that, similarly to the Jarvis-Patrick @ilgm, the method pre-
sented may yield small or singleton clusters. This happepsaally when data
cardinality grows. Future developments include criteviacontrolling the prolifer-
ation of singletons (cluster validity), but also applicais of this property to outlier
detection.
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