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Abstract

Clustering algorithms are routinely used in biomedical disciplines, and are a basic tool in
bioinformatics. Depending on the task at hand, there are twomost popular options, the cen-
tral partitional techniques and the Agglomerative Hierarchical Clustering techniques and
their derivatives. These methods are well studied and well established. However, both cate-
gories have some drawbacks related to data dimensionality (for partitional algorithms) and
to the bottom-up structure (for hierarchical agglomerative algorithms). To overcome these
limitations, motivated by the problem of gene expression analysis with DNA microarrays,
we present a hierarchical clustering algorithm based on a completely different principle,
which is the analysis of sharedfarthest neighbors. We present a framework for clustering
using ranks and indexes, and introduce the Shared Farthest Neighbors clustering criterion.
We illustrate the properties of the method and present experimental results on different data
sets, using the strategy of evaluating data clustering by extrinsic knowledge given by class
labels.

1 Introduction

Data clustering is a routine step in biological data analysis, and a basic tool in bioin-
formatics [1–4]. Depending on the task at hand, there are twomost popular options,
provided by several commercial or professional systems, like Cluster/Treeview [5],
Agilent GeneSpring2 , Data Mining Tool by Affymetrix3 , often with the additional
choice of one or two less common techniques.

1 Corresponding author. E-mail: rovetta@disi.unige.it. Phone: +39 010 353 6636. Fax:
+39 010 353 6699.
2 http://www.chem.agilent.com/scripts/pds.asp?lpage=37147
3 http://www.affymetrix.com/products/software/index.affx
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When the data cardinalityn is high and the dimensionalityd is not very large, it
is possible to use iterative, partitional algorithms such ask-Means [6] or one of its
many variations (a frequent choice is Self Organizing Maps [7], which continues
to be used as a clustering method). When data dimensionalityis very large, or
the number observations is comparatively small, then hierarchical agglomerative
algorithms are normally used [5].

The set of available tools is often limited to these categories only, probably because
they are available in widespread software and, in the case ofhierarchical agglom-
erative clustering, they can be easily interpreted and giverise to visually appealing
representations like dendrograms [8] or color diagrams [5]. As a matter of fact,
also other techniques like Spectral Clustering [9,10] seemquite adequate for tasks
in bioinformatics [11].

However, both categories have some drawbacks related to data dimensionality (for
partitional methods) and to the bottom-up structure (for hierarchical agglomerative
methods) [12].

The objective of this paper is to introduce the Shared Farthest Neighbors cluster-
ing technique, a hierarchical clustering algorithm based on a novel agglomeration
principle.

The proposed method is motivated by a typical unsupervised problem in bioin-
formatics: clustering of tissue profiles or cell lines in microarray analysis of gene
expression. Its applicability and its properties will be illustrated on a selection of
diverse problems in the biomedical disciplines.

The approach shares some similarities with Jarvis-Patrickclustering [13], which
however is based on the analysis of sharednearest neighborsand is not a hierarchi-
cal method.

We apply a validation method which is not typical of methodological research in
the general field of data clustering, but rather of the specific application area of
bioinformatics and medicine: namely, we compare the clustering result to super-
vised information available for the problems.

This paper is structured as follows. Section 2 describes dimensionality issues in
data clustering and how rank-based techniques can be applied. Section 3 introduces
the Shared Farthest Neighbor technique and Section 4 reports on the experimental
verification. The last section summarizes the results and draws conclusions about
the presented method.
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2 Properties of clustering techniques

2.1 Clustering problems in genomic data analysis

We are given a set ofn experimental observationsX = {x1, x2, · · · , xn}, where
each observation comprisesd observed variablesxi = {xi1, xi2, . . . , xid}. Suppose
further that we are given a proximity criterion to evaluate the data, either in the
form of a proximity functionδ(x, y) (distance or similarity) or as ad×d proximity
matrixD.

We are addressing low-cardinality, high-dimensionality tasks and we need to es-
tablish parameters to decide whether we are in this scenario. Deciding whether
the cardinality of a given data set is large or small is a problem-dependent task
[14–16]. However, we propose the following, arbitrary criterion: we examine the
ratior = log2 n/d (obviouslyn ≥ 2). We can assume that cardinality is (relatively)
high whenr >> 1. For r around or below unity, we are in the low-dimensional,
high cardinality case.

Under these assumptions, it is easy to see that typical problems in tissue clustering
with DNA microarray gene expression data fall in this category. With reference to
the two problems described in the experimental part (see Section 4 for details), we
have for the Leukemia problem,d = 7192 andn = 72 (r = 0.86 · 10−3), and for
the Genoa lung cancer problem,d = 1920 andn = 5 (r = 1.21 · 10−3). As we can
infer from numbers, gene clustering can be an easier problemfrom the standpoint
of dimensionality, sinced andn should be transposed.

2.2 A brief review of some clustering techniques

There is a vast literature about data clustering, and excellent reviews and introduc-
tions to the topic are provided in [6,17,18].

Partitional clustering methods [17–24] are usually based on centroids. They are
especially suited to the case of small number of centroids and a sufficient number
of data objects. The issue here is local minima. Available remedies include using
fuzzy memberships [21, 25] and on-line optimization [26, 27]. In the general case
of biomedical data, where observations are costly, and especially in microarray
experiments, many variables are observed in relatively fewexperiments. This raises
the issue of the curse of dimensionality [19,28].

In some cases (with very lowr) n is even less thand. The data span only a sub-
space of the data space. In these conditions, it is not even easy to define the concept
of density. This makesk-Means type techniques typically adequate for clustering
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variables across experiments (e.g., gene clustering), rather than clustering exper-
iments. There have been many efforts in solving the dimensionality problem for
clustering [29]. Another drawback is related to the problemof model order selec-
tion (number of clusters).

With reference to hierarchical methods [30–32], divisive approaches [18] can gen-
erally exploit more global information in data with respectto agglomerative meth-
ods [17], and therefore yield better quality models. However bottom-up methods
are generally more time-efficient.

The standard hierarchical approach does not require the selection of model order,
simply because it makes no attempt at defining clusters. Cophenetic proximity ma-
trix analysis [17], or agglomerative coefficients [18] are needed for an a-posteriori
estimate.

Another, related problem is that the taxonomy obtained is not very stable. Usually
this problem is tackled with resampling approaches [33,34], or simply by trying all
possible combinations of parameters available in the specific software used [35].

Clusters based on distances also suffer from the nonintuitive fact [36] that, when
space dimensionality is high or even moderate (as low as 10-15), the distance of a
query pointx0 to its farthest neighborxFN and to its nearest neighborxNN tend to
become statistically equal:

lim
d→∞

P {δ(x0, xNN) = δ(x0, xFN)} = 1. (1)

This causes the actual distance values, and the concept of “nearest neighbor” itself,
to become less and less meaningful with growing dimensionality. This last obser-
vation has been described as the “boundary phenomenon” in [37]. See also [38].

Finally, agglomerative algorithms cannot produce a partial (rough) result, to be
refined only if needed (“anytime” algorithms in the data mining jargon).

3 Shared farthest Neighbors: principle of operation, algorithm, and proper-
ties

3.1 Design goals for a rank-based clustering method

Based on the previous discussion, we summarize our main design goals (similar
sets of design goals have been outlined for instance in [39]).

To avoid the model order selection problem, we should designa hierarchical method.
Hierarchical techniques often provide easier interpretation.
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At the same time, it should allow for more than two objects at any level in the
hierarchy. Interpretation is even easier if the hierarchy depth is reduced by allowing
for splits that are more than dichotomic.

The procedure will be divisive rather than agglomerative. In this way, the criterion
used to divide each cluster into (possibly more than two) sub-clusters provides an
indication of the “appropriate” number of clusters for thatlevel in the hierarchy,
although assessing that this number is the true number of natural clusters would
typically require further analysis.

3.2 Use of the proximity matrix

Whend is large butn is comparatively small it is known that clustering based on
a proximity matrix [17] may be preferable. It is an efficient way to reduce the di-
mensionality of the working space fromd to n, since a proximity matrixD can be
interpreted as an embedding of a set ofn data vectors in a space of dimensionn.
Kernel methods [40,41] are also a generalization of the concept of proximity. Stud-
ies [42] show how methods exploiting proximity informationare able to perform
better than generally expected. In some applications data may be directly available
in the form of a proximity matrix [43].

The only assumptions we will make about the proximity function δ is that it is
defined for all pairs of objects inX and it is reflexive (δ(x, x) = 0 ∀x ∈ X).

3.3 The rank matrix and the index matrix

Proximity data may not be reliable. In microarray experiments, sources of error
include contamination due to washing, imperfect hybridization, variations of hy-
bridization level across different chips, noise in the optical acquisition, effects of
normalization method and parameters.D may also contain non significant infor-
mation due to arbitrary design choices or ambiguous data.

To increase robustness, we can mapD intoRδ, the rank matrix induced by the prox-
imity δ. The rankρδ(xi, xj , X) is the position of objectxj in the list of all objects
in X sorted by their proximity toxi, δ(xi, xj). The matrixRδ, a transformation of
the proximity matrix, is a proximity matrix itself; it is therefore another possible
embedding of the data setX. (From now on, sinceX andδ are given, we simplify
the notation by writingρδ(xi, xj , X) = ρij andRδ = R.)

This change in measurement level, from metric to ordinal, induces a loss of in-
formation that may or may not be significant. Other examples of this technique
include Spearman’s rank-correlation indexrs [44], Kendall’s correlation indexτ
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and coefficient of concordanceW [45], and Goodman and Kruskal’sγ association
statistics [46].

R provides a new representation of data objectxi as the rank vectorri, thei-th row
of R:

ri = [ρi1, ρi2, . . . , ρin] . (2)

The rank matrixR can thus be considered as a transformed data setR = {r1, r2, . . . , rn};
clustering will be based on grouping objects by similarity of their rank vectorsri,
and the specific clustering criterion depends on the definition of this new proximity
measure between rank vectors. We also define the index matrixI listing, for each
object, the inexes of all objects in order of distance:

Iiρij
= n − j + 1, (3)

In the first position we have the index of the point with maximum rank (the farthest
pointxFN), in the(n− 1)-th position the index of the nearest pointxNN, and in the
n-th position the indexi of the pointxi itself.

3.4 Techniques based on rank or index

The matricesR and I convey essentially the same information; their use influ-
ences the algorithmic implementation of clustering methods, rather than the meth-
ods themselves. Usually rank-based methods are intended tobe applied after a clus-
tering has been obtained, as validity criteria, due to theircomputational weight. A
clear example of this is Hubert’sΓ statistics [47] [17] or Kendall’s coefficient of
concordanceW as a cluster validity index [48], for which partitions ofX should
be exhaustively investigated.

Techniques based on theR mapping are presented in [49], for an iterative proce-
dure, and in [50] for a rank-based hierarchical method. It should be noted that a
simplified rank analysis is provided by methods based on nearest neighbors. An in-
teresting related method is the Shared Near Neighbors (SNN)clustering by Jarvis
and Patrick [13]. HereI is partitioned according to the following principle: the last
k components of patternsIi andIj

{

Iin, Ii(n−1), . . . , Ii(n−k+1)

}

(4)
{

Ijn, Ij(n−1), . . . , Ij(n−k+1)

}

(5)

are compared, andxi andxj are in the same cluster if at leastkQ indexes are com-
mon to these two sub-patterns of lengthk. The parametersk andkQ depend on the
application and on the data, have to be selected by the user, andkQ imposes a bias
toward elongated (kQ → 1) or globular (kQ → k) cluster shapes.
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1
2

3

4

Data points 1 2 3 4

I Neighbor 3 1 1 3

II Neighbor 2 3 2 2

III Neighbor 4 4 4 1

Fig. 1. An example data set to illustrate the “Points in perspective” principle. For each point
the table lists the distance ranks of all other points.

The Jarvis-Patrick method is based on the consideration that points sharing the
same near neighbors should belong to the same cluster. However this approach is
not necessarily reliable for very sparse data.

The SNN produces the following odd result. The higher the rank of neighbors, the
larger their “agglomerative” significance. Two points thatare very close to each
other and distant to other data points should be considered as a good cluster. But
since the (first) nearest neighbor of either point is the other point, the first nearest
neighbor isalways different. This of course is not a major drawback (SNN simply
countsk > 1 neighbors), but it offers some evidence that the principle itself may
be only partially justified.

As a last remark, we recall that we are interested in a hierarchical method, and
SNN provides only partitional clustering, although in the original presentation the
authors suggest repeated applications of the method to obtain tree-structured clus-
ters.

3.5 The “Points in Perspective” principle

We propose to adopt the following principle of operation:Two points should be
considered similar if they share the same farthest point among all remaining data.
We term this the “Points in Perspective” principle, since the points are examined
not with reference to their neighborhood (locally), but with reference to far-away
points in the data set, therefore in perspective. The example shown in Figure 1
clarifies the approach.
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Fig. 2. The example data set clustered according to the proposed method.

The proposed “Points in Perspective” principle of operation yields a hierarchical
clustering procedure, which proceeds as follows. First,D is computed or obtained
as input. Then,R is computed fromD andI from R.

All points sharing the same farthest point are in the same cluster of level 1. So, a
cluster in the first level is defined as the set of points with the same value in the first
column ofI. In general, at levell, thek-th cluster is defined as

Xlk = {xi ∈ X|Iil = vk} . (6)

The procedure is recursively repeated until no further differentiation is found (all
points within a levell − 1 cluster share the samel-th farthest neighbor), or until a
predefined maximum level is reached.

We term this techniqueShared Farthest Neighborclustering (SFN). The example
shown in Figure 2 illustrated the result of applying the SFN procedure to the data
of Figure 1.

3.6 Algorithm structure and complexity considerations

Here a proposed implementation of the SFN algorithm is sketched. The algorithm
starts by computing the proximity matrixD. This is the phase where, if required, we
can take care of missing data by adequately definingδ. From the time complexity
standpoint, computation of the proximity matrixD is the most demanding part of
the algorithm, requiringk(d) · O(n2) time (andO(n2) space) for a proximity com-
putation requiringk(d) time for a pair of data objects. For instance,k(d) = O(d)
for a large number of proximities, including Euclidean distance and all Minkowski
metrics, Hamming distance, cosine distance, and many others. The space required
is f ·n2/2 for symmetric proximities (metrics),f ·n2 for the general case, wheref
is the storage space for a floating point value.
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Once we haveD, which may also be given as the input to the algorithm, we pro-
ceed as follows. For each point in the data set (a row ofD) the distances to other
data points are ordered and the corresponding rank is written in place of the actual
distance, obtaining the rank matrixR.

Now each row of this matrix should be “inverted”, that is, cell contents should be
swapped with the corresponding cell indexes to obtain the index matrixI listing,
for each data point, all point labels in order of distance. This can be done simply
looking up ranks inR and writing point labels in the corresponding position ofX
according to the definition given in Equation (3).

Clustering is now performed simply by sorting the rows of matrix I. This requires
O(n) additional space, either for row swapping or for an auxiliary index vector.
Conceptually, this sorting is done according to each column, starting from the last
(nearest neighbors) up to the first. This procedure may be performed inO(n2 log n)
time and requires a stable sorting algorithm. Stopping clustering at depth leveln′

implies starting from columnn′ rather thann, and a decrease in time complexity to
O(nn′ log n) (marginal, since presumablyn′ is proportional ton).

However, we can decrease the algorithm complexity as a function of data cardinal-
ity, and at the same time allow for a partial clustering, i.e.stopping before reaching
a given level of the hierarchy if there is no further diversity in values. This can
be obtained if we start sorting from the farthest neighbor, then partially sort the
rows within each individual cluster, and so on. In the worst case the time needed
is still O(n2 log n), but on average it is probablyO(n log2 n) or better (depending
on the data), while space requirements are at most the same asbefore. Any sorting
algorithm may now be used, without requirement of stability.

If the above considerations about time and space complexityare applied to the ac-
tual numbers presented in the experimental part (Section 4), we can appreciate that
the actual time and space requirements for real problems arenot very demanding.
In particular, as in any proximity matrix-based approach, there is no dependence
ond after the proximity matrix has been computed. Therefore, from the standpoint
of complexity, the technique becomes more and more appropriate asr is reduced,
which corresponds for instance to microarray experiments on larger and larger sets
of genes.

Pseudocode and a C language implementation are available atthe web address
http://mlsc.disi.unige.it/C/sfn/.

3.7 Properties of the proposed approach

In this section we highlight some features of the approach presented and of the
resulting algorithm.
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Fig. 3. Empirical stability analysis of the nearest- and farthest-neighbor criteria: histograms
of obtained partitions on 50 random data sets.

The algorithm implemented according to the above description is of the “anytime”
type, since it is divisive. We can decide to stop it when the hierarchy is partially
built, and obtain a usable clustering result. Usually it is advisable to make use of
this property, so that the result is more understandable (fewer larger clusters). It also
makes little sense to split clusters into extremely small partitions when the data set
is already scarce.

With respect to the position of points and to its perturbations, the hierarchy of di-
chotomies is more stable than in hierarchical agglomerative clustering algorithms.
This is because clustering is based on the largest distances, over which the effect of
small perturbations is usually negligible, rather than on the smallest. This is easily
demonstrated by a simple experiments on a tiny problem withd = 1 andn = 4.
The data set used is{2, 4, 6, 8}. Uniform noise in the interval[−1, +1] was added
to these points 50 times, and each time the partition resulting from applying the
nearest neighbor and the farthest neighbor criteria have been evaluated. In all the
experiments four different partitions were found with nearest neighbor and tree
with farthest neighbor. We are not interested in the actual partitions, but only in the
distribution of their frequency across the 50 random samplings. Therefore we have
simply labeled the partitions with letters.

Figure 3 shows that the farthest neighbor criterion is much more stable, obtaining
the same partition on 88% of the trials, whereas the nearest neighbor criterion does
not go beyond 44% for the most frequent partition (the secondmost frequent is
obtained 34% of the time).

Another feature of the SFN technique is the following. A cluster is not constrained
to be separated in exactly two sub-clusters, and the clustering structure is therefore
allowed to fit the natural structure of data (that can be non-dichotomic). According
to this feature, SFN clustering is superior to agglomerative clustering. It is more
similar to partitional clustering, although the ability tobuild a hierarchy is not found
in standard partitional techniques.
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After the proximity matrixD has been obtained, the algorithm operation (and com-
putational complexity) is independent on data dimensionality. On the other hand,
the dependence on the data cardinality (number of points) isnot important, since
by design we are in the case of small cardinality. Moreover, distances in the data
space are used only for computing ranks and not for estimating densities or approx-
imating region geometries.

An interesting property of the method is that very imbalanced clusters are possible.
This is useful in the task of outlier detection. Due to the Points in Perspective prin-
ciple, a point which is very far from other data will be put in acluster on its own,
since it will be the common farthest neighbor of all other points, and it will be the
only one with a different farthest neighbor. Therefore, very imbalanced clusters at
the top levels in the hierarchy are a signal of the presence ofoutliers.

The outlier detection property can be illustrated by looking again at Figure 1. Point
4 is clearly the farthest point for all other points in the data set. Accordingly, in the
table, the last row (III Neighbor) provides a labeling that identifies 4 as an outlier,
since it is the only one with a different label. Outlier analysis can therefore be
based on the identification of a sufficiently imbalanced structure at the top level,
with singletons or very small clusters along with other, reasonably sized clusters.

According to these features, the SFN technique is comparable to agglomerative
hierarchical clustering, and therefore applicable to the same class of problems, es-
pecially tissue clustering in microarray experiments. However, in general, many
bio-medical data analysis problems are characterized by low r, and the algorithm
can be successfully applied.

4 Experimental validation

4.1 Experimental setup

We have validated the SFN algorithm on genomic data analysisand medical diag-
nosis problems, some of which are publicly available. The aim of the experiments
is to demonstrate that the method performs comparatively well with respect to pub-
lished results (we don’t aim at proving its superior performance, since this is not
reasonable) while featuring the desirable properties thatwe have listed as design
goals. The data sets used include the following.

The first problem is labeledGenoa lung cancer. It is included as a verification
of consistency of the technique, since it is a real problem but has a very reduced
number of instances. Five patients with lung cancer have been analyzed with a DNA
microarray technique. These are preliminary results from an on-going study and are
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Fig. 4. Dendrogram obtained on the Genoa lung cancer problemby hierarchical agglomer-
ative clustering and hierarchy obtained with the SFN algorithm.

not publicly available. Given the very small cardinality, these data have been used
to validate the method against the results obtained with hierarchical agglomerative
clustering. The problem has 1920 attributes and 5 instances(r = 1.21 · 10−3).

Please note that the Genoa lung cancer data arenot the same as the Lung cancer
data set available from the UCI repository.

We have applied the technique to a set of problems for which published results are
available. They are described in the following, in order of growing dimensional-
ity/cardinality ratio. The value ofr is also expressed, and only in the first problem
it is larger than 1.

(1) Pima Indians diabetes[51]. Pima Indians are affected by an endemic form
of diabetes, which is found with much higher frequency than in other pop-
ulations, and have agreed to be the subject of a study. The data collected
have been put in the public access on the UCI repository of machine learn-
ing databases [52].

The problem has 768 instances, corresponding to patient descriptions, of
which 500 classified as “Negative” and 268 as “Positive” by a test for diabetes.
There are 8 numerical attributes (r = 1.2).

(2) Wisconsin diagnostic breast cancer(newer dataset) [53]. Samples of breast
mass are microscopically analyzed. The data are obtained bydigitizing an im-
age from each sample. Features describe the cell nuclei present in the image.
These data are from the UCI repository as above.

The problem has 30 attributes and 569 instances, of which 357have been
diagnosed as “Benign” and 212 as “Malignant” (r = 0.3).
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(3) Lyme disease[54,55]. A disease discovered in the relatively recent past. It has
initial effects on skin, then it can reach the nervous system, heart, connective
tissue (Lyme arthritis). In regions where it is not endemic,the diversity of
signs can be confusing even to medical professionals tryingto diagnose it, if
they are not specifically trained. One of the authors has worked on this data
set, which is currently not publicly available.

The problem has 684 instances, corresponding to patient descriptions, of
which 446 have been diagnosed as “Unaffected” and 238 as “Affected” by
experts (according to criteria based on clinical and biological observations).
Each instance has 54 numerical attributes (r = 0.17).

(4) Molecular classification of leukemia[2]. DNA microarray are used to char-
acterize two forms of leukemia at the molecular level (acutelymphoblastic
leukemia, labeled as “ALL”, and acute myeloid leukemia, labeled as “AML”)
and within one of the two forms to separate two further sub-classes that are not
distinguishable at the morphologic or serological level, but have dramatically
different prognoses. There are a training set and a test set,both available from
the web addresshttp://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.
The problem has 7192 attributes. The training set has 38 instances, of which
27 are classified as “ALL” and 11 as “AML” (r = 0.73 · 10−3), and the test set
has 34 instances, of which 20 are “ALL” and 14 are “AML” (r = 0.71 · 10−3).

The last problem is included to test the performance of the technique on non-metric
data. The problem is labeledSplice-junction Gene Sequences[56]. Splice junction
sites are point in the genome where introns (non-coding sequences) and exons (cod-
ing sequences) are joined together. The task is to identify splicing sites. These data
have been obtained from the UCI repository as above.

The problem has 60 categorical attributes, representing nucleotides in a DNA se-
quence, that can contain at its middle point an exon-intron boundary (labeled as
“EI”), an intron-exon boundary (labeled as “IE”), or neither of the previous (la-
beled as “Neither”). There are 3190 instances, of which 767 are classified as “EI”,
768 as “IE”, and 1655 as “Neither”.

The first experiment consists in validating the clustering result on the Genoa lung
cancer problem. This is to achieve a first indication that theclusters we get are rea-
sonable. This problem has a very small data cardinality, so the number of possible
clusterings is limited and, arguably, there is only one “correct” result.

Samples in the Genoa lung cancer dataset are individually identified by the follow-
ing numeric labels: 1157, 1227, 3154, 3285, 3329.

Figure 4 show the dendrogram obtained with hierarchical agglomerative clustering
(left) and the hierarchical tree obtained with the SFN algorithm (right). Proximity
is defined as the correlation between data vectors. Note thata dendrogram retains
proximity information in the length of the branches, while in the hierarchical tree
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on the right this information is not present. Labels on the SFN tree are formed by
the prefix “cluster” followed by a list of numbers uniquely addressing a cluster
within the hierarchy.

We obtain the same result in both cases. In the dendrogram on the left, leafs are
sample labels. In the tree on the right, the cluster label of each leaf cluster (which
in principle can contain more than one sample) is followed bythe list of contained
objects, in this case only one per cluster. By reading the dendrogram, we can exam-
ine the cluster containing samples 3285 and 3329 and the cluster containing 3154
and 1157. These two clusters are almost vertically aligned.This means that they are
split at different hierarchical levels only on the basis of adifference that is probably
non-significant. If the hierarchical agglomerative procedure were able to form clus-
ters of more than 2 objects, these would probably be at the same level. On the other
hand, SFN has this ability, so these two clusters are found atthe same hierarchical
level in the SFN tree on the right.

4.2 Evaluation of experimental results

To evaluate the quality of clustering, we adopt the approachof comparing the re-
sults to a “ground truth”. This is not a common approach in thegeneral area of data
clustering, but it is the standard way to proceed in the target application area of
bioinformatics.

In general, the result of clustering is usually assessed on the basis of some ex-
ternal knowledge about how clusters should be structured. This may imply evalu-
ating separation, density, connectedness, diameter, and so on. However, these are
all evaluations of results against a given expectation, which may not translate into
good performance when the method is applied to a problem [57]. More importantly,
they allow clustering results to be validated against subjective hypotheses of the re-
searcher. This should be avoided if at all possible. The problem is also discussed in
a recent editorial of the present journal [58].

The only way to assess the usefulness of a clustering result is indirect validation,
whereby clusters are applied to the solution of a problem andthe correctness is
evaluated against objective external knowledge. this procedure is defined by Jain
and Dubes [17] as “validating clustering by extrinsic classification”, and has been
followed in many other studies [2, 10, 39]. We feel that this approach is the only
reasonable one if we don’t want to judge clustering results by some cluster validity
index, which is nothing but a bias toward some preferred cluster property (e.g.,
compact, or well separated, or connected).

Therefore, to adopt this approach we need labeled data sets,where the external
(extrinsic) knowledge is the class information provided bylabels. The experiments
are all performed on supervised problems.
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We expect that, if the algorithm finds significant structuresin the data, these will
be reflected by the distribution of classes. Therefore we operate a “calibration” [7]
step for clusters and compare them to the behavior ofsupervisedmethods from the
literature.

The so-called calibration step consists in the following.

For each clusterj:

• Count the number of patterns of each classk (call it njk).
• Count the total number of patterns (call itNj).
• Compute the proportion of patterns of each class (call itpjk = njk/Nj).
• Assign to the cluster the label of the most represented class(ck such thatk =

argmax
k

{pjk}).

A clusterj for which pjk = 1 for somek is usually termed a “pure” cluster, and
a purity measure can be expressed as the percentage of elements of the assigned
class in a cluster. During this procedure we can also obtain confidence estimates,
on the basis of cluster cardinalitiesNj . The experimental results are then expressed
as the fraction of points falling in clusters which are labeled with a class different
from that of the point. This quantity is expressed as a percentage and termed “error
percentage” (indicated as “Error %” in the results).

Adopting this strategy, we cannot obtain a direct assessment of the goodness of
clusters per se; in exchange, we obtain valuable information about how these clus-
ters map on the natural structure of the problem, something that may be more in-
teresting than evaluating a single or few indirect performance parameters.

Regarding the evaluation method, we choose not to perform cross-validation or
similar procedures, considering that the algorithm is “trained” in a completely un-
supervised manner, and calibration already occurs (in a sense) on an external valida-
tion data set, that is the set of class labels. Cross-validation or resampling methods,
however, could be very useful to assess the stability of the proposed method, by
comparing clustering structures in repeated experiments.

Table 1 lists the published results of machine learning techniques, available at the
respective sources of the datasets.

The experimental results reported on Table 2 are obtained onproblemsPima di-
abetes, Wisconsin breast cancer, Lyme disease, andLeukemia, all with Euclidean
distance.

Table 3 and Figure 6 show results for the splicing junction sites problem.
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Table 1
Results from the literature for the experimental problems (supervised methods)

Problem Error %

Pima diabetes 24%

Wisconsin breast cancer 0%

Lyme disease 7.2%

Leukemia (training set) 0%

Splice-junction sites 6.3%

Table 2
Experimental results on problemsPima, Breast cancer, Lyme, Leukemia

Problem Preprocessing Error %

Pima Normalized with respect to
average/stdev

12.40%

Wisconsin Normalized with respect to
average/2*stdev

5.60%

Lyme Normalized with respect to
average/2*stdev

6.00%

Leukemia
(training set,n = 38)

None 0.00%

Leukemia
(training+test sets,n = 72)

None 6.90%

Table 3
Performance on theSplicing-junction sitesproblem.

Label Cardinality Class Purity

Cluster.1 2495 Splicing 63.8%

Cluster.1.1 902 Non-Splicing 100.0%

Cluster.1.2 1593 Splicing 100.0%

Cluster.2 695 Non-Splicing 100.0%

4.3 Comments to the results

The results we achieve may be compared with those obtained bysupervised ap-
proaches proposed in the literature (see Table 1). We may observe that the results
are generally similar, although usually better, with the single exception of the Wis-
consin diagnostic breast cancer problem for which a perfectclassification was not
achieved.

This should be a confirmation of the validity of the method. Since clustering is done
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Table 4
Details of clusters for the Leukemia problem

Cardinality Clusters Class

10 1 AML

5 1 ALL

4 1 ALL

2 5 ALL

1 4 ALL

in a completely unsupervised manner, finding that the cluster structure is reasonably
mapped onto the true classes supports the hypothesis that the algorithm is capable
of discovering the “true” structure, the one that is inherent in data.

In particular, the results on the Leukemia dataset show thatthe method compares
favorably with the approach by Golub et al. [2]. For instance, when comparing
unsupervised methods, performance on the training set of 38samples is errorless
in our case, whereas the original Self-Organizing Map (SOM)approach yielded 4
misclassified samples.

It is not easy to compare the deeper trees obtained by standard agglomerative hier-
archical clustering to those obtained with the proposed method, that may be much
shallower and still convey significant structure, since they have no constraint on the
number of sub-clusters. In the case of Leukemia data, the tree depth for standard
hierarchical clustering is at least 6 (for instance, with the average linkage method
we obtain a tree depth of 9). For SFN, splitting stopped at level 4, although only
1 cluster was split up to the fourth level, whereas 11 clusters with no further sub-
structure were present at level 1. Calibration itself is nota well-defined process for
a binary tree, since the structure of clusters is not relatedto the depth of the tree,
but rather to the linkage value. The tree should therefore becut to a given linkage
value before assigning class labels and computing performance indexes (e.g. clus-
ter purity). As already noted, to find this value we need to usecriteria that are, at
least to a certain extent, arbitrary.

We can comment further on the clusters obtained by taking also into account the
class labels, that are “ALL” for 27 acute lymphoblastic leukemia patients and “AML”
for 11 acute myeloid leukemia. The distribution of cardinality among the clusters
at level 1 is as detailed in Table 4.

To allow for a comparison with the originally presented results (obtained with a
SOM, therefore non-hierarchical), we have also plotted thetop-level clusters using
the same conventions as in Reference [2]. See Figure 5.

All leaf clusters (those which are not further split) are pure, that is, homogeneous
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Fig. 5. Top-level clusters obtained for the Leukemia problem, presented with the same
conventions as in Reference [2]. Note that the first cluster,that is not homogeneous, is
further split into homogeneous sub-clusters (not shown).

with respect to the diagnosis. The single cluster having deeper structure has cardi-
nality 5 and contains one data object of class AML; its puritylevel as defined in
Subsection 4.2 is therefore 80%. (Note that its sub-clusters at the leaf level are all
pure.) All other AML are in the largest level 1 cluster, the one with cardinality 10.

This suggests a structure in data whereby AML profiles are better characterized
than ALL profiles. This is clearly true when we notice that there are two sub-classes
of ALL, which are T-cell ALL and B-cell ALL.

The distribution in general is well represented by a partitional clustering (this is
a confirmation of the already good result obtained by Golub etal. with the SOM
approach), however there is a subset of the data that needs a deeper structure for
adequate representation. After the calibration step, we see that this subset contains
a sample diagnosed as AML that is correctly separated from the other samples.
Cluster structure is again confirmed by the class labels.

The splice-junction sites problem is of a different nature,in that it involves non-
metric data, i.e., strings of DNA sequences, 60 bases long and centered around the
candidate splicing site. We use the (generalized) Hamming distance, defined as the
number of mismatches between bases in corresponding positions (only the 40 cen-
tral bases have been considered). We also simplify the problem by discriminating
splicing/non-splicing sites, without distinction between EI and IE boundaries, ob-
taining a dichotomic classification problem. However this does not affect our ability
to compare the results with those from the literature, sincethese are reported with
error percentages class by class, and therefore it is possible to aggregate them.

Here the result is very good: Figure 6 illustrates the hierarchy obtained (graphics
from a program by the authors). Fixing the maximum level at 2,the structure is
very simple, with a cluster further split into two sub-clusters and another cluster
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cluster.1

cluster.2

cluster.1.1
cluster.1.2

Fig. 6. Hierarchy obtained on the splice-junction sites problem. The cluster in slanted font
is further split into sub-clusters.

without sub-clusters. Clusters at the deepest level (leaf clusters) are all pure, and
the resulting classification, after performing the calibration step, is errorless, as
indicated in the figure.

These data should be compared to results of other methods. The results reported in
the accompanying documentation to the data set are all from supervised techniques.
No supervised method is reported as capable of errorless performance.

Comparison with centroid-based clustering methods (k-Means) is not possible,
since a proper centroid (barycenter) is not obtainable fromnon-metric data. It is
also difficult to compare the obtained tree to that given by the standard agglomera-
tive hierarchical methods, since, in contrast to the Genoa lung cancer problem, here
the cardinality is high as an absolute value (although stillvery low when related to
the dimensionality). Trees obtained with these methods will be much deeper; they
may or may not be comparable to the one presented, and, if so, only after extracting
significant clusters by pruning the tree at an appropriate level, as already indicated.

5 Conclusion

The clustering algorithm presented here is based on a novel principle of operation,
and as such has properties not found in other more commonly used methods. With
respect to standard hierarchical agglomerative clustering methods:

• top-down, rather than bottom-up operation; hence the ability of stopping cluster-
ing at a given level in the hierarchy;

• clusters are non-dichotomic, so that the resulting tree depth may be much lower.

With respect to partitional methods:

• it is not centroid-based;
• complexity is independent of data dimensionality;
• local anomalies found in the Shared Near Neighbors approach, and coped with

by setting user parameters, here are not present due the operation based on far-
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thest points.

It is especially designed for the analysis of data sets with high dimensionality-to-
cardinality ratio, and is therefore well suited to DNA microarray data analysis, as
demonstrated by the experiments. However it is more generally applicable in the
field of biomedical data analysis, where these conditions are often met, and this
was also experimentally shown in the present work.

We have observed that, similarly to the Jarvis-Patrick algorithm, the method pre-
sented may yield small or singleton clusters. This happens especially when data
cardinality grows. Future developments include criteria for controlling the prolifer-
ation of singletons (cluster validity), but also applications of this property to outlier
detection.
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