
A survey of kernel and spectral methods for

clustering

Maurizio Filippone a Francesco Camastra b Francesco Masulli a

Stefano Rovetta a

aDepartment of Computer and Information Science, University of Genova, and

CNISM, Via Dodecaneso 35, I-16146 Genova, Italy

bDepartment of Applied Science, University of Naples Parthenope, Via A. De

Gasperi 5 I-80133 Napoli, Italy

Abstract

Clustering algorithms are a useful tool to explore data structures and have been

employed in many disciplines. The focus of this paper is the partitioning cluster-

ing problem with a special interest in two recent approaches: kernel and spectral

methods. The aim of this paper is to present a survey of kernel and spectral clus-

tering methods, two approaches able to produce nonlinear separating hypersurfaces

between clusters. The presented kernel clustering methods are the kernel version of

many classical clustering algorithms, e.g., K-means, SOM and Neural Gas. Spectral

clustering arise from concepts in spectral graph theory and the clustering problem

is configured as a graph cut problem where an appropriate objective function has to

be optimized. An explicit proof of the fact that these two paradigms have the same

objective is reported since it has been proven that these two seemingly different ap-

proaches have the same mathematical foundation. Besides, fuzzy kernel clustering

methods are presented as extensions of kernel K-means clustering algorithm.

Preprint submitted to Elsevier Science April 30, 2007

Key words: partitional clustering, Mercer kernels, kernel clustering, kernel fuzzy

clustering, spectral clustering

1 Introduction

Unsupervised data analysis using clustering algorithms provides a useful tool

to explore data structures. Clustering methods [39,87] have been addressed in

many contexts and disciplines such as data mining, document retrieval, image

segmentation and pattern classification. The aim of clustering methods is to

group patterns on the basis of a similarity (or dissimilarity) criteria where

groups (or clusters) are set of similar patterns. Crucial aspects in clustering

are pattern representation and the similarity measure. Each pattern is usually

represented by a set of features of the system under study. It is very impor-

tant to notice that a good choice of representation of patterns can lead to

improvements in clustering performance. Whether it is possible to choose an

appropriate set of features depends on the system under study. Once a rep-

resentation is fixed it is possible to choose an appropriate similarity measure

among patterns. The most popular dissimilarity measure for metric represen-

tations is the distance, for instance the Euclidean one [25].

Clustering techniques can be roughly divided into two categories:

• hierarchical ;

Email addresses: filippone@disi.unige.it (Maurizio Filippone),

francesco.camastra@uniparthenope.it (Francesco Camastra),

masulli@disi.unige.it (Francesco Masulli), rovetta@disi.unige.it (Stefano

Rovetta).

2

• partitioning.

Hierarchical clustering techniques [39,74,83] are able to find structures which

can be further divided in substructures and so on recursively. The result is a

hierarchical structure of groups known as dendrogram.

Partitioning clustering methods try to obtain a single partition of data without

any other sub-partition like hierarchical algorithms do and are often based

on the optimization of an appropriate objective function. The result is the

creation of separations hypersurfaces among clusters. For instance we can

consider two nonlinear clusters as in figure 1. Standard partitioning methods

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x2

Figure 1. A data set composed of two rings of points.

(e.g., K-Means, Fuzzy c-Means, SOM and Neural Gas) using two centroids

are not able to separate in the desired way the two rings. The use of many

centroids could solve this problem providing a complex description of a simple

data set. For this reason several modifications and new approaches have been

introduced to cope with this problem.

Among the large amount of modifications we can mention the Fuzzy c-Varieties [8],

but the main drawback is that some a priori information on the shape of

3

clusters must be included. Recently, some clustering methods that produce

nonlinear separating hypersurfaces among clusters have been proposed. These

algorithms can be divided in two big families: kernel and spectral clustering

methods.

Regarding kernel clustering methods, several clustering methods have been

modified incorporating kernels (e.g., K-Means, Fuzzy c-Means, SOM and Neu-

ral Gas). The use of kernels allows to map implicitly data into an high dimen-

sional space called feature space; computing a linear partitioning in this feature

space results in a nonlinear partitioning in the input space.

Spectral clustering methods arise from concepts in spectral graph theory. The

basic idea is to construct a weighted graph from the initial data set where each

node represents a pattern and each weighted edge simply takes into account

the similarity between two patterns. In this framework the clustering problem

can be seen as a graph cut problem, which can be tackled by means of the

spectral graph theory. The core of this theory is the eigenvalue decomposition

of the Laplacian matrix of the weighted graph obtained from data. In fact,

there is a close relationship between the second smallest eigenvalue of the

Laplacian and the graph cut [16,26].

The aim of this paper is to present a survey of kernel and spectral clustering

methods. Moreover, an explicit proof of the fact that these two approaches

have the same mathematical foundation is reported. In particular it has been

shown by Dhillon et al. that Kernel K-Means and spectral clustering with the

ratio association as the objective function are perfectly equivalent [20,21,23].

The core of both approaches lies in their ability to construct an adjacency

structure between data avoiding to deal with a prefixed shape of clusters.

4

These approaches have a slight similarity with hierarchical methods in the use

of an adjacency structure with the main difference in the philosophy of the

grouping procedure.

A comparison of some spectral clustering methods has been recently proposed

in [79], while there are some theoretical results on the capabilities and con-

vergence properties of spectral methods for clustering [40,80,81,90]. Recently

kernel methods have been applied to Fuzzy c-Varieties also [50] with the aim

of finding varieties in feature space and there are some interesting clustering

methods using kernels such as [33] and [34].

Since the choice of the kernel and of the similarity measure is crucial in these

methods, many techniques have been proposed in order to learn automatically

the shape of kernels from data as in [4,18,27,56].

Regarding the applications, most of these algorithms (e.g., [12,18,50]) have

been applied to standard benchmarks such as Ionosphere [73], Breast Can-

cer [85] and Iris [28] 1 . Kernel Fuzzy c-Means proposed in [14,93,94] has been

applied in image segmentation problems while in [32] it has been applied

in handwritten digits recognition. There are applications of kernel clustering

methods in face recognition using kernel SOM [76], in speech recognition [69]

and in prediction of crop yield from climate and plantation data [3]. Spectral

methods have been applied in clustering of artificial data [60,63], in image

segmentation [56,72,75], in bioinformatics [19], and in co-clustering problems

of words and documents [22] and genes and conditions [42]. A semi-supervised

spectral approach to bioinformatics and handwritten character recognition

1 These data sets can be found at: ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/

5

have been proposed in [48]. The protein sequence clustering problem has been

faced using spectral techniques in [61] and kernel methods in [84].

In the next section we briefly introduce the concepts of linear partitioning

methods by recalling some basic crisp and fuzzy algorithms. Then the paper is

organized as follows: section 3 shows the kernelized version of the algorithms

presented in section 2, in section 4 we discuss spectral clustering, while in

section 5 we report the equivalence between spectral and kernel clustering

methods. In the last section conclusions are drawn.

2 Partitioning Methods

In this section we briefly recall some basic facts about partitioning clustering

methods and we will report the clustering methods for which a kernel version

has been proposed. Let X = {x1, . . . ,xn} be a data set composed by n patterns

for which every xi ∈ R
d. The codebook (or set of centroids) V is defined as the

set V = {v1, . . . ,vc}, typically with c ≪ n. Each element vi ∈ R
d is called

codevector (or centroid or prototype) 2 .

The Voronoi region Ri of the codevector vi is the set of vectors in R
d for which

vi is the nearest vector:

Ri =
{

z ∈ R
d

∣

∣

∣

∣

i = arg min
j

‖z − vj‖
2
}

. (1)

It is possible to prove that each Voronoi region is convex [51] and the bound-

aries of the regions are linear segments.

2 Among many terms to denote such objects, we will use codevectors as in vector

quantization theory.

6

The definition of the Voronoi set πi of the codevector vi is straightforward. It

is the subset of X for which the codevector vi is the nearest vector:

πi =
{

x ∈ X
∣

∣

∣

∣

i = arg min
j

‖x − vj‖
2
}

, (2)

that is, the set of vectors belonging to Ri. A partition on R
d induced by all

Voronoi regions is called Voronoi tessellation or Dirichlet tessellation.

Figure 2. An example of Voronoi tessellation where each black point is a codevector.

2.1 Batch K-Means

A simple algorithm able to construct a Voronoi tessellation of the input space

was proposed in 1957 by Lloyd [52] and it is known as batch K-Means. Starting

from the finite data set X this algorithm moves iteratively the k codevectors to

the arithmetic mean of their Voronoi sets {πi}i=1,...,k. Theoretically speaking, a

necessary condition for a codebook V to minimize the Empirical Quantization

Error :

E(X) =
1

2n

k
∑

i=1

∑

x∈πi

‖x − vi‖
2 (3)

7

is that each codevector vi fulfills the centroid condition [29]. In the case of a

finite data set X and with Euclidean distance, the centroid condition reduces

to:

vi =
1

|πi|

∑

x∈πi

x . (4)

Batch K-Means is formed by the following steps:

(1) choose the number k of clusters;

(2) initialize the codebook V with vectors randomly picked from X;

(3) compute the Voronoi set πi associated to the codevector vi;

(4) move each codevector to the mean of its Voronoi set using Eq. 4;

(5) return to step 3 if any codevector has changed otherwise return the code-

book.

At the end of the algorithm a codebook is found and a Voronoi tessellation

of the input space is provided. It is guaranteed that after each iteration the

quantization error does not increase. Batch K-Means can be viewed as an

Expectation-Maximization [9] algorithm, ensuring the convergence after a fi-

nite number of steps.

This approach presents many disadvantages [25]. Local minima of E(X) make

the method dependent on initialization, and the average is sensitive to outliers.

Moreover, the number of clusters to find must be provided, and this can be

done only using some a priori information or additional validity criterion.

Finally, K-Means can deal only with clusters with spherically symmetrical

point distribution, since Euclidean distances of patterns from centroids are

computed leading to a spherical invariance. Different distances lead to different

invariance properties as in the case of Mahalanobis distance which produces

8

invariance on ellipsoids [25].

The term batch means that at each step the algorithm takes into account

the whole data set to update the codevectors. When the cardinality n of

the data set X is very high (e.g., several hundreds of thousands) the batch

procedure is computationally expensive. For this reason an on-line update has

been introduced leading to the on-line K-Means algorithm [51,54]. At each

step, this method simply randomly picks an input pattern and updates its

nearest codevector, ensuring that the scheduling of the updating coefficient is

adequate to allow convergence and consistency.

2.2 Self Organizing Maps - SOM

A Self Organizing Map (SOM) [43] also known as Self Organizing Feature

Map (SOFM) represents data by means of codevectors organized on a grid

with fixed topology. Codevectors move to adapt to the input distribution,

but adaptation is propagated along the grid also to neighboring codevectors,

according to a given propagation or neighborhood function. This effectively

constrains the evolution of codevectors. Grid topologies may differ, but in

this paper we consider a two-dimensional, square-mesh topology [44,45]. The

distance on the grid is used to determine how strongly a codevector is adapted

when the unit aij is the winner. The metric used on a rectangular grid is the

Manhattan distance, for which the distance between two elements r = (r1, r2)

and s = (s1, s2) is:

drs = |r1 − s1| + |r2 − s2| . (5)

The SOM algorithm is the following:

9

(1) Initialize the codebook V randomly picking from X

(2) Initialize the set C of connections to form the rectangular grid of dimen-

sion n1 × n2

(3) Initialize t = 0

(4) Randomly pick an input x from X

(5) Determine the winner

s(x) = arg min
vj∈V

‖x − vj‖ (6)

(6) Adapt each codevector:

∆vj = ǫ(t)h(drs)(x − vj) (7)

where h is a decreasing function of d as for instance:

h(drs) = exp

(

−
d2

rs

2σ2(t)

)

(8)

(7) Increment t

(8) if t < tmax go to step 4

σ(t) and ǫ(t) are decreasing functions of t, for example [64]:

σ(t) = σi

(

σf

σi

)t/tmax

, ǫ(t) = ǫi

(

ǫf

ǫi

)t/tmax

, (9)

where σi, σf and ǫi, ǫf are the initial and final values for the functions σ(t) and

ǫ(t).

A final note on the use of SOM for clustering. The method was originally

devised as a tool for embedding multidimensional data into typically two di-

mensional spaces, for data visualization. Since then, it has also been frequently

used as a clustering method, which was originally not considered appropriate

because of the constraints imposed by the topology. However, the topology

10

itself serves an important purpose, namely, that of limiting the flexibility of

the mapping in the first training cycles, and gradually increasing it (while

decreasing the magnitude of updates to ensure convergence) as more cycles

were performed. The strategy is similar to that of other algorithms, including

these described in the following, in the capacity control of the method which

has the effect of avoiding local minima. This accounts for the fast convergence

often reported in experimental works.

2.3 Neural Gas

Another technique that tries to minimize the distortion error is the neural gas

algorithm [55], based on a soft adaptation rule. This technique resembles the

SOM in the sense that not only the winner codevector is adapted. It is different

in that codevectors are not constrained to be on a grid, and the adaptation of

the codevectors near the winner is controlled by a criterion based on distance

ranks. Each time a pattern x is presented, all the codevectors vj are ranked

according to their distance to x (the closest obtains the lowest rank). Denoting

with ρj the rank of the distance between x and the codevector vj, the update

rule is:

∆vj = ǫ(t)hλ(ρj)(x − vj) (10)

with ǫ(t) ∈ [0, 1] gradually lowered as t increases and hλ(ρj) a function de-

creasing with ρj with a characteristic decay λ; usually hλ(ρj) = exp (−ρj/λ).

The Neural Gas algorithm is the following:

(1) Initialize the codebook V randomly picking from X

(2) Initialize the time parameter t = 0

11

(3) Randomly pick an input x from X

(4) Order all elements vj of V according to their distance to x, obtaining the

ρj

(5) Adapt the codevectors according to Eq. 10

(6) Increase the time parameter t = t + 1

(7) if t < tmax go to step 3.

2.4 Fuzzy clustering methods

Bezdek [8] introduced the concept of hard and fuzzy partition in order to

extend the notion of membership of pattern to clusters. The motivation of

this extension is related to the fact that a pattern often cannot be thought of

as belonging to a single cluster only. In many cases, a description in which the

membership of a pattern is shared among clusters is necessary.

Definition 2.1 Let Acn denote the vector space of c × n real matrices over

R. Considering X, Acn and c ∈ N such that 2 ≤ c < n, the Fuzzy c-partition

space for X is the set:

Mfc =

{

U ∈ Acn

∣

∣

∣

∣

∣

uih ∈ [0, 1] ∀i, h;
c
∑

i=1

uih = 1 ∀h ; 0 <
n
∑

h=1

uih < n ∀i

}

.(11)

The matrix U is the so called membership matrix since each element uih is

the fuzzy membership of the h-th pattern to the i-th cluster. The definition of

Mfc simply tells that the sum of the memberships of a pattern to all clusters

is one (probabilistic constraint) and that a cluster cannot be empty or contain

all patterns. This definition generalizes the notion of hard c-partitions in [8].

12

The mathematical tool used in all these methods for working out the solution

procedure is the Lagrange multipliers technique. In particular a minimiza-

tion of the intraclusters distance functional with a probabilistic constraint

on the memberships of a pattern to all clusters has to be achieved. Since all

the functionals involved in these methods depend on both memberships and

codevectors, the optimization is iterative and follows the so called Picard it-

erations method [8] where each iteration is composed of two steps. In the first

step a subset of variables (memberships) is kept fixed and the optimization is

performed with respect to the remaining variables (codevectors) while in the

second one the role of the fixed and moving variables is swapped. The opti-

mization algorithm stops when variables change less than a fixed threshold.

2.4.1 Fuzzy c-Means

The Fuzzy c-Means algorithm [8] identifies clusters as fuzzy sets. It minimizes

the functional:

J(U, V) =
n
∑

h=1

c
∑

i=1

(uih)
m ‖xh − vi‖

2 (12)

with respect to the membership matrix U and the codebook V with the prob-

abilistic constraints:

c
∑

i=1

uih = 1 , ∀i = 1, . . . , n . (13)

The parameter m controls the fuzziness of the memberships and usually it is

set to two; for high values of m the algorithm tends to set all the memberships

equals while for m tending to one we obtain the K-Means algorithm where

the memberships are crisp. The minimization of Eq. 12 is done introducing a

13

Lagrangian function for each pattern for which the constraint is in Eq. 13.

Lh =
c
∑

i=1

(uih)
m ‖xh − vi‖

2 + αh

(

c
∑

i=1

uih − 1

)

. (14)

Then the derivatives of the sum of the Lagrangian are computed with respect

to the uih and vi and are set to zero. This yields the iteration scheme of these

equations:

u−1
ih =

c
∑

j=1

(

‖xh − vi‖

‖xh − vj‖

)
2

m−1

, (15)

vi =

∑n
h=1 (uih)

m
xh

∑n
h=1 (uih)

m . (16)

At each iteration it is possible to evaluate the amount of change of the member-

ships and codevectors and the algorithm can be stopped when these quantities

reach a predefined threshold. At the end a soft partitioning of the input space

is obtained.

2.5 Possibilistic clustering methods

As a further modification of the K-Means algorithm, the possibilistic ap-

proach [46,47] relaxes the probabilistic constraint on the membership of a

pattern to all clusters. In this way a pattern can have a low membership to

all clusters in the case of outliers, whereas for instance, in the situation of

overlapped clusters, it can have high membership to more than one cluster. In

this framework the membership represents a degree of typicality not depend-

ing on the membership values of the same pattern to other clusters. Again the

optimization procedure is the Picard iteration method, since the functional

depends both on memberships and codevectors.

14

2.5.1 Possibilistic c-Means

There are two formulations of the Possibilistic c-Means, that we will call PCM-

I [46] and PCM-II [47]. The first one aims to minimize the following functional

with respect to the membership matrix U and the codebook V = {v1, . . . ,vc}:

J(U, V) =
n
∑

h=1

c
∑

i=1

(uih)
m ‖xh − vi‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m , (17)

while the second one addresses the functional:

J(U, V) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 +

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) . (18)

The minimization of Eq. 17 and Eq. 18 with respect to the uih leads respec-

tively to the following equations:

uih =



1 +

(

‖xh − vi‖
2

ηi

)
1

m−1





−1

, (19)

uih = exp

(

−
‖xh − vi‖

2

ηi

)

. (20)

The constraint on the memberships uih ∈ [0, 1] is automatically satisfied given

the form assumed by Eq. 19 and Eq. 20. The updates of the centroids for

PCM-I and PCM-II are respectively:

vi =

∑n
h=1 (uih)

m
xh

∑n
h=1 (uih)

m , (21)

vi =

∑n
h=1 uihxh
∑n

h=1 uih

. (22)

The parameter ηi regulates the trade-off between the two terms in Eq. 17 and

Eq. 18 and it is related to the width of the clusters. The authors suggest to

15

estimate ηi for PCM-I using this formula:

ηi = γ

∑n
h=1 (uih)

m ‖xh − vi‖
2

∑n
h=1 (uih)

m (23)

which is a weighted mean of the intracluster distance of the i-th cluster and

the constant γ is typically set at one. The parameter ηi can be estimated with

scale estimation techniques as developed in the robust clustering literature

for M-estimators [35,59]. The value of ηi can be updated at each step of the

algorithm or can be fixed for all iterations. The former approach can lead to

instabilities since the derivation of the equations has been obtained considering

ηi fixed. In the latter case a good estimation of ηi can be done only starting

from an approximate solution. For this reason often the Possibilistic c-Means

is run as a refining step of a Fuzzy c-Means.

3 Kernel Clustering Methods

In machine learning, the use of the kernel functions [57] has been introduced

by Aizerman et al. [1] in 1964. In 1995 Cortes and Vapnik introduced Support

Vector Machines (SVMs) [17] which perform better than other classification

algorithms in several problems. The success of SVM has brought to extend the

use of kernels to other learning algorithms (e.g., Kernel PCA [70]). The choice

of the kernel is crucial to incorporate a priori knowledge on the application,

for which it is possible to design ad hoc kernels.

16

3.1 Mercer kernels

We recall the definition of Mercer kernels [2,68], considering, for the sake of

simplicity, vectors in R
d instead of C

d.

Definition 3.1 Let X = {x1, . . . ,xn} be a nonempty set where xi ∈ R
d. A

function K : X×X → R is called a positive definite kernel (or Mercer kernel)

if and only if K is symmetric (i.e. K(xi,xj) = K(xj,xi)) and the following

equation holds:

n
∑

i=1

n
∑

j=1

cicjK(xi,xj) ≥ 0 ∀n ≥ 2 , (24)

where cr ∈ R ∀r = 1, . . . , n

Each Mercer kernel can be expressed as follows:

K(xi,xj) = Φ(xi) · Φ(xj) , (25)

where Φ : X → F performs a mapping from the input space X to a high

dimensional feature space F . One of the most relevant aspects in applications

is that it is possible to compute Euclidean distances in F without knowing

explicitly Φ. This can be done using the so called distance kernel trick [58,70]:

‖Φ(xi) − Φ(xj)‖
2 = (Φ(xi) − Φ(xj)) · (Φ(xi) − Φ(xj))

= Φ(xi) · Φ(xi) + Φ(xj) · Φ(xj) − 2Φ(xi) · Φ(xj)

= K(xi,xi) + K(xj,xj) − 2K(xi,xj) (26)

in which the computation of distances of vectors in feature space is just a

function of the input vectors. In fact, every algorithm in which input vectors

appear only in dot products with other input vectors can be kernelized [71].

17

In order to simplify the notation we introduce the so called Gram matrix K

where each element kij is the scalar product Φ(xi) · Φ(xi). Thus, Eq. 26 can

be rewritten as:

‖Φ(xi) − Φ(xj)‖
2 = kii + kjj − 2kij . (27)

Examples of Mercer kernels are the following [78]:

• linear:

K(l)(xi,xj) = xi · xj (28)

• polynomial of degree p:

K(p)(xi,xj) = (1 + xi · xj)
p p ∈ N (29)

• Gaussian:

K(g)(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

σ ∈ R (30)

It is important to stress that the use of the linear kernel in Eq. 26 simply leads

to the computation of the Euclidean norm in the input space. Indeed:

‖xi − xj‖
2 =xi · xi + xj · xj − 2xi · xj

= K(l)(xi,xi) + K(l)(xj,xj) − 2K(l)(xi,xj)

= ‖Φ(xi) − Φ(xj)‖
2 , (31)

shows that choosing the kernel K(l) implies Φ = I (where I is the identity

function). Following this consideration we can think that kernels can offer a

more general way to represent the elements of a set X and possibly, for some

of these representations, the clusters can be easily identified.

18

In literature there are some applications of kernels in clustering. These meth-

ods can be broadly divided in three categories, which are based respectively

on:

• kernelization of the metric [86,92,93];

• clustering in feature space [32,38,53,62,91];

• description via support vectors [12,37].

Methods based on kernelization of the metric look for centroids in input space

and the distances between patterns and centroids is computed by means of

kernels:

‖Φ(xh) − Φ(vi)‖
2 = K(xh,xh) + K(vi,vi) − 2K(xh,vi) . (32)

Clustering in feature space is made by mapping each pattern using the function

Φ and then computing centroids in feature space. Calling vΦ
i the centroids in

feature space, we will see in the next sections that it is possible to compute

the distances
∥

∥

∥Φ(xh) − vΦ
i

∥

∥

∥

2
by means of the kernel trick.

The description via support vectors makes use of One Class SVM to find a

minimum enclosing sphere in feature space able to enclose almost all data in

feature space excluding outliers. The computed hypersphere corresponds to

nonlinear surfaces in input space enclosing groups of patterns. The Support

Vector Clustering algorithm allows to assign labels to patterns in input space

enclosed by the same surface. In the next subsections we will outline these

three approaches.

19

3.2 Kernel K-Means

Given the data set X, we map our data in some feature space F , by means of a

nonlinear map Φ and we consider k centers in feature space (vΦ
i ∈ F with i =

1, . . . , k) [30,70]. We call the set V Φ = (vΦ
1 , . . . ,vΦ

k) Feature Space Codebook

since in our representation the centers in the feature space play the same role

of the codevectors in the input space. In analogy with the codevectors in the

input space, we define for each center vΦ
i its Voronoi Region and Voronoi Set

in feature space. The Voronoi Region in feature space (RΦ
i) of the center vΦ

i

is the set of all vectors in F for which vΦ
i is the closest vector

RΦ
i =

{

xΦ ∈ F

∣

∣

∣

∣

i = arg min
j

∥

∥

∥xΦ − vΦ
j

∥

∥

∥

}

. (33)

The Voronoi Set in Feature Space πΦ
i of the center vΦ

i is the set of all vectors

x in X such that vΦ
i is the closest vector to their images Φ(x) in the feature

space:

πΦ
i =

{

x ∈ X
∣

∣

∣

∣

i = arg min
j

∥

∥

∥Φ(x) − vΦ
j

∥

∥

∥

}

. (34)

The set of the Voronoi Regions in feature space define a Voronoi Tessellation

of the Feature Space. The Kernel K-Means algorithm has the following steps:

(1) Project the data set X into a feature space F , by means of a nonlinear

mapping Φ.

(2) Initialize the codebook V Φ = (vΦ
1 , . . . ,vΦ

k) with vΦ
i ∈ F

(3) Compute for each center vΦ
i the set πΦ

i

20

(4) Update the codevectors vΦ
i in F

vΦ
i =

1

|πΦ
i |

∑

x∈πΦ

i

Φ(x) (35)

(5) Go to step 3 until any vΦ
i changes

(6) Return the feature space codebook.

This algorithm minimizes the quantization error in feature space.

Since we do not know explicitly Φ it is not possible to compute directly Eq. 35.

Nevertheless, it is always possible to compute distances between patterns and

codevectors by using the kernel trick, allowing to obtain the Voronoi sets in

feature space πΦ
i . Indeed, writing each centroid in feature space as a combina-

tion of data vectors in feature space we have:

vΦ
j =

n
∑

h=1

γjhΦ(xh) , (36)

where γjh is one if xh ∈ πΦ
j and zero otherwise. Now the quantity:

∥

∥

∥Φ(xi) − vΦ
j

∥

∥

∥

2
=

∥

∥

∥

∥

∥

Φ(xi) −
n
∑

h=1

γjhΦ(xh)

∥

∥

∥

∥

∥

2

(37)

can be expanded by using the scalar product and the kernel trick in Eq. 26:

∥

∥

∥

∥

∥

Φ(xi) −
n
∑

h=1

γjhΦ(xh)

∥

∥

∥

∥

∥

2

= kii − 2
∑

h

γjhkih +
∑

r

∑

s

γjrγjskrs . (38)

This allows to compute the closest feature space codevector for each pattern

and to update the coefficients γjh. It is possible to repeat these two operations

until any γjh changes to obtain a Voronoi tessellation of the feature space.

An on-line version of the kernel K-Means algorithm can be found in [70]. A fur-

ther version of K-Means in feature space has been proposed by Girolami [30].

21

In his formulation the number of clusters is denoted by c and a fuzzy member-

ship matrix U is introduced. Each element uih denotes the fuzzy membership

of the point xh to the Voronoi set πΦ
i . This algorithm tries to minimize the

following functional with respect to U :

JΦ(U, V Φ) =
n
∑

h=1

c
∑

i=1

uih

∥

∥

∥Φ(xh) − vΦ
i

∥

∥

∥

2
. (39)

The minimization technique used by Girolami is Deterministic Annealing [65]

which is a stochastic method for optimization. A parameter controls the fuzzi-

ness of the membership during the optimization and can be thought propor-

tional to the temperature of a physical system. This parameter is gradually

lowered during the annealing and at the end of the procedure the memberships

have become crisp; therefore a tessellation of the feature space is found. This

linear partitioning in F , back to the input space, forms a nonlinear partition-

ing of the input space.

3.3 Kernel SOM

The kernel version of the SOM algorithm [38,53] is based on the distance

kernel trick. The method tries to adapt the grid of codevectors vΦ
j in feature

space. In kernel SOM we start writing each codevector as a combination of

points in feature space:

vΦ
j =

n
∑

h=1

γjhΦ(xh) , (40)

22

where the coefficients γih are initialized once the grid is created. Computing

the winner by writing Eq. 6 in feature space leads to:

s(Φ(xi)) = arg min
v

Φ

j
∈V

‖Φ(xi) − vΦ
j ‖ , (41)

that can be written, using the kernel trick:

s(Φ(xi)) = arg min
v

Φ

j
∈V

(

kii − 2
∑

h

γjhkih

∑

r

∑

s

γjrγjskrs

)

. (42)

To update the codevectors we rewrite Eq. 7:

vΦ′
j = vΦ

j + ǫ(t)h(drs)
(

Φ(x) − vΦ
j

)

. (43)

Using Eq. 40:

n
∑

h=1

γ′
jhΦ(xh) =

n
∑

h=1

γjhΦ(xh) + ǫ(t)h(drs)

(

Φ(x) −
n
∑

h=1

γjhΦ(xh)

)

. (44)

Thus the rule for the update of γjh is:

γ′
jh =































(1 − ǫ(t)h(drs))γjh if i 6= j

(1 − ǫ(t)h(drs))γjh + ǫ(t)h(drs) otherwise.

(45)

3.4 Kernel Neural Gas

The Neural Gas algorithm provides a soft update rule for the codevectors in

input space. The kernel version of neural gas [62] applies the soft rule for the

update to the codevectors in feature space. Rewriting Eq. 10 in feature space

for the update of the codevectors we have:

∆vΦ
j = ǫhλ(ρj)

(

Φ(x) − vΦ
j

)

. (46)

23

Here ρj is the rank of the distance ‖Φ(x) − vΦ
j ‖. Again it is possible to write

vΦ
j as a linear combination of Φ(xi) as in Eq. 40, allowing to compute such

distances by means of the kernel trick. As in the kernel SOM technique, the

updating rule for the centroids becomes an updating rule for the coefficients

of such combination.

3.5 One Class SVM

This approach provides a support vector description in feature space [36,37,77].

The idea is to use kernels to project data into a feature space and then to find

the sphere enclosing almost all data, namely not including outliers. Formally

a radius R and the center v of the smallest enclosing sphere in feature space

are defined. The constraint is thus:

‖Φ(xj) − v‖2 ≤ R2 + ξj ∀j , (47)

where the non negative slack variables ξj have been added. The Lagrangian

for this problem is defined [11]:

L = R2 −
∑

j

(R2 + ξj − ‖Φ(xj) − v‖2)βj −
∑

j

ξjµj + C
∑

j

ξj (48)

where βj ≥ 0 and µj ≥ 0 are Lagrange multipliers, C is a constant and C
∑

j ξj

is a penalty term. Computing the partial derivative of L with respect to R, v

and ξj and setting them to zero leads to the following equations:

∑

j

βj = 1, v =
∑

j

βjΦ(xj), βj = C − µj. (49)

24

The Karush-Kuhn-Tucker (KKT) complementary conditions [11] result in:

ξjµj = 0, (R2 + ξj − ‖Φ(xj) − v‖2)βj = 0. (50)

Following simple considerations regarding all these conditions it is possible to

see that:

• when ξj > 0, the image of xj lies outside the hypersphere. These points are

called bounded support vectors;

• when ξj = 0 and 0 < βj < C, the image of xj lies on the surface of the

hypersphere. These points are called support vectors.

Moreover, it is possible to write the Wolfe dual form [36], whose optimization

leads to this quadratic programming problem with respect to the βj:

JW =
∑

j

kjjβj −
∑

i

∑

j

kijβiβj (51)

The distance from the image of a point xj and the center v of the enclosing

sphere can be computed as follows:

dj = ‖Φ(xj) − v‖2 = kjj − 2
∑

r

βrkjr +
∑

r

∑

s

βrβskrs (52)

In Fig. 3 it is possible to see the ability of this algorithm to find the smallest

enclosing sphere without outliers.

3.5.1 Support Vector Clustering

Once boundaries in input space are found, a labeling procedure is necessary in

order to complete clustering. In [37] the cluster assignment procedure follows

a simple geometric idea. Any path connecting a pair of points belonging to

25

−5 0 5

−
5

0
5

x1

x2

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x2

(a) (b)

Figure 3. One class SVM applied to two data sets with outliers. The gray line shows

the projection in input space of the smallest enclosing sphere in feature space. In

(a) a linear kernel and in (b) a Gaussian kernel have been used.

different clusters must exit from the enclosing sphere in feature space. Denot-

ing with Y the image in feature space of one of such paths and with y the

elements of Y , it will result that R(y) > R for some y. Thus it is possible to

define an adjacency structure in this form:































1 if R(y) < R ∀y ∈ Y

0 otherwise.

(53)

Clusters are simply the connected components of the graph with the adjacency

matrix just defined. In the implementation in [36] the check is made sampling

the line segment Y in 20 equidistant points. There are some modifications on

this labeling algorithm (e.g., [49,88]) that improve performances. An improved

version of SVC algorithm with application in handwritten digits recognition

can be found in [15].

26

3.5.2 Camastra and Verri algorithm

A technique combining K-Means and One Class SVM can be found in [12].

The algorithm uses a K-Means-like strategy, i.e., moves repeatedly all centers

vΦ
i in the feature space, computing One Class SVM on their Voronoi sets πΦ

i ,

until no center changes anymore. Moreover, in order to introduce robustness

against outliers, the authors have proposed to compute One Class SVM on

πΦ
i (ρ) of each center vΦ

i . The set πΦ
i (ρ) is defined as

πΦ
i (ρ) = {xj ∈ πΦ

i and ‖Φ(xj) − vΦ
i ‖ < ρ} . (54)

πΦ
i (ρ) is the Voronoi set in the feature space of the center vΦ

i without outliers,

that is the images of data points whose distance from the center is larger than

ρ. The parameter ρ can be set up using model selection techniques [9] (e.g.,

cross-validation). In summary, the algorithm has the following steps:

(1) Project the data Set X into a feature space F , by means of a nonlinear

mapping Φ.

(2) Initialize the codebook V Φ = (vΦ
1 , . . . ,vΦ

k) with vΦ
i ∈ F

(3) Compute πΦ
i (ρ) for each center vΦ

i

(4) Apply One Class SVM to each πΦ
i (ρ) and assign the center obtained to

vΦ
i

(5) Go to step 2 until any vΦ
i changes

(6) Return the feature space codebook.

27

3.6 Kernel fuzzy clustering methods

Here we show some kernelized versions of Fuzzy c-Means algorithms, showing

in particular Fuzzy and Possibilistic c-Means. In the first subsection we show

the method of the kernelization of the metric while in the second one the

Fuzzy c-Means in feature space is shown. The third subsection is devoted to

the kernelized version of the Possibilistic c-Means.

3.6.1 Kernel Fuzzy c-Means with kernelization of the metric

The basic idea is to minimize the functional [86,92,93]:

JΦ(U, V) =
n
∑

h=1

c
∑

i=1

(uih)
m ‖Φ(xh) − Φ(vi)‖

2 , (55)

with the probabilistic constraint over the memberships (Eq. 13). The proce-

dure for the optimization of JΦ(U, V) is again the Picard iteration technique.

Minimization of the functional in Eq. 55 has been proposed only in the case

of a Gaussian kernel K(g). The reason is that the derivative of JΦ(U, V) with

respect to the vi using a Gaussian kernel is particularly simple since it allows

to use the kernel trick:

∂K(xh,vi)

∂vi

=
(xh − vi)

σ2
K(xh,vi) . (56)

We obtain for the memberships:

u−1
ih =

c
∑

j=1

(

1 − K(xh,vi)

1 − K(xh,vj)

)
1

m−1

, (57)

28

and for the codevectors:

vi =

∑n
h=1 (uih)

m K(xh, vi)xh
∑n

h=1 (uih)
m K(xh, vi)

. (58)

3.6.2 Kernel Fuzzy c-Means in feature space

Here we derive the Fuzzy c-Means in feature space, which is a clustering

method which allows to find a soft linear partitioning of the feature space.

This partitioning, back to the input space, results in a soft nonlinear par-

titioning of data. The functional to optimize [32,91] with the probabilistic

constraint in Eq. 13 is:

JΦ(U, V Φ) =
n
∑

h=1

c
∑

i=1

(uih)
m
∥

∥

∥Φ(xh) − vΦ
i

∥

∥

∥

2
. (59)

It is possible to rewrite the norm in Eq. 59 explicitly by using:

vΦ
i =

∑n
h=1 (uih)

m Φ(xh)
∑n

h=1 (uih)
m = ai

n
∑

h=1

(uih)
m Φ(xh) , (60)

which is the kernel version of Eq. 16. For simplicity of notation we used:

a−1
i =

n
∑

r=1

(uir)
m . (61)

Now it is possible to write the kernel version of Eq. 15:

u−1
ih =

c
∑

j=1













khh − 2ai

n
∑

r=1

(uir)
m khr + a2

i

n
∑

r=1

n
∑

s=1

(uir)
m (uis)

m krs

khh − 2aj

n
∑

r=1

(ujr)
m khr + a2

j

n
∑

r=1

n
∑

s=1

(ujr)
m (ujs)

m krs













1

m−1

.(62)

Eq. 62 gives the rule for the update of the membership uih.

29

3.6.3 Possibilistic c-Means with the kernelization of the metric

The formulation of the Possibilistic c-Means PCM-I with the kernelization of

the metric used in [92] involves the minimization of the following functional:

JΦ(U, V) =
n
∑

h=1

c
∑

i=1

(uih)
m ‖Φ(xh) − Φ(vi)‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m (63)

Minimization leads to:

u−1
ih = 1 +

(

‖Φ(xh) − Φ(vi)‖
2

ηi

)

1

m−1

, (64)

that can be rewritten, considering a Gaussian kernel, as:

u−1
ih = 1 + 2

(

1 − K(xh,vi)

ηi

)
1

m−1

. (65)

The update of the codevectors follows:

vi =

∑n
h=1 (uih)

m K(xh, vi)xh
∑n

h=1 (uih)
m K(xh, vi)

. (66)

The computation of the ηi is straightforward.

4 Spectral Clustering

Spectral clustering methods [19] have a strong connection with graph the-

ory [16,24]. A comparison of some spectral clustering methods has been re-

cently proposed in [79]. Let X = {x1, . . . ,xn} be the set of patterns to cluster.

Starting from X, we can build a complete, weighted undirected graph G(V,A)

having a set of nodes V = {v1, . . . , vn} corresponding to the n patterns and

edges defined through the n × n adjacency (also affinity) matrix A. The ad-

30

jacency matrix for a weighted graph is given by the matrix whose element aij

represents the weight of the edge connecting nodes i and j. Being an undi-

rected graph, the property aij = aji holds. Adjacency between two patterns

can be defined as follows:

aij =































h(xi,xj) if i 6= j

0 otherwise.

(67)

The function h measures the similarity between patterns and typically a Gaus-

sian function is used:

h(xi,xj) = exp

(

−
d(xi,xj)

2σ2

)

, (68)

where d measures the dissimilarity between patterns and σ controls the ra-

pidity of decay of h. This particular choice has the property that A has only

some terms significantly different from 0, i.e., it is sparse.

The degree matrix D is the diagonal matrix whose elements are the degrees

of the nodes of G.

dii =
n
∑

j=1

aij . (69)

In this framework the clustering problem can be seen as a graph cut prob-

lem [16] where one wants to separate a set of nodes S ⊂ V from the comple-

mentary set S̄ = V \ S. The graph cut problem can be formulated in several

ways depending on the choice of the function to optimize. One of the most

popular functions to optimize is the cut [16]:

cut(S, S̄) =
∑

vi∈S,vj∈S̄

aij . (70)

31

It is easy to verify that the minimization of this objective function favors parti-

tions containing isolated nodes. To achieve a better balance in the cardinality

of S and S̄ it is suggested to optimize the normalized cut [72]:

Ncut(S, S̄) = cut(S, S̄)

(

1

assoc(S, V)
+

1

assoc(S̄, V)

)

, (71)

where the association assoc(S, V) is also known as the volume of S:

assoc(S, V) =
∑

vi∈S,vj∈V

aij ≡ vol(S) =
∑

vi∈S

dii . (72)

There are other definitions of functions to optimize (e.g., the conductance [40],

the normalized association [72], ratio cut [21]).

The complexity in optimizing these objective functions is very high (e.g., the

optimization of the normalized cut is a NP-hard problem [72,82]) and for

this reason it has been proposed to relax it by using spectral concepts of

graph analysis. This relaxation can be formulated by introducing the Laplacian

matrix [16]:

L = D − A , (73)

which can be seen as a linear operator on G. In addition to this definition of

Laplacian there are alternative definitions:

• Normalized Laplacian LN = D− 1

2 LD− 1

2

• Generalized Laplacian LG = D−1L

• Relaxed Laplacian Lρ = L − ρD

Each definition is justified by special properties desirable in a given context.

The spectral decomposition of the Laplacian matrix can give useful infor-

32

mation about the properties of the graph. In particular it can be seen that

the second smallest eigenvalue of L is related to the graph cut [26] and the

corresponding eigenvector can cluster together similar patterns [10,16,72].

Spectral approach to clustering has a strong connection with Laplacian Eigen-

maps [5]. The dimensionality reduction problem aims to find a proper low

dimensional representation of a data set in a high dimensional space. In [5],

each node in the graph, which represents a pattern, is connected just with

nodes corresponding to neighboring patterns and the spectral decomposition

of the Laplacian of the obtained graph permits to find a low dimensional rep-

resentation of X. The authors point out the close connection with spectral

clustering and Local Linear Embedding [67] providing theoretical and experi-

mental validations.

4.1 Shi and Malik algorithm

The algorithm proposed by Shi and Malik. [72] applies the concepts of spectral

clustering to image segmentation problems. In this framework each node is

a pixel and the definition of adjacency between them is suitable for image

segmentation purposes. In particular, if xi is the position of the i-th pixel

and fi a feature vector which takes into account several of its attributes (e.g.,

intensity, color and texture information), they define the adjacency as:

aij = exp

(

−
‖fi − fj‖

2

2σ2
1

)

·































exp
(

−‖xi−xj‖
2

2σ2

2

)

if ‖xi − xj‖ < R

0 otherwise.

(74)

33

Here R has an influence on how many neighboring pixels can be connected

with a pixel, controlling the sparsity of the adjacency and Laplacian matrices.

They provide a proof that the minimization of Ncut(S, S̄) can be done solving

the eigenvalue problem for the normalized Laplacian LN. In summary, the

algorithm is composed of these steps:

(1) Construct the graph G starting from the data set X calculating the ad-

jacency between patterns using Eq. 74

(2) Compute the degree matrix D

(3) Construct the matrix LN = D− 1

2 LD− 1

2

(4) Compute the eigenvector e2 associated to the second smallest eigenvalue

λ2

(5) Use D− 1

2e2 to segment G

In the ideal case of two non connected subgraphs, D− 1

2e2 assumes just two

values; this allows to cluster together the components of D− 1

2e2 with the same

value. In a real case the splitting point must be chosen to cluster the com-

ponents of D− 1

2e2 and the authors suggest to use the median value, zero or

the value for which the clustering gives the minimum Ncut. The successive

partitioning can be made recursively on the obtained sub-graphs or it is pos-

sible to use more than one eigenvector. An interesting approach for clustering

simultaneously the data set in more than two clusters can be found in [89].

4.2 Ng, Jordan and Weiss algorithm

The algorithm that has been proposed by Ng et al. [60] uses the adjacency

matrix A as Laplacian. This definition allows to consider the eigenvector as-

34

sociated with the largest eigenvalues as the “good” one for clustering. This

has a computational advantage since the principal eigenvectors can be com-

puted for sparse matrices efficiently using the power iteration technique. The

idea is the same as in other spectral clustering methods, i.e., one finds a new

representation of patterns on the first k eigenvectors of the Laplacian of the

graph.

The algorithm is composed of these steps:

(1) Compute the affinity matrix A ∈ R
n×n:

aij =































exp
(

−‖xi−xj‖
2

2σ2

)

if i 6= j

0 otherwise

(75)

(2) Construct the matrix D

(3) Compute a normalized version of A, defining this Laplacian:

L = D− 1

2 AD− 1

2 (76)

(4) Find the k eigenvectors {e1, . . . , ek} of L associated to the largest eigen-

values {λ1, . . . , λk}.

(5) Form the matrix Z by stacking the k eigenvectors in columns.

(6) Compute the matrix Y by normalizing each of the Z’s rows to have unit

length:

yij =
zij

∑k
r=1 z2

ir

(77)

In this way all the original points are mapped into a unit hypersphere.

(7) In this new representation of the original n points apply a clustering

algorithm that attempts to minimize distortion such as K-means.

35

As a criterion to choose σ they suggest to use the value that guarantees the

minimum distortion when the clustering stage is performed on Y . They tested

this algorithm on artificial data sets showing the capability of the algorithm

to separate nonlinear structures.Here we show the steps of the algorithm when

applied to the data set in Fig. 1. Once the singular value decomposition of L

is computed, we can see the matrices Z and Y in Fig. 4 (here obtained with

σ = 0.4). Once Y is computed, it is easy to cluster the two groups of points

−0.10 −0.08 −0.06 −0.04 −0.02

−
0.

10
−

0.
05

0.
00

0.
05

y1

y2

−0.80 −0.75 −0.70 −0.65 −0.60

−
0.

8
−

0.
4

0.
0

0.
2

0.
4

0.
6

y1

y2

(a) (b)

Figure 4. (a) The matrix Z obtained with the first two eigenvectors of the matrix

L. (b) The matrix Y obtained by normalizing the rows of Z clustered by K-means

algorithm with two centroids.

obtaining the result shown in Fig. 5.

4.3 Other Methods

An interesting view of spectral clustering is provided by Meilă et al. [56] who

describe it in the framework of Markov random walks [56] leading to a differ-

ent interpretation of the graph cut problem. It is known, from the theory of

36

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x1

x2

Figure 5. The result of the Ng and Jordan algorithm on the ring data set.

Markov random walks, that if we construct the stochastic matrix P = D−1A,

each element pij represents the probability of moving from node i to node j. In

their work they provide an explicit connection between the spectral decompo-

sition of L and P showing that both have the same solution with eigenvalues

of P equal to 1 − λi where λi are the eigenvalues of L. Moreover they pro-

pose a method to learn a function of the features able to produce a correct

segmentation starting from a segmented image.

An interesting study on spectral clustering has been conducted by Kannan

et al. [40]. The authors exploit the objective function with respect to some

artificial data sets showing that there is no objective function able to properly

cluster every data set. In other words there always exists some data set for

which the optimization of a particular objective function has some drawback.

For this reason they propose a bi-criteria objective function. These two ob-

jectives are respectively based on the conductance and the ratio between the

auto-association of a subset of nodes S and its volume. Again the relaxation

of this problem is achieved by the decomposition of the Laplacian of the graph

associated to the data set.

37

5 A Unified View of Spectral and Kernel Clustering Methods

Recently a possible connection between unsupervised kernel algorithms and

spectral methods has been studied to find whether these two seemingly differ-

ent approaches can be described under a more general framework. The hint

for this unifying theory lies the adjacency structure constructed by both these

approaches. In the spectral approach there is an adjacency between patterns

which is the analogous of the kernel functions in kernel methods.

A direct connection between Kernel PCA and spectral methods has been

shown [6,7]. More recently a unifying view of kernel K-means and spectral

clustering methods [20,21,23] has been pointed out. In this section we show ex-

plicitly the equivalence between them highlighting that these two approaches

have the same foundation and in particular that both can be viewed as a

matrix trace maximization problem.

5.1 Kernel clustering methods objective

To show the direct equivalence between kernel and spectral clustering methods

we introduce the weighted version of the kernel K-means [23]. We introduce

a weight matrix W having weights wk on the diagonal. Recalling that we

denote with πi the i-th cluster we have that the functional to minimize is the

following:

JΦ(W,V Φ) =
c
∑

i=1

∑

xk∈πi

wk

∥

∥

∥Φ(xk) − vΦ
i

∥

∥

∥

2
, (78)

38

where:

vΦ
i =

∑

xk∈πi
wkΦ(xk)

∑

xk∈πi
wk

=

∑

xk∈πi
wkΦ(xk)

si

, (79)

where we have introduced:

si =
∑

xk∈πi

wk . (80)

Now let’s define the matrix Z having:

zki =































s
−1/2
i if xk ∈ πi

0 otherwise.

(81)

Since the columns of Z are mutually orthogonal it is easy to verify that:

s−1
i = (ZT Z)ii , (82)

and that only the diagonal elements are not null.

Now we denote with F the matrix whose columns are the Φ(xk). It is easy to

verify that the matrix FW yields a matrix whose columns are the wkΦ(xk).

Moreover the expression FWZZT gives a matrix having n columns which are

the nearest centroids in feature space of the Φ(xk).

Thus, substituting Eq. 79 in Eq. 78 we obtain the following matrix expression

for JΦ(W,V Φ):

JΦ(W,V Φ) =
n
∑

k=1

wk

∥

∥

∥F·k − (FWZZT)·k
∥

∥

∥

2
(83)

Here the dot has to be considered as a selection of the k-th column of the

matrices. Introducing the matrix Y = W 1/2Z, which is orthonormal (Y T Y =

39

I), the objective function can be rewritten as:

JΦ(W,V Φ) =
n
∑

k=1

wk

∥

∥

∥F·k − (FW 1/2Y Y T W−1/2)·k
∥

∥

∥

2

=
∥

∥

∥FW 1/2 − FW 1/2Y Y T
∥

∥

∥

2

F
(84)

where the norm ‖‖F is the Frobenius norm [31]. Using the fact that ‖A‖F =

tr(AAT) and the properties of the trace, it is possible to see that the mini-

mization of the last equation is equivalent to the maximization of the follow-

ing [20,21]:

JΦ(W,V Φ) = tr(Y T W 1/2F T FW 1/2Y) (85)

5.2 Spectral clustering methods objective

Recalling that the definition of association between two sets of edges S and T

of a weighted graph is the following:

assoc(S, T) =
∑

i∈S,j∈T

aij (86)

it is possible to define many objective functions to optimize in order to perform

clustering. Here, for the sake of simplicity, we consider just the ratio association

problem, where one has to maximize:

J(S1, . . . , Sc) =
c
∑

i=1

assoc(Si, Si)

|Si|
(87)

where |Si| is the size of the i-th partition. Now we introduce the indicator

vector zi whose k-th value is zero if xk 6∈ πi and one otherwise. Rewriting the

40

last equation in a matrix form we obtain the following:

J(S1, . . . , Sc) =
c
∑

i=1

zT
i Azi

zT
i zi

(88)

Normalizing the zi letting:

yi =
zi

(zT
i zi)1/2

(89)

we obtain:

J(S1, . . . , Sc) =
c
∑

i=1

yT
i Ayi = tr(Y T AY) (90)

5.3 A unified view of the two approaches

Comparing Eq. 90 and Eq. 85 it is possible to see the perfect equivalence

between kernel K-means and the spectral approach to clustering when one

wants to maximize the ratio association. To this end, indeed, it is enough to

set the weights in the weighted kernel K-means equal to one obtaining the

classical kernel K-means. It is possible to obtain more general results when

one wants to optimize other objective functions in the spectral approach, such

as the ratio cut [13], the normalized cut and the Kernighan-Lin [41] objective.

For instance, in the case of the minimization of the normalized cut which is

one of the most used objective functions, the functional to minimize is:

J(S1, . . . , Sc) = tr(Y T D−1/2AD−1/2Y) (91)

Thus the correspondence with the objective in the kernel K-means imposes

to choose Y = D1/2Z, W = D and K = D−1AD−1. It is worth noting that

for an arbitrary A it is not guaranteed that D−1AD−1 is definite positive. In

41

this case the kernel K-means will not necessarily converge. To cope with this

problem in [20] the authors propose to enforce positive definiteness by means

of a diagonal shift [66]:

K = σD−1 + D−1AD−1 (92)

where σ is a positive coefficient large enough to guarantee the positive definite-

ness of K. Since the mathematical foundation of these methods is the same,

it is possible to choose which algorithm to use for clustering choosing, for in-

stance, the approach with the less computational complexity for the particular

application.

6 Conclusions

Clustering is a classical problem in pattern recognition. Recently spectral and

kernel methods for clustering have provided new ideas and interpretations

to the solution of this problem. In this paper spectral and kernel methods

for clustering have been reviewed paying attention to fuzzy kernel methods

for clustering and to the connection between kernel and spectral approaches.

Unlike classical partitioning clustering algorithms they are able to produce

nonlinear separating hypersurfaces among data since they construct an adja-

cency structure from data. These methods have been successfully tested on

several benchmarks, but we can find few applications to real world problem

due to the high computational cost. Therefore an extensive validation on real

world applications remains a big challenge for kernel and spectral clustering

methods.

42

Acknowledgments

Work partially supported by the Italian Ministry of Education, University, and

Research (PRIN 2004 Project 2004062740) and by the University of Genova.

References

[1] M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the

potential function method in pattern recognition learning. Automation and

Remote Control, 25:821–837, 1964.

[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68(3):337–404, 1950.

[3] Majid A. Awan and Mohd. An intelligent system based on kernel methods

for crop yield prediction. In Wee K. Ng, Masaru Kitsuregawa, Jianzhong Li,

and Kuiyu Chang, editors, PAKDD, volume 3918 of Lecture Notes in Computer

Science, pages 841–846, 2006.

[4] F. R. Bach and M. I. Jordan. Learning spectral clustering. Technical Report

UCB/CSD-03-1249, EECS Department, University of California, Berkeley,

2003.

[5] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Computation, 15(6):1373–1396, June 2003.

[6] Y. Bengio, O. Delalleau, N. Le Roux, J. F. Paiement, P. Vincent, and

M. Ouimet. Learning eigenfunctions links spectral embedding and kernel PCA.

Neural Computation, 16(10):2197–2219, 2004.

[7] Y. Bengio, P. Vincent, and J. F. Paiement. Spectral clustering and kernel PCA

are learning eigenfunctions. Technical Report 2003s-19, CIRANO, 2003.

43

[8] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Kluwer Academic Publishers, Norwell, MA, USA, 1981.

[9] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University

Press, Oxford, UK, 1996.

[10] M. Brand and K. Huang. A unifying theorem for spectral embedding and

clustering. In Christopher M. Bishop and Brendan J. Frey, editors, Proceedings

of the Ninth International Workshop on Artificial Intelligence and Statistics,

2003.

[11] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[12] F. Camastra and A. Verri. A novel kernel method for clustering. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(5):801–804,

2005.

[13] P. K. Chan, M. Schlag, and J. Y. Zien. Spectral k-way ratio-cut partitioning

and clustering. In Proceeding of the 1993 symposium on Research on integrated

systems, pages 123–142, Cambridge, MA, USA, 1993. MIT Press.

[14] S.-C. Chen and D.-Q. Zhang. Robust image segmentation using FCM with

spatial constraints based on new kernel-induced distance measure. IEEE

Transactions on Systems, Man and Cybernetics, Part B, 34(4):1907–1916, 2004.

[15] J.-H. Chiang and P.-Y. Hao. A new kernel-based fuzzy clustering approach:

support vector clustering with cell growing. IEEE Transactions on Fuzzy

Systems, 11(4):518–527, 2003.

[16] F. R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in

Mathematics, No. 92). American Mathematical Society, February 1997.

[17] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–

297, 1995.

44

[18] N. Cristianini, J. S. Taylor, A. Elisseeff, and J. S. Kandola. On kernel-target

alignment. In NIPS, pages 367–373, 2001.

[19] N. Cristianini, J. S. Taylor, and J. S. Kandola. Spectral kernel methods for

clustering. In NIPS, pages 649–655, 2001.

[20] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors:

A multilevel approach. to appear in IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2007.

[21] I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral

clustering and graph partitioning. Technical Report Technical Report TR-04-

25, UTCS, 2005.

[22] I. S. Dhillon. Co-clustering documents and words using bipartite spectral

graph partitioning. In KDD ’01: Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 269–

274, New York, NY, USA, 2001. ACM Press.

[23] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering

and normalized cuts. In KDD ’04: Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 551–

556, New York, NY, USA, 2004. ACM Press.

[24] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs.

IBM Journal of Research and Development, 17:420–425, 1973.

[25] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley,

1973.

[26] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical

Journal, 23(98):298–305, 1973.

[27] I. Fischer and I. Poland. New methods for spectral clustering. Technical Report

IDSIA-12-04, IDSIA, 2004.

45

[28] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals

Eugenics, 7:179–188, 1936.

[29] A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer,

Boston, 1992.

[30] M. Girolami. Mercer kernel based clustering in feature space. IEEE

Transactions on Neural Networks, 13(3):780–784, 2002.

[31] G. H. Golub and C. F. V. Loan. Matrix Computations (Johns Hopkins Studies

in Mathematical Sciences). The Johns Hopkins University Press, October 1996.

[32] T. Graepel and K. Obermayer. Fuzzy topographic kernel clustering. In

W. Brauer, editor, Proceedings of the 5th GI Workshop Fuzzy Neuro Systems

’98, pages 90–97, 1998.

[33] A. S. Have, M. A. Girolami, and J. Larsen. Clustering via kernel decomposition.

IEEE Transactions on Neural Networks, 2006.

[34] D. Horn. Clustering via Hilbert space. Physica A Statistical Mechanics and its

Applications, 302:70–79, December 2001.

[35] P. J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.

[36] A. B. Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. A support vector method

for clustering. In Todd, editor, NIPS, pages 367–373, 2000.

[37] A. B. Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector

clustering. Journal of Machine Learning Research, 2:125–137, 2001.

[38] R. Inokuchi and S. Miyamoto. LVQ clustering and SOM using a kernel function.

In Proceedings of IEEE International Conference on Fuzzy Systems, volume 3,

pages 1497–1500, 2004.

[39] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Computing Surveys, 31(3):264–323, 1999.

46

[40] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad, and spectral.

In Proceedings of the 41st Annual Symposium on the Foundation of Computer

Science, pages 367–380. IEEE Computer Society, November 2000.

[41] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. The Bell system technical journal, 49(1):291–307, 1970.

[42] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering

of microarray data: coclustering genes and conditions. Genome Research,

13(4):703–716, April 2003.

[43] T. Kohonen. The self-organizing map. In Proceedings of the IEEE, volume 78,

pages 1464–1480, 1990.

[44] T. Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1):59–69, 1982.

[45] T. Kohonen. Self-Organizing Maps. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2001.

[46] R. Krishnapuram and J. M. Keller. A possibilistic approach to clustering. IEEE

Transactions on Fuzzy Systems, 1(2):98–110, 1993.

[47] R. Krishnapuram and J. M. Keller. The possibilistic c-means algorithm: insights

and recommendations. IEEE Transactions on Fuzzy Systems, 4(3):385–393,

1996.

[48] B. Kulis, S. Basu, I. S. Dhillon, and R. Mooney. Semi-supervised graph

clustering: a kernel approach. In ICML ’05: Proceedings of the 22nd

international conference on Machine learning, pages 457–464, New York, NY,

USA, 2005. ACM Press.

[49] D. Lee. An improved cluster labeling method for support vector clustering.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):461–

464, 2005.

47

[50] J. Leski. Fuzzy c-varieties/elliptotypes clustering in reproducing kernel hilbert

space. Fuzzy Sets and Systems, 141(2):259–280, 2004.

[51] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design.

IEEE Transactions on Communications, 1:84–95, 1980.

[52] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information

Theory, 28:129–137, 1982.

[53] D. Macdonald and C. Fyfe. The kernel self-organising map. In Fourth

International Conference on Knowledge-Based Intelligent Engineering Systems

and Allied Technologies, 2000, volume 1, pages 317–320, 2000.

[54] J. B. Macqueen. Some methods of classification and analysis of multivariate

observations. In Proceedings of the Fifth Berkeley Symposium on Mathemtical

Statistics and Probability, pages 281–297, 1967.

[55] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. ‘Neural gas’ network

for vector quantization and its application to time-series prediction. IEEE

Transactions on Neural Networks, 4(4):558–569, 1993.

[56] M. Meila and J. Shi. Learning segmentation by random walks. In NIPS, pages

873–879, 2000.

[57] J. Mercer. Functions of positive and negative type and their connection with

the theory of integral equations. Proceedings of the Royal Society of London,

209:415–446, 1909.

[58] K. R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction

to kernel-based learning algorithms. IEEE Transactions on Neural Networks,

12(2):181–202, 2001.

[59] O. Nasraoui and R. Krishnapuram. An improved possibilistic c-means algorithm

with finite rejection and robust scale estimation. In North American Fuzzy

Information Processing Society Conference, Berkeley, California, June 1996.

48

[60] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and

an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,

Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002.

MIT Press.

[61] A. Paccanaro, C. Chennubhotla, J. A. Casbon, and M. A. S. Saqi. Spectral

clustering of protein sequences. In International Joint Conference on Neural

Networks, volume 4, pages 3083–3088, 2003.

[62] A. K. Qinand and P. N. Suganthan. Kernel neural gas algorithms with

application to cluster analysis. ICPR, 04:617–620, 2004.

[63] A. Rahimi and B. Recht. Clustering with normalized cuts is clustering with a

hyperplane. Statistical Learning in Computer Vision, 2004.

[64] H. J. Ritter, T. M. Martinetz, and K. J. Schulten. Neuronale Netze. Addison-

Wesley, München, Germany, 1991.

[65] K. Rose. Deterministic annealing for clustering, compression, classification,

regression, and related optimization problems. Proceedings of IEEE,

86(11):2210–2239, November 1998.

[66] V. Roth, J. Laub, M. Kawanabe, and J. M. Buhmann. Optimal cluster

preserving embedding of nonmetric proximity data. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(12):1540–1551, 2003.

[67] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, December 2000.

[68] S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman

Scientific & Technical, Harlow, England, 1988.

[69] D. S. Satish and C. C. Sekhar. Kernel based clustering and vector quantization

for speech recognition. In Proceedings of the 2004 14th IEEE Signal Processing

Society Workshop, pages 315–324, 2004.

49

[70] B. Schölkopf, A. J. Smola, and K. R. Müller. Nonlinear component analysis as

a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[71] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,

2001.

[72] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2000.

[73] V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker. Classification of

radar returns from the ionosphere using neural networks. Johns Hopkins APL

Technical Digest, 10:262–266, 1989.

[74] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy: The Principles and

Practice of Numerical Classification. W.H. Freeman, San Francisco, 1973.

[75] A. N. Srivastava. Mixture density Mercer kernels: A method to learn kernels

directly from data. In SDM, 2004.

[76] X. Tan, S. Chen, Z. H. Zhou, and F. Zhang. Robust face recognition from a

single training image per person with kernel-based som-face. In ISNN (1), pages

858–863, 2004.

[77] D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern

Recognition Letters, 20(11-13):1191–1199, 1999.

[78] V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New

York, Inc., New York, NY, USA, 1995.

[79] D. Verma and M. Meila. A comparison of spectral clustering algorithms.

Technical report, Department of CSE University of Washington Seattle, WA

98195-2350, 2005.

50

[80] U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering.

Technical Report 134, Max Planck Institute for Biological Cybernetics, 2004.

[81] U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In

Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural

Information Processing Systems (NIPS) 17. MIT Press, Cambridge, MA, 2005.

[82] D. Wagner and F. Wagner. Between min cut and graph bisection. In

Mathematical Foundations of Computer Science, pages 744–750, 1993.

[83] J. H. Ward. Hierarchical grouping to optimize an objective function. Journal

of the American Statistical Association, 58:236–244, 1963.

[84] J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S. Noble.

Semi-supervised protein classification using cluster kernels. Bioinformatics,

21(15):3241–3247, August 2005.

[85] W. H. Wolberg and O. L. Mangasarian. Multisurface method of pattern

separation for medical diagnosis applied to breast cytology. Proceedings of the

National Academy of Sciences,U.S.A., 87:9193–9196, 1990.

[86] Z. D. Wu, W. X. Xie, and J. P. Yu. Fuzzy c-means clustering algorithm based

on kernel method. Computational Intelligence and Multimedia Applications,

2003.

[87] R. Xu and D. I. I. Wunsch. Survey of clustering algorithms. IEEE Transactions

on Neural Networks, 16(3):645–678, 2005.

[88] J. Yang, Estivill, and S. K. Chalup. Support vector clustering through proximity

graph modelling. In Proceedings of the 9th International Conference on Neural

Information Processing, volume 2, pages 898–903, 2002.

[89] S. X. Yu and J. Shi. Multiclass spectral clustering. In ICCV ’03: Proceedings

of the Ninth IEEE International Conference on Computer Vision, Washington

DC, USA, 2003. IEEE Computer Society.

51

[90] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. Spectral relaxation

for k-means clustering. In NIPS, pages 1057–1064, 2001.

[91] D.-Q. Zhang and S.-C. Chen. Fuzzy clustering using kernel method. In The

2002 International Conference on Control and Automation, 2002. ICCA, pages

162–163, 2002.

[92] D.-Q. Zhang and S.-C. Chen. Kernel based fuzzy and possibilistic c-means

clustering. In Proceedings of the International Conference Artificial Neural

Network, pages 122–125. Turkey, 2003.

[93] D.-Q. Zhang and S.-C. Chen. A novel kernelized fuzzy c-means algorithm with

application in medical image segmentation. Artificial Intelligence in Medicine,

32(1):37–50, 2004.

[94] D.-Q. Zhang, S.-C. Chen, Z.-S. Pan, and K.-R. Tan. Kernel-based fuzzy

clustering incorporating spatial constraints for image segmentation. In

International Conference on Machine Learning and Cybernetics, volume 4,

pages 2189–2192, 2003.

52

