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Abstract

In several applications of data mining to high-dimensional data, clusterihgiteees de-
veloped for low-to-moderate sized problems obtain unsatisfactory reghitsis an aspect

of thecurse of dimensionalitigsue. A traditional approach is based on representing the data
in a suitable similarity space instead of the original high-dimensional attribute sipethis
paper, we propose a solution to this problem using the projection of dataa@utaalled
Membership Embedding Space obtained by using the memberships of dataopduntgy

sets centered on some prototypes. This approach can increasidiea®y of the popular
Fuzzy C-Means method in the presence of high-dimensional data sets, &w in an
experimental comparisons. We also present a constructive methodfotypes selection
based on simulated annealing that is viable for semi-supervised clusteoiigpis.

Key words: High Dimensional Data Sets; Unsupervised Clustering; Supervised
Clustering; Fuzzy Sets; Embedding Spaces; Fuzzy C-Means; Simulateshéy.

1 Introduction

Clustering methods are useful tools for data mining. Theybsaemployed both in
anunsuperviseavay, when available data are unlabeled (or available |arelsin-

reliable, or when the data labeling task is too expensive),ia asemi-supervised
way when a small amount of knowledge is available concereitizer pairwise
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(must-link or cannot-link) constraints between data itemslass labels for some
items.

Unfortunately, in several problems of data mining, datarie very high dimen-
sional space (thousands of dimensions). In these sitigtioa direct application of
clustering algorithms developed for low-dimensional §sa@.g., K-means [Stein-
haus (1956), Lloyd (1982)], BIRCH [Zhang et al. (1996)], CURE [@udt al.
(1998)], CLARANS [Ng & Han (2002)], etc.) often leads to poosu#s. Even
after feature selection, one may be left with hundreds okdisions (and further re-
ductions will significantly degrade the results). Even teghes designed for large
guantities of data, such as DBScan [Ester et al. (1996)], fmtlys on the problem
of large-cardinality datasets, thuextively making the assumption of (relatively)
small dimensionality. This is an aspect of the well-knasumse of dimensionality
issue [Bellman (1961)].

Many clustering algorithms sier from being applied in high-dimensional spaces,
as clustering algorithms often seek for areas where datdesrge. Sometimes the
cardinality of the data sets available is even less than tineber of variables, as
in the case of the analysis of many bioinformatics data gatsweb mining prob-
lems. This means that data span only a subspace within thesgate. In these
conditions, it is not easy to define the concept of volumeteinsity.

Moreover, when space dimensionality is high or even modedest low as 10-15),
the distance of a point to its farthest neighbor and to itsestaneighbor tend to
become equal [Beyer et al. (1999), Aggarwal & Yu (2002)]. Hiere the evalua-
tion of distances, and the conceptradarest neighboitself, become less and less
meaningful with growing dimensions. Defining clusters oa thasis of distance
measures requires that distances can be estimated. Fangesione of the most
commonly used methods, K-means clustering [Steinhaus§12®yd (1982)], is
based on iteratively computing distances and cluster gesrdncreasing the data
space dimensionality may introduce a large number of sirmapsolutions (local
minima), and the nearest-neighbor criterion which is th&daf the method may
even become useless. This problem is not avoided even whaedfs is modi-
fied in the direction of incorporating fuzzy concepts, egf@ the FCM (Fuzzy
C-Means) algorithm [Dunn (1973), Bezdek (1981)].

A possible approach alleviating these problems is basedmmesenting the data in
a suitable similarity space instead of the original highnelnsional attribute space
(see e.g. Strehl & Ghosh (2003), Filippone et al. (2008),Fihdpone (2009)).

In this paper, we propose a solution to the highlighted gaisl using the projection
of data onto a so-called Membership Embedding Space (MESh Brojection is
obtained by using the memberships of data points on fuzzycsgitered on some
prototypes selected among data points themselves. We evilbdstrate that this
approach can increase clusterirfiaéency of the popular Fuzzy C-Means (FCM)
[Bezdek (1981)] algorithm in the presence of high-dimensiatata sets. To this
aim, we will experimentally compare the performances of F@lthe original data



space, with those in the Distance Embedding Space (follpwhe approach pro-
posed by Pekalska and Duin [Pekalska et al. (2001)]) and béeship Embedding
Space, using dlierent prototypes-data ratios. Moreover, we will presertrestruc-
tive method for prototypes selection based on simulatedaimy that is viable for
semi-supervised clustering problems as well.

In Section 2 a fuzzy embedding for high dimensional data, setgresented; in
Section 3 we recall the main aspects of Fuzzy C-Means clagtatgorithm, and
in Section 4 we present a constructive approach for setpatiroptimal set of pro-
totypes in the fuzzy embedding. The experimental resuitseported in Section 5.
The conclusions are given in Section 6.

2 Membership Embedding Space

A notable complexity reduction of data mining problems ia firesence of large-
dimensional data sets can be provided by representaticasimilarity space or
embedding space based on an assigned pairwise similaritys@milarity) trans-

formation (see e.g. Strehl & Ghosh (2003), Filippone et2008), and Filippone
(2009)).

Given a data seX of cardinalityn, X = {X1,Xo,...,Xa} in ad dimensional space,
the (dis-)similarity transformatiow(x;, X;) maps then x d data matrix into a more
dense symmetrio x n matrix of similaritiesv, with vix = v(X;, Xx) Vi, k.

Mutual distances or other pairwise pattern evaluation oaghsuch as kernels
[Shawe-Taylor & Cristianini (2004)] may be used as (dis-)j&nty transforma-
tions. If the cardinality of the data set is small comparethtinput space dimen-
sionality, data sets can be represented in the embeddirng spa@ very compact
way.

Applications of projection onto (dis-)similarity embeddispaces to clustering are
reported, e.g. in Fred & Leitdo (2003), and Rovetta & Masul{6). Pekalska
et al. (2001) developed a set of methods based on repregeaith pattern accord-
ing to a set of similarity measurements with respect to gbla¢terns in the data set.
As they pointed out, the (dis-)similarity measure shouldlmeetric, since metrics
preserve theeverse of the compactness hypoth¢Bmkalska et al. (2001)]: "ob-
jects that are similar in their representation are alsolamm reality and belong,
thereby, to the same class".

Often non-metric distances are used as well. Moreover, sora¢he (dis-)similarity

matrix can be reduced from a square matrixn to a smaller rectangular matrix
nx s, by selectings < nreference points (callgatototype$ and computing the (dis-

)similarities of the data with them. If the embedding dimensis small compared

with d (i.e. s/d < 1), some points could have an ambiguous representation,



In order to avoid the previously highlighted problems, iis faper we study an em-
bedding based on the space of memberships to fuzzy setsl{{28165)] centered
on selected prototypes.

The memberships to fuzzy sets centered on the prototypas@deled using the
following normalized function:

exp[—ﬁdfk]
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where the parametgt regulates the spread of the membership function. The de-
nominator normalizes the sum of the memberships to the fyyze to sum up to
one. The matrix/ = [vi] is the similarity matrix. Note that th¥ is rectangular,
since we select a number of prototyses n.

In this way, in the Membership Embedding Space (MES) a daita ppis repre-
sented as a row of, i.e., X; = (Vi1,Vi2,...,Vin). Due to the localized definition of
fuzzy sets, this vector of memberships contains only fewmalhelements, in cor-
respondence of the nearest prototypes in the original ¢etees If the spread of
membership is large (i.e., largd many of these elements are non-null, otherwise
for B going to zero, only the data points corresponding to thecsedeprototypes
have at least one non-null element.

The results of a clustering method will bfected by the number and the positions
of the prototypes as well as by the value of spread parargetelacing the pro-
totypes is a combinatorial search problem which will be kdlky a Simulated
Annealing approach.

3 Fuzzy C-Means Algorithm

In the experiments reported in this paper, we have used theyRirMeans (FCM)
algorithm [Bezdek (1981)] as the clustering algorithm. @tastering techniques
can be applied, but we focus on a single choice for the sakiaofyc

The FCM algorithm performs the minimization of the followifgnctional:

In(UY)= > > (i) 2)

where: X = {X1, X2,..., X} IS @ data set containing unlabeled sample point¥; =
{y1,¥2,...,Yc} is the set of the centers of clustet$;= [ui] is the cx n fuzzy c-
partition matrix, containing the membership values of athples to all prototypes;
me (1, 0) is the fuzziness control parametdi; is a dissimilarity measure between



data pointx; and the centeyy of a specific clustek. In the rest of this paper we will
use the Euclidean squared distadge= ||x; — y«/|° as the dissimilarity measure.

The clustering problem can be formulated as the minimirabiody, with respect
to Y, under the normalization constra@ﬁ=l Uk = 1.

The necessary conditions for minimizidg, are then:

1 (Ui) ™

_ i1k A for all k
2L ()™ orat® ®)
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=SSk for all i k.
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The Fuzzy C-Means algorithm usually starts with a randomaiigation of the
fuzzy c-partition matriXJ or of the centroidsgk. Then, it iterates Eq.s 3 and 4 until
convergence. Usually, the convergence is checked by cangpidwe change in the
position of the centroids or in the cost function with somedithresholds.

Note that in the limit fom — 1 the fuzzy C-Means Functiondl, (Eq. (2)) tends to
the expectation of the K-Means global erroE >= Y | 3¢ uidik, and the FCM
behaves as the classic K-means (or Hard C-means) algorittemf&us (1956),
Lloyd (1982), Duda & Hart (1973)].

4 Simulated Annealing Prototype Selection Algorithm

As already noted, the selection of the optimal set of prgtesyfor constructing the
Membership Embedding Space is a combinatorial searchgrolbA constructive
heuristic algorithm able to select the set of prototypeslifgato (sub-)optimal
clustering in the MES can be based on Simulated Annealing (Bkpatrick
et al. (1983)Cerny (1985)] that is a global search probabilistic techaitspired
to annealing in metallurgy,

“Physical” annealing as used in metallurgy involves heptinmaterial, and then
cooling it slowly and in a controlled fashion. The aim of thi®cess is to allow the
crystal lattice to reorganize so as to reduce the defect$carehch a more stable,
and therefore stronger, inner structure. Heating allowmatto detach from their
initial positions (corresponding to a local minimum of timeirnal energy) and to
float randomly through states of higher energy; slow cooliigws them more

chances to find configurations with internal energy lowenfttie initial one.

SA is an adaptation of the Metropolis-Hastings algorithnefMpolis et al. (1953)]
aimed to simulate the behavior and small fluctuations of tegy®f atoms start-
ing from an initial configuration, by the generation of a seage of iterations. In



the Metropolis algorithm each iteration comprises a rangenturbation (modifi-

cation) of the actual configuration (state vector) and thematation of the cor-

responding energy variatiodE). If AE < 0 the transition is unconditionally ac-
cepted, otherwise the transition is accepted with proliglgiven by the Boltzmann

distribution:

P(AE) = exp(%_l_E) (5)

where K is the Boltzmann constant and T the temperature.

In SA this approach is generalized to the solution of germgytaimization problems
[Kirkpatrick et al. (1983)], by using aad hocselected cost functiorgéneralized
energy, instead of the physical energy; therefore, it can alsorbpleyed when
the search space is discrete, as in combinatorial seartiepns. SA works as a
probabilistic hill-climbing procedure searching for thielgal optimum of the cost
function [Romeo (1986)]K is usually set to 1, while the temperatuFecontrols
the size of the search area, and is gradually lowered unfilirtber improvements
of the cost function are noticed. SA can work in very high-eimsional searches,
given enough computational resources. In applications,imhportant to trade{b
the quality of the solution and the computational cost; aelodecreasing of the
temperature allows the system to reach better solutionsbte time is required to
explore the state space.

In Tab. 1 the propose8imulated Annealing Prototypes Select{@A-PS) algo-
rithm is shown. In our approach the state of the system issgmted by a binary
maskg = (91,02, ...,0n), Where each big; (withi =1,...,n) corresponds to the se-
lection @ = 1)/ deselectiondj = 0) of a prototype. The initialization of the vector
maskg (Step 2) is done by generatisginteger numbers with uniform distribution
in the interval [1n] and setting the corresponding bitsgfo 1 and the remaining
ones to 0. At each step onlyprototypes are selected from the original senof
patterns. A perturbation or move is done in the following w@y chose randomly
W € [Wmin, Wmax] @andV € [Vmin, Vmaxl; (2) w bits of g set to 1 are switched to O; (8)
bits of g set to 0 are switched to 1.

The valueSVmin, Wmax Vmin, Vmax €an be used to reduce or to increase the variability
of each perturbation.

Once a set of prototypes is selected, it is possible to reptesach pattern in the
Membership Embedding Space (MES) and perform clustering.

The generalized enerdyis computed as a linear combination between an assigned
clustering quality measureand the number of selected prototyses

E=c+4s (6)

The clustering quality measueecan be a function of either the cost function as-



Table 1
Simulated Annealing Prototype Selection (SA-PS) Algorithm.

(1) Initialize parameters (see list in Tab. 3);

(2) Initialize the binary mask at random;

(38) Perform clustering and evaluate the generalized system ekergy
(4) do

(5) Initialize f =0 (number of iterationsh=0 (number of successes);
(a) do
(b) Increment number of iteratiorfs
(c) Perturb maskj;
(d) Perform clustering and evaluate the generalized system eBergy
(e) Generate a random numbyed in the interval [0,1];
(f) if rnd < P(AE) then
(i) Accept the newg mask;
(i) Increment the number of successes
(9) endif
(h) loop until h < hyip and f < fax

(6) updateT =aT;
(7) loop until h> 0;
(8) end.

sociated to the clustering algorithm, a clustering val@aindex, or, in the case of
semi-supervisedlustering (where we have a partially labeled data set)Réare-
sentation Error(RE). RE is the number of data points in each cluster disaggeein
with the majority label in that cluster, summed over all tdus and expressed as a
percentage.

Note that the introduction of the number of selected prges$s in the computa-
tion of E penalizes situations in which the number of selected pypts is high,
effectively resulting as a complexity penalty term. This ckeoof E leads to the
minimization of the cardinality of the set of prototypeseatn achieve a good clus-
tering quality measure. The balance between these two tisremsntrolled by
(penalization cogicient).

The cooling strategy is implemented in step (6) of Tab. 1htiudd be noted that
this strategy is only one of the many possible choices. Tipdicgtion of diferent
strategies, and in fact, the valuewitself, can significantly influence the quality of
results and the computing time. The decay law and the paeamaiue used have
proven to be reasonable in our experiments, but they may toave evaluated on
the specific application.



5 Experimental results

5.1 Dataset

In order to test our approach, we have used a high-dimerddiamiaformatics data
set, the publicly available Leukemia data by Golub et al9@)9 The Leukemia
problem consists in characterizing two forms of acute leuikeAcute Lymphoblas-
tic Leukemia (ALL) and Acute Myeloid Leukemia (AML). The ginhal work pro-
posed both a supervised classification task (“class predigtand an unsupervised
characterization task (“class discovery”). Here we obsipt@ocus on the latter, but
we exploit the diagnostic information on the type of leukenu assess the good-
ness of the clustering obtained.

The data set contains 38 samples for which the expressiehdév129 genes has
been measured with the DNA microarray technique (the isterg@ human genes
are 6817, and the other are controls required by the tecbpidinese expression
levels have been scaled by a factor of 100. Of these samplesgXases of ALL
and 11 are cases of AML. Moreover, it is known that the ALL sl&s in fact
composed by two dierent diseases, since they are originated frofieint cell
lineages (either T-lineage or B-lineage).

5.2 Performance Comparison

We have compared the following approaches:

(1) FCM on the raw data set (RD);

(2) FCM in the Distance Embedding Space (DES) witfiedlent prototypesdata
ratios;

(3) FCM inthe Membership Embedding Space (MES) witfiedent prototypegsata
ratios.

Each experiment corresponds to 1000 independent triadk, @fadhem using a dif-
ferent random initialization of memberships in the FCM aiton. In all trials, the
number of clusters was set to 3, and the fuzziness parameieFCM was set to
2.

Fig. 1 shows the representation error versus the protgiygisratio averaged over
1000 independent trials.

The first approach (standard FCM on original data) obtainpeesentation error
of 17.2%.
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Fig. 1. Representation Error for the tested methods: FCM on row data fRIM on the
Distance Embedding Space (DES), FCM on the Membership Embedding G¢&&)
with usingg = 1076,5-1077,107, and 10?8,

Table 2

Comparison of the best representation error for the tested methods: R@M alata (RD),
FCM on the Distance Embedding Space (DES), FCM on the Membership Embedd
Space (MES).

Method B Representation Error prototypegdata ratio
RD - 17.2 /
DES - 24.9 0.1
MES | 10° 11.1 0.4
MES | 5-10°7 10.9 0.5
MES 1077 9.5 0.7
MES | 108 9.1 0.8

The projection onto the distance embedding space (secqndagh) leads to worse
results compared to the first approach: as we can see for Fig.this case, the
representation error is greater than@5 for all prototype&lata ratios in the range
[.1,1.0].

The last approach, projecting the data set onto the mempezsibedding space
(MES), leads to better results. In Fig. 1 we show the resuitls gvstarting from
1076 (that is the about the reciprocal of the mean distance betwata points) and
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Fig. 2. The behavior of the best error rate (achieved With10°8, prototypegata ratio
= 0.8) vs the fuzziness parametar

with decreasing values of this parameter untit®that gives the optimal represen-
tation error.

A comparison of the best representation error for the tesigtthods is reported in
Tab. 2. For each value gfwe can notice an optimal prototyfoata ratio.

Finally we performed a “model selection” to find an approtaalue of the fuzzi-
nessm, by computing the representation error over 1000 trialss $ht of exper-
iments gives also indications about the role of the fuzanerameter of Fuzzy
C-Means when applied in a MES. We obtained the MES using y&in@0~® and
prototypegdata ratio= 0.8. As shown in Fig. 2, the best value faris m= 1.8 that
allows to obtain a representation error equal 88 (even if this is slight better
than the results obtained lmy= 2). Form > 2 we notice a rapid increasing in the
representation error. On the other hand, for low values,diCM tends to behave
like the K-Means algorithm that performs worse than FCM.

5.3 Experiments on the Constructive Approach

We show here the application of the Simulated Annealingd®ype Selection (SA-
PS) algorithm to the Leukemia data by Golub et al. (1999) ktmng a semi-
supervised clustering setting.

We ran the SA-PS algorithm in the MES using the FCM [Bezdek (J]%8dorithm
to cluster data. As a clustering quality measure we use@R#épresentation Error
(RE) evaluated as the best value obtained erl0 independent trials of FCM.

10



Table 3
SA-SP algorithm - Choice of parameters.

Meaning Symbol Value

Number of random perturbations gusedto p 10000

estimate the initial value of

Number of prototypes to be initially selecteds, 3
Cooling parameter a 0.9
Membership width parameter B 1076
Maximum number of iteration ateach T fmax 2000
Minimum number of successes for each T hpin 200
Penalization coicient Pl 1072

Minimum number of bits to be switched Wmin, Vmin 1,1

Maximum number of bits to be switched Wmax Vmax S, D

Number of clusters c 3
FCM fuzziness parameter m 2
FCM trials r 10

The parameter controls the trade® between the RE and the number of selected
probes (that is a measure of complexity). In our case, thalzation score for
each probe corresponds to an RE of 12&(1072). The parameters controlling the
annealing arer, fmax, andhmin; we selected = 0.9 to allow a slow cooling of the
system andfmax = 2000 andhmin = 200 in order to have the chance to explore a
lot of states for a specific value @f. The number of bits to be switched in each
move (Vmin, Vmin,» Wmax, Vmax) Where selected in order to give the system enough
variability to perform small as well as long jumps betweeates.

Tab. 3 shows the list of parameters of our algorithm and thesgave have used in
the experiments here reported.

Each independent run of the SA-PS algorithm findsfiEedent small subset of pro-
totypes leading to a clustering Representation Error equaéto. In Fig. 3, the
Representation Error and the number of selected bitg arfe plotted versus the
iteration number during a run of the SA-PS algorithm, whexehdteration corre-
sponds to a dilerent value of temperatufe. In this case, at iterations 31, 33, 34
and 35 we obtained 4 fllerent sets of 3 prototypes giving clustering RE equal to

11
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6 Conclusions

Clustering methods can achieve poor results when appliesi&d sardinality and
high dimensionality data sets.

In this paper, we proposed a method to face those clusteraidgms using an em-
bedding space where each data point is represented by a eeataining mem-
berships to fuzzy sets centered on a sub-set of prototypestse from the data
base. On the Leukemia data by Golub et al. (1999) the propmgewach leads to
significant improvements with respect the application ottring algorithms in
the original space and in the distance embedding space.

The method can exploit supervised information (class Blmlen when these are
not available for all data points. This is because they ateised in the optimiza-
tion step, but only in the centroid evaluation step, whichasfigured as a model

12



selection over centroid position (a “fitting” criterion) dnumber (a “complexity”
criterion). This makes the proposed approach a viableisalin all cases where
supervised information is available, even if only for a ®iledf data points.

Obtaining (good quality) supervised information has alsviagen an expensive step
in setting up an application, but recently this has becomewam more serious
issue, given the enormous quantities of data that can beupeodat a fast pace
by sources such as, for instance, enterprise data wared)aheeweb, or high-
throughput biomolecular analysis techniques. Being ablkexpoit unsupervised
data is important, but perhaps even more important is to betabexploit even
incomplete —but precious— supervised information.
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