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Abstract

In the fuzzy clustering literature, two main types of mengh@p are usually considered: a relative
type, termedprobabilistic and an absolute grossibilistictype, indicating the strength of the attribution
to any cluster independent from the rest. There are workeeadihg the unification of the two schemes.
Here we focus on providing a model for the transition from sokema to the other, to exploit the dual
information given by the two schemes, and to add flexibiliy the interpretation of results. We apply
an uncertainty model based on interval values to membesshithe clustering framework, obtaining a
framework that we terngraded possibilityWe outline a basic example of graded possibilistic cluster
algorithm and add some practical remarks about its impléatiem. The experimental demonstrations
presented highlight the filerent properties attainable through appropriate impleatiem of a suitable
graded possibilistic model. An interesting applicatiorfdand in automated segmentation of diagnostic

medical images, where the model provides an interactivealization tool for this task.

Index Terms

Possibilistic clustering, Clustering methods, Fuzzy @tiag, Fuzzy statistics and data analysis.

|. INTRODUCTION

The problem of clustering [1], [2] is usually stated in thentext of exploratory data analysis, where
it is used as an aid to understand the structure of a givengohemon represented by a collection of
experimental data. In this framework, it is important tha tlustering results are given in a form that

helps understanding the properties of the phenomenon.
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One of the most prominent clustering paradigms (as wittebgehe number of existing variations) is
the principle adopted in the-Means [3], [4] algorithm, also termed “central clustefinghis paradigm
implies partitioning a set of data vectors or patte¥hs {xx}, k € {1,...,n}, xx € R" by attributing each
data pointxy to a subset (clusteg); c X, j € {1,...,c}, defined by itscentroidy; € R". This attribution
is made on the basis of a given distartfe -). The partition thus obtained is then generalizable to the
whole data space by means of an implicit Voronoi tessettaflo= {w1, ..., w:} With the centroids as its
\Voronoi sites.

Membershipuj of a data poinky to a given clustew; is often modeled as a fuzzy value [5], [6], [7],
with crisp clustering becoming a marginal special case [Bictv can always be obtained by a winner-
take-all operation. It is interesting to note that, althlowgisp or “hard’c-Means is very popular because
of its speed, the fuzzy approach is both less prone to locainmai and more informative as a technique
for data analysis. The set of all centroigs and the set of all memberships to clusters for any given
point constitute the description of the data under the sirecsuggested by our clustering algorithm.

In the literature two main types of membership are usuallysiered [9]: a relative type of member-
ship, sometimes termegrobabilistic, which for a given point indicates to what proportion it slitbbe
attributed to each cluster; and an absolutgossibilistictype, indicating the strength of the attribution
to any cluster independent from the rest. There are workseaduhg the unification of the two schemes
or exploitation of both schemes in a single method [10], [11P], [13], [14], especially in a robust
clustering framework. Here instead we focus on providingadeh for thetransition from one schema
to the other. Our main aim is to exploit the dual informatidweg by the two schemes, and to add a
degree of flexibility for the interpretation of results in arploratory data analysis task. However, the
proposed method features also some interesting propé&miesthe robustness standpoint.

This paper is organized as follows: first we briefly review thaximum Entropy” and “Possibilistic”
approaches to clustering (Section II), then we introdueecttincept of graded possibility and its applica-
tion to clustering (Section 1l). A possible implementatis discussed in Section IV, along with suggested
variations. Section V proposes some applications in standastering problems, whereas Section VI
introduces an application to interactive post-proces#indiagnostic image segmentation. Conclusions

are drawn in Section VII.

Il. THE “M aAxiMuM ENTROPY” AND “POSSIBILISTIC” APPROACHES

The central clustering paradigm is implemented in seveiagrse algorithms. Often these algorithms

are based on objective function minimization [15], [14].iFhelps in understanding the behavior and
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features of each technique. However, there are also mamgpaa of algorithms for which no objective
function is defined (e.g. Alternating Cluster Estimatio®][br the Self Organizing Map [17]). In this
section we will discuss two interesting algorithms, the Maxm Entropy clustering method by Rose et
al. [18], [19], and the Possibilistic approach by Krishnagra and Keller [20], [21], [22].

Both methods are based on the following definition of clustantroidsyY:

Yker UjkXk
Yke1 Uik

which is the same as in theMeans methods, and is obtained independently on the defirdf distance.

Yj = 1)

However, since the membershipg are computed in dierent ways, the resulting centroids are not the
same.

In the Maximum Entropy approach, points and centroids agarded as a formal physical system,
and memberships of points are interpreted as probabibfigslonging to a given cluster. The centroids
are found by fixing the energy of the system, and then minimgizhe negative entropy of the partition
Q = {ws,...,wc}, constrained by the energy, so that it represents the mosrale(less imbalanced)
partition.

Using Lagrange multipliers, the objective function is #fere expressed &k, - = ZJ 1 Dkeq Uik log uje+
,BZJ-=1 Yk-1 Ujkdjk, where we use the shorthand notatiya = d(y;, xi). We can divide by3 and add the
normality constraintzle uj = 1 Vk, which is needed by the interpretation wf as probabilities (see
also [5]). The objective function can thus be rewritten as

c n c n
JME:ZZu,dek+%ZZu,klogqu+Zak[ Z ] @
j =1 k=1
and therefore interpreted as “minimize the energy for a fexetdopy level”, as proposed in [23]. The terms
containing co#icientsp and Ay are constraints and the dfieients themselves are Lagrange multipliers.

Energy is simply the distortion term found in many centralstéring algorithms, so this formulation is

closer to the familiar clustering formulation in which didion is minimized under additional constraints.

Memberships are computed as:

®3)

whereZy is called the partition function and is computed as

C
Zx = Z eulk/ﬁ, (4)
=1

as a result of having enforced the normality constraints lviorth stressing that the ME approach is

related to the Fuzzg-Means algorithm by a simple change of variables [15].
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The Possibilistic approach is based on removing any eguadibstraint on the sum of memberships.

This is replaced by a set of loose requirements, expresseaddi@mnce as follows:

Ujk € [O, 1] Vj Yk (5)
n
0< > up<n V] (6)
k=1
kalj ZUjk>0 (7)

Roughly speaking, these requirements simply imply thatlnster be empty and each pattern be assigned
to at least one cluster. This turns a standard fuzzy clugigsrocedure into a mode seeking algorithm
[20]. If the interpretation of memberships in the probaiii model is that of probability of one af
mutually exclusive events, then in the possibilistic ajggiomemberships can be viewed as the probability
of any of c independent events (or “typicality”). For an introductiomportant references, and another
interpretation of the Possibilistic Approach (in the framoek of robust clustering), we address the reader
to the on-line tutorial indicated in Reference [24].

The first formulation of the Possibilistic Clustering alglbm [20] includes a penalty term to avoid
trivial solutions. This term simply discourages low mendb#p values, introducing a bias to 1 for all
memberships. In the second formulation [22], the penalty teonsiders the entropy of clusters as well
as their overall membership valuegj?zlﬁlj Y1 (ujk loguj - ujk), so that the objective function has the
following form: . . ]

JPC:ZZujkdjk+Z%Z(ujklogujk—ujk) (8)
j=1 k=1 =17 k=1

We will refer to this version of the algorithm, which we wilidicate as PCM-II. Note that this approach
is equivalent to a set af independent estimation problems [8]. The parameggrstemperature” in the
entropic analogy, here can be termed “scale” to emphasedattt that each cluster is an independent
M-estimator, and can be individually set for each clustaher than being a global property of the whole
system.

Under this model, the memberships are computed as:
Ujk = e Ur/Bi, %)

If we keep the entropic analogy of the ME approach, and cendide scale parameter as a global
property, we can set a single valgdor all the g;. In this case the only ffierence with Equation (3) is
that Z, = 1.

December 7, 2005 DRAFT



This establishes a connection with the ME approach whichpségted out in [15] and also considered
in [14]. In the case of equa;’s, the partition function is generalizable to a normaii@atterm which
takes on dferent values according to the constraints which are placetth® sum of memberships.

By comparison of the two above expressions (3) and (9), wegeameralize the membership function

as follows:

_ Vi
=7
where vy = e/ for both algorithms discussed. This is a term that is usedcfamputing the

Ujk (10)
membership functiorprior to applying the partition function. Since the partition &tion is used to

enforce constraints, we refer to the teup asfree membership

I1l. T HE GRADED POSSIBILISTIC MODEL
A. The concept of graded possibility

As we already noted, the classic membership model (either tvafuzzy) implements the concept of
partitioning a set into disjoint subsets through the prdlistic constraintz?zl uj = 1. Each membership
is therefore formally equivalent to the probability that experimental outcome coincides with oneoof
mutually exclusive events. In the possibilistic approatstéad each membership is formally equivalent
to the probability that an experimental outcome coincidéh wne ofc mutually independengevents.

However, it is possible (and in practice it is frequent) thairs of events are not mutually independent,
but are not completely mutually exclusive either. Insteagknts can provideartial information about
other events. For instance, there may be a statisticallatioe between two events, rather than a causal
relation; or the probability of an event can be used to bobuoé not to exactly compute, the probability
of other events [25]. Of course, this is a problem-dependination and accounting for it may or may
not be appropriate. Interval and ellipsoidal models of utadety represent an implementation of this
principle [26].

These parametric uncertainty models are common in contrdlaptimization, where they are used
for bounding the region of possible values for the varialdéinterest. We apply the same technique
to membership values in the clustering framework. What wtiobis a model that we terrgraded
possibility, and since we model uncertainty of memberships, the teakrigjrelated to Type-2 fuzzy sets
[27][28]. In particular, Interval Type-2 fuzzy sets [29]eabased on the same type of modeling, whereby
the representation of uncertainty is simplified throughubke of intervals. Note that it is also possible to
define centroids as uncertain quantities, as done for iostanInterval Vector Quantization [30]. This

is an entirely diferent model, related to Type-1 fuzzy sets.
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We will base our explanations on the following geometricah@ept. The ordered set of memberships
to each of the clusteruy,...,u.} spans a ¢dimensional) space. Within this space sets of specific
membership values are represented as points, and we willféasible regiorthe locus of all points that
satisfy the constraints we impose. We remark that in gertbeafeasible region will be inside the unit
(hyper)cube [01]¢. We will draw diagrams illustrating feasible regions foe 2.

The standard possibilistic approach to clustering implied all membership values are independent:
the feasible region for memberships is the whole unit cubeprbbabilistic approaches, there is no
uncertainty: the feasible region is the pIa,‘i]%;l uj = 1 (more precisely, its segment bounded by the unit
cube). In contrast, the graded possibilistic model assuhes when one of the membership values is
fixed, the othelc — 1 values are constrained into a region which is smaller tharunhit cube, but larger
than the above plane segment.

Clearly, this situation includes the possibilistic modeid also encompasses the standard (“probabilis-

tic”) approach.

B. Modeling graded possibility

We propose to use the following uncertainty model for mershigs. Let §] be an interval variable
with upper and lower values indicated bg,E]. The memberships should be subject to the following

constraint:
[
>dd=1, (11)
=1

This interval equality should be interpreted as followse #mquality is satisfied for any point (set of

membership values) such that there exist a scalar nugﬁbe[g,g] for which the equality

C
D=1, (12)
=1

is satisfied.

This constraint enforces both the normality condition ahe tequired probabilistic or possibilistic
constraints; in addition, for nontrivial finite intervalg]| it implements the required graded possibilistic
condition, as we will show in the following.

Equation 11, containing an interval, is equivalent to a $atvo inequalities:

c c B
ZUJ@Z]. ZUjk'fSl.
= =

This formulation includes as the two extreme cases:
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« The “probabilistic” assumption:

« The “possibilistic” assumption:
[€] = (0, )
c c
Zuﬁjo>1 Zuji_”’"<1
=1 =1
In the latter case considerations are done in the limit ratien in a punctual fashion. This ensures
that the membership valuagy = 0 Vj Yk are avoided, as required also in the original possibilistic
formulation [20]. In the limit, the two inequalities are sdied for any choice ofiy € [0, 1], since in
this caseuy ¢ — 1 anduy ¢ — 0.
The constraint presented above can be implemented in waniays, according to the values we choose
to adopt forg andé. A particular implementation, with the minimum possiblenther of parameters, is

as follows:

-1
E=a £== (13)

- a
wheree is a single parameter such that (0, 1], controlling the amount of uncertainty or “possibility
level”.

The remarks above, with this specific implementation, dustilated by means of Figure 1. This type
of diagram is drawn assumirg= 2, and shows the boundaries of the feasible region for meshipey.
The axes represent membership values to clusters for argjbfmpointx.

In this case, we plot a family of feasible regions for the gdgbossibilistic case. The regions are
therefore parameterized hy, which decreases from 1 to O in the direction of the arrowse Tasible
regions are those inside the eye-shaped contours. The &yes @sa shrinks, until it fills the whole

square whemr vanishes.
[Figure 1 about here.]

Another implementation of the interval constraint is usethie outlier rejection application as explained
in Subsection V-B. In this case the upper extremumépid fixed to 1 and the lower extremum é§ so

that
[£] = [a, 1]. (14)
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C. A graded possibilistic approach to clustering

Unfortunately, solving the clustering problem with the exdijve function approach is hard under
the graded possibilistic model. However it is possible tpleit the generalized membership function
formulation (10) to find suitable sets of membership valuemglying with the graded possibilistic
constraint (11) for any value af. In this way, we obtain an iterative procedure whose updasiep
is not directly related to the optimization of a cost funotidhis approach was previously followed in
many works, the two previously cited [16][17] being only axample.

We first select the free membership function as:
Vik = e /i (15)

so that it is equivalent to the ME and PCM-II algorithms.

We observe then that, as we have already seen, in the patgibiase,v;; coincides withu;; (point
A in Figure 2), whereas in the probabilistic case it is neags$o project point A on the feasible region
219:1 ujk = 1 along the straight line through the origin and A, obtainpmnt C. This is actually the
effect of the normalization obtained by defining the generdligartition function in the standard way,
as in (4).

In intermediate cases, we need to distinguish whether tlirg falls within the eye-shaped feasible
region, or it falls outside. In the first case constraint (EOalready satisfied, while in the second case it
iS necessary again to project point A onto the border of thsifde region, obtaining point B.

To implement this variable behavior, an appropriate débinibf the generalized partition function is

required. Therefore we defirg as follows:

_ Ja\¥ /a
Ze=(S54v) 0 Savi>1
Ze=(xs,v)"" it C v o<1
= (21 Vik =1 Vik (16)
Z=1 else

These definitions ensure that, fer= 1, the representation properties of the method reduce &ethb
ME, whereas in the limit case far = 0, the representation properties are equivalent to thoSCHi-I1.

Note that the three conditions are mutually exclusivedog (0,1). A sketch of proof is as follows:
we want to prove that, given a set ofquantitiesu;, j € {1,...,c} such thatu; € (0, 1) Vj, the following

implications:

[ C
Dwr<is Y w1, (17)
=1 i=1
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[ C
D1 Y <, (18)
=1 =1
and

C C

l/a _ O _
Zuj _1:Zuj_1, (19)
j=1 =1

are all false.

Suppose for the sake of simplicity thate (0, 1). This implies tha’ug’ > u}/“ Y.

1/a

P therefore

Now, suppose thapj_, uf < 1. From the above relation it is alsp_, ut > Xiqu
¢, a'" > 1 cannot be true, so (17) is proved false.
By a similar argument also (18) can be proved false, whilg {§9ot true in general, but only for

a=1/a, ie.,a=1.

D. A note on parameter selection

The proposed method depends on one parametesich is to be selected according to some criterion.
At this point we should note that this parameter allows ther ts introduce hifer own bias into the
representation of cluster, by permitting the “soft traiosit between the probabilistic and possibilistic
paradigms.

As far as the other parameters involved in the formulae, theythe same as in more standard
techniques, so that usual center and radius estimatiomitpeds apply. This is especially true for the
number of clusters, for which many methods are availableceSit is not the aim of this study to focus
on this point, in the experiments presented below we haheritsed a number of clusters known from
previous work, or (in the last example, Section VI) adoptethive reduction approach, by starting from
an overspecified number of clusters, performing a numbeurad,rand reducing clusters until a reasonable
stability was achieved (centroids were found approxinyaitelthe same positions for most runs).

The idea of starting from an overspecified number of clusteig then progressively reducing it has
been thoroughly studied elsewhere. It can be incorporataclustering algorithm [31] and also combined
with a preliminary “inflation” or growth phase [32]. The pess is of course driven by appropriate criteria,
which may be local to clusters or may apply to the global partj and which characterize the individual

techniques.

[Figure 2 about here.]
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IV. Basic GRADED POSSIBILISTIC ALGORITHM

In this section we outline a basic example of graded possibilclustering algorithm. This is an
application of the ideas in the previous section. Howetds possible to apply many variations to this
algorithm, so that appropriate properties can be obtaiBethe of these variations will be presented and
demonstrated in the experimental section.

Although we are mainly interested in describing the knogkdepresentation properties of the pre-

sented model, we will also add some practical remarks att®utnplementation.

Algorithm BGPC: Basic Graded Possibilistic Clustering
select c
select niter e N
select a €]0,1]
initialize y;
for iter = 1 to niter begin
B = B(iter)
compute Vi using (15)
compute Zx using (16)
compute Ujk using (10)
if stopping criterion satisfied then stop

else compute y; using (1)

end

This basic algorithm can be modified in a number of standargswiBor our experiments we usually
apply a multi-trial version in which new initializationseaperformechtrials times, a selection criterion
is applied, and the result of the best trial is kept. The sieleccriterion can be designed according to
the application; usually it is a cluster validity estima88], [34], [35], [36]. In classification tasks, where
cluster centroids are labeled at the end of training, suklildgg can be used to perform the evaluation
on the training set or a test set, actually turning the BGRfor¢hm into a supervised one.

The value forB can be assessed from previous experiments, possibly indepémdent way for each
cluster (as done in PCM-II — formulas must then gg@éstead of5), estimated from data with appropriate
scale estimation techniques [37], or gradually lowerednriterated application of the algorithm (as done

in the deterministic annealing approach to ME). In our ekpents we used an initial value fg, to
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be decreased according to an exponential decay schedjlef[3@e 8 = B; (8;/8;) *e*/™ T (starts at

B = B and stops aB = B). In this formulation, the number of iterations also inflaea the actual
“annealing” schedule, since variations @ffrom one iteration to the next are smaller if the number of
allowed iterationsr{iter) is larger.

If « is fixed, convergence relies on the size of the variatiop.df g is changed abruptly from one
iteration to the other, the error surface is modified and enrbxt iteration the error may rise. However,
since each iteration is a batch update, random fluctuatiotisel empirical error landscape do not occur
as in stochastic optimization algorithms [39], [32]. It i@ possible to implement a full deterministic
annealing procedure by substituting the single updatefetepach value of8 with a sequence of updates
until convergence as in the original ME formulation [18]9],lwhere deterministic annealing was used.
However this may not be advisable whenis low, since there is reduced or no competition among
prototypes, so that centroids which are coincident are ndéeg apart in further iterations and “phase
transitions” [19] can not occur. Stochastic (“on-line”)twpization could be used for very large datasets,
where a full scan of the training set at each iteration coddekpensive.

An interesting variation to the simple scheme outlined ie BGPC algorithm is obtained by the
modification ofa across the iterations. W starts ate; = 1 and decays to a lower valug € [0, 1), the
procedure is similar to initializing the algorithm with awfgorobabilistic iterations (withe close to 1).
The best results have been experimentally obtained withcaydeate which is linear, or steepest at the

last iterations (e.g(ai — ar) (1+ ettermiter) 4 qy),

V. DEMONSTRATIONS AND APPLICATIONS

The experimental demonstrations presented here aim alidtithg the diferent properties attainable
through appropriate implementation of a suitable gradeskipdistic model. These include experimental
study of the concept of graded possibility in a trivial toyoplem, use of a-priori knowledge, outlier

rejection.

A. Demonstration of the Graded Possibilistic approach

To show the properties of graded possibilistic clusteriregywge the toy training set shown in Figure
3. It is a simple, two-dimensional data set composed of 2 Sandistributed clusters (50 points each),
with centers indicated by the larger, black squares. Cermtar located at (.7,.7) for cluster 1 and (.3,.3)

for cluster 2. All data lie in the unit square.
[Figure 3 about here.]
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We run the BGPC algorithm 10 times, with= 1/a and¢ = a as in the sample algorithm of Section
IV, and diferent values ofr € [0, 1]. We analyze the resulting memberships for varying

We focus on memberships of three representative pointsit B8iin the data set is located at (.3,.3),
i.e., it coincides with one cluster center. Point #10 is 88,51), half-way from each center. Point #67
is at (.84,.34), quite far from both centers.

Figure 4 shows the membership of each of these three datsspoicluster 1 (solid line) and in cluster

2 (dashed line) for various values efranging from 1 to O.
[Figure 4 about here.]

Point #9 is clearly attributed to cluster 2. Its distancedssmall that its membership are “stuck” at 0
(for cluster 1) and 1 (for cluster 2), respectively.

Point #10 should be attributed to both clusters with appnaxéely the same membership value.
However, since it is on the separating boundary, actualig ifar from any cluster, so that, whan
decreases and the model becomes more possibilistic, thebenehips also decrease from .6 and .4 to
.25 and .15 (respectively for clusters 1 and 2).

Point #67 is clearly an outlier. However, wheris close to 1, it is classified as belonging in cluster 1
with high degree (almost 1). Whenis lowered, with the transition to the possibilistic modék values
are reduced to about 0 and .07, respectively.

Figure 5 shows membership values to each cluster for polotgydhe diagonal of the data plane, for
the valuese = 1, @ = .5, anda = 0. The ditferent shape of the memberships, especially for points far

from the separating line, is apparent.
[Figure 5 about here.]

A similar analysis is presented in Figure 6. This experimenperformed on the usual Iris dataset
[40] obtained from the UCI Machine Learning Repository [4@he Iris problem is a 4-dimensional,
150-pattern data set with 3 classes represented by 50 =geach.)

Here the profiles of memberships are plotted for 2 of the 3tetasand for 2 of the 4 input dimensions,
so that two-dimensional analysis is again possible. Thadiglhows membership profiles far= 1.0,

a = 0.5, anda = 0.0. It is possible to tune the desired tradédoetween the possibilistic clustering and
the partitioning behavior, by deciding to what extent thgoathm should be forced to make a decision

on data points on the decision border or on the exterior fatieodata distribution.
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[Figure 6 about here.]

B. Outlier rejection

Outlier management is very problem-dependent, as pointédno[42], to the point that in some
problems it could be more useful to reject good clusters anettain only outliers [43]. Here however
we assume that we are interested in finding Gaussian clustdega, and all points outside these clusters
are considered to be noise. This is a standard formulatiothefproblem [44], but it is not the only
possible one [45].

To implement the outlier rejection functionality, the féds region should be made asymmetric:
C C
Z uk <1 and Z u” > 1. (20)
i=1 i=1

This ensures that the clustering model is as follows. Whenetlis competition among the clusters,
i.e., many memberships tend to be close to 1, the membershigs/are normalized to sum to 1 (first
constraint). When memberships are all low, there is no ctaibution to any cluster, so they are free
to take on low values (second constraint).

This is an &ective form of soft rejection similar to that of robust eddition methods based on weighting
[37], [46], [12]. Hard rejection can be implemented by thrasling (reject on value of membership) or
by counting (reject on number of points) [47], [48].

The experiments involve a set of three Gaussian clustars,gVery wide background data distribution
(see Figure 7). Data are in the unit square; there are 600paédtids of which 10% are clustered in 3

Gaussian clusters, while the rest are spread in the baakgdrou
[Figure 7 about here.]
[Figure 8 about here.]

It is possible to compare the behavior of the graded poggibiimodel with the behavior of standard
“probabilistic” clustering. Centers found with the propdsmodel are clearly much closer to true cluster
centers than those found with the “probabilistic” model.iBgpection of the membership values, we have
verified that this is not a true possibilistic case: no two rherships ever approach 1 simultaneously.
Therefore, either a pattern is rejected, or it is uniquebelad.

This result was obtained withi scheduled to decay linearly from 0.1 to 0.005 over 2000 tiema

in 10 different trials. In the asymmetric-possibilistic case thaultefiustrated was obtained 10 times.
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For the probabilistic case, with the parameters indicatesl obtained 10 times a trivial solution with
coincident centroids, all located at the global averageatfdthe illustrated result is the best one and

was possible only by lowering the initigl to 0.01, and was obtained 6 times out of 10 trials.

C. An application: characterization of leukemia

As a sample application to an interesting problem, we agpglie BGPC algorithm to clustering of
data from a set of DNA microarray experiments, as descrindd9]; data are available at the following
web addressattp: //www-genome.wi.mit.edu/mpr/data_set_ALL_AML.html.

Acute leukemia is a family of diseases including twdfelient forms, acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). The DNA microarragchnigue allows a detailed profiling
of the expression level of thousands of genes. In the woeldciGolub and collaborators analyzed a
set of 7129 genes for correlation with each form of leukeraial discovered that a set of 50 “best”
genes (the number was arbitrarily chosen) can produce dassdification results. They also found that a
Self-Organizing Map can discover clusters which correspoegll to the actual distinction between ALL
and AML, and moreover it can find a further distinction betwéeo types of the lymphoblastic form,
T-lineage ALL and B-lineage ALL. This task was termed “claliscovery” by the authors.

We tried to verify these results using the BGPC algorithmsti-we selected the 50 most informative
genes pointed out by Golut al. Then we performed clustering using 2 and 3 centroids on Hiritig
set, composed of 38 examples. However, we used the sepasateet of 27 examples (as provided by
the authors) to verify the results, and performed repeateding (50 times) to reduce the influence of
initialization.

The results are reported in Table I. They were obtained wighasymmetric option described in V-B.
As in the original work, after training we performed majgriabeling of centroids (or “calibration”), and
used them for classifying patterns. However the evaluagsmoted, was performed on the test set. The
table contains the numberof centers used, the average error as computed on the testesfiiequency
of results with O errors and the frequency of results with rbreover the total 50 trials. These results
show that 2 centers can approximate very well the basicndiiin among ALL and AML, and that
using 3 centers it is possible to reach errorless performancthe test set, albeit infrequently over the

repeated trials.
[Table 1 about here.]
We do not draw conclusions in comparison with the technigsedun the original work. They did
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not obtain errorless clusters even on the training set; erother hand, they used all genes, not only the
most informative subset as we did. However our results cafiroo the validity of their selection, since

the performance with the 50 best genes is much better thaonineeported with the whole set of genes.

VI. THE GRADED POSSIBILISTIC MODEL AS AN INTERACTIVE POST-PROCESSING TOOL

[Figure 9 about here.]

An interesting application of the proposed model is foundaiiomated segmentation of diagnostic
images in medicine. This is an important application argadi@ta clustering. Here we analyze slices
from magnetic resonance imaging (MRI) volumes.

MRI is a widely used diagnostic imaging technique. Its sgsde mainly due to its low invasivity and
its ability to detect contrast from fierent physical parameters, predominantly the spin-&atitaxation
time (T1), spin-spin relaxation time (T2), and proton spanslity (PD) of the tissues being imaged. The
output is usually obtained in the form of a three-dimensiomailti-modal image. We can analyze the
volume or individual slices (two-dimensional images estieal from volumetric acquisition), as done in
the present study. Figure 9 shows an example slice. Threerdiional data sets are then obtained by
recording the T1, T2, and PD values for each voxel or pixel.

Magnetic resonance imaging is very well suited for analgzissues within the brain and head, and
is widely applied to detection of tumors or other patholotigsues or trauma. Image segmentation in
this context aims at separating homogeneous regions argbguéntly at labeling them with tissue
descriptions. Clustering is one of the methods used for tiet fask, whereas supervised methods
(possibly including human inspection) are required for sikeond task. Diagnostic image segmentation
with clustering has been the subject of previous work by dnihe authors [50].

First, we perform clustering with varying. The results forr = 0, @ = 0.7, anda = 1 are presented
in figure 10. These are plots of data points in the three-déoeal space of features. Black squares
represent centroids. The user can select the result thafitsethe distribution of points. This is possible

because three-dimensional problems can still be repredegually.
[Figure 10 about here.]

Then, once a suitable set of centroids has been selecteghphethe following interactive visualization
method. The centroids obtained from training are retaiféd.membership values are instead recomputed

according to values ok andg interactively set by the user. Images corresponding to #rgraids are
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therefore visualized as grey-level profiles, which can bastdd for maximum clarity and interpreted by
the operator.

Each centroid represents a homogeneous region (set of iyutl@se points in the space of MRI
features), corresponding to a given “segment” or anatdiyismnificant area. In the MRI slice, a segment
need not appear as a concentrated area, but may have aargrslitape. One of the centroids will represent
the region of interest for our analysis, the one which moatgbly characterizes théfacted area. This

area can be represented as a gray level image, as shown ire Rigju
[Figure 11 about here.]

In the figure, several values of (horizontally) andg (vertically) are shown. Depending on thes
combination, the interesting area can be clearly outlimedis background can be made more visible,
if the user wants to see the area within its anatomical conkexhis technique, background points are
those points whose membership to the interesting clusterahantermediate value. Their brightness is
therefore most sensitive to variations in the parameteasidp.

The cluster centroids here play the role of templates totpmith possible segments within the image;
a andp can be varied by the user as a sort of “brightpemstrast” control acting on template similarity
rather than intensity levels.

This interactive visualization procedure seems very psirgi and features fiicient generality to be

applied to other multimodal diagnostic imaging techniqasswell.

VIl. CoNcLUSION

The present study demonstrates possible novel applicatibrihe possibilistic clustering approach
by introducing a method to obtain a soft transition from thesgibilistic to the probabilistic models.
This graded possibilistic approach is amenable to the sgpkcations as the two previous models. In
addition, the experiments suggest that there are casesiah wie clustering performance can benefit of
the added degree of flexibility. The discussion about thaiptessimplementations also points out possible
issues to be kept in mind while applying the technique.

However, the focus of the proposed method is on the repratsemtcapabilities. The experiment with
the synthetic, bi-dimensional data setin Figure 3 is usditlisirate the behavior of the graded possibilistic
membership as a function of the degree of possibilitgnd of the data position with respect to cluster
centers. The problem of characterizing leukemia from DNAroarray data confirms thdfectiveness

of the proposed approach as a clustering method, by companigh published results. Interactive post
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processing in the segmentation of MRI images is anotherwedt application where the model is

used to gain insight into the problem in a unique way. The stdjple representation capabilities can be
exploited in this and other tasks (e.g., in outlier analygisobtain an additional perspective to cluster
analysis. It is worth mentioning that other applications aurrently being studied, such as the problem

of variable selection in linear clustering [51].
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Fig. 1. Bounds of the feasible region for memberships in #gec = 2, for a generic poink, with @ decreasing from 1 to 0
along the direction of the arrows.
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on the standard feasible region (equivalent to ME).
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Fig. 8. Results for the outlier rejection demonstrationad®l circles: true cluster centers; triangles: centers dowith @ = 0
(maximum rejection); squares: centers found witk= 1 (no rejection). (Note that some triangles are hidden bg tluster

centers since they are almost coincident.)

December 7, 2005

DRAFT



FIGURES 29

Fig. 9. A MRI slice. From left to right: T1-weighted, T2-wéited, proton density channels. The nature of tissues canféeead
by their combined response to the three stimulations (aktlapnso that by comparing the three imagefedént anatomical
entities can be outlined.
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Fig. 10. Training results for the dataset in Figure 9 doe 1 (above),a = 0.7 (middle),a = 0 (below).
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Fig. 11. Using the proposed model as an interactive visatidia tool for image segmentation.
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TABLES 33

TABLE |
RESULTS ON THE CHARACTERIZATION OF LEUKEMIA
¢ Avg eror Freq.Oerrors Freqg. 1 error

2 3.70% 250 5050
3 3.48% 250 4750
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