
Using Triggers 9-1

9
Using Triggers

Triggers are procedures that are stored in the database and implicitly run, or fired,
when something happens.

Traditionally, triggers supported the execution of a PL/SQL block when an INSERT,
UPDATE, or DELETE occurred on a table or view. Starting with Oracle8i, triggers
support system and other data events on DATABASE and SCHEMA. Oracle Database
also supports the execution of a PL/SQL or Java procedure.

This chapter discusses DML triggers, INSTEAD OF triggers, and system triggers
(triggers on DATABASE and SCHEMA). Topics include:

� Designing Triggers

� Creating Triggers

� Coding the Trigger Body

� Compiling Triggers

� Modifying Triggers

� Enabling and Disabling Triggers

� Viewing Information About Triggers

� Examples of Trigger Applications

� Responding to System Events through Triggers

Designing Triggers

9-2 Oracle Database Application Developer's Guide - Fundamentals

Designing Triggers
Use the following guidelines when designing your triggers:

� Use triggers to guarantee that when a specific operation is performed, related
actions are performed.

� Do not define triggers that duplicate features already built into Oracle
Database. For example, do not define triggers to reject bad data if you can do
the same checking through declarative integrity constraints.

� Limit the size of triggers. If the logic for your trigger requires much more than
60 lines of PL/SQL code, it is better to include most of the code in a stored
procedure and call the procedure from the trigger.

� Use triggers only for centralized, global operations that should be fired for the
triggering statement, regardless of which user or database application issues the
statement.

� Do not create recursive triggers. For example, creating an AFTER UPDATE
statement trigger on the Emp_tab table that itself issues an UPDATE statement
on Emp_tab, causes the trigger to fire recursively until it has run out of
memory.

� Use triggers on DATABASE judiciously. They are executed for every user every
time the event occurs on which the trigger is created.

Creating Triggers
Triggers are created using the CREATE TRIGGER statement. This statement can be
used with any interactive tool, such as SQL*Plus or Enterprise Manager. When
using an interactive tool, a single slash (/) on the last line is necessary to activate the
CREATE TRIGGER statement.

The following statement creates a trigger for the Emp_tab table.

CREATE OR REPLACE TRIGGER Print_salary_changes
 BEFORE DELETE OR INSERT OR UPDATE ON Emp_tab
 FOR EACH ROW
WHEN (new.Empno > 0)
DECLARE
 sal_diff number;
BEGIN
 sal_diff := :new.sal - :old.sal;
 dbms_output.put('Old salary: ' || :old.sal);
 dbms_output.put(' New salary: ' || :new.sal);

Creating Triggers

Using Triggers 9-3

 dbms_output.put_line(' Difference ' || sal_diff);
END;
/

The trigger is fired when DML operations (INSERT, UPDATE, and DELETE
statements) are performed on the table. You can choose what combination of
operations should fire the trigger.

Because the trigger uses the BEFORE keyword, it can access the new values before
they go into the table, and can change the values if there is an easily-corrected error
by assigning to :NEW.column_name. You might use the AFTER keyword if you
want the trigger to query or change the same table, because triggers can only do
that after the initial changes are applied and the table is back in a consistent state.

Because the trigger uses the FOR EACH ROW clause, it might be executed multiple
times, such as when updating or deleting multiple rows. You might omit this clause
if you just want to record the fact that the operation occurred, but not examine the
data for each row.

Once the trigger is created, entering the following SQL statement:

UPDATE Emp_tab SET sal = sal + 500.00 WHERE deptno = 10;

fires the trigger once for each row that is updated, in each case printing the new
salary, old salary, and the difference.

The CREATE (or CREATE OR REPLACE) statement fails if any errors exist in the
PL/SQL block.

The following sections use this example to illustrate the way that parts of a trigger
are specified.

Types of Triggers
A trigger is either a stored PL/SQL block or a PL/SQL, C, or Java procedure
associated with a table, view, schema, or the database itself. Oracle Database
automatically executes a trigger when a specified event takes place, which may be
in the form of a system event or a DML statement being issued against the table.

Note: The size of the trigger cannot be more than 32K.

See Also: "Examples of Trigger Applications" on page 9-31 for
more realistic examples of CREATE TRIGGER statements

Creating Triggers

9-4 Oracle Database Application Developer's Guide - Fundamentals

Triggers can be:

� DML triggers on tables.

� INSTEAD OF triggers on views.

� System triggers on DATABASE or SCHEMA: With DATABASE, triggers fire for
each event for all users; with SCHEMA, triggers fire for each event for that
specific user.

Overview of System Events
You can create triggers to be fired on any of the following:

� DML statements (DELETE, INSERT, UPDATE)

� DDL statements (CREATE, ALTER, DROP)

� Database operations (SERVERERROR, LOGON, LOGOFF, STARTUP, SHUTDOWN)

Getting the Attributes of System Events
You can get certain event-specific attributes when the trigger is fired.

Creating a trigger on DATABASE implies that the triggering event is outside the
scope of a user (for example, database STARTUP and SHUTDOWN), and it applies to
all users (for example, a trigger created on LOGON event by the DBA).

Creating a trigger on SCHEMA implies that the trigger is created in the current user's
schema and is fired only for that user.

For each trigger, publication can be specified on DML and system events.

Naming Triggers
Trigger names must be unique with respect to other triggers in the same schema.
Trigger names do not need to be unique with respect to other schema objects, such

See Also: Oracle Database SQL Reference for information on trigger
creation syntax

See Also: Chapter 10, "Working With System Events" for a
complete list of the functions you can call to get the event attributes

See Also: "Responding to System Events through Triggers" on
page 9-50

Creating Triggers

Using Triggers 9-5

as tables, views, and procedures. For example, a table and a trigger can have the
same name (however, to avoid confusion, this is not recommended).

When Is the Trigger Fired?
A trigger is fired based on a triggering statement, which specifies:

� The SQL statement or the system event, database event, or DDL event that fires
the trigger body. The options include DELETE, INSERT, and UPDATE. One, two,
or all three of these options can be included in the triggering statement
specification.

� The table, view, DATABASE, or SCHEMA associated with the trigger.

For example, the PRINT_SALARY_CHANGES trigger fires after any DELETE,
INSERT, or UPDATE on the Emp_tab table. Any of the following statements trigger
the PRINT_SALARY_CHANGES trigger given in the previous example:

DELETE FROM Emp_tab;
INSERT INTO Emp_tab VALUES (...);
INSERT INTO Emp_tab SELECT ... FROM ... ;
UPDATE Emp_tab SET ... ;

Do Import and SQL*Loader Fire Triggers?
INSERT triggers fire during SQL*Loader conventional loads. (For direct loads,
triggers are disabled before the load.)

The IGNORE parameter of the IMP command determines whether triggers fire
during import operations:

� If IGNORE=N (default) and the table already exists, then import does not change
the table and no existing triggers fire.

� If the table does not exist, then import creates and loads it before any triggers
are defined, so again no triggers fire.

Note: Exactly one table or view can be specified in the triggering
statement. If the INSTEAD OF option is used, then the triggering
statement may only specify a view; conversely, if a view is specified
in the triggering statement, then only the INSTEAD OF option may
be used.

Creating Triggers

9-6 Oracle Database Application Developer's Guide - Fundamentals

� If IGNORE=Y, then import loads rows into existing tables. Any existing triggers
fire, and indexes are updated to account for the imported data.

How Column Lists Affect UPDATE Triggers
An UPDATE statement might include a list of columns. If a triggering statement
includes a column list, the trigger is fired only when one of the specified columns is
updated. If a triggering statement omits a column list, the trigger is fired when any
column of the associated table is updated. A column list cannot be specified for
INSERT or DELETE triggering statements.

The previous example of the PRINT_SALARY_CHANGES trigger could include a
column list in the triggering statement. For example:

... BEFORE DELETE OR INSERT OR UPDATE OF ename ON Emp_tab ...

Notes:

� You cannot specify a column list for UPDATE with INSTEAD OF triggers.

� If the column specified in the UPDATE OF clause is an object column, then the
trigger is also fired if any of the attributes of the object are modified.

� You cannot specify UPDATE OF clauses on collection columns.

Controlling When a Trigger Is Fired (BEFORE and AFTER Options)
The BEFORE or AFTER option in the CREATE TRIGGER statement specifies exactly
when to fire the trigger body in relation to the triggering statement that is being
run. In a CREATE TRIGGER statement, the BEFORE or AFTER option is specified just
before the triggering statement. For example, the PRINT_SALARY_CHANGES trigger
in the previous example is a BEFORE trigger.

In general, you use BEFORE or AFTER triggers to achieve the following results:

� Use BEFORE row triggers to modify the row before the row data is written to
disk.

� Use AFTER row triggers to obtain, and perform operations, using the row ID.

Creating Triggers

Using Triggers 9-7

BEFORE Triggers Fired Multiple Times
If an UPDATE or DELETE statement detects a conflict with a concurrent UPDATE,
then Oracle Database performs a transparent ROLLBACK to SAVEPOINT and restarts
the update. This can occur many times before the statement completes successfully.
Each time the statement is restarted, the BEFORE statement trigger is fired again.
The rollback to savepoint does not undo changes to any package variables
referenced in the trigger. Your package should include a counter variable to detect
this situation.

Ordering of Triggers
A relational database does not guarantee the order of rows processed by a SQL
statement. Therefore, do not create triggers that depend on the order in which rows
are processed. For example, do not assign a value to a global package variable in a
row trigger if the current value of the global variable is dependent on the row being
processed by the row trigger. Also, if global package variables are updated within a
trigger, then it is best to initialize those variables in a BEFORE statement trigger.

When a statement in a trigger body causes another trigger to be fired, the triggers
are said to be cascading. Oracle Database allows up to 32 triggers to cascade at any
one time. However, you can effectively limit the number of trigger cascades using
the initialization parameter OPEN_CURSORS, because a cursor must be opened for
every execution of a trigger.

Trigger Evaluation Order
Although any trigger can run a sequence of operations either in-line or by calling
procedures, using multiple triggers of the same type enhances database
administration by permitting the modular installation of applications that have
triggers on the same tables.

Oracle Database executes all triggers of the same type before executing triggers of a
different type. If you have multiple triggers of the same type on a single table, then
Oracle Database chooses an arbitrary order to execute these triggers.

Note: BEFORE row triggers are slightly more efficient than AFTER
row triggers. With AFTER row triggers, affected data blocks must be
read (logical read, not physical read) once for the trigger and then
again for the triggering statement. Alternatively, with BEFORE row
triggers, the data blocks must be read only once for both the
triggering statement and the trigger.

Creating Triggers

9-8 Oracle Database Application Developer's Guide - Fundamentals

Each subsequent trigger sees the changes made by the previously fired triggers.
Each trigger can see the old and new values. The old values are the original values,
and the new values are the current values, as set by the most recently fired UPDATE
or INSERT trigger.

To ensure that multiple triggered actions occur in a specific order, you must
consolidate these actions into a single trigger (for example, by having the trigger
call a series of procedures).

Modifying Complex Views (INSTEAD OF Triggers)
An updatable view is one that lets you perform DML on the underlying table. Some
views are inherently updatable, but others are not because they were created with
one or more of the constructs listed in"Views that Require INSTEAD OF Triggers".

Any view that contains one of those constructs can be made updatable by using an
INSTEAD OF trigger. INSTEAD OF triggers provide a transparent way of modifying
views that cannot be modified directly through UPDATE, INSERT, and DELETE
statements. These triggers are called INSTEAD OF triggers because, unlike other
types of triggers, Oracle Database fires the trigger instead of executing the triggering
statement. The trigger must determine what operation was intended and perform
UPDATE, INSERT, or DELETE operations directly on the underlying tables.

With an INSTEAD OF trigger, you can write normal UPDATE, INSERT, and DELETE
statements against the view, and the INSTEAD OF trigger works invisibly in the
background to make the right actions take place.

INSTEAD OF triggers can only be activated for each row.

See Also: Oracle Database Concepts for more information on the
firing order of triggers

See Also: "Firing Triggers One or Many Times (FOR EACH ROW
Option)" on page 9-13

Creating Triggers

Using Triggers 9-9

Views that Require INSTEAD OF Triggers
A view cannot be modified by UPDATE, INSERT, or DELETE statements if the view
query contains any of the following constructs:

� A set operator

� A DISTINCT operator

� An aggregate or analytic function

� A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause

� A collection expression in a SELECT list

� A subquery in a SELECT list

� A subquery designated WITH READ ONLY

� Joins, with some exceptions, as documented in Oracle Database Administrator's
Guide

If a view contains pseudocolumns or expressions, then you can only update the
view with an UPDATE statement that does not refer to any of the pseudocolumns or
expressions.

Note:

� The INSTEAD OF option can only be used for triggers created
over views.

� The BEFORE and AFTER options cannot be used for triggers
created over views.

� The CHECK option for views is not enforced when inserts or
updates to the view are done using INSTEAD OF triggers. The
INSTEAD OF trigger body must enforce the check.

Creating Triggers

9-10 Oracle Database Application Developer's Guide - Fundamentals

INSTEAD OF Trigger Example

The following example shows an INSTEAD OF trigger for inserting rows into the
MANAGER_INFO view.

CREATE OR REPLACE VIEW manager_info AS
 SELECT e.ename, e.empno, d.dept_type, d.deptno, p.prj_level,
 p.projno
 FROM Emp_tab e, Dept_tab d, Project_tab p
 WHERE e.empno = d.mgr_no
 AND d.deptno = p.resp_dept;

CREATE OR REPLACE TRIGGER manager_info_insert
INSTEAD OF INSERT ON manager_info
REFERENCING NEW AS n -- new manager information

FOR EACH ROW
DECLARE
 rowcnt number;
BEGIN

Note: You may need to set up the following data structures for
this example to work:

CREATE TABLE Project_tab (
 Prj_level NUMBER,
 Projno NUMBER,
 Resp_dept NUMBER);
CREATE TABLE Emp_tab (
 Empno NUMBER NOT NULL,
 Ename VARCHAR2(10),
 Job VARCHAR2(9),
 Mgr NUMBER(4),
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(7,2),
 Deptno NUMBER(2) NOT NULL);

CREATE TABLE Dept_tab (
 Deptno NUMBER(2) NOT NULL,
 Dname VARCHAR2(14),
 Loc VARCHAR2(13),
 Mgr_no NUMBER,
 Dept_type NUMBER);

Creating Triggers

Using Triggers 9-11

 SELECT COUNT(*) INTO rowcnt FROM Emp_tab WHERE empno = :n.empno;
 IF rowcnt = 0 THEN
 INSERT INTO Emp_tab (empno,ename) VALUES (:n.empno, :n.ename);
 ELSE
 UPDATE Emp_tab SET Emp_tab.ename = :n.ename
 WHERE Emp_tab.empno = :n.empno;
 END IF;
 SELECT COUNT(*) INTO rowcnt FROM Dept_tab WHERE deptno = :n.deptno;
 IF rowcnt = 0 THEN
 INSERT INTO Dept_tab (deptno, dept_type)
 VALUES(:n.deptno, :n.dept_type);
 ELSE
 UPDATE Dept_tab SET Dept_tab.dept_type = :n.dept_type
 WHERE Dept_tab.deptno = :n.deptno;
 END IF;
 SELECT COUNT(*) INTO rowcnt FROM Project_tab
 WHERE Project_tab.projno = :n.projno;
 IF rowcnt = 0 THEN
 INSERT INTO Project_tab (projno, prj_level)
 VALUES(:n.projno, :n.prj_level);
 ELSE
 UPDATE Project_tab SET Project_tab.prj_level = :n.prj_level
 WHERE Project_tab.projno = :n.projno;
 END IF;
END;

The actions shown for rows being inserted into the MANAGER_INFO view first test to
see if appropriate rows already exist in the base tables from which MANAGER_INFO
is derived. The actions then insert new rows or update existing rows, as
appropriate. Similar triggers can specify appropriate actions for UPDATE and
DELETE.

Object Views and INSTEAD OF Triggers
INSTEAD OF triggers provide the means to modify object view instances on the
client-side through OCI calls.

To modify an object materialized by an object view in the client-side object cache
and flush it back to the persistent store, you must specify INSTEAD OF triggers,
unless the object view is modifiable. If the object is read only, then it is not necessary
to define triggers to pin it.

See Also: Oracle Call Interface Programmer's Guide

Creating Triggers

9-12 Oracle Database Application Developer's Guide - Fundamentals

Triggers on Nested Table View Columns
INSTEAD OF triggers can also be created over nested table view columns. These
triggers provide a way of updating elements of the nested table. They fire for each
nested table element being modified. The row correlation variables inside the
trigger correspond to the nested table element. This type of trigger also provides an
additional correlation name for accessing the parent row that contains the nested
table being modified.

For example, consider a department view that contains a nested table of employees.

CREATE OR REPLACE VIEW Dept_view AS
SELECT d.Deptno, d.Dept_type, d.Dept_name,
 CAST (MULTISET (SELECT e.Empno, e.Empname, e.Salary)
 FROM Emp_tab e
 WHERE e.Deptno = d.Deptno) AS Amp_list_ Emplist
FROM Dept_tab d;

The CAST (MULTISET..) operator creates a multi-set of employees for each
department. If you want to modify the emplist column, which is the nested table
of employees, then you can define an INSTEAD OF trigger over the column to
handle the operation.

The following example shows how an insert trigger might be written:

CREATE OR REPLACE TRIGGER Dept_emplist_tr
 INSTEAD OF INSERT ON NESTED TABLE Emplist OF Dept_view
 REFERENCING NEW AS Employee
 PARENT AS Department
 FOR EACH ROW
BEGIN
-- The insert on the nested table is translated to an insert on the base table:
 INSERT INTO Emp_tab VALUES (
 :Employee.Empno, :Employee.Empname,:Employee.Salary, :Department.Deptno);
END;

Note: These triggers:

� Can only be defined over nested table columns in views.

� Fire only when the nested table elements are modified using
the THE() or TABLE() clauses. They do not fire when a DML
statement is performed on the view.

Creating Triggers

Using Triggers 9-13

Any INSERT into the nested table fires the trigger, and the Emp_tab table is filled
with the correct values. For example:

INSERT INTO TABLE (SELECT d.Emplist FROM Dept_view d WHERE Deptno = 10)
 VALUES (1001, 'John Glenn', 10000);

The :department.deptno correlation variable in this example would have a value
of 10.

Firing Triggers One or Many Times (FOR EACH ROW Option)
The FOR EACH ROW option determines whether the trigger is a row trigger or a
statement trigger. If you specify FOR EACH ROW, then the trigger fires once for each
row of the table that is affected by the triggering statement. The absence of the FOR
EACH ROW option indicates that the trigger fires only once for each applicable
statement, but not separately for each row affected by the statement.

For example, you define the following trigger:

CREATE OR REPLACE TRIGGER Log_salary_increase
AFTER UPDATE ON Emp_tab
FOR EACH ROW
WHEN (new.Sal > 1000)
BEGIN
 INSERT INTO Emp_log (Emp_id, Log_date, New_salary, Action)
 VALUES (:new.Empno, SYSDATE, :new.SAL, 'NEW SAL');
END;

Then, you enter the following SQL statement:

UPDATE Emp_tab SET Sal = Sal + 1000.0
 WHERE Deptno = 20;

Note: You may need to set up the following data structures for
certain examples to work:

CREATE TABLE Emp_log (
 Emp_id NUMBER,
 Log_date DATE,
 New_salary NUMBER,
 Action VARCHAR2(20));

Creating Triggers

9-14 Oracle Database Application Developer's Guide - Fundamentals

If there are five employees in department 20, then the trigger fires five times when
this statement is entered, because five rows are affected.

The following trigger fires only once for each UPDATE of the Emp_tab table:

CREATE OR REPLACE TRIGGER Log_emp_update
AFTER UPDATE ON Emp_tab
BEGIN
 INSERT INTO Emp_log (Log_date, Action)
 VALUES (SYSDATE, 'Emp_tab COMMISSIONS CHANGED');
END;

The statement level triggers are useful for performing validation checks for the
entire statement.

Firing Triggers Based on Conditions (WHEN Clause)
Optionally, a trigger restriction can be included in the definition of a row trigger by
specifying a Boolean SQL expression in a WHEN clause.

If included, then the expression in the WHEN clause is evaluated for each row that
the trigger affects.

If the expression evaluates to TRUE for a row, then the trigger body is fired on behalf
of that row. However, if the expression evaluates to FALSE or NOT TRUE for a row
(unknown, as with nulls), then the trigger body is not fired for that row. The
evaluation of the WHEN clause does not have an effect on the execution of the
triggering SQL statement (in other words, the triggering statement is not rolled back
if the expression in a WHEN clause evaluates to FALSE).

For example, in the PRINT_SALARY_CHANGES trigger, the trigger body is not run if
the new value of Empno is zero, NULL, or negative. In more realistic examples, you
might test if one column value is less than another.

The expression in a WHEN clause of a row trigger can include correlation names,
which are explained later. The expression in a WHEN clause must be a SQL
expression, and it cannot include a subquery. You cannot use a PL/SQL expression
(including user-defined functions) in the WHEN clause.

See Also: Oracle Database Concepts for the order of trigger firing

Note: A WHEN clause cannot be included in the definition of a
statement trigger.

Coding the Trigger Body

Using Triggers 9-15

Coding the Trigger Body
The trigger body is a CALL procedure or a PL/SQL block that can include SQL and
PL/SQL statements. The CALL procedure can be either a PL/SQL or a Java
procedure that is encapsulated in a PL/SQL wrapper. These statements are run if
the triggering statement is entered and if the trigger restriction (if included)
evaluates to TRUE.

The trigger body for row triggers has some special constructs that can be included
in the code of the PL/SQL block: correlation names and the REFERENCEING option,
and the conditional predicates INSERTING, DELETING, and UPDATING.

Example: Monitoring Logons with a Trigger

CREATE OR REPLACE PROCEDURE foo (c VARCHAR2) AS
 BEGIN
 INSERT INTO Audit_table (user_at) VALUES(c);

Note: You cannot specify the WHEN clause for INSTEAD OF
triggers.

Note: The INSERTING, DELETING, and UPDATING conditional
predicates cannot be used for the CALL procedures; they can only
be used in a PL/SQL block.

Note: You may need to set up data structures similar to the
following for certain examples to work:

CONNECT system/manager
GRANT ADMINISTER DATABASE TRIGGER TO scott;
CONNECT scott/tiger
CREATE TABLE audit_table (
 seq number,
 user_at VARCHAR2(10),
 time_now DATE,
 term VARCHAR2(10),
 job VARCHAR2(10),
 proc VARCHAR2(10),
 enum NUMBER);

Coding the Trigger Body

9-16 Oracle Database Application Developer's Guide - Fundamentals

 END;

CREATE OR REPLACE TRIGGER logontrig AFTER LOGON ON DATABASE
-- Just call an existing procedure. The ORA_LOGIN_USER is a function
-- that returns information about the event that fired the trigger.
CALL foo (ora_login_user)
/

Example: Calling a Java Procedure from a Trigger

Although triggers are declared using PL/SQL, they can call procedures in other
languages, such as Java:

CREATE OR REPLACE PROCEDURE Before_delete (Id IN NUMBER, Ename VARCHAR2)
IS language Java
name 'thjvTriggers.beforeDelete (oracle.sql.NUMBER, oracle.sql.CHAR)';

CREATE OR REPLACE TRIGGER Pre_del_trigger BEFORE DELETE ON Tab
FOR EACH ROW
CALL Before_delete (:old.Id, :old.Ename)
/

The corresponding Java file is thjvTriggers.java:

import java.sql.*
import java.io.*
import oracle.sql.*
import oracle.oracore.*
public class thjvTriggers
{
public state void
beforeDelete (NUMBER old_id, CHAR old_name)
Throws SQLException, CoreException
 {
 Connection conn = JDBCConnection.defaultConnection();
 Statement stmt = conn.CreateStatement();
 String sql = "insert into logtab values
 ("+ old_id.intValue() +", '"+ old_ename.toString() + ", BEFORE DELETE');
 stmt.executeUpdate (sql);
 stmt.close();
 return;
 }
}

Coding the Trigger Body

Using Triggers 9-17

Accessing Column Values in Row Triggers
Within a trigger body of a row trigger, the PL/SQL code and SQL statements have
access to the old and new column values of the current row affected by the
triggering statement. Two correlation names exist for every column of the table
being modified: one for the old column value, and one for the new column value.
Depending on the type of triggering statement, certain correlation names might not
have any meaning.

� A trigger fired by an INSERT statement has meaningful access to new column
values only. Because the row is being created by the INSERT, the old values are
null.

� A trigger fired by an UPDATE statement has access to both old and new column
values for both BEFORE and AFTER row triggers.

� A trigger fired by a DELETE statement has meaningful access to :old column
values only. Because the row no longer exists after the row is deleted, the :new
values are NULL. However, you cannot modify :new values: ORA-4084 is raised
if you try to modify :new values.

The new column values are referenced using the new qualifier before the column
name, while the old column values are referenced using the old qualifier before the
column name. For example, if the triggering statement is associated with the Emp_
tab table (with the columns SAL, COMM, and so on), then you can include
statements in the trigger body. For example:

IF :new.Sal > 10000 ...
IF :new.Sal < :old.Sal ...

Old and new values are available in both BEFORE and AFTER row triggers. A new
column value can be assigned in a BEFORE row trigger, but not in an AFTER row
trigger (because the triggering statement takes effect before an AFTER row trigger is
fired). If a BEFORE row trigger changes the value of new.column, then an AFTER
row trigger fired by the same statement sees the change assigned by the BEFORE
row trigger.

Correlation names can also be used in the Boolean expression of a WHEN clause. A
colon (:) must precede the old and new qualifiers when they are used in a trigger
body, but a colon is not allowed when using the qualifiers in the WHEN clause or the
REFERENCING option.

Coding the Trigger Body

9-18 Oracle Database Application Developer's Guide - Fundamentals

Example: Modifying LOB Columns with a Trigger
You can treat LOB columns the same as other columns, using regular SQL and
PL/SQL functions with CLOB columns, and calls to the DBMS_LOB package with
BLOB columns:

drop table tab1;

create table tab1 (c1 clob);
insert into tab1 values (’<h1>HTML Document Fragment</h1><p>Some text.’);

create or replace trigger trg1
 before update on tab1
 for each row
begin
 dbms_output.put_line(’Old value of CLOB column: ’||:OLD.c1);
 dbms_output.put_line(’Proposed new value of CLOB column: ’||:NEW.c1);

-- Previously, we couldn’t change the new value for a LOB.
-- Now, we can replace it, or construct a new value using SUBSTR, INSTR...
-- operations for a CLOB, or DBMS_LOB calls for a BLOB.
 :NEW.c1 := :NEW.c1 || to_clob(’<hr><p>Standard footer paragraph.’);

 dbms_output.put_line(’Final value of CLOB column: ’||:NEW.c1);
end;
/

set serveroutput on;
update tab1 set c1 = ’<h1>Different Document Fragment</h1><p>Different text.’;

select * from tab1;

INSTEAD OF Triggers on Nested Table View Columns
In the case of INSTEAD OF triggers on nested table view columns, the new and old
qualifiers correspond to the new and old nested table elements. The parent row
corresponding to this nested table element can be accessed using the parent
qualifier. The parent correlation name is meaningful and valid only inside a nested
table trigger.

Coding the Trigger Body

Using Triggers 9-19

Avoiding Name Conflicts with Triggers (REFERENCING Option)
The REFERENCING option can be specified in a trigger body of a row trigger to
avoid name conflicts among the correlation names and tables that might be named
old or new. Because this is rare, this option is infrequently used.

For example, assume you have a table named new with columns field1 (number)
and field2 (character). The following CREATE TRIGGER example shows a trigger
associated with the new table that can use correlation names and avoid naming
conflicts between the correlation names and the table name:

CREATE OR REPLACE TRIGGER Print_salary_changes
BEFORE UPDATE ON new
REFERENCING new AS Newest
FOR EACH ROW
BEGIN
 :Newest.Field2 := TO_CHAR (:newest.field1);
END;

Notice that the new qualifier is renamed to newest using the REFERENCING
option, and it is then used in the trigger body.

Detecting the DML Operation That Fired a Trigger
If more than one type of DML operation can fire a trigger (for example, ON INSERT
OR DELETE OR UPDATE OF Emp_tab), the trigger body can use the conditional
predicates INSERTING, DELETING, and UPDATING to check which type of
statement fire the trigger.

Within the code of the trigger body, you can execute blocks of code depending on
the kind of DML operation fired the trigger:

IF INSERTING THEN ... END IF;
IF UPDATING THEN ... END IF;

Note: You may need to set up the following data structures for
certain examples to work:

CREATE TABLE new (
 field1 NUMBER,
 field2 VARCHAR2(20));

Coding the Trigger Body

9-20 Oracle Database Application Developer's Guide - Fundamentals

The first condition evaluates to TRUE only if the statement that fired the trigger is an
INSERT statement; the second condition evaluates to TRUE only if the statement
that fired the trigger is an UPDATE statement.

In an UPDATE trigger, a column name can be specified with an UPDATING
conditional predicate to determine if the named column is being updated. For
example, assume a trigger is defined as the following:

CREATE OR REPLACE TRIGGER ...
... UPDATE OF Sal, Comm ON Emp_tab ...
BEGIN

... IF UPDATING ('SAL') THEN ... END IF;

END;

The code in the THEN clause runs only if the triggering UPDATE statement updates
the SAL column. This way, the trigger can minimize its overhead when the column
of interest is not being changed.

Error Conditions and Exceptions in the Trigger Body
If a predefined or user-defined error condition or exception is raised during the
execution of a trigger body, then all effects of the trigger body, as well as the
triggering statement, are rolled back (unless the error is trapped by an exception
handler). Therefore, a trigger body can prevent the execution of the triggering
statement by raising an exception. User-defined exceptions are commonly used in
triggers that enforce complex security authorizations or integrity constraints.

The only exception to this is when the event under consideration is database
STARTUP, SHUTDOWN, or LOGIN when the user logging in is SYSTEM. In these
scenarios, only the trigger action is rolled back.

Triggers and Handling Remote Exceptions
A trigger that accesses a remote site cannot do remote exception handling if the
network link is unavailable. For example:

CREATE OR REPLACE TRIGGER Example
AFTER INSERT ON Emp_tab
FOR EACH ROW
BEGIN
 INSERT INTO Emp_tab@Remote -- <- compilation fails here
 VALUES ('x'); -- when dblink is inaccessible
EXCEPTION

Coding the Trigger Body

Using Triggers 9-21

 WHEN OTHERS THEN
 INSERT INTO Emp_log
 VALUES ('x');
END;

A trigger is compiled when it is created. Thus, if a remote site is unavailable when
the trigger must compile, then Oracle Database cannot validate the statement
accessing the remote database, and the compilation fails. The previous example
exception statement cannot run, because the trigger does not complete compilation.

Because stored procedures are stored in a compiled form, the work-around for the
previous example is as follows:

CREATE OR REPLACE TRIGGER Example
AFTER INSERT ON Emp_tab
FOR EACH ROW
BEGIN
 Insert_row_proc;
END;

CREATE OR REPLACE PROCEDURE Insert_row_proc AS
BEGIN
 INSERT INTO Emp_tab@Remote
 VALUES ('x');
EXCEPTION
 WHEN OTHERS THEN
 INSERT INTO Emp_log
 VALUES ('x');
END;

The trigger in this example compiles successfully and calls the stored procedure,
which already has a validated statement for accessing the remote database; thus,
when the remote INSERT statement fails because the link is down, the exception is
caught.

Restrictions on Creating Triggers
Coding triggers requires some restrictions that are not required for standard
PL/SQL blocks. The following sections discuss these restrictions.

Maximum Trigger Size
The size of a trigger cannot be more than 32K.

Coding the Trigger Body

9-22 Oracle Database Application Developer's Guide - Fundamentals

SQL Statements Allowed in Trigger Bodies
The body of a trigger can contain DML SQL statements. It can also contain SELECT
statements, but they must be SELECT... INTO... statements or the SELECT statement
in the definition of a cursor.

DDL statements are not allowed in the body of a trigger. Also, no transaction
control statements are allowed in a trigger. ROLLBACK, COMMIT, and SAVEPOINT
cannot be used.For system triggers, {CREATE/ALTER/DROP} TABLE statements and
ALTER...COMPILE are allowed.

Statements inside a trigger can reference remote schema objects. However, pay
special attention when calling remote procedures from within a local trigger. If a
timestamp or signature mismatch is found during execution of the trigger, then the
remote procedure is not run, and the trigger is invalidated.

Trigger Restrictions on LONG and LONG RAW Datatypes
LONG and LONG RAW datatypes in triggers are subject to the following restrictions:

� A SQL statement within a trigger can insert data into a column of LONG or LONG
RAW datatype.

� If data from a LONG or LONG RAW column can be converted to a constrained
datatype (such as CHAR and VARCHAR2), then a LONG or LONG RAW column can
be referenced in a SQL statement within a trigger. The maximum length for
these datatypes is 32000 bytes.

� Variables cannot be declared using the LONG or LONG RAW datatypes.

� :NEW and :PARENT cannot be used with LONG or LONG RAW columns.

Trigger Restrictions on Mutating Tables
A mutating table is a table that is being modified by an UPDATE, DELETE, or
INSERT statement, or a table that might be updated by the effects of a DELETE
CASCADE constraint.

The session that issued the triggering statement cannot query or modify a mutating
table. This restriction prevents a trigger from seeing an inconsistent set of data.

Note: A procedure called by a trigger cannot run the previous
transaction control statements, because the procedure runs within
the context of the trigger body.

Coding the Trigger Body

Using Triggers 9-23

This restriction applies to all triggers that use the FOR EACH ROW clause. Views
being modified in INSTEAD OF triggers are not considered mutating.

When a trigger encounters a mutating table, a runtime error occurs, the effects of
the trigger body and triggering statement are rolled back, and control is returned to
the user or application.

Consider the following trigger:

CREATE OR REPLACE TRIGGER Emp_count
AFTER DELETE ON Emp_tab
FOR EACH ROW
DECLARE
 n INTEGER;
BEGIN
 SELECT COUNT(*) INTO n FROM Emp_tab;
 DBMS_OUTPUT.PUT_LINE(' There are now ' || n ||
 ' employees.');
END;

If the following SQL statement is entered:

DELETE FROM Emp_tab WHERE Empno = 7499;

An error is returned because the table is mutating when the row is deleted:

ORA-04091: table SCOTT.Emp_tab is mutating, trigger/function may not see it

If you delete the line "FOR EACH ROW" from the trigger, it becomes a statement
trigger which is not subject to this restriction, and the trigger.

If you need to update a mutating table, you could bypass these restrictions by using
a temporary table, a PL/SQL table, or a package variable. For example, in place of a
single AFTER row trigger that updates the original table, resulting in a mutating
table error, you might use two triggers—an AFTER row trigger that updates a
temporary table, and an AFTER statement trigger that updates the original table
with the values from the temporary table.

Declarative integrity constraints are checked at various times with respect to row
triggers.

Because declarative referential integrity constraints are not supported between
tables on different nodes of a distributed database, the mutating table restrictions

See Also: Oracle Database Concepts for information about the
interaction of triggers and integrity constraints

Coding the Trigger Body

9-24 Oracle Database Application Developer's Guide - Fundamentals

do not apply to triggers that access remote nodes. These restrictions are also not
enforced among tables in the same database that are connected by loop-back
database links. A loop-back database link makes a local table appear remote by
defining an Oracle Net path back to the database that contains the link.

Restrictions on Mutating Tables Relaxed
The mutating error, discussed earlier in this section, still prevents the trigger from
reading or modifying the table that the parent statement is modifying. However,
starting in Oracle Database release 8.1, a delete against the parent table causes
before/after statement triggers to be fired once. That way, you can create triggers
(just not row triggers) to read and modify the parent and child tables.

This allows most foreign key constraint actions to be implemented through their
obvious after-row trigger, providing the constraint is not self-referential. Update
cascade, update set null, update set default, delete set default, inserting a missing
parent, and maintaining a count of children can all be implemented easily. For
example, this is an implementation of update cascade:

 create table p (p1 number constraint ppk primary key);
 create table f (f1 number constraint ffk references p);
 create trigger pt after update on p for each row begin
 update f set f1 = :new.p1 where f1 = :old.p1;
 end;
 /

This implementation requires care for multirow updates. For example, if a table p
has three rows with the values (1), (2), (3), and table f also has three rows with the
values (1), (2), (3), then the following statement updates p correctly but causes
problems when the trigger updates f:

 update p set p1 = p1+1;

The statement first updates (1) to (2) in p, and the trigger updates (1) to (2) in f,
leaving two rows of value (2) in f. Then the statement updates (2) to (3) in p, and the
trigger updates both rows of value (2) to (3) in f. Finally, the statement updates (3) to
(4) in p, and the trigger updates all three rows in f from (3) to (4). The relationship of
the data in p and f is lost.

To avoid this problem, you must forbid multirow updates to p that change the
primary key and reuse existing primary key values. It could also be solved by
tracking which foreign key values have already been updated, then modifying the
trigger so that no row is updated twice.

Coding the Trigger Body

Using Triggers 9-25

That is the only problem with this technique for foreign key updates. The trigger
cannot miss rows that have been changed but not committed by another
transaction, because the foreign key constraint guarantees that no matching foreign
key rows are locked before the after-row trigger is called.

System Trigger Restrictions
Depending on the event, different event attribute functions are available. For
example, certain DDL operations may not be allowed on DDL events. Check "Event
Attribute Functions" on page 10-2 before using an event attribute function, because
its effects might be undefined rather than producing an error condition.

Only committed triggers are fired. For example, if you create a trigger that should
be fired after all CREATE events, then the trigger itself does not fire after the
creation, because the correct information about this trigger was not committed at
the time when the trigger on CREATE events was fired.

For example, if you execute the following SQL statement:

CREATE OR REPLACE TRIGGER Foo AFTER CREATE ON DATABASE
BEGIN null;
END;

Then, trigger foo is not fired after the creation of foo. Oracle Database does not fire
a trigger that is not committed.

Foreign Function Callouts
All restrictions on foreign function callouts also apply.

Who Is the Trigger User?
 The following statement, inside a trigger, returns the owner of the trigger, not the
name of user who is updating the table:

SELECT Username FROM USER_USERS;

Compiling Triggers

9-26 Oracle Database Application Developer's Guide - Fundamentals

Privileges Needed to Work with Triggers
To create a trigger in your schema, you must have the CREATE TRIGGER system
privilege, and either:

� Own the table specified in the triggering statement, or

� Have the ALTER privilege for the table in the triggering statement, or

� Have the ALTER ANY TABLE system privilege

To create a trigger in another user's schema, or to reference a table in another
schema from a trigger in your schema, you must have the CREATE ANY TRIGGER
system privilege. With this privilege, the trigger can be created in any schema and
can be associated with any user's table. In addition, the user creating the trigger
must also have EXECUTE privilege on the referenced procedures, functions, or
packages.

To create a trigger on DATABASE, you must have the ADMINISTER DATABASE
TRIGGER privilege. If this privilege is later revoked, then you can drop the trigger,
but not alter it.

The object privileges to the schema objects referenced in the trigger body must be
granted to the trigger owner explicitly (not through a role). The statements in the
trigger body operate under the privilege domain of the trigger owner, not the
privilege domain of the user issuing the triggering statement. This is similar to the
privilege model for stored procedures.

Compiling Triggers
Triggers are similar to PL/SQL anonymous blocks with the addition of the :new and
:old capabilities, but their compilation is different. A PL/SQL anonymous block is
compiled each time it is loaded into memory. Compilation involves three stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.

2. Semantic checking: Type checking and further processing on the parse tree.

3. Code generation: The pcode is generated.

Triggers, in contrast, are fully compiled when the CREATE TRIGGER statement is
entered, and the pcode is stored in the data dictionary. Hence, firing the trigger no
longer requires the opening of a shared cursor to run the trigger action. Instead, the
trigger is executed directly.

If errors occur during the compilation of a trigger, then the trigger is still created. If
a DML statement fires this trigger, then the DML statement fails. (Runtime that

Compiling Triggers

Using Triggers 9-27

trigger errors always cause the DML statement to fail.) You can use the SHOW
ERRORS statement in SQL*Plus or Enterprise Manager to see any compilation errors
when you create a trigger, or you can SELECT the errors from the USER_ERRORS
view.

Dependencies for Triggers
Compiled triggers have dependencies. They become invalid if a depended-on
object, such as a stored procedure or function called from the trigger body, is
modified. Triggers that are invalidated for dependency reasons are recompiled
when next invoked.

You can examine the ALL_DEPENDENCIES view to see the dependencies for a
trigger. For example, the following statement shows the dependencies for the
triggers in the SCOTT schema:

SELECT NAME, REFERENCED_OWNER, REFERENCED_NAME, REFERENCED_TYPE
 FROM ALL_DEPENDENCIES
 WHERE OWNER = 'SCOTT' and TYPE = 'TRIGGER';

Triggers may depend on other functions or packages. If the function or package
specified in the trigger is dropped, then the trigger is marked invalid. An attempt is
made to validate the trigger on occurrence of the event. If the trigger cannot be
validated successfully, then it is marked VALID WITH ERRORS, and the event fails.

Recompiling Triggers
Use the ALTER TRIGGER statement to recompile a trigger manually. For example,
the following statement recompiles the PRINT_SALARY_CHANGES trigger:

ALTER TRIGGER Print_salary_changes COMPILE;

Note:

� There is an exception for STARTUP events: STARTUP events
succeed even if the trigger fails. There are also exceptions for
SHUTDOWN events and for LOGON events if you login as
SYSTEM.

� Because the DBMS_AQ package is used to enqueue a message,
dependency between triggers and queues cannot be
maintained.

Modifying Triggers

9-28 Oracle Database Application Developer's Guide - Fundamentals

To recompile a trigger, you must own the trigger or have the ALTER ANY TRIGGER
system privilege.

Modifying Triggers
Like a stored procedure, a trigger cannot be explicitly altered: It must be replaced
with a new definition. (The ALTER TRIGGER statement is used only to recompile,
enable, or disable a trigger.)

When replacing a trigger, you must include the OR REPLACE option in the CREATE
TRIGGER statement. The OR REPLACE option is provided to allow a new version of
an existing trigger to replace the older version, without affecting any grants made
for the original version of the trigger.

Alternatively, the trigger can be dropped using the DROP TRIGGER statement, and
you can rerun the CREATE TRIGGER statement.

To drop a trigger, the trigger must be in your schema, or you must have the DROP
ANY TRIGGER system privilege.

Debugging Triggers
You can debug a trigger using the same facilities available for stored procedures.

Enabling and Disabling Triggers
A trigger can be in one of two distinct modes:

Enabled. An enabled trigger executes its trigger body if a triggering statement is
entered and the trigger restriction (if any) evaluates to TRUE.

Disabled. A disabled trigger does not execute its trigger body, even if a triggering
statement is entered and the trigger restriction (if any) evaluates to TRUE.

Enabling Triggers
By default, a trigger is automatically enabled when it is created; however, it can
later be disabled. After you have completed the task that required the trigger to be
disabled, re-enable the trigger, so that it fires when appropriate.

See Also: "Debugging Stored Procedures" on page 7-40

Viewing Information About Triggers

Using Triggers 9-29

Enable a disabled trigger using the ALTER TRIGGER statement with the ENABLE
option. To enable the disabled trigger named REORDER of the INVENTORY table,
enter the following statement:

ALTER TRIGGER Reorder ENABLE;

All triggers defined for a specific table can be enabled with one statement using the
ALTER TABLE statement with the ENABLE clause with the ALL TRIGGERS option.
For example, to enable all triggers defined for the INVENTORY table, enter the
following statement:

ALTER TABLE Inventory
 ENABLE ALL TRIGGERS;

Disabling Triggers
You might temporarily disable a trigger if:

� An object it references is not available.

� You need to perform a large data load, and you want it to proceed quickly
without firing triggers.

� You are reloading data.

By default, triggers are enabled when first created. Disable a trigger using the
ALTER TRIGGER statement with the DISABLE option.

For example, to disable the trigger named REORDER of the INVENTORY table, enter
the following statement:

ALTER TRIGGER Reorder DISABLE;

All triggers associated with a table can be disabled with one statement using the
ALTER TABLE statement with the DISABLE clause and the ALL TRIGGERS option.
For example, to disable all triggers defined for the INVENTORY table, enter the
following statement:

ALTER TABLE Inventory
 DISABLE ALL TRIGGERS;

Viewing Information About Triggers
The following data dictionary views reveal information about triggers:

� USER_TRIGGERS

Viewing Information About Triggers

9-30 Oracle Database Application Developer's Guide - Fundamentals

� ALL_TRIGGERS

� DBA_TRIGGERS

The new column, BASE_OBJECT_TYPE, specifies whether the trigger is based on
DATABASE, SCHEMA, table, or view. The old column, TABLE_NAME, is null if the
base object is not table or view.

The column ACTION_TYPE specifies whether the trigger is a call type trigger or a
PL/SQL trigger.

The column TRIGGER_TYPE includes two additional values: BEFORE EVENT and
AFTER EVENT, applicable only to system events.

The column TRIGGERING_EVENT includes all system and DML events.

For example, assume the following statement was used to create the REORDER
trigger:

CREATE OR REPLACE TRIGGER Reorder
AFTER UPDATE OF Parts_on_hand ON Inventory
FOR EACH ROW
WHEN(new.Parts_on_hand < new.Reorder_point)
DECLARE
 x NUMBER;
BEGIN
 SELECT COUNT(*) INTO x
 FROM Pending_orders
 WHERE Part_no = :new.Part_no;
 IF x = 0 THEN
 INSERT INTO Pending_orders
 VALUES (:new.Part_no, :new.Reorder_quantity,
 sysdate);
 END IF;
END;

The following two queries return information about the REORDER trigger:

See Also: Oracle Database Reference for a complete description of
these data dictionary views

Caution: You may need to set up data structures for certain
examples to work:

Examples of Trigger Applications

Using Triggers 9-31

SELECT Trigger_type, Triggering_event, Table_name
 FROM USER_TRIGGERS
 WHERE Trigger_name = 'REORDER';

TYPE TRIGGERING_STATEMENT TABLE_NAME
---------------- -------------------------- ------------
AFTER EACH ROW UPDATE INVENTORY

SELECT Trigger_body
 FROM USER_TRIGGERS
 WHERE Trigger_name = 'REORDER';

TRIGGER_BODY
--
DECLARE
 x NUMBER;
BEGIN
 SELECT COUNT(*) INTO x
 FROM Pending_orders
 WHERE Part_no = :new.Part_no;
 IF x = 0
 THEN INSERT INTO Pending_orders
 VALUES (:new.Part_no, :new.Reorder_quantity,
 sysdate);
 END IF;
END;

Examples of Trigger Applications
You can use triggers in a number of ways to customize information management in
Oracle Database. For example, triggers are commonly used to:

� Provide sophisticated auditing

� Prevent invalid transactions

� Enforce referential integrity (either those actions not supported by declarative
integrity constraints or across nodes in a distributed database)

� Enforce complex business rules

� Enforce complex security authorizations

� Provide transparent event logging

� Automatically generate derived column values

Examples of Trigger Applications

9-32 Oracle Database Application Developer's Guide - Fundamentals

� Enable building complex views that are updatable

� Track system events

This section provides an example of each of these trigger applications. These
examples are not meant to be used exactly as written: They are provided to assist
you in designing your own triggers.

Auditing with Triggers: Example
Triggers are commonly used to supplement the built-in auditing features of Oracle
Database. Although triggers can be written to record information similar to that
recorded by the AUDIT statement, triggers should be used only when more detailed
audit information is required. For example, use triggers to provide value-based
auditing for each row.

Sometimes, the AUDIT statement is considered a security audit facility, while
triggers can provide financial audit facility.

When deciding whether to create a trigger to audit database activity, consider what
Oracle Database's auditing features provide, compared to auditing defined by
triggers, as shown in Table 9–1.

Table 9–1 Comparison of Built-in Auditing and Trigger-Based Auditing

Audit Feature Description

DML and DDL
Auditing

Standard auditing options permit auditing of DML and
DDL statements regarding all types of schema objects and
structures. Comparatively, triggers permit auditing of
DML statements entered against tables, and DDL auditing
at SCHEMA or DATABASE level.

Centralized Audit
Trail

All database audit information is recorded centrally and
automatically using the auditing features of Oracle
Database.

Declarative Method Auditing features enabled using the standard Oracle
Database features are easier to declare and maintain, and
less prone to errors, when compared to auditing functions
defined by triggers.

Auditing Options can
be Audited

Any changes to existing auditing options can also be
audited to guard against malicious database activity.

Examples of Trigger Applications

Using Triggers 9-33

When using triggers to provide sophisticated auditing, AFTER triggers are normally
used. By using AFTER triggers, auditing information is recorded after the triggering
statement is subjected to any applicable integrity constraints, preventing cases
where the audit processing is carried out unnecessarily for statements that generate
exceptions to integrity constraints.

Choosing between AFTER row and AFTER statement triggers depends on the
information being audited. For example, row triggers provide value-based auditing
for each table row. Triggers can also require the user to supply a "reason code" for
issuing the audited SQL statement, which can be useful in both row and
statement-level auditing situations.

The following example demonstrates a trigger that audits modifications to the Emp_
tab table for each row. It requires that a "reason code" be stored in a global package
variable before the update. This shows how triggers can be used to provide
value-based auditing and how to use public package variables.

Session and Execution
time Auditing

Using the database auditing features, records can be
generated once every time an audited statement is entered
(BY ACCESS) or once for every session that enters an
audited statement (BY SESSION). Triggers cannot audit
by session; an audit record is generated each time a
trigger-audited table is referenced.

Auditing of
Unsuccessful Data
Access

Database auditing can be set to audit when unsuccessful
data access occurs. However, unless autonomous
transactions are used, any audit information generated by
a trigger is rolled back if the triggering statement is rolled
back. For more information on autonomous transactions,
see Oracle Database Concepts.

Sessions can be
Audited

Connections and disconnections, as well as session
activity (physical I/Os, logical I/Os, deadlocks, and so
on), can be recorded using standard database auditing.

Table 9–1 (Cont.) Comparison of Built-in Auditing and Trigger-Based Auditing

Audit Feature Description

Examples of Trigger Applications

9-34 Oracle Database Application Developer's Guide - Fundamentals

CREATE OR REPLACE TRIGGER Audit_employee
AFTER INSERT OR DELETE OR UPDATE ON Emp99
FOR EACH ROW
BEGIN
/* AUDITPACKAGE is a package with a public package
 variable REASON. REASON could be set by the
 application by a command such as EXECUTE
 AUDITPACKAGE.SET_REASON(reason_string). Note that a
 package variable has state for the duration of a
 session and that each session has a separate copy of

Note: You may need to set up the following data structures for the
examples to work:

CREATE OR REPLACE PACKAGE Auditpackage AS
 Reason VARCHAR2(10);
PROCEDURE Set_reason(Reason VARCHAR2);
END;
CREATE TABLE Emp99 (
 Empno NOT NULL NUMBER(4),
 Ename VARCHAR2(10),
 Job VARCHAR2(9),
 Mgr NUMBER(4),
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(7,2),
 Deptno NUMBER(2),
 Bonus NUMBER,
 Ssn NUMBER,
 Job_classification NUMBER);

CREATE TABLE Audit_employee (
 Oldssn NUMBER,
 Oldname VARCHAR2(10),
 Oldjob VARCHAR2(2),
 Oldsal NUMBER,
 Newssn NUMBER,
 Newname VARCHAR2(10),
 Newjob VARCHAR2(2),
 Newsal NUMBER,
 Reason VARCHAR2(10),
 User1 VARCHAR2(10),
 Systemdate DATE);

Examples of Trigger Applications

Using Triggers 9-35

 all package variables. */

IF Auditpackage.Reason IS NULL THEN
 Raise_application_error(-20201, 'Must specify reason'
 || ' with AUDITPACKAGE.SET_REASON(Reason_string)');
END IF;

/* If the preceding conditional evaluates to TRUE, the
 user-specified error number and message is raised,
 the trigger stops execution, and the effects of the
 triggering statement are rolled back. Otherwise, a
 new row is inserted into the predefined auditing
 table named AUDIT_EMPLOYEE containing the existing
 and new values of the Emp_tab table and the reason code
 defined by the REASON variable of AUDITPACKAGE. Note
 that the "old" values are NULL if triggering
 statement is an INSERT and the "new" values are NULL
 if the triggering statement is a DELETE. */

INSERT INTO Audit_employee VALUES
 (:old.Ssn, :old.Ename, :old.Job_classification, :old.Sal,
 :new.Ssn, :new.Ename, :new.Job_classification, :new.Sal,
 auditpackage.Reason, User, Sysdate);
END;

Optionally, you can also set the reason code back to NULL if you wanted to force the
reason code to be set for every update. The following simple AFTER statement
trigger sets the reason code back to NULL after the triggering statement is run:

CREATE OR REPLACE TRIGGER Audit_employee_reset
AFTER INSERT OR DELETE OR UPDATE ON Emp_tab
BEGIN
 auditpackage.set_reason(NULL);
END;

Notice that the previous two triggers are both fired by the same type of SQL
statement. However, the AFTER row trigger is fired once for each row of the table
affected by the triggering statement, while the AFTER statement trigger is fired only
once after the triggering statement execution is completed.

This next trigger also uses triggers to do auditing. It tracks changes made to the
Emp_tab table and stores this information in AUDIT_TABLE and AUDIT_TABLE_
VALUES.

Examples of Trigger Applications

9-36 Oracle Database Application Developer's Guide - Fundamentals

CREATE OR REPLACE TRIGGER Audit_emp
 AFTER INSERT OR UPDATE OR DELETE ON Emp_tab
 FOR EACH ROW
 DECLARE
 Time_now DATE;
 Terminal CHAR(10);
 BEGIN
 -- get current time, and the terminal of the user:
 Time_now := SYSDATE;
 Terminal := USERENV('TERMINAL');
 -- record new employee primary key
 IF INSERTING THEN
 INSERT INTO Audit_table
 VALUES (Audit_seq.NEXTVAL, User, Time_now,
 Terminal, 'Emp_tab', 'INSERT', :new.Empno);
 -- record primary key of the deleted row:
 ELSIF DELETING THEN
 INSERT INTO Audit_table
 VALUES (Audit_seq.NEXTVAL, User, Time_now,
 Terminal, 'Emp_tab', 'DELETE', :old.Empno);
 -- for updates, record the primary key
 -- of the row being updated:
 ELSE
 INSERT INTO Audit_table
 VALUES (audit_seq.NEXTVAL, User, Time_now,

Note: You may need to set up the following data structures for the
example to work:

CREATE TABLE Audit_table (
 Seq NUMBER,
 User_at VARCHAR2(10),
 Time_now DATE,
 Term VARCHAR2(10),
 Job VARCHAR2(10),
 Proc VARCHAR2(10),
 enum NUMBER);
CREATE SEQUENCE Audit_seq;
CREATE TABLE Audit_table_values (
 Seq NUMBER,
 Dept NUMBER,
 Dept1 NUMBER,
 Dept2 NUMBER);

Examples of Trigger Applications

Using Triggers 9-37

 Terminal, 'Emp_tab', 'UPDATE', :old.Empno);
 -- and for SAL and DEPTNO, record old and new values:
 IF UPDATING ('SAL') THEN
 INSERT INTO Audit_table_values
 VALUES (Audit_seq.CURRVAL, 'SAL',
 :old.Sal, :new.Sal);

 ELSIF UPDATING ('DEPTNO') THEN
 INSERT INTO Audit_table_values
 VALUES (Audit_seq.CURRVAL, 'DEPTNO',
 :old.Deptno, :new.DEPTNO);
 END IF;
 END IF;
END;

Integrity Constraints and Triggers: Examples
Triggers and declarative integrity constraints can both be used to constrain data
input. However, triggers and integrity constraints have significant differences.

Declarative integrity constraints are statements about the database that are always
true. A constraint applies to existing data in the table and any statement that
manipulates the table.

Triggers constrain what a transaction can do. A trigger does not apply to data
loaded before the definition of the trigger; therefore, it is not known if all data in a
table conforms to the rules established by an associated trigger.

Although triggers can be written to enforce many of the same rules supported by
Oracle Database's declarative integrity constraint features, triggers should only be
used to enforce complex business rules that cannot be defined using standard
integrity constraints. The declarative integrity constraint features provided with
Oracle Database offer the following advantages when compared to constraints
defined by triggers:

Centralized integrity checks. All points of data access must adhere to the global set of
rules defined by the integrity constraints corresponding to each schema object.

Declarative method. Constraints defined using the standard integrity constraint
features are much easier to write and are less prone to errors, when compared with
comparable constraints defined by triggers.

See Also: Chapter 3, "Maintaining Data Integrity Through
Constraints"

Examples of Trigger Applications

9-38 Oracle Database Application Developer's Guide - Fundamentals

While most aspects of data integrity can be defined and enforced using declarative
integrity constraints, triggers can be used to enforce complex business constraints
not definable using declarative integrity constraints. For example, triggers can be
used to enforce:

� UPDATE SET NULL, and UPDATE and DELETE SET DEFAULT referential actions.

� Referential integrity when the parent and child tables are on different nodes of a
distributed database.

� Complex check constraints not definable using the expressions allowed in a
CHECK constraint.

Referential Integrity Using Triggers
There are many cases where referential integrity can be enforced using triggers.
Note, however, you should only use triggers when there is no declarative support
for the action you are performing.

When using triggers to maintain referential integrity, declare the PRIMARY (or
UNIQUE) KEY constraint in the parent table. If referential integrity is being
maintained between a parent and child table in the same database, then you can
also declare the foreign key in the child table, but disable it; this prevents the
corresponding PRIMARY KEY constraint from being dropped (unless the PRIMARY
KEY constraint is explicitly dropped with the CASCADE option).

To maintain referential integrity using triggers:

� A trigger must be defined for the child table that guarantees values inserted or
updated in the foreign key correspond to values in the parent key.

� One or more triggers must be defined for the parent table. These triggers
guarantee the desired referential action (RESTRICT, CASCADE, or SET NULL) for
values in the foreign key when values are updated or deleted in the parent key.
No action is required for inserts into the parent table (no dependent foreign
keys exist).

The following sections provide examples of the triggers necessary to enforce
referential integrity. The Emp_tab and Dept_tab table relationship is used in these
examples.

Several of the triggers include statements that lock rows (SELECT... FOR UPDATE).
This operation is necessary to maintain concurrency as the rows are being
processed.

Examples of Trigger Applications

Using Triggers 9-39

Foreign Key Trigger for Child Table The following trigger guarantees that before an
INSERT or UPDATE statement affects a foreign key value, the corresponding value
exists in the parent key. The mutating table exception included in the following
example allows this trigger to be used with the UPDATE_SET_DEFAULT and
UPDATE_CASCADE triggers. This exception can be removed if this trigger is used
alone.

CREATE OR REPLACE TRIGGER Emp_dept_check
BEFORE INSERT OR UPDATE OF Deptno ON Emp_tab
FOR EACH ROW WHEN (new.Deptno IS NOT NULL)

-- Before a row is inserted, or DEPTNO is updated in the Emp_tab
-- table, fire this trigger to verify that the new foreign
-- key value (DEPTNO) is present in the Dept_tab table.
DECLARE
 Dummy INTEGER; -- to be used for cursor fetch
 Invalid_department EXCEPTION;
 Valid_department EXCEPTION;
 Mutating_table EXCEPTION;
 PRAGMA EXCEPTION_INIT (Mutating_table, -4091);

-- Cursor used to verify parent key value exists. If
-- present, lock parent key's row so it can't be
-- deleted by another transaction until this
-- transaction is committed or rolled back.
 CURSOR Dummy_cursor (Dn NUMBER) IS
 SELECT Deptno FROM Dept_tab
 WHERE Deptno = Dn
 FOR UPDATE OF Deptno;
BEGIN
 OPEN Dummy_cursor (:new.Deptno);
 FETCH Dummy_cursor INTO Dummy;

 -- Verify parent key. If not found, raise user-specified
 -- error number and message. If found, close cursor
 -- before allowing triggering statement to complete:
 IF Dummy_cursor%NOTFOUND THEN
 RAISE Invalid_department;
 ELSE
 RAISE valid_department;
 END IF;
 CLOSE Dummy_cursor;
EXCEPTION
 WHEN Invalid_department THEN
 CLOSE Dummy_cursor;

Examples of Trigger Applications

9-40 Oracle Database Application Developer's Guide - Fundamentals

 Raise_application_error(-20000, 'Invalid Department'
 || ' Number' || TO_CHAR(:new.deptno));
 WHEN Valid_department THEN
 CLOSE Dummy_cursor;
 WHEN Mutating_table THEN
 NULL;
END;

UPDATE and DELETE RESTRICT Trigger for Parent Table The following trigger is defined
on the DEPT_TAB table to enforce the UPDATE and DELETE RESTRICT referential
action on the primary key of the DEPT_TAB table:

CREATE OR REPLACE TRIGGER Dept_restrict
BEFORE DELETE OR UPDATE OF Deptno ON Dept_tab
FOR EACH ROW

-- Before a row is deleted from Dept_tab or the primary key
-- (DEPTNO) of Dept_tab is updated, check for dependent
-- foreign key values in Emp_tab; rollback if any are found.
DECLARE
 Dummy INTEGER; -- to be used for cursor fetch
 Employees_present EXCEPTION;
 employees_not_present EXCEPTION;

 -- Cursor used to check for dependent foreign key values.
 CURSOR Dummy_cursor (Dn NUMBER) IS
 SELECT Deptno FROM Emp_tab WHERE Deptno = Dn;

BEGIN
 OPEN Dummy_cursor (:old.Deptno);
 FETCH Dummy_cursor INTO Dummy;
 -- If dependent foreign key is found, raise user-specified
 -- error number and message. If not found, close cursor
 -- before allowing triggering statement to complete.
 IF Dummy_cursor%FOUND THEN
 RAISE Employees_present; -- dependent rows exist
 ELSE
 RAISE Employees_not_present; -- no dependent rows
 END IF;
 CLOSE Dummy_cursor;

EXCEPTION
 WHEN Employees_present THEN
 CLOSE Dummy_cursor;
 Raise_application_error(-20001, 'Employees Present in'

Examples of Trigger Applications

Using Triggers 9-41

 || ' Department ' || TO_CHAR(:old.DEPTNO));
 WHEN Employees_not_present THEN
 CLOSE Dummy_cursor;
END;

UPDATE and DELETE SET NULL Triggers for Parent Table: Example The following trigger
is defined on the DEPT_TAB table to enforce the UPDATE and DELETE SET NULL
referential action on the primary key of the DEPT_TAB table:

CREATE OR REPLACE TRIGGER Dept_set_null
AFTER DELETE OR UPDATE OF Deptno ON Dept_tab
FOR EACH ROW

-- Before a row is deleted from Dept_tab or the primary key
-- (DEPTNO) of Dept_tab is updated, set all corresponding
-- dependent foreign key values in Emp_tab to NULL:
BEGIN
 IF UPDATING AND :OLD.Deptno != :NEW.Deptno OR DELETING THEN
 UPDATE Emp_tab SET Emp_tab.Deptno = NULL
 WHERE Emp_tab.Deptno = :old.Deptno;
 END IF;
END;

DELETE Cascade Trigger for Parent Table: Example The following trigger on the DEPT_
TAB table enforces the DELETE CASCADE referential action on the primary key of
the DEPT_TAB table:

CREATE OR REPLACE TRIGGER Dept_del_cascade
AFTER DELETE ON Dept_tab
FOR EACH ROW

-- Before a row is deleted from Dept_tab, delete all
-- rows from the Emp_tab table whose DEPTNO is the same as
-- the DEPTNO being deleted from the Dept_tab table:
BEGIN
 DELETE FROM Emp_tab
 WHERE Emp_tab.Deptno = :old.Deptno;
END;

Caution: This trigger does not work with self-referential tables
(tables with both the primary/unique key and the foreign key).
Also, this trigger does not allow triggers to cycle (such as, A fires B
fires A).

Examples of Trigger Applications

9-42 Oracle Database Application Developer's Guide - Fundamentals

UPDATE Cascade Trigger for Parent Table: Example The following trigger ensures that if
a department number is updated in the Dept_tab table, then this change is
propagated to dependent foreign keys in the Emp_tab table:

-- Generate a sequence number to be used as a flag for
-- determining if an update has occurred on a column:
CREATE SEQUENCE Update_sequence
 INCREMENT BY 1 MAXVALUE 5000
 CYCLE;

CREATE OR REPLACE PACKAGE Integritypackage AS
 Updateseq NUMBER;
END Integritypackage;

CREATE OR REPLACE PACKAGE BODY Integritypackage AS
END Integritypackage;
-- create flag col:
ALTER TABLE Emp_tab ADD Update_id NUMBER;

CREATE OR REPLACE TRIGGER Dept_cascade1 BEFORE UPDATE OF Deptno ON Dept_tab
DECLARE
 Dummy NUMBER;

-- Before updating the Dept_tab table (this is a statement
-- trigger), generate a new sequence number and assign
-- it to the public variable UPDATESEQ of a user-defined
-- package named INTEGRITYPACKAGE:
BEGIN
 SELECT Update_sequence.NEXTVAL
 INTO Dummy
 FROM dual;
 Integritypackage.Updateseq := Dummy;
END;

CREATE OR REPLACE TRIGGER Dept_cascade2 AFTER DELETE OR UPDATE
 OF Deptno ON Dept_tab FOR EACH ROW

-- For each department number in Dept_tab that is updated,
-- cascade the update to dependent foreign keys in the

Note: Typically, the code for DELETE CASCADE is combined with
the code for UPDATE SET NULL or UPDATE SET DEFAULT to
account for both updates and deletes.

Examples of Trigger Applications

Using Triggers 9-43

-- Emp_tab table. Only cascade the update if the child row
-- has not already been updated by this trigger:
BEGIN
 IF UPDATING THEN
 UPDATE Emp_tab
 SET Deptno = :new.Deptno,
 Update_id = Integritypackage.Updateseq --from 1st
 WHERE Emp_tab.Deptno = :old.Deptno
 AND Update_id IS NULL;
 /* only NULL if not updated by the 3rd trigger
 fired by this same triggering statement */
 END IF;
 IF DELETING THEN

 -- Before a row is deleted from Dept_tab, delete all
 -- rows from the Emp_tab table whose DEPTNO is the same as
 -- the DEPTNO being deleted from the Dept_tab table:
 DELETE FROM Emp_tab
 WHERE Emp_tab.Deptno = :old.Deptno;
 END IF;
END;
CREATE OR REPLACE TRIGGER Dept_cascade3 AFTER UPDATE OF Deptno ON Dept_tab
BEGIN UPDATE Emp_tab
 SET Update_id = NULL
 WHERE Update_id = Integritypackage.Updateseq;
END;

Trigger for Complex Check Constraints: Example
Triggers can enforce integrity rules other than referential integrity. For example, this
trigger performs a complex check before allowing the triggering statement to run.

Note: Because this trigger updates the Emp_tab table, the Emp_
dept_check trigger, if enabled, is also fired. The resulting
mutating table error is trapped by the Emp_dept_check trigger.
You should carefully test any triggers that require error trapping to
succeed to ensure that they always work properly in your
environment.

Examples of Trigger Applications

9-44 Oracle Database Application Developer's Guide - Fundamentals

CREATE OR REPLACE TRIGGER Salary_check
BEFORE INSERT OR UPDATE OF Sal, Job ON Emp99
FOR EACH ROW
DECLARE
 Minsal NUMBER;
 Maxsal NUMBER;
 Salary_out_of_range EXCEPTION;
BEGIN

/* Retrieve the minimum and maximum salary for the
 employee's new job classification from the SALGRADE
 table into MINSAL and MAXSAL: */

SELECT Minsal, Maxsal INTO Minsal, Maxsal FROM Salgrade
 WHERE Job_classification = :new.Job;

/* If the employee's new salary is less than or greater
 than the job classification's limits, the exception is
 raised. The exception message is returned and the
 pending INSERT or UPDATE statement that fired the
 trigger is rolled back:*/

 IF (:new.Sal < Minsal OR :new.Sal > Maxsal) THEN
 RAISE Salary_out_of_range;
 END IF;
EXCEPTION
 WHEN Salary_out_of_range THEN
 Raise_application_error (-20300,
 'Salary '||TO_CHAR(:new.Sal)||' out of range for '
 ||'job classification '||:new.Job
 ||' for employee '||:new.Ename);
 WHEN NO_DATA_FOUND THEN
 Raise_application_error(-20322,

Note: You may need to set up the following data structures for the
example to work:

CREATE TABLE Salgrade (
 Grade NUMBER,
 Losal NUMBER,
 Hisal NUMBER,
 Job_classification NUMBER)

Examples of Trigger Applications

Using Triggers 9-45

 'Invalid Job Classification '
 ||:new.Job_classification);
END;

Complex Security Authorizations and Triggers: Example
Triggers are commonly used to enforce complex security authorizations for table
data. Only use triggers to enforce complex security authorizations that cannot be
defined using the database security features provided with Oracle Database. For
example, a trigger can prohibit updates to salary data of the Emp_tab table during
weekends, holidays, and non-working hours.

When using a trigger to enforce a complex security authorization, it is best to use a
BEFORE statement trigger. Using a BEFORE statement trigger has these benefits:

� The security check is done before the triggering statement is allowed to run, so
that no wasted work is done by an unauthorized statement.

� The security check is performed only once for the triggering statement, not for
each row affected by the triggering statement.

This example shows a trigger used to enforce security.

CREATE OR REPLACE TRIGGER Emp_permit_changes
BEFORE INSERT OR DELETE OR UPDATE ON Emp99
DECLARE
 Dummy INTEGER;
 Not_on_weekends EXCEPTION;
 Not_on_holidays EXCEPTION;
 Non_working_hours EXCEPTION;
BEGIN
 /* check for weekends: */
 IF (TO_CHAR(Sysdate, 'DY') = 'SAT' OR
 TO_CHAR(Sysdate, 'DY') = 'SUN') THEN
 RAISE Not_on_weekends;
 END IF;
 /* check for company holidays:*/
 SELECT COUNT(*) INTO Dummy FROM Company_holidays
 WHERE TRUNC(Day) = TRUNC(Sysdate);
 /* TRUNC gets rid of time parts of dates: */

Note: You may need to set up the following data structures for the
example to work:

CREATE TABLE Company_holidays (Day DATE);

Examples of Trigger Applications

9-46 Oracle Database Application Developer's Guide - Fundamentals

 IF dummy > 0 THEN
 RAISE Not_on_holidays;
 END IF;
 /* Check for work hours (8am to 6pm): */
 IF (TO_CHAR(Sysdate, 'HH24') < 8 OR
 TO_CHAR(Sysdate, 'HH24') > 18) THEN
 RAISE Non_working_hours;
 END IF;
EXCEPTION
 WHEN Not_on_weekends THEN
 Raise_application_error(-20324,'May not change '
 ||'employee table during the weekend');
 WHEN Not_on_holidays THEN
 Raise_application_error(-20325,'May not change '
 ||'employee table during a holiday');
 WHEN Non_working_hours THEN
 Raise_application_error(-20326,'May not change '
 ||'Emp_tab table during non-working hours');
END;

Transparent Event Logging and Triggers
Triggers are very useful when you want to transparently perform a related change
in the database following certain events.

The REORDER trigger example shows a trigger that reorders parts as necessary
when certain conditions are met. (In other words, a triggering statement is entered,
and the PARTS_ON_HAND value is less than the REORDER_POINT value.)

Derived Column Values and Triggers: Example
Triggers can derive column values automatically, based upon a value provided by
an INSERT or UPDATE statement. This type of trigger is useful to force values in
specific columns that depend on the values of other columns in the same row.
BEFORE row triggers are necessary to complete this type of operation for the
following reasons:

� The dependent values must be derived before the INSERT or UPDATE occurs, so
that the triggering statement can use the derived values.

� The trigger must fire for each row affected by the triggering INSERT or UPDATE
statement.

See Also: Oracle Database Security Guide for details on database
security features

Examples of Trigger Applications

Using Triggers 9-47

The following example illustrates how a trigger can be used to derive new column
values for a table whenever a row is inserted or updated.

CREATE OR REPLACE TRIGGER Derived
BEFORE INSERT OR UPDATE OF Ename ON Emp99

/* Before updating the ENAME field, derive the values for
 the UPPERNAME and SOUNDEXNAME fields. Users should be
 restricted from updating these fields directly: */
FOR EACH ROW
BEGIN
 :new.Uppername := UPPER(:new.Ename);
 :new.Soundexname := SOUNDEX(:new.Ename);
END;

Building Complex Updatable Views Using Triggers: Example
Views are an excellent mechanism to provide logical windows over table data.
However, when the view query gets complex, the system implicitly cannot translate
the DML on the view into those on the underlying tables. INSTEAD OF triggers help
solve this problem. These triggers can be defined over views, and they fire instead of
the actual DML.

Consider a library system where books are arranged under their respective titles.
The library consists of a collection of book type objects. The following example
explains the schema.

CREATE OR REPLACE TYPE Book_t AS OBJECT
(
 Booknum NUMBER,
 Title VARCHAR2(20),
 Author VARCHAR2(20),
 Available CHAR(1)
);
CREATE OR REPLACE TYPE Book_list_t AS TABLE OF Book_t;

Note: You may need to set up the following data structures for the
example to work:

ALTER TABLE Emp99 ADD(
 Uppername VARCHAR2(20),
 Soundexname VARCHAR2(20));

Examples of Trigger Applications

9-48 Oracle Database Application Developer's Guide - Fundamentals

Assume that the following tables exist in the relational schema:

Table Book_table (Booknum, Section, Title, Author, Available)

Library consists of library_table(section).

You can define a complex view over these tables to create a logical view of the
library with sections and a collection of books in each section.

CREATE OR REPLACE VIEW Library_view AS
SELECT i.Section, CAST (MULTISET (
 SELECT b.Booknum, b.Title, b.Author, b.Available
 FROM Book_table b
 WHERE b.Section = i.Section) AS Book_list_t) BOOKLIST
FROM Library_table i;

Make this view updatable by defining an INSTEAD OF trigger over the view.

CREATE OR REPLACE TRIGGER Library_trigger INSTEAD OF INSERT ON Library_view FOR
EACH ROW
 Bookvar BOOK_T;
 i INTEGER;
BEGIN
 INSERT INTO Library_table VALUES (:NEW.Section);
 FOR i IN 1..:NEW.Booklist.COUNT LOOP
 Bookvar := Booklist(i);
 INSERT INTO book_table
 VALUES (Bookvar.booknum, :NEW.Section, Bookvar.Title, Bookvar.Author,
bookvar.Available);
 END LOOP;
END;
/

Booknum Section Title Author Available

121001 Classic Iliad Homer Y

121002 Novel Gone With the Wind Mitchell M N

Section

Geography

Classic

Examples of Trigger Applications

Using Triggers 9-49

The library_view is an updatable view, and any INSERTs on the view are
handled by the trigger that gets fired automatically. For example:

INSERT INTO Library_view VALUES ('History', book_list_t(book_t(121330,
'Alexander', 'Mirth', 'Y');

Similarly, you can also define triggers on the nested table booklist to handle
modification of the nested table element.

Tracking System Events Using Triggers

Fine-Grained Access Control Using Triggers: Example System triggers can be used to set
application context. Application context is a relatively new feature that enhances
your ability to implement fine-grained access control. Application context is a
secure session cache, and it can be used to store session-specific attributes.

In the example that follows, procedure set_ctx sets the application context based
on the user profile. The trigger setexpensectx ensures that the context is set for
every user.

CONNECT secdemo/secdemo

CREATE OR REPLACE CONTEXT Expenses_reporting USING Secdemo.Exprep_ctx;

REM ===
REM Creation of the package which implements the context:
REM ===

CREATE OR REPLACE PACKAGE Exprep_ctx AS
 PROCEDURE Set_ctx;
END;

SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY Exprep_ctx IS
 PROCEDURE Set_ctx IS
 Empnum NUMBER;
 Countrec NUMBER;
 Cc NUMBER;
 Role VARCHAR2(20);
 BEGIN

 -- SET emp_number:
 SELECT Employee_id INTO Empnum FROM Employee

Responding to System Events through Triggers

9-50 Oracle Database Application Developer's Guide - Fundamentals

 WHERE Last_name = SYS_CONTEXT('userenv', 'session_user');

 DBMS_SESSION.SET_CONTEXT('expenses_reporting','emp_number', Empnum);

 -- SET ROLE:
 SELECT COUNT (*) INTO Countrec FROM Cost_center WHERE Manager_id=Empnum;
 IF (countrec > 0) THEN
 DBMS_SESSION.SET_CONTEXT('expenses_reporting','exp_role','MANAGER');
 ELSE
 DBMS_SESSION.SET_CONTEXT('expenses_reporting','exp_role','EMPLOYEE');
 END IF;

 -- SET cc_number:
 SELECT Cost_center_id INTO Cc FROM Employee
 WHERE Last_name = SYS_CONTEXT('userenv','session_user');
 DBMS_SESSION.SET_CONTEXT(expenses_reporting','cc_number',Cc);
 END;
END;

CALL Syntax
CREATE OR REPLACE TRIGGER Secdemo.Setexpseetx
AFTER LOGON ON DATABASE
CALL Secdemo.Exprep_etx.Set_otx

Responding to System Events through Triggers
Oracle Database's system event publication lets applications subscribe to database
events, just like they subscribe to messages from other applications.

Oracle Database's system events publication framework includes the following
features:

� Infrastructure for publish/subscribe, by making the database an active
publisher of events.

� Integration of data cartridges in the server. The system events publication can
be used to notify cartridges of state changes in the server.

� Integration of fine-grained access control in the server.

By creating a trigger, you can specify a procedure that runs when an event occurs.
DML events are supported on tables, and system events are supported on

See Also: Chapter 10, "Working With System Events"

Responding to System Events through Triggers

Using Triggers 9-51

DATABASE and SCHEMA. You can turn notification on and off by enabling and
disabling the trigger using the ALTER TRIGGER statement.

This feature is integrated with the Advanced Queueing engine. Publish/subscribe
applications use the DBMS_AQ.ENQUEUE() procedure, and other applications such as
cartridges use callouts.

How Events Are Published Through Triggers
When events are detected by the server, the trigger mechanism executes the action
specified in the trigger. As part of this action, you can use the DBMS_AQ package to
publish the event to a queue, so that subscribers get notifications.

When an event occurs, all triggers that are enabled on that event are fired, with
some exceptions:

� If the trigger is actually the target of the triggering event, it is not fired. For
example, a trigger for all DROP events is not fired when it is dropped itself.

� If a trigger is not fired if it has been modified but not committed within the
same transaction as the firing event. For example, recursive DDL within a
system trigger might modify a trigger, which prevents the modified trigger
from being fired by events within the same transaction.

 More than one trigger can be created on an object. When an event fires more than
one trigger, the order is not defined and you should not rely on the triggers being
fired in a particular order.

Publication Context
When an event is published, certain runtime context and attributes, as specified in
the parameter list, are passed to the callout procedure. A set of functions called
event attribute functions are provided.

See Also:

� Oracle Database SQL Reference

� Oracle Streams Advanced Queuing User's Guide and Reference for
details on how to subscribe to published events

Note: Only system-defined database events can be detected this
way. You cannot define your own event conditions.

Responding to System Events through Triggers

9-52 Oracle Database Application Developer's Guide - Fundamentals

For each system event supported, event-specific attributes are identified and
predefined for the event. You can choose the parameter list to be any of these
attributes, along with other simple expressions. For callouts, these are passed as IN
arguments.

Error Handling
Return status from publication callout functions for all events are ignored. For
example, with SHUTDOWN events, the server cannot do anything with the return
status.

Execution Model
Traditionally, triggers execute as the definer of the trigger. The trigger action of an
event is executed as the definer of the action (as the definer of the package or
function in callouts, or as owner of the trigger in queues). Because the owner of the
trigger must have EXECUTE privileges on the underlying queues, packages, or
procedure, this behavior is consistent.

See Also: "Event Attribute Functions" on page 10-2 for
information on event-specific attributes

See Also: "List of Database Events" on page 10-7 for details on
return status

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What's New in Application Development?
	New Application Development Features in Oracle Database�10g Release�1
	New Application Development Features in Oracle9i Release 2
	New Application Development Features in Oracle9i Release 1

	Part I� Introduction to Application Development Features of Oracle Database
	1 Programmatic Environments
	Overview of Developing an Oracle Database Application
	Overview of PL/SQL
	A Simple PL/SQL Example
	Advantages of PL/SQL
	Full Support for SQL
	Tight Integration with Oracle Database
	Better Performance
	Higher Productivity
	Scalability
	Maintainability
	PL/SQL Support for Object-Oriented Programming
	Object Types
	Collections

	Portability
	Security
	Built-In Packages for Application Development
	Built-In Packages for Server Management
	Built-In Packages for Distributed Database Access

	Overview of Java Support Built Into the Database
	Overview of Oracle�JVM
	Overview of Oracle Extensions to JDBC
	JDBC Thin Driver
	JDBC OCI Driver
	JDBC Server-Side Internal Driver
	Oracle Database Extensions to JDBC Standards
	Sample JDBC 2.0 Program
	Sample Pre-2.0 JDBC Program
	JDBC in SQLJ Applications

	Overview of Oracle SQLJ
	Benefits of SQLJ
	Comparing SQLJ with JDBC
	SQLJ Stored Procedures in the Server

	Overview of Oracle JPublisher
	Overview of Java Stored Procedures
	Overview of Database Web Services
	Database as a Web Service Provider
	Database as a Web Service Consumer

	Overview of Writing Procedures and Functions in Java
	Overview of Writing Database Triggers in Java
	Why Use Java for Stored Procedures and Triggers?

	Overview of Pro*C/C++
	How You Implement a Pro*C/C++ Application
	Highlights of Pro*C/C++ Features

	Overview of Pro*COBOL
	How You Implement a Pro*COBOL Application
	Highlights of Pro*COBOL Features

	Overview of OCI and OCCI
	Advantages of OCI
	Parts of the OCI
	Procedural and Non-Procedural Elements
	Building an OCI Application

	Overview of Oracle Data Provider for .NET (ODP.NET)
	Using ODP.NET in a Simple Application

	Overview of Oracle Objects for OLE (OO4O)
	OO4O Automation Server
	OO4O Object Model
	OraSession
	OraServer
	OraDatabase
	OraDynaset
	OraField
	OraMetaData and OraMDAttribute
	OraParameters and OraParameter
	OraParamArray
	OraSQLStmt
	OraAQ
	OraAQMsg
	OraAQAgent

	Support for Oracle LOB and Object Datatypes
	OraBLOB and OraCLOB
	OraBFILE

	Oracle Data Control
	Oracle Objects for OLE C++ Class Library
	Additional Sources of Information

	Choosing a Programming Environment
	Choosing Whether to Use OCI or a Precompiler
	Using Built-In Packages and Libraries
	Java Compared to PL/SQL
	PL/SQL Is Optimized for Database Access
	PL/SQL Is Integrated with the Database
	Both Java and PL/SQL Have Object-Oriented Features
	Java Is Used for Open Distributed Applications

	Part II� Designing the Database
	2 Selecting a Datatype
	Summary of Oracle Built-In Datatypes
	Representing Character Data
	Column Lengths for Single-Byte and Multibyte Character Sets
	Implicit Conversion Between CHAR/VARCHAR2 and NCHAR/NVARCHAR2
	Comparison Semantics

	Representing Numeric Data with Number and Floating-Point Datatypes
	Floating-Point Number System Concepts
	About Floating-Point Formats
	Representing Special Values with Native Floating-Point Formats
	Behavior of Special Values for Native Floating-Point Datatypes

	Rounding of Native Floating-Point Datatypes
	Comparison Operators for Native Floating-Point Datatypes
	Arithmetic Operators for Native Floating-Point Datatypes
	Conversion Functions for Native Floating-Point Datatypes
	Exceptions for Native Floating-Point Datatypes
	Client Interfaces for Native Floating-Point Datatypes
	SQL Native Floating-Point Datatypes
	OCI Native Floating-Point Datatypes SQLT_BFLOAT and SQLT_BDOUBLE
	Native Floating-Point Datatypes Supported in Oracle OBJECT Types
	Pro*C/C++ Support for Native Floating-Point Datatypes

	Storing Data Using the NUMBER Datatype

	Representing Date and Time Data
	Date Format
	Checking If Two DATE Values Refer to the Same Day
	Displaying the Current Date and Time
	Setting SYSDATE to a Constant Value
	Printing a Date with BC/AD Notation

	Time Format
	Performing Date Arithmetic
	Converting Between Datetime Types
	Handling Time Zones
	Importing and Exporting Datetime Types

	Establishing Year 2000 Compliance
	Oracle Server Year 2000 Compliance
	Centuries and the Year 2000
	Examples of The RR Date Format
	Examples of The CC Date Format
	Storing Dates in Character Datatypes
	Viewing Date Settings
	Altering Date Settings
	Troubleshooting Y2K Problems in Applications

	Representing Conditional Expressions as Data
	Representing Geographic Coordinate Data
	Representing Image, Audio, and Video Data
	Representing Searchable Text Data
	Representing Large Amounts of Data
	Using RAW and LONG RAW Datatypes

	Addressing Rows Directly with the ROWID Datatype
	Extended ROWID Format
	Different Forms of the ROWID
	ROWID Pseudocolumn
	Internal ROWID
	External Character ROWID
	External Binary ROWID

	ROWID Migration and Compatibility Issues
	Accessing Oracle Database Version 7 from an Oracle9i Client
	Accessing an Oracle9i Database from a Client of Oracle Database Version 7
	Import and Export

	ANSI/ISO, DB2, and SQL/DS Datatypes
	How Oracle Database Converts Datatypes
	Datatype Conversion During Assignments
	Datatype Conversion During Expression Evaluation

	Representing Dynamically Typed Data
	Representing XML Data

	3 Maintaining Data Integrity Through Constraints
	Overview of Integrity Constraints
	When to Enforce Business Rules with Integrity Constraints
	Example of an Integrity Constraint for a Business Rule

	When to Enforce Business Rules in Applications
	Creating Indexes for Use with Constraints
	When to Use NOT NULL Integrity Constraints
	When to Use Default Column Values
	Setting Default Column Values
	Choosing a Table's Primary Key
	When to Use UNIQUE Key Integrity Constraints
	Constraints On Views: for Performance, Not Data Integrity

	Enforcing Referential Integrity with Constraints
	About Nulls and Foreign Keys
	Defining Relationships Between Parent and Child Tables
	No Constraints on the Foreign Key
	NOT NULL Constraint on the Foreign Key
	UNIQUE Constraint on the Foreign Key
	UNIQUE and NOT NULL Constraints on the Foreign Key

	Rules for Multiple FOREIGN KEY Constraints
	Deferring Constraint Checks
	Guidelines for Deferring Constraint Checks
	Select Appropriate Data
	Ensure Constraints Are Created Deferrable
	Set All Constraints Deferred
	Check the Commit (Optional)

	Managing Constraints That Have Associated Indexes
	Minimizing Space and Time Overhead for Indexes Associated with Constraints

	Guidelines for Indexing Foreign Keys
	About Referential Integrity in a Distributed Database
	When to Use CHECK Integrity Constraints
	Restrictions on CHECK Constraints
	Designing CHECK Constraints
	Rules for Multiple CHECK Constraints
	Choosing Between CHECK and NOT NULL Integrity Constraints

	Examples of Defining Integrity Constraints
	Example: Defining Integrity Constraints with the CREATE TABLE Command
	Example: Defining Constraints with the ALTER TABLE Command
	Privileges Required to Create Constraints
	Naming Integrity Constraints

	Enabling and Disabling Integrity Constraints
	Why Disable Constraints?
	About Exceptions to Integrity Constraints
	Enabling Constraints
	Creating Disabled Constraints
	Enabling and Disabling Existing Integrity Constraints
	Enabling Existing Constraints
	Disabling Existing Constraints
	Tip: Using the Data Dictionary to Find Constraints

	Guidelines for Enabling and Disabling Key Integrity Constraints
	Fixing Constraint Exceptions

	Altering Integrity Constraints
	Renaming Integrity Constraints

	Dropping Integrity Constraints
	Managing FOREIGN KEY Integrity Constraints
	Datatypes and Names for Foreign Key Columns
	Limit on Columns in Composite Foreign Keys
	Foreign Key References Primary Key by Default
	Privileges Required to Create FOREIGN KEY Integrity Constraints
	Choosing How Foreign Keys Enforce Referential Integrity

	Viewing Definitions of Integrity Constraints
	Examples of Defining Integrity Constraints
	Example 1: Listing All of Your Accessible Constraints
	Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints
	Example 3: Listing Column Names that Constitute an Integrity Constraint

	4 Selecting an Index Strategy
	Guidelines for Application-Specific Indexes
	Create Indexes After Inserting Table Data
	Switch Your Temporary Tablespace to Avoid Space Problems Creating Indexes
	Index the Correct Tables and Columns
	Limit the Number of Indexes for Each Table
	Choose the Order of Columns in Composite Indexes
	Gather Statistics to Make Index Usage More Accurate
	Drop Indexes That Are No Longer Required
	Privileges Required to Create an Index

	Creating Indexes: Basic Examples
	When to Use Domain Indexes
	When to Use Function-Based Indexes
	Advantages of Function-Based Indexes
	Examples of Function-Based Indexes
	Example: Function-Based Index for Case-Insensitive Searches
	Example: Precomputing Arithmetic Expressions with a Function-Based Index
	Example: Function-Based Index for Language-Dependent Sorting

	Restrictions for Function-Based Indexes

	5 How Oracle Database Processes SQL Statements
	Overview of SQL Statement Execution
	Identifying Extensions to SQL92 (FIPS Flagging)

	Grouping Operations into Transactions
	Improving Transaction Performance
	Committing Transactions
	Rolling Back Transactions
	Defining Transaction Savepoints
	An Example of COMMIT, SAVEPOINT, and ROLLBACK

	Privileges Required for Transaction Management

	Ensuring Repeatable Reads with Read-Only Transactions
	Using Cursors within Applications
	Declaring and Opening Cursors
	Using a Cursor to Execute Statements Again
	Closing Cursors
	Cancelling Cursors

	Locking Data Explicitly
	Choosing a Locking Strategy
	When to Lock with ROW SHARE and ROW EXCLUSIVE Mode
	When to Lock with SHARE Mode
	When to Lock with SHARE ROW EXCLUSIVE Mode
	When to Lock in EXCLUSIVE Mode
	Privileges Required

	Letting Oracle Database Control Table Locking
	Explicitly Acquiring Row Locks

	About User Locks
	When to Use User Locks
	Example of a User Lock
	Viewing and Monitoring Locks

	Using Serializable Transactions for Concurrency Control
	How Serializable Transactions Interact
	Setting the Isolation Level of a Transaction
	The INITRANS Parameter

	Referential Integrity and Serializable Transactions
	Using SELECT FOR UPDATE

	READ COMMITTED and SERIALIZABLE Isolation
	Transaction Set Consistency
	Comparison of READ COMMITTED and SERIALIZABLE Transactions
	Choosing an Isolation Level for Transactions

	Application Tips for Transactions

	Autonomous Transactions
	Examples of Autonomous Transactions
	Entering a Buy Order
	Example: Making a Bank Withdrawal

	Defining Autonomous Transactions
	Restrictions on Autonomous Transactions

	Resuming Execution After a Storage Error Condition
	What Operations Can Be Resumed After an Error Condition?
	Limitations on Resuming Operations After an Error Condition
	Writing an Application to Handle Suspended Storage Allocation
	Example of Resumable Storage Allocation

	6 Coding Dynamic SQL Statements
	What Is Dynamic SQL?
	Why Use Dynamic SQL?
	Executing DDL and SCL Statements in PL/SQL
	Executing Dynamic Queries
	Referencing Database Objects that Do Not Exist at Compilation
	Optimizing Execution Dynamically
	Executing Dynamic PL/SQL Blocks
	Performing Dynamic Operations Using Invoker's Rights

	A Dynamic SQL Scenario Using Native Dynamic SQL
	Sample DML Operation Using Native Dynamic SQL
	Sample DDL Operation Using Native Dynamic SQL
	Sample Single-Row Query Using Native Dynamic SQL
	Sample Multiple-Row Query Using Native Dynamic SQL

	Choosing Between Native Dynamic SQL and the DBMS_SQL Package
	Advantages of Native Dynamic SQL
	Native Dynamic SQL is Easy to Use
	Native Dynamic SQL is Faster than DBMS_SQL
	Performance Tip: Using Bind Variables

	Native Dynamic SQL Supports User-Defined Types
	Native Dynamic SQL Supports Fetching Into Records

	Advantages of the DBMS_SQL Package
	DBMS_SQL is Supported in Client-Side Programs
	DBMS_SQL Supports DESCRIBE
	DBMS_SQL Supports SQL Statements Larger than 32KB
	DBMS_SQL Lets You Reuse SQL Statements

	Examples of DBMS_SQL Package Code and Native Dynamic SQL Code
	Querying Using Dynamic SQL: Example
	Performing DML Using Dynamic SQL: Example
	Performing DML with RETURNING Clause Using Dynamic SQL: Example

	Using Dynamic SQL in Languages Other Than PL/SQL

	7 Using Procedures and Packages
	Overview of PL/SQL Program Units
	Anonymous Blocks
	Stored Program Units (Procedures, Functions, and Packages)
	Naming Procedures and Functions
	Parameters for Procedures and Functions
	Parameter Modes
	Parameter Datatypes
	%TYPE and %ROWTYPE Attributes
	Tables and Records
	Default Parameter Values

	Creating Stored Procedures and Functions
	Privileges to Create Procedures and Functions

	Altering Stored Procedures and Functions
	Dropping Procedures and Functions
	Privileges to Drop Procedures and Functions

	External Procedures
	PL/SQL Packages
	Example of a PL/SQL Package Specification and Body

	PL/SQL Object Size Limitation
	Size Limitation by Version

	Creating Packages
	Creating Packaged Objects
	Privileges to Create or Drop Packages

	Naming Packages and Package Objects
	Package Invalidations and Session State
	Packages Supplied With Oracle Database
	Overview of Bulk Binds
	When to Use Bulk Binds
	DML Statements that Reference Collections
	SELECT Statements that Reference Collections
	FOR Loops that Reference Collections and the Returning Into Clause

	Triggers

	Hiding PL/SQL Code with the PL/SQL Wrapper
	Compiling PL/SQL Procedures for Native Execution
	Remote Dependencies
	Timestamps
	Disadvantages of the Timestamp Model

	Signatures
	When Does a Signature Change?
	Modes
	Default Parameter Values

	Examples of Changing Procedure Signatures

	Controlling Remote Dependencies
	Dependency Resolution
	Suggestions for Managing Dependencies

	Cursor Variables
	Declaring and Opening Cursor Variables
	Examples of Cursor Variables
	Fetching Data
	Implementing Variant Records

	Handling PL/SQL Compile-Time Errors
	Handling Run-Time PL/SQL Errors
	Declaring Exceptions and Exception Handling Routines
	Unhandled Exceptions
	Handling Errors in Distributed Queries
	Handling Errors in Remote Procedures

	Debugging Stored Procedures
	Calling Stored Procedures
	A Procedure or Trigger Calling Another Procedure
	Interactively Calling Procedures From Oracle Database Tools
	Calling Procedures within 3GL Applications
	Name Resolution When Calling Procedures
	Privileges Required to Execute a Procedure
	Specifying Values for Procedure Arguments

	Calling Remote Procedures
	Remote Procedure Calls and Parameter Values
	Referencing Remote Objects
	Synonyms for Procedures and Packages

	Calling Stored Functions from SQL Expressions
	Using PL/SQL Functions
	Syntax for SQL Calling a PL/SQL Function
	Naming Conventions
	Name Precedence
	Example of Calling a PL/SQL Function from SQL

	Arguments
	Using Default Values
	Privileges

	Requirements for Calling PL/SQL Functions from SQL Expressions
	Controlling Side Effects
	Restrictions
	Declaring a Function
	Parallel Query and Parallel DML
	PRAGMA RESTRICT_REFERENCES – for Backward Compatibility
	Using the Keyword TRUST
	Differences between Static and Dynamic SQL Statements.
	Overloading Packaged PL/SQL Functions

	Serially Reusable PL/SQL Packages
	Package States
	Why Serially Reusable Packages?
	Syntax of Serially Reusable Packages
	Semantics of Serially Reusable Packages
	Examples of Serially Reusable Packages
	Example 1: How Package Variables Act Across Call Boundaries
	Example 2: How Package Variables Act Across Call Boundaries
	Example 3: Open Cursors in Serially Reusable Packages at Call Boundaries

	Returning Large Amounts of Data from a Function
	Coding Your Own Aggregate Functions

	8 Calling External Procedures
	Overview of Multi-Language Programs
	What Is an External Procedure?
	Overview of The Call Specification for External Procedures
	Loading External Procedures
	Loading Java Class Methods
	Loading External C Procedures

	Publishing External Procedures
	The AS LANGUAGE Clause for Java Class Methods
	The AS LANGUAGE Clause for External C Procedures
	LIBRARY
	NAME
	LANGUAGE
	CALLING STANDARD
	WITH CONTEXT
	PARAMETERS
	AGENT IN

	Publishing Java Class Methods
	Publishing External C Procedures
	Locations of Call Specifications
	Example: Locating a Call Specification in a PL/SQL Package Body
	Example: Locating a Call Specification in an Object Type Specification
	Example: Locating a Call Specification in an Object Type Body

	Passing Parameters to External C Procedures with Call Specifications
	Specifying Datatypes
	External Datatype Mappings
	BY VALUE/REFERENCE for IN and IN OUT Parameter Modes
	The PARAMETERS Clause
	Overriding Default Datatype Mapping
	Specifying Properties
	INDICATOR
	LENGTH and MAXLEN
	CHARSETID and CHARSETFORM
	Repositioning Parameters
	Using SELF
	Passing Parameters by Reference
	WITH CONTEXT
	Inter-Language Parameter Mode Mappings

	Executing External Procedures with the CALL Statement
	Preconditions for External Procedures
	Privileges of External Procedures
	Managing Permissions
	Creating Synonyms for External Procedures

	CALL Statement Syntax
	Calling Java Class Methods
	How the Database Server Calls External C Procedures

	Handling Errors and Exceptions in Multi-Language Programs
	Generic Compile Time Call specification Errors
	C Exception Handling

	Using Service Procedures with External C Procedures
	OCIExtProcAllocCallMemory
	OCIExtProcRaiseExcp
	OCIExtProcRaiseExcpWithMsg

	Doing Callbacks with External C Procedures
	OCIExtProcGetEnv
	Object Support for OCI Callbacks
	Restrictions on Callbacks
	Debugging External Procedures
	Using Package DEBUG_EXTPROC

	Demo Program
	Guidelines for External C Procedures
	Restrictions on External C Procedures

	Part III� The Active Database
	9 Using Triggers
	Designing Triggers
	Creating Triggers
	Types of Triggers
	Overview of System Events
	Getting the Attributes of System Events

	Naming Triggers
	When Is the Trigger Fired?
	Do Import and SQL*Loader Fire Triggers?
	How Column Lists Affect UPDATE Triggers

	Controlling When a Trigger Is Fired (BEFORE and AFTER Options)
	Ordering of Triggers
	Modifying Complex Views (INSTEAD OF Triggers)
	Views that Require INSTEAD OF Triggers
	INSTEAD OF Trigger Example
	Object Views and INSTEAD OF Triggers
	Triggers on Nested Table View Columns

	Firing Triggers One or Many Times (FOR EACH ROW Option)
	Firing Triggers Based on Conditions (WHEN Clause)

	Coding the Trigger Body
	Example: Monitoring Logons with a Trigger
	Example: Calling a Java Procedure from a Trigger
	Accessing Column Values in Row Triggers
	Example: Modifying LOB Columns with a Trigger
	INSTEAD OF Triggers on Nested Table View Columns
	Avoiding Name Conflicts with Triggers (REFERENCING Option)
	Detecting the DML Operation That Fired a Trigger
	Error Conditions and Exceptions in the Trigger Body

	Triggers and Handling Remote Exceptions
	Restrictions on Creating Triggers
	Who Is the Trigger User?
	Privileges Needed to Work with Triggers

	Compiling Triggers
	Dependencies for Triggers
	Recompiling Triggers

	Modifying Triggers
	Debugging Triggers

	Enabling and Disabling Triggers
	Enabling Triggers
	Disabling Triggers

	Viewing Information About Triggers
	Examples of Trigger Applications
	Auditing with Triggers: Example
	Integrity Constraints and Triggers: Examples
	Referential Integrity Using Triggers
	Foreign Key Trigger for Child Table
	UPDATE and DELETE RESTRICT Trigger for Parent Table
	UPDATE and DELETE SET NULL Triggers for Parent Table: Example
	DELETE Cascade Trigger for Parent Table: Example
	UPDATE Cascade Trigger for Parent Table: Example

	Trigger for Complex Check Constraints: Example
	Complex Security Authorizations and Triggers: Example
	Transparent Event Logging and Triggers
	Derived Column Values and Triggers: Example
	Building Complex Updatable Views Using Triggers: Example
	Tracking System Events Using Triggers
	Fine-Grained Access Control Using Triggers: Example
	CALL Syntax

	Responding to System Events through Triggers

	10 Working With System Events
	Event Attribute Functions
	List of Database Events
	System Events
	Client Events

	11 Using the Publish-Subscribe Model for Applications
	Introduction to Publish-Subscribe
	Publish-Subscribe Architecture
	Publish-Subscribe Concepts
	Examples of a Publish-Subscribe Mechanism

	Part IV� Developing Specialized Applications
	12 Using Regular Expressions With Oracle Database
	What are Regular Expressions?
	Oracle Database Regular Expression Support
	Oracle Database SQL Functions for Regular Expressions
	Metacharacters Supported in Regular Expressions
	Constructing Regular Expressions
	Basic String Matching with Regular Expressions
	Regular Expression Operations on Subexpressions
	Regular Expression Operator and Metacharacter Usage

	13 Developing Web Applications with PL/SQL
	PL/SQL Web Applications
	PL/SQL Gateway
	Configuring mod_plsql
	Uploading and Downloading Files With PL/SQL Gateway
	Uploading Files to the Database
	Downloading Files From the Database

	Custom Authentication With PL/SQL Gateway

	PL/SQL Web Toolkit
	Generating HTML Output from PL/SQL
	Passing Parameters to a PL/SQL Web Application
	Passing List and Dropdown List Parameters from an HTML Form
	Passing Radio Button and Checkbox Parameters from an HTML Form
	Passing Entry Field Parameters from an HTML Form
	Passing Hidden Parameters from an HTML Form
	Uploading a File from an HTML Form
	Submitting a Completed HTML Form
	Handling Missing Input from an HTML Form
	Maintaining State Information Between Web Pages

	Performing Network Operations within PL/SQL Stored Procedures
	Sending E-Mail from PL/SQL
	Getting a Host Name or Address from PL/SQL
	Working with TCP/IP Connections from PL/SQL
	Retrieving the Contents of an HTTP URL from PL/SQL
	Working with Tables, Image Maps, Cookies, and CGI Variables from PL/SQL

	Embedding PL/SQL Code in Web Pages (PL/SQL Server Pages)
	Choosing a Software Configuration
	Choosing Between PSP and the PL/SQL Web Toolkit
	How PSP Relates to Other Scripting Solutions

	Writing the Code and Content for the PL/SQL Server Page
	The Format of the PSP File

	Syntax of PL/SQL Server Page Elements
	Page Directive
	Procedure Directive
	Parameter Directive
	Include Directive
	Declaration Block
	Code Block (Scriptlet)
	Expression Block

	Loading the PL/SQL Server Page into the Database as a Stored Procedure
	Running a PL/SQL Server Page Through a URL
	Sample PSP URLs

	Examples of PL/SQL Server Pages
	Sample Table
	Dumping the Sample Table
	Printing the Sample Table using a Loop
	Allowing a User Selection
	Sample HTML Form to Call a PL/SQL Server Page

	Debugging PL/SQL Server Page Problems
	Putting an Application using PL/SQL Server Pages into Production

	Enabling PL/SQL Web Applications for XML

	14 Porting Non-Oracle Applications to Oracle Database 10g
	Performing Natural Joins and Inner Joins
	Migrating a Schema and Data from Another Database System
	Performing Several Comparisons within a Query

	15 Using Flashback Features
	Overview of Flashback Features
	Application Development Features
	Database Administration Features

	Database Administration Tasks Before Using Flashback Features
	Using Flashback Query (SELECT ... AS OF)
	Examining Past Data: Example
	Tips for Using Flashback Query

	Using the DBMS_FLASHBACK Package
	Using ORA_ROWSCN
	Using Flashback Version Query
	Using Flashback Transaction Query
	Flashback Transaction Query and Flashback Version Query: Example

	Flashback Tips
	Flashback Tips – Performance
	Flashback Tips – General

	16 Using Oracle XA with Transaction Monitors
	X/Open Distributed Transaction Processing (DTP)
	Required Public Information

	XA and the Two-Phase Commit Protocol
	Transaction Processing Monitors (TPMs)
	Support for Dynamic and Static Registration
	Oracle XA Library Interface Subroutines
	XA Library Subroutines
	Extensions to the XA Interface

	Developing and Installing Applications That Use the XA Libraries
	Responsibilities of the DBA or System Administrator
	Responsibilities of the Application Developer
	Defining the xa_open String
	Syntax of the xa_open String
	Required Fields
	Optional Fields

	Interfacing XA with Precompilers and OCIs
	Using Precompilers with the Oracle XA Library
	Using Precompilers with the Default Database
	Using Precompilers with a Named Database
	Using OCI with the Oracle XA Library

	Transaction Control using XA
	Examples of Precompiler Applications

	Migrating Precompiler or OCI Applications to TPM Applications
	XA Library Thread Safety
	Specifying Threading in the Open String
	Restrictions on Threading in XA

	Troubleshooting XA Applications
	XA Trace Files
	The xa_open string DbgFl
	Trace File Locations

	Trace File Examples
	In-Doubt or Pending Transactions
	Oracle Database SYS Account Tables

	XA Issues and Restrictions
	Changes to Oracle XA Support
	XA Changes from Release 8.0 to Release 8.1
	XA Changes from Release 7.3 to Release 8.0
	Session Caching Is No Longer Needed
	Dynamic Registration Is Supported
	Loosely Coupled Transaction Branches Are Supported
	SQLLIB Is Not Needed for OCI Applications
	No Installation Script Is Needed to Run XA
	XA Library Use with Oracle Real Application Clusters Option on All Platforms
	Transaction Recovery for Oracle Real Application Clusters Has Been Improved
	Both Global and Local Transactions Are Possible
	The xa_open String Has Been Modified

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

