Teoria delle Categorie Scuola Estiva di Logica Gargnano del Garda 27/08 - 01/09/2007

Eugenio Moggi

moggi@disi.unige.it

DISI, Univ. of Genova

Introduzione e Motivazioni

- Encyclopedia on Scientific and Philosophical Thought [Geymonat75] volumes on 20th century most interesting, in particular
 - Physics: Relativity Theory, Quantum Mechanics
 - Logics: the failure of Hilbert's program, Computability, Category Theory
 - Philosophy of Science (Epistemology): Falsificationism (Karl Popper), ... extremely valuable to provide an overview of parallel threads and their inter-dependencies, with some attempts to go into technical aspects
- Section on Category Theory^a: very *enthusiastic* advertising of its potential main focus on toposes and interpretation of logic in them
- Categories for the Working Mathematician [MacLane71]^b: very hard to read without a good background in Mathematics

^aUniversal properties vs concrete descriptions of mathematical constructions

^b1977 Italian translation by Betti, Carboni, Galuzzi, Meloni

Introduzione e Motivazioni

- Nowadays there several books, e.g. [AspertiLongo91], that do not require as much mathematical background as [MacLane71], but some background is needed in order to provide examples.
- Perhaps using "web technology" and platforms for "collaborative work" one could envisage an e-book that shares definitions and theorems form Category Theory, but examples and applications are customized on the readers background knowledge and interests.
- Links to relevant material for this course and to further readings can be found in the web page

```
http://www.disi.unige.it/person/MoggiE/AILA07/
```

Introduzione e Motivazioni

[Goguen91]: why category theory is useful (in computer science, and more generally in a young subject, poorly organized, that needs all the help that it can get):

- Formulating definitions and theories (CT provides guidelines)
- Carrying out proofs
- Discovering and exploiting relations with other fields sufficiently abstract formulations can reveal surprising connections
- Dealing with abstraction and representation independence

a copernican revolution w.r.t. set theory: CT looks at objects trought their relations with other objects

- Formulating conjectures and research directions mainly through relations with other fields
- Conceptual unification (by abstraction and use of few fundamental concepts)

CT useful also in a mature subject (e.g. to export ideas to other subjects):

more general/abstract reformulations or cleaner/unified reformulations

There are also bad uses of CT, e.g. : specious generality, categorical overkill.

Part 1 - [AspertiLongo91, Ch 1]

Category, Graph and Diagram

A category C consists of

- a collection C_0 of objects, notation $a \in C$
- a collection C_1 of morphisms (arrows, maps)
- operations dom, $\operatorname{cod}: \mathcal{C}_1 \longrightarrow \mathcal{C}_0$ assigning to each arrow a domain and codomain we write $f \in \mathcal{C}[a, b]$ or $a \xrightarrow{f} b$ or $f: a \longrightarrow b$ when $a = \operatorname{dom}(f)$ and $b = \operatorname{cod}(f)$
- an operation id: C₀ → C₁ assigning to each object a an identity $|id_a \in C[a, a]|$
- a composition operation assigning to each pair *f* and *g* of composable arrows
 [
 a → b → c]
 a composite arrow
 [
 g f ∈ C[a, c]
]

and identity and composition satisfy the following properties

(identity) $\operatorname{id}_b \circ f = f = f \circ \operatorname{id}_a$ for any $a \xrightarrow{f} b$ (associativity) $h \circ (g \circ f) = (h \circ g) \circ f$ for any $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d$

Category, Graph and Diagram

- A graph^a \mathcal{G} consists of
 - a collection \mathcal{G}_0 of nodes (vertexes)
 - a collection \mathcal{G}_1 of arcs (edges, arrows)
 - operations dom, $\operatorname{cod}: \mathcal{G}_1 \longrightarrow \mathcal{G}_0$ assigning to each arc a source and target

we write $\left| a \xrightarrow{f} b$ when $a = \operatorname{dom}(f)$ and $b = \operatorname{cod}(f) \right|$

Any category C has an underlying graph dom, $\operatorname{cod}: C_1 \longrightarrow C_0$

Graph is the category of *small* graphs (i.e. \mathcal{G}_0 and \mathcal{G}_1 are sets) with arrows $(g_0, g_1) \in \operatorname{Graph}[\mathcal{G}, \mathcal{G}'] \stackrel{\Delta}{\iff} g_0: \mathcal{G}_0 \longrightarrow \mathcal{G}'_0$ and $g_1: \mathcal{G}_1 \longrightarrow \mathcal{G}'_1$ s.t. $a \stackrel{f}{\longrightarrow} b \text{ in } \mathcal{G} \text{ implies } g_0(a) \stackrel{g_1(f)}{\longrightarrow} g_0(b) \text{ in } \mathcal{G}'$

^aIn Graph Theory what we call graph is called a *directed multi-graph*.

Category, Graph and Diagram

Given a category C and a small graph G a *diagram* D of shape G in C is a graph morphism (d_0, d_1) from G to the underlying graph of C, i.e. D corresponds to a consistent labeling of nodes and arcs of G with objects and arrows of C

given a path $p = \langle a_i \xrightarrow{f_i} a_{i+1} | i < n \rangle$ from a_0 to a_n in \mathcal{G} we write D[p] for the arrow in $\mathcal{C}[d_0(a_0), d_0(a_n)]$ obtained by composing the arrows $d_1(f_i)$ (when n = 0 then D[p] is the identity on $d_0(a_0)$)

• A diagram D commutes \Leftrightarrow^{Δ} for every pair of paths p and p' in \mathcal{G} with the same source and target (say a to b) D[p] = D[p'] (as arrows in $\mathcal{C}[d_0(a), d_0(b)]$)

commuting diagrams expressing the (identity) and (associativity) properties

Examples

Dogma 1: to each species of mathematical structure, there corresponds a **category** whose objects have that structure, and whose morphisms preserve it.

\mathcal{C}	Objects a	Morphisms $f \in \mathcal{C}[a_1, a_2]$						
Set	sets X	functions $f \in X_1 \longrightarrow X_2$						
	to be precise morphisms are triples (X_1, f, X_2)							
pSet	sets X	partial maps $f \in X_1 \longrightarrow X_2$						
Rel	sets X	relations $R \subseteq X_1 \times X_2$						
Mon	monoids $(X, \cdot, 1)$	homomorphisms $f: X_1 \longrightarrow X_2$						
	$x \ 1 = x = 1 \ x (x_1 \ x_2) \ x_3 = x_1 \ (x_2 \ x_3)$	$f(1_1) = 1_2$ $f(x_1 \cdot x_2) = f(x_1) \cdot f(x_2)$						
Grp	groups $(X,\cdot,1,\ ^{-1})$	homomorphisms $f: X_1 \longrightarrow X_2$						
	monoid s.t. $x \cdot x^{-1} = 1 = x^{-1} \cdot x$	monoid homomorphism: $f(x^{-1}) = f(x)^{-1}$						
Vect	vector spaces	linear transformations						
Тор	topological spaces (X, τ)	continuous maps $f: X_1 \longrightarrow X_2$						
	$\tau \subseteq \mathcal{P}(X)$ closed w.r.t. \cup and finite \cap	$O \in \tau_2 \supset f^{-1}(O) \in \tau_1$						
PO	partial orders (X, \leq)	monotone maps $f: X_1 \longrightarrow X_2$						
		$x_1 \leq_1 x_2 \supset f(x_1) \leq_2 f(x_2)$						

Examples

- a collection *C* induces a *discrete* category *C* (i.e. every arrow is an identity): $C_0 = C_1 = C$ and dom(a) = a = cod(a)
- a preorder (X, ≤), i.e. ≤⊆ X × X is reflexive and transitive, induces a category C where every C[a, b] has at most one element:
 C₀ = X, C₁ =≤, dom(a, b) = a and cod(a, b) = b
 - \square \subseteq is a preorder on sets (indeed a partial order)
 - \in is not a preorder on sets (e.g. $X \in X$ fails in ZF set theory)
- a monoid $(X, \cdot, 1)$, induces a category C with exactly one object: $C_0 = \{*\}, C_1 = X, id_* = 1 \text{ and } x_1 \circ x_2 = x_1 \cdot x_2$

Categories from (your favorite) propositional logic

- entailment $A_1 \vdash A_2$ is a preorder on propositions, thus it induces a category **Ent**
- a more interesting category **Prf** is obtained by taking as $A_1 \xrightarrow{p} A_2$ proofs of the entailment $A_1 \vdash A_2^a$

^{*a*}Intuitionistic proofs = typed λ -terms, see [AspertiLongo91, Ch 8]

Examples from Algebra

Let Ω be an *algebraic signature*, i.e. a family $\langle \Omega_n | n \rangle$ of sets (of operator symbols) indexed by natural numbers (considered as *arities*)

 \checkmark $T_{\Omega}(X)$ denotes the set of Ω -terms with variables included in the set X

 T_{Ω} is the category of (finite) sets and substitutions $T_{\Omega}[X_1, X_2] \stackrel{\Delta}{=} X_2 \longrightarrow T_{\Omega}(X_1)$ given $\rho_1: X_2 \longrightarrow T_{\Omega}(X_1)$ and $\rho_2: X_3 \longrightarrow T_{\Omega}(X_2)$, the composite $\rho_2 \circ \rho_1$ is the $\rho: X_3 \longrightarrow T_{\Omega}(X_1)$ s.t. $\rho(x) \stackrel{\Delta}{=} t[\rho_1]$ with $t = \rho_2(x) \in T_{\Omega}(X_2)$

■ an Ω -algebra is a pair (X, [-]), where X is a set and [-] is an interpretation of the operator symbols in X, i.e. $[op]: X^n \longrightarrow X$ for $op \in \Omega_n$

Alg_{Ω} is the category of Ω -algebras and Ω -homomorphisms^a $\llbracket op \rrbracket_1$ $\llbracket op \rrbracket_2$

^aSee [AspertiLongo91, Sec 4.1]

Addendum on pCL and pCAs

■ partial Combinatory Logic (pCL) is a theory in Logic of Partial Terms ($M \downarrow$ means M defined, $M_1 = M_2$ means terms defined and equal, $M_1 \simeq M_2$ means $M_1 \downarrow \lor M_2 \downarrow \supset M_1 = M_2$)

• Terms $M ::= x | K | S | M_1 M_2$ partial application (possibly other constants c)

• Axioms K x y = x and $S x y \downarrow$ and $S x y z \simeq x z (y z)$

additional axioms are: (tot) $xy \downarrow$ (ext) $(\forall z.xz \simeq yz) \supset x = y$

the abstraction [x]M is a term defined by induction on M satisfying the following properties: x ∉ FV([x]M), ([x]M) ↓ and ([x]M)x ≃ M
 [x]x ≜ I ≜ SKK [x]y ≜ K y [x]c ≜ K c [x]M_1M_2 ≜ S([x]M_1)([x]M_2)

a model of pCL (called pCA) is non trivial $\Leftrightarrow^{\Delta} K \neq S$.
Kleene's applicative structure $\omega = (N, \cdot)$, where $m \cdot n \simeq \{m\}(n)$, is a pCA

• There is an encoding \underline{n} of $n \in N$ in pCL and a term M_U s.t. in any non-trivial pCA $M_U \underline{e} \ \underline{m} \simeq \underline{n} \iff \{e\}(m) \simeq n$ (when the pCA is non-total, then $M_U \underline{e} \ \underline{m} \downarrow \iff \{e\}(m) \downarrow$)

i.e. in pCL | every partial recursive function is *representable*

Church's encoding $\underline{n} \stackrel{\Delta}{=} [x][y]x^n y$, where $M^0 N \stackrel{\Delta}{=} N$ and $M^{n+1} N \stackrel{\Delta}{=} M(M^n N)$

Examples from Computability

Let <u>A</u> = (A, ·) be a partial Combinatory Algebra, i.e. · is a partial application and
 exist K, S ∈ A s.t. K a b = a, S a b ↓ and S a b c ≃ a c (b c) for any a, b, c ∈ A

• <u>A</u>-Set is the category of sets with an <u>A</u>-realizability relation (objects) $\underline{X} = (X, ||-)$ with $||-\subseteq A \times X$ onto $\forall x \in X. \exists a.a ||-x$ (arrows) $\underline{X}_1 \xrightarrow{f} \underline{X}_2 \iff X_1 \xrightarrow{f} X_2$ has a realizer r |a||-1x implies r |a||-2f(x)

Examples from Category Theory

- The category Cat whose objects are (small) categories (by Dogma 1)^a
- the dual^b category C^{op} of C: $C_0^{op} = C_0$ and $\boxed{C^{op}[a, b] = C[b, a]}$ $\mathrm{id}_a^{op} = \mathrm{id}_a$ and $g \circ^{op} f = f \circ g$
- the product category C × D of C and D: (C × D)₀ = C₀ × D₀ and (C × D)₁ = C₁ × D₁ id_(a,a') = (id_a, id_{a'}) and (g, g') ∘ (f, f') = (g ∘ f, g' ∘ f')
- In the slice^c category C/a of C over $a \in C$: $(C/a)_0 = \{f \in C_1 | \operatorname{cod}(f) = a\}$ $C/a[f: b → a, f': b' → a] = \{g \in C[b, b'] | f' \circ g = f\}$ in fact (f, g, f'))
- ▲ A category \mathcal{D} is a subcategory of $\mathcal{C} \iff \mathcal{D}_0 \subseteq \mathcal{C}_0$ and $\mathcal{D}[a,b] \subseteq \mathcal{C}[a,b]$, and identities and composition in \mathcal{D} coincide with those in \mathcal{C}

 \mathcal{D} is a *full* subcategory when in addition $\mathcal{D}[a, b] = \mathcal{C}[a, b]$

Set is a subcategory of Rel (but it is not full), since functions are relations (with certain properties)

^aMorphisms in **Cat** are functors, see [AspertiLongo91, Def 3.1.1] ^bDuality is a powerful technique of Theory applicable to definitions and theorems. ^cThe objects of **Set**/*I* corresponds to *I*-indexed families of sets.

Special Morphisms

Given a category ${\mathcal C}$ we say that

$$a \xrightarrow{e} b \text{ is } epic \Leftrightarrow f \circ e = g \circ e \text{ implies } f = g \text{ when } c \in \mathcal{C} \text{ and } f, g \in \mathcal{C}[b, c]$$

•
$$a \xrightarrow{m} b$$
 is monic $\stackrel{\Delta}{\iff} \boxed{m \circ f = m \circ g \text{ implies } f = g}$ when $c \in \mathcal{C}$ and $f, g \in \mathcal{C}[c, a]$

monic and epic are dual properties, i.e. m is monic in $\mathcal{C} \Longleftrightarrow m$ is epic in \mathcal{C}^{op}

$$a \stackrel{i}{\longrightarrow} b \text{ is } iso \stackrel{\Delta}{\Longleftrightarrow} \boxed{j \circ i = \operatorname{id}_a \text{ and } i \circ j = \operatorname{id}_b} \text{ for some (unique) } j \in \mathcal{C}[b,a]$$

iso is a self-dual property, i.e. i is iso in $\mathcal{C} \Longleftrightarrow i$ is iso in \mathcal{C}^{op}

$$a \stackrel{e}{\longrightarrow} b \text{ is a split epic} \stackrel{\Delta}{\Longleftrightarrow} \boxed{e \circ m = \mathrm{id}_b} \text{ for some } m \in \mathcal{C}[b, a]$$

there is a dual property of split monic

The following statements and their dual hold (proofs are by diagram chasing):

- $\bullet e \text{ split epic } \Longrightarrow e \text{ epic}$
- \square m monic and split epic $\implies m$ iso

we write $a \xrightarrow{m} b$ when m is monic and $a \xrightarrow{e} b$ when e is epic

Special Morphisms

In Set one has the following concrete characterizations

- \bullet e epic \iff e is surjective \iff e split epic (by the axiom of choice)
- $m \mod m$ is injective ($m: a \longrightarrow b$ split monic $\iff m$ monic and $a \neq \emptyset$)
- $I iso \iff i is bijective$

Give concrete characterizations in other sample categories, in particular consider

- \checkmark C is a monoid, i.e. a category with exactly one object
- \checkmark C is a preorder (every arrow is both monic and epic)

Part 2 - [AspertiLongo91, Ch 2]

Thinking Categorically (special objects)

$$0 \in \mathcal{C} \text{ is initial} \Leftrightarrow \forall a \in \mathcal{C}.\exists ! f \in \mathcal{C}[0, a]$$

$$1 \in \mathcal{C} \text{ is terminal} \Leftrightarrow \forall a \in \mathcal{C}. \exists ! f \in \mathcal{C}[a, 1]$$

initial and terminal are dual properties, i.e. a is terminal in $\mathcal{C} \iff a$ is initial in \mathcal{C}^{op}

The following statements say that initial objects are determined up to unique iso

- If 0 is initial and $0 \xrightarrow{i} 0'$ is an iso, then 0' is initial
- If 0 and 0' are initial, then they are isomorphic and the iso is unique dual statements hold for terminal objects there are categories without initial/terminal objects (e.g. the empty category)

In Set one has the following concrete characterizations

- X is initial \iff X = Ø (Ø is both initial and terminal in **Rel** and **pSet**)
- \checkmark X is terminal \iff X has exactly one element

Give concrete characterizations in other sample categories.

Thinking Categorically (special objects)

$$0 \in \mathcal{C} \text{ is initial} \iff \forall a \in \mathcal{C}.\exists ! f \in \mathcal{C}[0, a]$$

$$1 \in \mathcal{C} \text{ is terminal} \Leftrightarrow \forall a \in \mathcal{C}. \exists ! f \in \mathcal{C}[a, 1]$$

initial and terminal are dual properties, i.e. a is terminal in $\mathcal{C} \iff a$ is initial in \mathcal{C}^{op}

The property of being initial/terminal is a simple form of *universal property*, i.e.

- **a** property P(x) expressed in the language of Category Theory, s.t.
- \bullet the structures x satisfying the property are determined up to unique iso

thus the structures on which P(x) is defined are the objects of a category

Thinking Categorically (universal properties I)

Thinking Categorically (universal properties I)

• a coproduct diagram $a_1 \xrightarrow{\iota_1} a \stackrel{\iota_2}{\longleftrightarrow} a_2$ is the dual of a product diagram, i.e.

- \bullet coproduct diagrams for a_1 and a_2 are determined up to unique iso (by duality)
- the definitions of product and coproduct diagram generalize from the binary to *I-indexed* case (where *I* is a set)

when $I = \emptyset$ the definitions coincide with that of terminal and initial object.

The notation introduced for binary products and coproducts is modified as follows

 $\prod_{i \in I} a_i \text{ and } \prod_{i \in I} a_i \text{ and } \langle f_i | i \in I \rangle \text{ and } [f_i | i \in I]$

Thinking Categorically (universal properties I)

In **Set** for any pair of object X_1 and X_2 we have that

- $X_1 \xleftarrow{\pi_1} X_1 \times X_2 \xrightarrow{\pi_2} X_2$ is a product diagram, where $X_1 \times X_2$ is the cartesian product and $\pi_i(x_1, x_2) = x_i$
- $X_1 \xrightarrow{\iota_1} X_1 \uplus X_2 \xleftarrow{\iota_2} X_2$ is a coproduct diagram, where $X_1 \uplus X_2$ is the disjoint union $\{(i, x) | x \in X_i\}$ and $\iota_i(x) = (i, x)$

When \mathcal{C} is a preorder one has

- In an initial object 0 is a least element ⊥, and a terminal object 1 is a top element \top
- a product $a_1 \times a_2$ is a greatest lower bound $a_1 \wedge a_2$, and a coproduct $a_1 + a_2$ is a least upper bound $a_1 \vee a_2$

When the objects involved exist, there are canonical isomorphisms

$$a \times 1 \cong a \quad a_1 \times a_2 \cong a_2 \times a_1 \quad (a_1 \times a_2) \times a_3 \cong a_1 \times (a_2 \times a_3)$$

similar isomorphisms hold by replacing \times with + and 1 with 0In **Set** (in biCCCs, but not in general) the *canonical* maps below are iso

$$0 --> a \times 0 \quad (a \times a_1) + (a \times a_2) --> a \times (a_1 + a_2)$$

Thinking Categorically (universal properties II)

Given a category with a terminal object 1

 $\xrightarrow{z} a_{N} \xrightarrow{\circ} a_{N} \text{ is c...}$ for any $1 \xrightarrow{f_{z}} a \xrightarrow{f_{s}} a \exists ! f \text{ s.t.}$ $\begin{array}{c} 1 & z & \ddots & \vdots \\ & & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$ ■ $1 \xrightarrow{z} a_N \xrightarrow{s} a_N$ is a *natural number object* (NNO for short) diagram in $\mathcal{C} \iff$

- NNO diagrams are determined up to unique iso
- In Set a NNO diagram is given by $1 \xrightarrow{z} N \xrightarrow{s} N$, where
 - \bullet N is the set of natural numbers,
 - z(*) = 0 (when 1 is the singleton $\{*\}$),
 - s(n) = n + 1 is the successor function,

If C has N-indexed coproducts, then $\prod 1$ is a NNO. $n \in N$

EN has a NNO (and finite coproducts), but does not have N-indexed coproducts.

Thinking Categorically (universal properties II)

Given a category with binary products

$$\begin{array}{c} \bullet \\ c \times a \stackrel{ev}{\longrightarrow} b \text{ is an exponential diagram in } \mathcal{C} & \stackrel{\Delta}{\Leftrightarrow} \\ c \times a \stackrel{-ev}{\longrightarrow} b \\ \uparrow \\ for \text{ any } c' \times a \stackrel{f}{\longrightarrow} b \ \exists !f' : c' \to c \text{ s.t. } f' \times \operatorname{id}_a \\ \downarrow \\ c' \times a \\ \end{array} \\ \text{where } f' \times \operatorname{id}_a \stackrel{\Delta}{=} \langle f' \circ \pi_1, \pi_2 \rangle, \text{ we write } \boxed{b^a \text{ for } c \text{ and } \Lambda(f) \text{ for } f'} \end{aligned}$$

- exponential diagrams are determined up to unique iso
- In Set an exponential diagram is $Y^X \times X \xrightarrow{ev} Y$, where Y^X is the set of functions Set[X, Y] and ev(f, x) = f(x)
- In <u>A</u>-Set an exponential diagram is $\underline{Y}^{\underline{X}} \times \underline{X} \xrightarrow{ev} \underline{Y}$, where $\underline{Y}^{\underline{X}}$ is the set of realizable maps <u>A</u>-Set[$\underline{X}, \underline{Y}$] with an *obvious* realizability relation
- In **EN** the exponential object N^N does not exists (N is the NNO)
- In **Ent** (for propositional logic) B^A is implication $A \supset B$

Thinking Categorically (universal properties II)

- C has enough points ⇔ it has a terminal object 1 and for any f, g ∈ C[a, b] (∀x: 1 → a.f ∘ x = g ∘ x) ⊃ f = g
- $C
 is a cartesian closed category (CCC for short) <math>\stackrel{\Delta}{\iff}$ it is cartesian and it has exponentials b^a for any pair of objects
- PO, <u>A</u>-Set, Cat are biCCC. Graph, Mon, Grp, Top are not CCC.

Equational reformulation

- $\bullet \ ev \circ (a \times \Lambda(f)) = f \text{ and } \Lambda(ev \circ (f' \times id_a)) = f': c' \longrightarrow b^a$

Addendum: Internal Languages

The *internal language* L of a category C consists of

- types $t ::= a \mid \ldots$ and contexts $\Gamma ::= x : t \mid \ldots$, with a object of C and x variable
- If a raw terms $M ::= x \mid f(M) \mid \ldots$ with f arrow of C, and several judgments
 - $\Gamma \vdash M$: t asserting well-formedness of term M

$$x \quad \frac{\Gamma \vdash M: t}{x: t \vdash x: t} \qquad f \quad \frac{\Gamma \vdash M: t}{\Gamma \vdash f(M): t'} \ \llbracket t \rrbracket \stackrel{f}{\longrightarrow} \ \llbracket t' \rrbracket$$

• $\Gamma \vdash M_1 = M_2$: *t* asserting equality of well-formed terms

The interpretation $\llbracket - \rrbracket$ of L in C goes a follows

• types t and contexts Γ are interpreted by objects of $\mathcal{C} \mid [a] = [x:a] \stackrel{\Delta}{=} a$

• well-formed terms $\Gamma \vdash M : t$ are interpreted^a by arrows $f : \llbracket \Gamma \rrbracket \longrightarrow \llbracket t \rrbracket$ $\llbracket x : t \vdash x : t \rrbracket \triangleq \operatorname{id}_a$ with $a = \llbracket t \rrbracket$ and $\llbracket \Gamma \vdash f(M) : t' \rrbracket \triangleq f \circ \llbracket \Gamma \vdash M : t \rrbracket$

equality judgments are interpreted by equality of arrows.

^{*a*} the interpretation is defined by induction on the *unique* derivation of $\Gamma \vdash M: t$.

Addendum: Internal Languages

The *internal language* L of a category C consists of

- **•** types $t ::= a \mid \ldots$ and contexts $\Gamma ::= x : t \mid \ldots$, with a object of C and x variable
- If a raw terms $M ::= x \mid f(M) \mid \ldots$ with f arrow of C, and several judgments
 - $\Gamma \vdash M$: t asserting well-formedness of term M

$$x \quad \frac{\Gamma \vdash M: t}{x: t \vdash x: t} \qquad f \quad \frac{\Gamma \vdash M: t}{\Gamma \vdash f(M): t'} \ \llbracket t \rrbracket \stackrel{f}{\longrightarrow} \ \llbracket t' \rrbracket$$

• $\Gamma \vdash M_1 = M_2$: *t* asserting equality of well-formed terms

Substitution is Composition

subst $\frac{\Gamma \vdash M: t \quad x: t \vdash N: t'}{\Gamma \vdash [M/x]N: t'}$ is an admissible rule

$$\ \ \ \left[\!\!\left[\Gamma \vdash [M/x]N:t'\right]\!\!\right] = g \circ f \text{ if } \left[\!\!\left[\Gamma \vdash M:t\right]\!\!\right] = c \xrightarrow{f} a \text{ and } \left[\!\!\left[x:t \vdash N:t'\right]\!\!\right] = a \xrightarrow{g} b$$

Addendum: Internal Languages

The *internal language* L of a category C consists of

- **J** types $t := a \mid \ldots$ and contexts $\Gamma := x : t \mid \ldots$, with a object of C and x variable
- **•** raw terms $M ::= x \mid f(M) \mid \ldots$ with f arrow of C, and several judgments
 - $\Gamma \vdash M$: *t* asserting well-formedness of term *M*

$$x \quad \frac{\Gamma \vdash M: t}{x: t \vdash x: t} \qquad f \quad \frac{\Gamma \vdash M: t}{\Gamma \vdash f(M): t'} \ \llbracket t \rrbracket \stackrel{f}{\longrightarrow} \ \llbracket t' \rrbracket$$

• $\Gamma \vdash M_1 = M_2$: *t* asserting equality of well-formed terms

Equality of Terms

	$\Gamma \vdash M: t$	$\Gamma \vdash M_1 =$	$= M_2: t$	Γ	$\vdash M_1 = M_2$	$:t$ Γ	$\vdash M_2 = M_3$: <i>t</i>
Γ F	$\vdash M = M:t \qquad \Gamma \vdash M_2 = M_1:t$				$\Gamma \vdash M_1 = M_3: t$			
congr –	$\Gamma \vdash M_1 = M_2:$	$t \qquad x:t \vdash$	M: t'	cubet	$\Gamma \vdash M{:}t$	$x:t\vdash x$	$M_1 = M_2: t'$	
	$\Gamma \vdash [M_1/x]M$	$\Gamma \vdash [M_1/x]M = [M_2/x]M:t'$			$\Gamma \vdash [M/x]$	$]M_1 = [M_1]$	$M/x]M_2:t'$	_
id $$		$\overline{(x):t} a = \llbracket t \rrbracket$	comp –			h =	$= \llbracket t \rrbracket \xrightarrow{f}$	\xrightarrow{g} $[t']$
	$t \vdash x = \mathrm{id}_a(x)$:			$x: t \vdash h$	(x) = g(f(x))): t'		Γ L

Addendum: Internal Languages for Cartesian Categories

- types $t ::= a \mid 1 \mid t_1 \times t_2$ and contexts $\Gamma ::= x : t \mid 1 \mid \Gamma, x : t$
- raw terms $M ::= x \mid f(M) \mid () \mid (M_1, M_2) \mid \pi_1(M) \mid \pi_2(M)$
- additional rules for well-formedness of terms

$$\begin{array}{c} \hline \Gamma, x:t \vdash x:t \\ \hline \Gamma, x:t \vdash x:t \end{array} & x \not\in \Gamma \quad \begin{array}{c} \Gamma \vdash M:t \\ \hline \Gamma, x:s \vdash M:t \end{array} & x \not\in \Gamma \\ \hline \hline \Gamma \vdash M_1:t_1 \quad \Gamma \vdash M_2:t_2 \\ \hline \Gamma \vdash (M_1, M_2):t_1 \times t_2 \end{array} & \begin{array}{c} \Gamma \vdash M:t_1 \times t_2 \\ \hline \Gamma \vdash \pi_i(M):t_i \end{array}$$

Interpretation of types and terms require a choice of product diagrams.

There are $\Gamma \vdash M$: t with multiple derivations, this can be avoided with a different choice of rules.

additional rules for equality of terms

 $\Gamma \vdash M:1$ $\Gamma \vdash M_1:t_1$ $\Gamma \vdash M_2:t_2$ $\Gamma \vdash M:t_1 \times t_2$ $\Gamma \vdash M = ():1$ $\Gamma \vdash \pi_i(M_1, M_2) = M_i:t_i$ $\Gamma \vdash M = (\pi_1(M), \pi_2(M)):t_1 \times t_2$

Thinking Categorically (universal properties III)

- $a' \xrightarrow{m} a$ is an equalizer of $f_1, f_2: a \longrightarrow b$ in $\mathcal{C} \Leftrightarrow^{\Delta} f_1 \circ m = f_2 \circ m$ and for any $c \xrightarrow{g} a$ s.t. $f_1 \circ g = f_2 \circ g \exists !g': c \longrightarrow a'$ s.t. $g = m \circ g'$
- equalizers are determined up to unique iso
- a coequalizer b → b' of $f_1, f_2: a → b$ is the dual of an equalizer, i.e.
 $e \circ f_1 = e \circ f_2$ and
 for any b → c s.t. $g \circ f_1 = g \circ f_2 \exists !g': b' \longrightarrow c$ s.t. $g = g' \circ e$
- The following statements hold:
 - m equalizer $\implies m$ monic
 - $m \text{ split monic } \implies m \text{ equalizer}$
 - m equalizer and epic $\implies m$ iso
- In Set an equalizer of $f_1, f_2: X \longrightarrow Y$ is $X' \xrightarrow{m} X$, where $X' = \{x | f_1(x) = f_2(x)\}$ and m is the inclusion of X' in X.

Thinking Categorically (universal properties III)

$$\begin{array}{c} \bullet \quad a_1 \stackrel{p_1}{\longleftarrow} a' \stackrel{p_2}{\longrightarrow} a_2 \text{ is a pullback of } a_1 \stackrel{f_1}{\longrightarrow} b \stackrel{f_2}{\longleftarrow} a_2 \text{ in } \mathcal{C} \stackrel{\Delta}{\Longleftrightarrow} f_1 \circ p_1 = f_2 \circ p_2 \text{ and} \\ \text{for any } a_1 \stackrel{g_1}{\longleftarrow} c \stackrel{g_2}{\longrightarrow} a_2 \text{ s.t. } f_1 \circ g_1 = f_2 \circ g_2 \exists ! g' : c \longrightarrow a' \text{ s.t. } g_i = p_i \circ g' \\ a' \stackrel{p_2}{\longrightarrow} a_2 \\ \downarrow \\ \text{the commuting diagram } p_1 \qquad f_2 \text{ is called a pullback square} \\ \downarrow \\ a_1 \stackrel{f_1}{\longrightarrow} b \end{array}$$

- a pullback corresponds to a product of f_1 and f_2 in the slice category C/b, thus (with some abuse of notation) we write $a_1 \times_b a_2$ for a' and $\langle g_1, g_2 \rangle_b$ for g'
- pullbacks are determined up to unique iso
- $\blacksquare a \text{ pushout } b_1 \xrightarrow{q_1} b' \xleftarrow{q_2} b_2 \text{ of } b_1 \xleftarrow{f_1} a \xrightarrow{f_2} b_2 \text{ is the dual of a pullback }$
- In Set a pullback of $X_1 \xrightarrow{f_1} Y < X_2$ is $X_1 < X_2 = X_2$, where
 $X' = \{(x_1, x_2) | f_1(x_1) = f_2(x_2)\}$ and $p_i(x_1, x_2) = x_i$

Thinking Categorically (universal properties III)

Properties of Pullbacks

if (1) and (2) are pullback squares, then the outer rectangle is a pullback square

if the outer rectangle and (1) are pullback squares, then (2) is a pullback square

Subobjects and Toposes

In Set Theory the definition of subset exploits the membership relation \in , while in a category C subobjects must be defined in terms of arrows

- Mono(*a*) is the preorder whose elements are monic $a' \xrightarrow{m} a$ into *a* and $m_1 \le m_2 \iff \exists m.m_1 = m_2 \circ m$ (*m* is necessarily unique and monic)
- a subobject of *a* is the equivalence class [m] of a monic into *a* w.r.t. the equivalence $m_1 \equiv m_2 \iff m_1 \leq m_2 \land m_2 \leq m_1 \iff \exists! i \text{ iso s.t. } m_2 = m_1 \circ i$
- Sub(*a*) is the partial order whose elements are subobjects of *a* and $[m_1] \leq [m_2] \stackrel{\Delta}{\iff} m_1 \leq m_2$ (the choice of representatives is irrelevant)
- a global element of a is a map $1 \xrightarrow{x} a$ (with 1 terminal object of C) global elements of a are necessarily monic and $x_1 \le x_2 \iff x_1 \equiv x_2$

In **Set** the subobjects of X are in bijective correspondence with the subsets of X

 $Y \in \mathcal{P}(X)$ corresponds to $[m_Y]$, where m_Y is the inclusion of Y into X, moreover

- ▶ the bijection is an isomorphism of partial orders between **Sub**(X) and $(\mathcal{P}(X), \subseteq)$
- singleton subsets correspond to (equivalence classes of) global elements

Subobjects and Toposes

SKIP

Other set-theoretic notions that have a category theoretic reformulation are

- a *relation* between *a* and *b* (in *C*) is a subobject of $a \times b$ the category **Rel**(*C*), s.t. **Rel**(*C*)[*a*, *b*] consists of the relations between *a* and *b*, exists only when *C* has certain properties (the difficulty is to define composition)
- a *partial map* from *a* to *b* (in *C*) is the equivalence class of $a \stackrel{m}{\leftarrow} a' \stackrel{f}{\longrightarrow} b$ w.r.t. the equivalence $(m_1, f_1) \equiv (m_2, f_2) \stackrel{\Delta}{\Longleftrightarrow} \exists ! i$ iso s.t. $m_2 = m_1 \circ i \land f_2 = f_1 \circ i$ the category **pMap**(*C*), s.t. **pMap**(*C*)[*a*, *b*] consists of the partial maps from *a* to *b*, exists only when *C* has certain properties (e.g. it suffices to have all pullbacks)

Subobjects and Toposes

- subobject classifiers are determined up to unique iso
- C is a topos $\stackrel{\Delta}{\iff}$ it is a CCC with all pullbacks and a subobject classifier (there are other equivalent definitions).

Toposes are well-behaved categories, suitable to interpret intuitionistic HOL. They were introduced by Lawvere and Tierney (as a *substitute* for set theory). For more details see [BarrWells83].

Set is a topos and a subobject classifier is given by a global element t of a two elements set, e.g. the set $\Omega = \{true, false\}$. Also the full subcategory Fin of finite sets is a topos (and the topos structure is inherited from Set).

^aThis property of 1 is a consequence of the universal property of the monic t.

Addendum: Logic in a Topos

The interpretation of conjunction $\Omega \times \Omega \xrightarrow{\wedge} \Omega$, implication $\Omega \times \Omega \xrightarrow{\supset} \Omega$ and universal quantification $\Omega^a \xrightarrow{\forall_a} \Omega$ are the unique maps s.t. the following squares are pullbacks

Part 3 - [AspertiLongo91, Ch 3]

A functor F from C to D, notation $F: \mathcal{C} \longrightarrow \mathcal{D}$, consists of

• operations $F_0: \mathcal{C}_0 \longrightarrow \mathcal{D}_0$ and $F_1: \mathcal{C}_1 \longrightarrow \mathcal{D}_1$ subscripts are usually omitted s.t.

• F preserves domain and codomain: $\left| a \xrightarrow{f} b \text{ in } C \text{ implies } Fa \xrightarrow{Ff} Fb \text{ in } D \right|$

• F preserves identity and composition: $|F(id_a) = id_{Fa}$ and $F(g \circ f) = Fg \circ Ff$

Cat is the category of (small) categories and functors (the definition of identity functors and functor composition are obvious).

•
$$F: \mathcal{C} \longrightarrow \mathcal{D}$$
 is faithful $\Leftrightarrow \forall a, b \in \mathcal{C}. \forall f, g \in \mathcal{C}[a, b]. Ff = Fg$ implies $f = g$

■ $F: \mathcal{C} \longrightarrow \mathcal{D}$ equivalence^a $\stackrel{\Delta}{\iff}$ full, faithful and $\forall b \in \mathcal{D}. \exists a \in \mathcal{C}$ s.t. $b \cong Fa$ in \mathcal{D} In **Cat** "monic \implies faithful" and "iso \implies equivalence", but "epic \implies full" fails.

Dogma 2: to any *natural* construction on structures of one species, yielding structures of another species, there corresponds a **functor** from the category of the first species to the category of the second.

- Functors between discrete categories correspond to functions between the underlying collections of objects
- Functors between preorders correspond to monotonic maps
- Functors between monoids correspond to monoid homomorphisms
- If C is a subcategory of D, then there is a *inclusion functor* $In: C \longrightarrow D$, i.e. In(a) = a and In(f) = f. In is monic. When C is full, then also In is full.
- Given C whose objects are sets with additional structure (and arrows are functions respecting the structure), there is a forgetful functor $U: C \longrightarrow Set$, which maps an object to the underlying set and is the identity on arrows (thus U is faithful). Examples are: Mon, Grp, Top, PO, Alg_Ω, EN, <u>A</u>-Set. Similarly one can define
- \blacksquare U: Grp \longrightarrow Mon mapping a group to the underlying monoid (this U is also full)
- \bigcup U_0, U_1 : **Graph** \longrightarrow **Set** mapping a graph to the underlying set of nodes/arcs.
- \blacksquare U: Cat \longrightarrow Graph mapping a category to the underlying graph.

Dogma 2: to any *natural* construction on structures of one species, yielding structures of another species, there corresponds a **functor** from the category of the first species to the category of the second.

 $\textbf{I} \quad \textbf{diagonal functor } \Delta: \mathcal{C} \longrightarrow \mathcal{C} \times \mathcal{C} \text{ is given by } \Delta(a) = (a, a) \text{ and } \Delta(f) = (f, f)$

• projection functor $\pi_i: \mathcal{C}_1 \times \mathcal{C}_2 \longrightarrow \mathcal{C}_i$ is given by $\pi_i(a_1, a_2) = a_i$ and $\pi_i(f_1, f_2) = f_i$

- Given a biCCC C, we define the following functors (using choice)
 - $\times: \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$ mapping (a_1, a_2) to $a_1 \times a_2$, where $a_1 \stackrel{\pi_1}{\longleftarrow} a_1 \times a_2 \stackrel{\pi_2}{\longrightarrow} a_2$ is a *chosen* product diagram
 - $+: \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$ mapping (a_1, a_2) to $a_1 + a_2$, where $a_1 \xrightarrow{\iota_1} a_1 + a_2 \xleftarrow{\iota_2} a_2$ is a *chosen* coproduct diagram
 - $-^a: \mathcal{C} \longrightarrow \mathcal{C}$ (for each $a \in \mathcal{C}$) mapping b to b^a , where $b^a \times a \xrightarrow{ev} b$ is a chosen exponential diagram. b^a is contravariant in a, i.e. we have a binary functor $\mathcal{C}^{op} \times \mathcal{C} \longrightarrow \mathcal{C}$ mapping (a, b) to b^a .

The definition of $f_1 \times f_2$, $f_1 + f_2$ and g^a (and the proof that they preserve identities and composition) exploit the universal properties of products, coproducts and exponentials.

Dogma 2: to any *natural* construction on structures of one species, yielding structures of another species, there corresponds a **functor** from the category of the first species to the category of the second.

- Given a category C with pullbacks, for each a → b we define (using choice) the pullback functor $f^*: C/b \longrightarrow C/a$ mapping $c \xrightarrow{g} b$ to $c' \xrightarrow{g'} a$, where $c' \longrightarrow f' \longrightarrow c$ $d = g' \qquad g$ is a chosen pullback square.
 $d = f \longrightarrow b$
- the pullback functor induces a monotonic map $f^*: Sub(b) \longrightarrow Sub(a)$, called inverse image

C is locally small ⇔ ∀a, b ∈ C the collection C[a, b] is a set.
 Given a locally small C, the hom-functor C[-, -]: C^{op} × C → Set maps (a, b) to C[a, b], while C[f, g] is the function h → g ∘ h ∘ f (with the appropriate domain).

Dogma 2: to any *natural* construction on structures of one species, yielding structures of another species, there corresponds a **functor** from the category of the first species to the category of the second.

- **J** There are two functors extending the powerset $\mathcal{P}(X)$ construction on sets
 - the contravariant powerset $P: \mathbf{Set}^{op} \longrightarrow \mathbf{Set}$ mapping $f: Y \longrightarrow X$ into $Pf: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$, where $Pf(X') = f^{-1}(X') = \{y | f(y) \in X'\}$
 - the covariant powerset $\exists: \mathbf{Set} \longrightarrow \mathbf{Set}$ mapping $f: X \longrightarrow Y$ to $\exists f: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$, where $\exists f(X') = f(X') = \{f(x) | x \in X'\}$
- Give examples of construction on sets that do not extend to a functor on Set e.g. case analysis on the cardinality of X set, or on whether X is a member of a given set.
- Give examples of functors between some of the concrete categories defined so far A faithful functor from EN into <u>A</u>-Set, exploiting the encoding of N in any non-trivial pCA Full and faithful functors from Set into Top, PO and <u>A</u>-Set Functors from Top to PO and conversely

Given two functors $F, G: \mathcal{C} \longrightarrow \mathcal{D}$, a natural transformation $|\tau: F \longrightarrow G|$ consists of an operation $\tau: \mathcal{C}_0 \longrightarrow \mathcal{D}_1$, we may write $|\tau_a \text{ for } \tau(a)|$, s.t. $\forall a \in \mathcal{C}.\tau_a \in \mathcal{D}[Fa, Ga] \left| \mathsf{and} \right| \forall a, b \in \mathcal{C}.\forall f \in \mathcal{C}[a, b]. \ \tau_b \circ Ff = Gf \circ \tau_a$ $Ga \longrightarrow Gb$ To make explicit also the categories involved we write $\begin{array}{c} --F \longrightarrow \\ \mathcal{C} & \downarrow \tau \\ --G \longrightarrow \end{array}$

^aThey are called *naturality* squares.

Dogma 3: to each *natural translation* from a construction $F: \mathcal{A} \longrightarrow \mathcal{B}$ to a construction $G: \mathcal{A} \longrightarrow \mathcal{B}$ there corresponds a **natural transformation** $F \longrightarrow G$.

• the identity natural transformation $\mathcal{A} \xrightarrow{F \longrightarrow} \mathcal{B}$ is $\mathrm{id}_F(a) = \mathrm{id}_{Fa}$

$$\begin{array}{c} --F_1 \longrightarrow \\ & \downarrow \tau_1 \\ & -F_2 \longrightarrow \mathcal{B} \text{ the vertical composite } \mathcal{A} \xrightarrow{--F_1 \longrightarrow} \\ & \downarrow \tau_2 \circ \tau_1 \\ & -F_3 \longrightarrow \end{array} \mathcal{B} \text{ is } (\tau_2 \circ \tau_1)_a = \tau_2(a) \circ \tau_1(a)$$

In fact, (when \mathcal{A} is small) there is a *functor category* $\mathcal{B}^{\mathcal{A}}$ of functors $F: \mathcal{A} \longrightarrow \mathcal{B}$ and natural transformations, we write $\operatorname{Nat}[F,G]$ for $\mathcal{B}^{\mathcal{A}}[F,G]$. Moreover, there is a functor $ev: \mathcal{B}^{\mathcal{A}} \times \mathcal{A} \longrightarrow \mathcal{B}$ s.t. ev(F,a) = Fa, which is an exponential diagram in **Cat**.

Dogma 3: to each *natural translation* from a construction $F: \mathcal{A} \longrightarrow \mathcal{B}$ to a construction $G: \mathcal{A} \longrightarrow \mathcal{B}$ there corresponds a **natural transformation** $F \longrightarrow G$.

Dogma 3: to each *natural translation* from a construction $F: \mathcal{A} \longrightarrow \mathcal{B}$ to a construction $G: \mathcal{A} \longrightarrow \mathcal{B}$ there corresponds a **natural transformation** $F \longrightarrow G$.

$$\begin{array}{c} & --F \longrightarrow \\ & \downarrow \tau \\ & --G \longrightarrow \end{array} \mathcal{B} \text{ is a natural iso} \stackrel{\Delta}{\iff} \exists \tau' \colon G \longrightarrow F \text{ s.t. } \tau \circ \tau' = \mathrm{id}_G \text{ and } \tau' \circ \tau = \mathrm{id}_F \end{array}$$

- τ is a natural iso \iff τ natural and $\forall a \in \mathcal{A}. \tau_a$ iso in $\mathcal{B} \iff$ τ is an iso in $\mathcal{B}^{\mathcal{A}}$ (provided \mathcal{A} is small)
- " $F: \mathcal{A} \longrightarrow \mathcal{B}$ is an equivalence" can be rephrased as follow (using choice): exists $G: \mathcal{B} \longrightarrow \mathcal{A}$ and natural isos $G \circ F \longrightarrow id_{\mathcal{A}}$ and $F \circ G \longrightarrow id_{\mathcal{B}}$
- Iniversal properties induce both functors and natural transformations, e.g. if C is a biCCC, then in addition to the functors $\times -$, + and $-^a$ we have

 $\pi_i(a_1, a_2) \text{ is } a_1 \times a_2 \xrightarrow{\pi_i} a_i \text{ , } \iota_i(a_1, a_2) \text{ is } a_i \xrightarrow{\iota_i} a_1 + a_2 \text{ , } ev(b) \text{ is } b^a \times a \xrightarrow{ev} b$

Yoneda

- ▶ $F: C \longrightarrow$ Set is *representable* $\stackrel{\Delta}{\iff}$ exists $a \in C$ and a natural iso $\phi: C[a, -] \longrightarrow F$
- one can recast universal properties in terms of representable functors, e.g.
 - a product diagram $a_1 \stackrel{\pi_1}{\longleftarrow} a \stackrel{\pi_2}{\longrightarrow} a_2$ corresponds to a natural iso from $\mathcal{C}[-,a]: \mathcal{C}^{op} \longrightarrow$ **Set** to $(\mathcal{C} \times \mathcal{C})[-,(a_1,a_2)] \circ \Delta$
 - a coproduct diagram $a_1 \xrightarrow{\iota_1} a \xleftarrow{\iota_2} a_2$ corresponds to a natural iso from $\mathcal{C}[a, -]: \mathcal{C} \longrightarrow$ Set to $(\mathcal{C} \times \mathcal{C})[(a_1, a_2), -] \circ \Delta$
 - an exponential diagram $c \times a \xrightarrow{ev} b$ corresponds to a natural iso from $\mathcal{C}[-,c]: \mathcal{C}^{op} \longrightarrow \mathbf{Set}$ to $\mathcal{C}[-\times a,b]$
 - a subobject classifier $1 \xrightarrow{t} \Omega$ corresponds to a natural iso from $\mathcal{C}[-, \Omega]$ to a suitable contravariant functor $\mathbf{Sub}(-)$

Yoneda lemma: given F: C → Set and a ∈ C the following mapping is a bijection
 ψ : Nat[C[a, -], F] → F(a) s.t. ψ : $\phi \mapsto \phi_a(id_a)$ since $\phi_b(f: a \to b) = Ff(\phi_a(id_a))$

Solution Set You with the set of the set of

Addendum SKIP: Properties of Presheaves

A product diagram^a $\pi_i: F \longrightarrow F_i$ in $\operatorname{Set}^{\mathcal{C}^{op}_b}$ for the *I*-indexed family $\langle F_i | i \in I \rangle$ is $F(a) \stackrel{\Delta}{=} \prod_{i \in I} F_i(a) \quad F(f) \stackrel{\Delta}{=} \prod_{i \in I} F_i(f) \quad \pi_i(a) \stackrel{\Delta}{=} \pi_i: \prod_{i \in I} F_i(a) \longrightarrow F_i(a)$ A subobject classifier $1 \stackrel{t}{\longrightarrow} \Omega$ is (where $a, b, c \in \mathcal{C}$ and $f \in \mathcal{C}[b, a]$ and $g \in \mathcal{C}[c, b]$) $\Omega(a) \stackrel{\Delta}{=} \{X \in \prod_{b \in \mathcal{C}} \mathcal{P}(\mathcal{C}[b, a]) | \forall g. X_b \circ g \subseteq X_c\} \quad (\Omega f X)_c \stackrel{\Delta}{=} \{g | f \circ g \in X_c\} \quad (t_a)_b \stackrel{\Delta}{=} \mathcal{C}[b, a]$

By Yoneda we must have $\Omega(a) \cong \operatorname{Nat}[Ya, \Omega] \cong \operatorname{Sub}(Ya)$

 $ev_a(s,x) \stackrel{\Delta}{=} s_{\mathrm{id}_a}(x)$

^{*a*}Similarly coproducts, equalizers and pullbacks diagram are definable *pointwise*. ^{*b*}When C is a preorder, the objects of **Set**^{C^{op}} are *Kripke sets*.

Addendum: Internal Categories [AspertiLongo91, Sec 7.3]

Many mathematical notions can be recast within an ambient category \mathcal{E} , so that one recovers the original notion when $\mathcal{E} = \mathbf{Set}$. For instance:

When *E* has finite products, an *internal monoid* in a *E* consists of an object *M* ∈ *E* two arrows 1 — *e* → *M* ← *m*− *M* × *M* s.t. certain diagrams commute
 $1 \times M \xrightarrow{e \times id} M \times M \xrightarrow{id \times e} M \times 1$ $M \times M \times M \xrightarrow{id \times m} M \times M$ $M \times M \xrightarrow{m \times id} m$ $M \times M \xrightarrow{m \to M}$

Mon(\mathcal{E}) is (by dogma 1) the category whose objects are monoids in \mathcal{E} .

When \mathcal{E} has finite limits, one can recast basic notions (and results) of Category Theory within \mathcal{E} , e.g. an *internal category* consists of two objects $C_0, C_1 \in \mathcal{E}$ and $\stackrel{\leftarrow}{\leftarrow} d_1 \xrightarrow{\leftarrow} d_1 \xrightarrow{\leftarrow} c_1 \xrightarrow{\leftarrow} c_2 \xrightarrow{\leftarrow} C_1 \times c_2 \xrightarrow{\leftarrow} C_1 \xrightarrow{\circ} C_1$

 $Cat(\mathcal{E})$ is (by dogma 1) the category whose objects are categories in \mathcal{E} .

$${}^{a}C_{1} \times_{0} C_{1}$$
 is the pullback of $C_{1} - d_{1} \rightarrow C_{0} \leftarrow d_{0} - C_{1}$.

Addendum: Internal Categories [AspertiLongo91, Sec 7.3]

Many mathematical notions can be recast within an ambient category \mathcal{E} , so that one recovers the original notion when $\mathcal{E} = \mathbf{Set}$.

Moreover, an ambient category \mathcal{E} can serve as a *non-standard* universe, where properties (expressed in the internal language and) inconsistent with classical Set Theory (thus not valid in **Set**) become true **SEMANTIC FREEDOM**. For instance

- In the provide the set of the
- there are CCC *E* (even toposes) with nontrivial *reflexive objects*, i.e. a *U* s.t.
 $U^U ⊲ U$ or $U^U ≃ U$ (in Set only the terminal object 1 is reflexive)
- there are CCC *E* (even toposes) with nontrivial objects *U* with *fix-point operators*, i.e. a map fix: $U^U \longrightarrow U$ s.t. $f: U^U \vdash f(\text{fix } f) = \text{fix } f: U$ (in Set only 1 has fix)

Addendum: Indexed Categories [AspertiLongo91, Sec 7.1]

Given a set *I* and a category \mathcal{A} of structures of a certain species, one can define a category \mathcal{A}^{I} whose objects are *I*-indexed families of objects of \mathcal{A} . Given a base category \mathcal{B} , then one can take $\mathcal{A}^{\mathcal{B}^{op}}$ as the category of \mathcal{B} -indexed objects of \mathcal{A} .

- If \mathcal{B} is the discrete category corresponding to a set I, then functors $A: \mathcal{B}^{op} \longrightarrow \mathcal{A}$ correspond to I-indexed families $\langle a_i | i \in I \rangle$.
- ▲ An internal set in B, i.e. a b ∈ B, induces a B-indexed set $\mathcal{B}[-,b]$: $\mathcal{B}^{op} \longrightarrow$ Set, via the full and faithful Yoneda embedding Y: $\mathcal{B} \longrightarrow$ Set^{B^{op}}.

For many species of mathematical structures (that can be recast within \mathcal{B}), one has a Yoneda-like embedding $Y: \mathcal{A}(\mathcal{B}) \longrightarrow \mathcal{A}^{\mathcal{B}^{op}}$. Yoneda-like embeddings exist for the following categories \mathcal{A} (of mathematical structures): **Mon**, **Grp**, **PO**, **Graph**, **Cat**.

 \mathcal{B} -indexed notions generalize internal notions within \mathcal{B}

In particular, \mathcal{B} -indexed notions do not rely on additional properties of \mathcal{B} .

Addendum: Indexed Categories [AspertiLongo91, Sec 7.1]

- A *B*-indexed category is a functor $C: \mathcal{B}^{op} \longrightarrow CAT^a$ (CAT includes large categories), we may write C_b for C(b) and f^* for C(f)
- A *B*-indexed functor $F: C \longrightarrow D$ is a family of functors $F_b: C_b \longrightarrow D_b$ s.t. $C_a - F_a \Rightarrow D_a$ $\downarrow f^* \qquad f^* \qquad f^* \text{ commutes for each } f$ in *B* $\downarrow Cb - F_b \Rightarrow D_b$ b
- A *B*-indexed natural transformation $\tau: F \longrightarrow G$ is a family of natural

transformations
$$\tau_b: F_b \longrightarrow G_b$$
 s.t. $f^* \xrightarrow[C_b]{F_b} \int_{G_b}^{G_a} \int_{f^*}^{D_a} commutes for each f in \mathcal{B}$
 $\downarrow \qquad \int_{C_b} \frac{F_b}{\downarrow \tau_b} \int_{D_b} \int_{D_b}^{A} commutes for each f in \mathcal{B}$

^aWe adopt the *strict* notion, see also the notion of *fibration*.

Addendum: Indexed Categories [AspertiLongo91, Sec 7.1]

Given \mathcal{B} with a choice of finite products, then B is the \mathcal{B} -indexed category s.t.

the fiber B_b has the same objects of B and arrows B_b[x, y] = B[b × x, y]
 the identity for x and the composite of g₂ ∈ B_b[y, z] and g₁ ∈ B_b[x, y] are
 $b × x \xrightarrow{\pi_2} x$ and $b × x \xrightarrow{\langle \pi_1, g_1 \rangle} b × y \xrightarrow{g} z > z$

given f: b → a the re-indexing functor f*: B_a → B_b is s.t.
 $f^*(x) = x$ and $f^*(g) = b \times x \xrightarrow{f \times id} a \times x \xrightarrow{g} y$ when $g \in B_a[x, y]$

Given \mathcal{B} with a coherent choice of pullbacks, then B/ is the \mathcal{B} -indexed category s.t.

- \checkmark the fiber $B/_b$ is the slice category \mathcal{B}/b
- \blacksquare given $f: b \longrightarrow a$ the *re-indexing* functor along f is $f^*: \mathcal{B}/a \longrightarrow \mathcal{B}/b^a$

Objects of $B/_b$ are *b*-indexed family $f: a \to b$. An $x \in B_b$ can be identified with the constant *b*-indexed family $\pi_1: b \times x \to b$. Indeed, there is a full and faithful \mathcal{B} -indexed functor $In: B \longrightarrow B/$ s.t. $In_b(x) = b \times x \xrightarrow{\pi_1} b$ and $In_b(g) = b \times x \xrightarrow{\langle \pi_1, g \rangle} b \times y$.

^{*a*}A coherent choice of pullbacks ensures that $id^* = id$ and $(f_1 \circ f_2)^* = f_2^* \circ f_1^*$.

Addendum: Hyperdoctrines [Lawvere69]

An \mathcal{B} -hyperdoctrine P is a \mathcal{B} -indexed category s.t. each fiber P_b is a preorder^a. Given \mathcal{B} with pullbacks^b, then **Sub** is the \mathcal{B} -hyperdoctrine s.t.

- **•** the *fiber* \mathbf{Sub}_b is the partial order $\mathbf{Sub}(b)$ of subobjects of *b*
- **given** $f: b \longrightarrow a$ the *re-indexing* along f is inverse image $f^*: \mathbf{Sub}(a) \longrightarrow \mathbf{Sub}(b)$.

Predicate Logic can be interpreted in an hyperdoctrine^c as follows:

- types and contexts are interpreted by objects in \mathcal{B}
- \checkmark well-formed terms are interpreted by arrows in \mathcal{B} , and composition is substitution
- Solution well-formed formula are interpreted by objects in P_b , entailment is interpreted by the preorder on P_b , and re-indexing is substitution.

^aIn some cases one may require the fibers to be partial orders.

^bWith a coherent choice of pullbacks, one can take **Mono** (full \mathcal{B} -indexed subcategory of B/) ^cUsually there are additional requirements, e.g. \mathcal{B} is cartesian and each P_b is biCCC.

Addendum: Hyperdoctrines [Lawvere69]

The *internal language* L of a \mathcal{B} -hyperdoctrine P extends the language of \mathcal{B} with

- raw formulas $A ::= p(M) \mid ...$ with p object of some fiber P_b , and the judgments
 - $\Gamma \vdash A$ asserting well-formedness of formula $A p \frac{\Gamma \vdash M: t}{\Gamma \vdash p(M)} p \in P_{\llbracket t \rrbracket}$
 - $\Gamma \vdash A_1 \implies A_2$ asserting that A_1 entails A_2
- well-formed formula $\Gamma \vdash A$ are interpreted by objects in $P_{\llbracket \Gamma \rrbracket}$

 $\llbracket \Gamma \vdash p(M) \rrbracket \stackrel{\Delta}{=} f^*(p)$ with $f = \llbracket \Gamma \vdash M : t \rrbracket$

Substitution is Re-indexing

Subst $\frac{\Gamma \vdash M: t \quad x: t \vdash A}{\Gamma \vdash [M/x]A}$ is an admissible rule

 $\ \, \llbracket \Gamma \vdash [M/x]A\rrbracket = f^*(p) \text{ if } \llbracket \Gamma \vdash M : t\rrbracket = c \stackrel{f}{\longrightarrow} a \text{ and } \llbracket x : t \vdash A\rrbracket = p \in P_a$

Addendum SKIP: Enriched Categories [Kelly82]

Given a cartesian category \mathcal{V}^a , a \mathcal{V} -enriched category \mathcal{C} consists of

- **\square** a collection C_0 of objects
- two families of arrows $i_a: 1 \longrightarrow C[a, a]$ and $c_{a,b,c}: C[b, c] \times C[a, b] \longrightarrow C[a, c]$ s.t.

 \mathcal{V} -enriched functors and natural transformations are defined in the obvious way.

- Given a CCC V, then V is the V-enriched category s.t. $V[a,b] \stackrel{\Delta}{=} b^a$ for any $a,b \in V$
- An ultra-metric space (X, d), i.e. $d(x, z) \le \max\{d(x, y), d(y, z)\}$, is a \mathcal{V} -enriched category, where \mathcal{V} is the poset of real numbers ≥ 0 with the reverse order (thus 0 is terminal and $\max(x, y)$ is the product of x and y).

^a The notion does not extend to other structures (it suffices to take $\mathcal V$ monoidal) .

Part 4 - [AspertiLongo91, Ch 5] give examples of hyperdoctrines go back to Yoneda

Universal Arrows

Given a functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ and an object $d \in \mathcal{D}$

■ a *universal arrow* from d to F consists of a pair $\langle u, c \rangle$ with $c \in C$ and $d \xrightarrow{u} Fc$ s.t.

• a universal arrow $\langle u, c \rangle$ from d to F is determined up to unique iso, i.e.

• if $c \xrightarrow{i} c'$ is an iso in C, then $\langle (Fi) \circ u, c' \rangle$ is a universal arrow from d to F• if $\langle u', c' \rangle$ is a universal arrow from d to F, then

$$\exists ! i: c \longrightarrow c' \text{ iso s.t.} \qquad \begin{array}{c} d \longrightarrow Fc \\ \downarrow \\ Fi \\ \downarrow \\ Fc' \end{array}$$

Universal Arrows

Given a functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ and an object $d \in \mathcal{D}$

■ a *universal arrow* from d to F consists of a pair $\langle u, c \rangle$ with $c \in C$ and $d \xrightarrow{u} Fc$ s.t.

• a *universal arrow* from F to d consists of a pair $\langle c, u \rangle$ with $c \in C$ and $Fc \xrightarrow{u} d$ s.t.

• $\langle c, u \rangle$ universal from F to $d \iff \langle u, c \rangle$ universal from d to $F^{op}: \mathcal{C}^{op} \longrightarrow \mathcal{D}^{op}$.

- When C and D are locally small, then exists a universal arrow from d to $F \iff$ the functor $D[d, F-]: C \longrightarrow$ Set is representable
 - if ⟨u, c⟩ is a universal arrow, then
 φ: C[c, -] → D[d, F-] s.t. φ_a(f) = (Ff) ∘ u is a natural iso
 if φ: C[c, -] → D[d, F-] is a natural iso, then ⟨φ_c(id_c), c⟩ is a universal arrow.

Any universal property (for C) introduced so far can be recast in terms of universal arrows to/from a functor $F: C \longrightarrow D$ by a suitable choice of D and F.

• an *I*-indexed coproduct diagram $\iota_i: c_i \longrightarrow c$ corresponds to a universal arrow $\langle \langle \iota_i | i \in I \rangle, c \rangle$ from $\langle c_i | i \in I \rangle$ to $\Delta: \mathcal{C} \longrightarrow \mathcal{C}^I$, where $\Delta(c) \stackrel{\Delta}{=} \langle c | i \in I \rangle$ and \mathcal{C}^I is (objects) *I*-indexed families $a = \langle a_i | i \in I \rangle$ of objects of \mathcal{C} (arrows) $\langle f_i | i \in I \rangle: a \longrightarrow b$ provided $\forall i \in I. f_i \in \mathcal{C}[a_i, b_i]$ dually, *I*-indexed product diagrams corresponds to universal arrows from Δ

● an equalizer $a \xrightarrow{m} a_1$ of $f_1, f_2: a_1 \longrightarrow a_2$ corresponds to a universal arrow $\langle a, (m, f_i \circ n) \rangle$ from $\Delta: \mathcal{C} \longrightarrow \mathcal{C} \xrightarrow{\rightarrow}$ to (f_1, f_2) , where $\Delta(c) \stackrel{\Delta}{=} (\mathrm{id}_c, \mathrm{id}_c)$ and $\mathcal{C} \xrightarrow{\rightarrow}$ is (objects) pairs $f = (f_1, f_2: a_1 \longrightarrow a_2)$ of parallel arrows in \mathcal{C} (arrows) $(h_1, h_2): f \longrightarrow g$ provided $\begin{cases} 1 & 1 & 1 \\ f_1 & 1 & 1 \\ f_1 & f_2 & 1 \\ f_1 & f_2 & f_2 \\ f_2 & f_2 & f_2 \\ f_1 & f_2 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 & f_2 \\ f_1 & f_2 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 & f_2 \\ f_1 & f_2 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 & f_2 \\ f_2 & f_3 \\ f_1 & f_2 & f_3 \\ f_2 & f_3 \\ f_1 & f_3 \\ f_2 & f_3 \\ f_3 & f_3 \\ f_1 & f_3 \\ f_2 & f_3 \\ f_3 & f_3 \\ f_1 & f_3 \\ f_1 & f_3 \\ f_2 & f_3 \\ f_3 & f_3 \\ f_3 & f_3 \\ f_3 & f_3 \\ f_1 & f_3 \\ f_3 & f_3 \\ f_3 & f_3 \\ f_1 & f_3 \\ f_3 & f_3 \\ f_1 & f_3 \\ f_1 & f_3 \\ f_3 & f_3 \\ f_3 & f_3 \\ f_1 & f_3 \\ f_3 & f_3 \\ f_3 & f_3 \\ f_1 & f_3 \\ f_3 & f_3 \\ f_3$

Any universal property (for C) introduced so far can be recast in terms of universal arrows to/from a functor $F: C \longrightarrow D$ by a suitable choice of D and F.

- An exponential diagram ev: c × a → b corresponds to a universal arrow $\langle c, ev \rangle$ from $- \times a$: C → C to b
- a subobject classifier $t \in \mathbf{Sub}(\Omega)$ corresponds to a universal arrow from $1 \in \mathbf{Set}$ to $\mathbf{Sub}: \mathcal{C}^{op} \longrightarrow \mathbf{Set}$, where $\mathbf{Sub}(a)$ is the *set* of subobjects of *a* in \mathcal{C} and

$$\begin{split} & \begin{array}{c} b & - - f \longrightarrow a \\ & \uparrow & & \uparrow \\ & & \uparrow \\ m \text{ is a pullback} \\ & & \downarrow \\ & & b' & - - > a' \end{split}$$

When $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a monotonic maps between preorders, a universal arrow from d to F amounts to *the least* c s.t. $d \leq Fc$.

Any universal property (for C) introduced so far can be recast in terms of universal arrows to/from a functor $F: C \longrightarrow D$ by a suitable choice of D and F.

More Examples

We have given several examples of functors, do the universal arrows to/from these functor exists? For instance, consider the forgetful functors $U: \mathcal{C} \longrightarrow Set$

\mathcal{C}	a_X s.t. $u: X \longrightarrow U(a_X)$ univ.	b_X s.t. $u: U(b_X) \longrightarrow X$ univ.
Mon	$a_X =$ free monoid X^* on X	when $ X = 1$: $b_X = 1$
Grp	$a_X = $ free group on X	when $ X = 1$: $b_X = 1$
Тор	$a_X = (X, \mathcal{P}(X))$ discrete top. on X	$b_X = (X, \{\emptyset, X\})$ chaotic top. on X
PO	$a_X = (X, =)$ discrete p.o. on X	when $ X \le 1$: $b_X = (X, =)$
Alg_{Ω}	$a_X = $ free Ω -algebra $T_{\Omega}(X)$ on X	NO unless Ω trivial
<u>A</u> -Set	when $ X < \aleph_0$: $a_X = \prod_{x \in X} 1$	$b_X = (X, A \times X)$ uniform rel. on X
EN	when $0 < X < \aleph_0$: $a_X = \coprod 1$	when $ X = 1$: $b_X = 1$
	$x \in X$	

Any universal property (for C) introduced so far can be recast in terms of universal arrows to/from a functor $F: C \longrightarrow D$ by a suitable choice of D and F.

More Examples

We have given several examples of functors, do the universal arrows to/from these functor exists? For instance, consider the following inclusion functors

- In: Set → Rel, for each Y ∈ Rel a universal arrow from In to Y is $\langle \mathcal{P}(Y), R_Y \rangle$ where $R_Y \subseteq \mathcal{P}(Y) \times Y$ s.t. $R_Y(Y', y) \iff y \in Y'$
- In: Set → pSet, for each $Y \in pSet$ a universal arrow from In to Y is $\langle Y+1, p_Y \rangle$ where $p_Y: Y + \{\bot\} \longrightarrow Y$ s.t. $p_Y(y) = y$ and $p_Y(\bot)$ undefined
- In: pSet → Rel, for each Y ∈ Rel a universal arrow from In to Y is $\langle \mathcal{P}(Y) \{\emptyset\}, R'_Y \rangle$ where $R'_Y \subseteq (\mathcal{P}(Y) \{\emptyset\}) \times Y$ s.t. $R_Y(Y', y) \iff y \in Y'$

Adjunctions

An *adjunction* $\langle F, G, \phi \rangle$ from C to D consists of

two functors $F: \mathcal{C} \longrightarrow \mathcal{D}$ and $G: \mathcal{D} \longrightarrow \mathcal{C}$, called | left and right adjoint

■ a natural isomorphism $C^{op} \times D$ $\frac{\mathcal{D}[F-,-]}{\psi \phi}$ Set (this requires C and D to be locally small) $\overline{C[-,G-]}$

Prop. An adjunction $\langle F, G, \phi \rangle : \mathcal{C} \longrightarrow \mathcal{D}$ induces two natural transformations

(unit)
$$\eta: \operatorname{id}_{\mathcal{C}} \longrightarrow GF \left[\eta_{c} \stackrel{\Delta}{=} \phi_{c,Fc}(\operatorname{id}_{Fc}) \right]$$
 s.t. $\langle \eta_{c}, Fc \rangle$ universal from c to G
(counit) $\epsilon: FG \longrightarrow \operatorname{id}_{\mathcal{D}} \left[\epsilon_{d} \stackrel{\Delta}{=} \phi_{Gd,d}^{-1}(\operatorname{id}_{Gd}) \right]$ s.t. $\langle Gd, \epsilon_{d} \rangle$ universal from F to d
moreover $(G\epsilon) \circ (\eta G) = \operatorname{id}_{G}$ and $(\epsilon F) \circ (F\eta) = \operatorname{id}_{F}$

Adjunctions

Prop. Given $G: \mathcal{D} \longrightarrow \mathcal{C}$ and for each $c \in \mathcal{C}$ a $\langle u_c, d_c \rangle$ universal from c to G, exists a unique adjunction $\langle F, G, \phi \rangle$ s.t. $d_c = Fc$ and $u_c = \eta_c$. F and ϕ are given by $a - u_a \Rightarrow Gd_a$ $f = d_c$ and $F(f:a \longrightarrow b) \triangleq$ the unique $f': d_a \longrightarrow d_b$ s.t. $f = \operatorname{comm.} \begin{array}{c} & \int \\ g & f' \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & b - u_b \Rightarrow Gd_b \end{array}$

• $\phi_{c,d}: \mathcal{D}[d_c,d] \longrightarrow \mathcal{C}[c,Gd]$ is the mapping $g \longmapsto (Gg \circ u_c)$

(functoriality of F, naturality and bijectivity of ϕ follow from the properties of universal arrows)

Dual. Given $F: \mathcal{C} \longrightarrow \mathcal{D}$ and for each $d \in \mathcal{D}$ a $\langle c_d, u_d \rangle$ universal from F to d, exists a unique adjunction $\langle F, G, \phi \rangle$ s.t. $c_d = Gd$ and $u_d = \epsilon_d$.

Corr. If both F_1 and F_2 are left (right) adjoint to G, then they are naturally isomorphic. Follows from the fact that universal arrows from c to G (from G to c) are determined up to unique iso. **Prop.** Given $F: \mathcal{C} \longrightarrow \mathcal{D}$ equivalence, exists $\langle F, G, \phi \rangle$ adjunction s.t. η and ϵ are isos. One has to make use of choice, in order to pick c_d and i_d s.t. $i_d: F(c_d) \longrightarrow d$ iso.

Logic and Adjunctions

Dogma (Lawvere): every logical constant corresponds to an adjunction.

- when C and D are preorders, adjunctions $\langle F, G, \phi \rangle$ amounts to Galois connections, i.e. pairs of monotonic maps $\langle F, G \rangle$ s.t. $\forall c \in C, d \in D. Fc \leq d \iff c \leq Gd$ Moreover, $Gd = \lor \{c | Fc \leq d\}$ and $Fc = \land \{d | c \leq Gd\}$
- **Ent**[τ] preorder of syntactic formulas A(x) ordered by entailment $x: t \vdash A \implies B$
- P[X] partial order ($\mathcal{P}(X)$, ⊆) of semantic predicates over X ordered by inclusion
 All logical structure on P[X] (the same holds for **Ent**[τ]) is induced by adjuntions:
- $\bot \dashv ! \dashv \top$ where $!: P[X] \longrightarrow 1$ is the unique functor into the one object category 1
- $\wedge a \dashv a \supset -$ (in general there is no L_a s.t. $L_a \dashv \wedge a$)
- $\exists_f \dashv Pf \dashv \forall_f \text{ for } X \stackrel{f}{\longleftarrow} Y, \text{ with } Pf : P[X] \longrightarrow P[Y] \text{ s.t. } Pf(X') \stackrel{\Delta}{=} \{y | f(y) \in X'\}$ $\exists_f(Y') \stackrel{\Delta}{=} \{x | \exists y. f(y) = x \land y \in Y'\} \text{ and } \forall_f(Y') \stackrel{\Delta}{=} \{x | \forall y. f(y) = x \supset y \in Y'\}$

From \exists_f and \forall_f one can define the usual quantifiers $\exists_Y, \forall_Y : P[X \times Y] \longrightarrow P[X]$ and $=_X \in P[X \times X]$

Logic and Adjunctions

Dogma (Lawvere): every logical constant corresponds to an adjunction.

Bi-rules for entailment inspired by adjunctions

What does Γ, A means? $|\Gamma \wedge A$ in intuitionistic logic, $\Gamma \otimes A^{a}$ in linear logic

$$T' \frac{\Gamma \vdash_X B}{\Gamma, \top \vdash_X B} \qquad \wedge' \frac{\Gamma, A_1, A_2 \vdash_X B}{\Gamma, A_1 \land A_2 \vdash_X B} \qquad \supset' \frac{\Gamma, C, A \vdash_X B}{\Gamma, C \vdash_X A \supset B}$$
$$\frac{\Gamma, A \vdash_{X,x} B}{\Gamma, \exists x. A \vdash_X B} x \notin \Gamma, B \qquad \frac{\Gamma, A \vdash_{X,x} B}{\Gamma, A \vdash_X \forall x. B} x \notin \Gamma, A =' \frac{[x/y]\Gamma \vdash_{X,x} [x/y]B}{\Gamma, x = y \vdash_{X,x,y} B}$$

Note. *P* hyperdocrine and the adjunctions are *indexed*, i.e. *commute* with re-indexing. Correspondingly logical constants *commute* with substitution, e.g. $[M/y](\exists x.A) \equiv \exists x.[M/y]A \ (x \notin M)$.

 $a \otimes b$ bifunctor and I object with natural isos $I \otimes a \cong a$, $a \otimes (b \otimes c) \cong (a \otimes b) \otimes c$ and $a \otimes b \cong b \otimes^{\text{Teoria delle Categorie - p. 33}} a$.

Addendum: Monads and Adjunctions

Every adjunction $\langle F, G, \phi \rangle : \mathcal{C} \longrightarrow \mathcal{D}$ induces a *monad*^a on \mathcal{C} , i.e. a triple (T, η, μ) where • $\eta: \mathrm{id}_{\mathcal{C}} \longrightarrow T$ and $\mu: T^2 \longrightarrow T \mid \eta$ unit and $\mu \triangleq G \epsilon F$ with ϵ counit s.t. $T^2 \longrightarrow T$

Every monad T on C is induced by an adjunction, there are two *canonical* choices

$$\mathcal{C} \xrightarrow{\leqslant - - - - -}_{In \longrightarrow} \mathcal{C}_T \text{ Kleisli } \qquad \mathcal{C} \xrightarrow{\leqslant - U - - - - -}_{\top} \mathcal{C}^T \text{ Eilenberg-Moore}$$

^aThere is a dual notion of *comonad* on \mathcal{D} . Different adjunctions may induce the same monad/comonad.

Addendum: Monads and Adjunctions

The Kleisli construction
$$\mathcal{C} \xrightarrow{\leqslant --G - -}_{\top} \mathcal{C}_T$$

unless stated otherwise $a \xrightarrow{f} b$ means $f \in C[a, b]$ and id_a and $g \circ f$ are identity and composition in C

•
$$In(a) = a \text{ and } In(f: a \longrightarrow b) = \eta_b \circ f$$

■ G (right adjoint to In) is G(a) = Ta and $G(f: a \longrightarrow Tb) = f^*$.

Prop [Manes76]. There is a bijection between monads and *Kleisli triples* $(T, \eta, -^*)$, i.e.

■ an operation $T: C_0 \longrightarrow C_0$, a family $\eta_a \in C[a, Ta]$ of arrows and a family $-^*: C[a, Tb] \longrightarrow C[Ta, Tb]$ of operations s.t.

 $f^* \circ \eta_a = f , \eta_a^* = \operatorname{id}_{Ta} , (g^* \circ f)^* = g^* \circ f^* \text{ where } f : a \longrightarrow Tb \text{ and } g : b \longrightarrow Tc.$

A Kleisli triple induces a monad, in particular $Tf \stackrel{\Delta}{=} (\eta_b \circ f)^*$ and $\mu_a \stackrel{\Delta}{=} \operatorname{id}_{Ta}^*$ Conversely a monad induces a Kleisli triple, in particular $f^* \stackrel{\Delta}{=} \mu_b \circ Tf$.

Addendum: Monads and Adjunctions

The Eilenberg-Moore
$$\mathcal{C} \xrightarrow{\longleftarrow U}_{\neg \neg} \mathcal{C}^T$$
 construction

- $U(a, \alpha) = a \text{ and } U(f) = f$
- F (left adjoint to U) is $Fa = (Ta, \mu_a)$ and Ff = Tf

Part 5 - [AspertiLongo91, Ch 6]
Cones and Limits

Given a diagram D in C (i.e. a morphism from a graph G to the underlying graph of C)

- a cone to *D* consists of an object $c \in C$ and a family $f_i \in C[c, D(i)]$ of arrows indexed by nodes $i \in G$ s.t. $D(e) \circ f_i = f_j$ for any arc $i \stackrel{e}{\longrightarrow} j$ in G
- **Cones**(*D*) is the category whose objects are cones $(a, \langle f_i | i \rangle)$ and whose arrows $h: (a, \langle f_i | i \rangle) \longrightarrow (b, \langle g_i | i \rangle)$ are $h \in C[a, b]$ s.t. $g_i = f_i \circ h$ for any node $i \in \mathcal{G}$ identities and composition are *inherited* from C
- **a** *limit* for D is a terminal object in **Cones**(D).
- **Dual notions: cocone** $(f_i \in C[D(i), c])$, **Cocones**(D), colimit (initial in **Cocones**(D)).

I-indexed products, equalizers and pullbacks are instances of limits:

(products) are limits for diagrams whose shape is a *discrete graph* (i.e. without arcs)

(equalizers) are limits for diagrams of shape $\xrightarrow{\rightarrow}$.

(pullbacks) are limits for diagrams of shape $\cdot \rightarrow \cdot \leftarrow \cdot$

Dogma 4: a diagram D in C can be seen as a system on constraints, and then a limit for D represents all possible solutions of the system.

Cones and Limits

- C is G-complete $\stackrel{\Delta}{\iff}$ every diagram D of shape G in C has a limit
- C is complete $\stackrel{\Delta}{\iff}$ every small^a diagram D in C has a limit
- \checkmark C is finitely complete \Leftrightarrow^{Δ} every finite diagram D in C has a limit

Given a graph \mathcal{G} and a category \mathcal{C} , the category **Diagram**(\mathcal{G}, \mathcal{C}) consists of **(objects)** diagrams D of shape \mathcal{G} in \mathcal{C}

(arrows)
$$\langle f_i | i \in \mathcal{G} \rangle$$
: $D_1 \longrightarrow D_2 \Leftrightarrow \begin{array}{c} \Delta \\ D_1(i) -f_i \geqslant D_2(i) \\ \downarrow \\ D_1(e) \operatorname{comm.} D_2(e) \\ \downarrow \\ D_1(j) -f_j \geqslant D_2(j) \end{array}$ for any arc $e: i \to j \text{ in } \mathcal{G}$
 $D_1(j) -f_j \geqslant D_2(j)$

Let $\Delta: \mathcal{C} \longrightarrow \text{Diagram}(\mathcal{G}, \mathcal{C})$ be s.t. $\Delta(c)(i) = c$, $\Delta(c)(e) = \text{id}_c$ and $\Delta(f: a \rightarrow b)_i = f$. **Prop.** A limit for a diagram *D* of shape \mathcal{G} amounts to a universal arrow from Δ to *D*.

^aThe shape of D is a small graph, i.e. the collections of nodes and arcs are sets.

Existence of Limits

Thm. Given a graph \mathcal{G} , if \mathcal{C} has all \mathcal{G}_0 -indexed and \mathcal{G}_1 -indexed products and equalizers for any pair of parallel arrows, then any diagram D of shape \mathcal{G} in \mathcal{C} has a limit.

let l: c >>> c_0 be an equalizer of g₁, g₂: c₀ ->> c₁ and l_i \rightarrow \pi_i \circ l: c ->> D(i)
then (c, \lapla l_i |i\lapla)) is a limit for D.

In fact, given $(a, \langle f_i | i \rangle$ cone to D the arrow $f \stackrel{\Delta}{=} \langle f_i | i \rangle$: $a \longrightarrow c_0$ is s.t. $g_1 \circ f = g_2 \circ f$, thus $\exists ! f' : a \longrightarrow c$ s.t. $f = l \circ f'$ (or equivalently $f_i = l_i \circ f'$ for any $i \in \mathcal{G}$).

Preservation and Creation of Limits

Given a functor $F: \mathcal{A} \longrightarrow \mathcal{B}$

- If $D: \mathcal{G} \longrightarrow \mathcal{A}$ is a diagram in \mathcal{A} , then $F \circ D$ is a diagram in \mathcal{B} (of the same shape)
- if $(a, \langle f_i | i \rangle)$ is a cone for *D*, then $(Fa, \langle Ff_i | i \rangle)$ is a cone for $F \circ D$

▶ F preserves limits for $D \iff (Fa, \langle Ff_i | i \rangle)$ limit for $F \circ D$ when $(a, \langle f_i | i \rangle)$ limit for D

- ▶ *F* creates limits for $D \iff (b, \langle g_i | i \rangle)$ limit for $F \circ D$ implies
 - $\exists !(a, \langle f_i | i \rangle)$ cone for D s.t. b = Fa and $\forall i.g_i = Ff_i$
 - moreover this unique cone is a limit for D

Thm. If *F* has a left adjoint, then *F* preserves limits for any diagram *D* in \mathcal{A} . **Corr.** Given an object *a* in a CCC, $-^a$ preserves limits and $- \times a$ preserves colimits. **Thm.**^{*a*} If the category \mathcal{A} is locally small and complete, then *F* has a left adjoint \iff

F preserves limits and satisfies the solution set condition

●
$$\forall b \in \mathcal{B}. \exists \langle g_i : b \to Fa_i | i \in I_b \rangle$$
 small family of arrows s.t.

$$\forall b \xrightarrow{g} Ga. \exists i \in I_b.g = (Ff) \circ g_i \text{ for some } a_i \xrightarrow{f} a.$$

^aIt is called Adjoint Functor Theorem and is due to Peter Freyd.

Preservation and Creation of Limits

Given a functor $F: \mathcal{A} \longrightarrow \mathcal{B}$

- If $D: \mathcal{G} \longrightarrow \mathcal{A}$ is a diagram in \mathcal{A} , then $F \circ D$ is a diagram in \mathcal{B} (of the same shape)
- if $(a, \langle f_i | i \rangle)$ is a cone for *D*, then $(Fa, \langle Ff_i | i \rangle)$ is a cone for $F \circ D$
- $\blacksquare F \text{ preserves limits for } D \stackrel{\Delta}{\iff} (Fa, \langle Ff_i | i \rangle) \text{ limit for } F \circ D \text{ when } (a, \langle f_i | i \rangle) \text{ limit for } D$
- ▶ F creates limits for $D \iff (b, \langle g_i | i \rangle)$ limit for $F \circ D$ implies
 - $\exists !(a, \langle f_i | i \rangle)$ cone for D s.t. b = Fa and $\forall i.g_i = Ff_i$
 - moreover this unique cone is a limit for D

Thm. If *T* is a monad on C, then $U: C^T \longrightarrow C$ creates limits for any diagram *D* in C^T . The category **Top** is complete and cocomplete. The forgetful functor U: **Top** \longrightarrow **Set** preserves limits and colimits. However, *U* **does not** create limits (nor colimits). Consider a diagram of shape \cdot in **Top**, i.e. a topological space $\underline{X} = (X, \tau)$. A limit cone for $U(\underline{X})$ in **Set** is $X \xrightarrow{\text{id}_X} X$, but there are several cones $\underline{Y} \xrightarrow{f} \underline{X}$ in **Top** s.t. $Uf = \text{id}_X$,

i.e. take $\underline{Y} = (X, \tau')$ with $\tau' \supseteq \tau$ (and $f = \operatorname{id}_X$). Only when taking $\underline{Y} = \underline{X}$ one has a limit cone in **Top**.

Part 6 - Informal concepts (defined by examples) vs Mathematical notions Possibility Modalities vs Monads Collection Types vs Monads

Modalities and Monads

We consider modalities only in propositional logic^a:

- W set of possible worlds
- ▶ $P \stackrel{\Delta}{=} (\mathcal{P}(W), \subseteq)$ complete boolean algebra of propositions

An accessibility relation $R \subseteq W \times W$, induces two operators $\diamond_R, \Box_R: P \longrightarrow P$

$$\square_{R}(p) \stackrel{\Delta}{=} \{ u \in W | \forall v. uRv \supset v \in p \} \text{ necessity modality}$$

Properties of \diamond_R (\Box_R satisfies *dual* properties)

$$\bullet \quad \text{monotonicity (also called functoriality):} \quad \frac{A \implies B}{\diamond_R A \implies \diamond_R B}$$

sup-preservation: $\bigvee_{i \in I} \diamond(p_i) \iff \diamond_R(\bigvee_{i \in I} p_i) \ (\implies \text{ follows from functoriality})$

^aFor more general settings see [ReyesZolfaghari91], [GhilardiMeloni88].

Modalities and Monads

We consider modalities only in propositional logic^a:

- W set of possible worlds

Given a monotonic map (functor) $F: P \longrightarrow P$

- $\overline{F}(p) \stackrel{\Delta}{=} \bigwedge \{q | p \le q \land F(q) \le q\}$ is the smallest *closure* (monad) generated by *F*, i.e.
 $p \le \overline{F}(p) = \overline{F}^2(p)$ and $F(p) \le \overline{F}(p)$
- If F preserves countable sups, then $\overline{F}(p) = \bigvee \{F^n(p) | n \in N\}$
- If $F = \diamondsuit_R$, then $\overline{F} = \diamondsuit_{R^*}$ (R^* is the reflexive and transitive closure of R)

Concluding remarks

- some possibility modalities \diamond_R are not closures (monads).
- **possibility modalities** \diamond_R satisfied properties not valid for arbitrary closures.

^aFor more general settings see [ReyesZolfaghari91], [GhilardiMeloni88].

Collection Types and Monads [Manes98]

Collection types in the setting of database languages [Buneman&al]^a

 \checkmark $M\tau$ type of *collections* c s.t. the *elements* of c have type τ

Comprehension notation - M has (at least) the structure of a strong monad

$$\begin{array}{l} \Gamma, x_{1}:\tau_{1}, \ldots, x_{j-1}:\tau_{j-1} \vdash e_{j}: M\tau_{j} \quad 1 \leq j \leq n \\ \hline \Gamma, x_{1}:\tau_{1}, \ldots, x_{n}:\tau_{n} \vdash e:\tau \\ \hline \Gamma \vdash \{e | x_{1} \leftarrow e_{1}, \ldots, x_{n} \leftarrow e_{n}\}: M\tau \end{array} \quad \text{where} \quad x \leftarrow e \text{ generalizes } x \in e \\ \hline \text{unit } \eta:\tau \longrightarrow M\tau \text{ is } \quad x:\tau \vdash \{x\}: M\tau \\ \hline \text{ if } f:\tau \longrightarrow M\tau', \text{ then } f^{*}: M\tau \longrightarrow M\tau' \text{ is } \quad c:M\tau \vdash \{x' | x \leftarrow c, x' \leftarrow f(x)\}: M\tau' \\ \hline \text{ strength } t:\tau \times M\tau' \longrightarrow M(\tau \times \tau') \text{ is } \quad x:\tau,c:M\tau' \vdash \{(x,x') | x' \leftarrow c\}: M(\tau \times \tau') \\ \hline \end{array}$$

A collection $c \in M\tau$ should have a finitely many elements. There should be

- **9** an empty collection $0: M\tau$ and
- the union $c_1 + c_2: M\tau$ of two collections $c_1, c_2: M\tau$

^aShare some features with computational types [Moggi, Wadler].

Collection Types and Monads [Manes98]

Collection types in the setting of database languages [Buneman&al]^a

- $M\tau$ type of collections c s.t. the elements of c have type τ Monads $T_{(\Omega,E)}$ on **Set** induced by algebraic theories are called finitary monads^b
- $(\Omega, E) \ algebraic \ theory \stackrel{\Delta}{\iff} \Omega \ algebraic \ signature \ and \ E \ set \ of \ \Omega-equations$
- Alg_{$(\Omega,E)} full subcategory of Alg_{<math>\Omega$} of Ω -algebras satisfying the equations in E</sub>
- \blacksquare U: Alg_{Ω} \longrightarrow Set has a left adjoint, T_{Ω} monad on Set induced by the adjunction
- also U: $Alg_{(\Omega,E)} \longrightarrow Set$ has a left adjoint, the monad $T_{(\Omega,E)}$ monad on Set is s.t. $T_{(\Omega,E)}(X) = T_{\Omega}(X) / =_E$ with $=_E$ equivalence on $T_{\Omega}(X)$ induced by E.

[Manes98] characterizes collection monads in Set in terms of algebraic theories

• *M* collection monad \iff induced by a *balanced* algebraic theory (Σ, E) , i.e. $FV(M_1) = FV(M_2)$ for any equation $M_1 = M_2 \in E$

Concluding remark: collection types correspond to a special class of strong monads.

^bThere is also a purely category-theoretic definition.

^aShare some features with computational types [Moggi, Wadler].

Alcuni Esercizi

Esercizio 1

Sia (A, \cdot) una struttura applicativa parziale con due elementi *I* e *B* t.c.

$$I x = x$$

$$B x y \downarrow e B x y z \simeq x (y z)$$

questo basta per avere una categoria <u>A</u>-Set, e tale categoria ha oggetti iniziali e terminali ed equalizzatori.

Reminder

<u>A</u>-Set is the category of sets with an <u>A</u>-realizability relation

(objects) $\underline{X} = (X, \Vdash)$ with $\Vdash \subseteq A \times X$ onto $| \forall x \in X. \exists a.a \Vdash x |$

(arrows) $\underline{X}_1 \xrightarrow{f} \underline{X}_2 \iff X_1 \xrightarrow{f} X_2$ has a realizer $r \boxed{a \parallel_1 x \text{ imp}}$

$$-_1 x \text{ implies } r a \models_2 f(x)$$

Esercizio 2

Far vedere che se (A, \cdot) e' una pCA, allora <u>A</u>-Set ha prodotti e coprodotti binari (quindi ha prodotto e coprodotti finiti) e ha esponenziali. Sappiamo gia' che <u>A</u>-Set ha oggetti iniziali e terminali ed equalizzatori. Si frutti la *completezza combinatoria* di una pCA, data dall'esistenza di un algoritmo di astrazione [x]M t.c.

 $x \notin FV([x]M)$ $([x]M) \downarrow$ $([x]M)x \simeq M$

per far vedere che esistono combinatori per codificare coppie ed inclusioni disgiunte.

Sottocategorie piene di <u>A</u>-Set

- $\underline{X} = (X, || -)$ effective $\Leftrightarrow \forall a, x, x'$. if a || -x and a || -x', then x = x' cioe' un a realizza al piu' un x (quindi a identifica univocamente x) tali oggetti sono chiusi per prodotti, coprodotti, equalizzatori, e sono un exponential ideal, cioe' $\underline{Y}^{\underline{X}}$ effective when \underline{Y} effective
- $\underline{X} = (X, || -)$ uniform $\Leftrightarrow \exists a \text{ s.t. } \forall x. a || -x$ cioe' esiste un *a* che realizza tutti gli *x* (quindi *a* non fornisce alcuna informazione) tali oggetti sono chiusi per prodotti (ma non per coprodotti), equalizzatori, e sono un *exponential ideal*

Esercizio 3

Usando un argomento diagonale si dimostra che non esiste una *funzione unviersale* $U: N \times N \longrightarrow N$ per le funzioni ricorsive totali. Questo fatto si usa per dimostrare che in **EN** non e' cartesianamente chiusa. Si osservi che

- $e \in \mathbf{EN}[(\mathrm{id}_N, N), (e, X)]$, infatti e' realizzata da id_N
- i prodotti in **EN** si possono definire usando una codifica effettiva e *bigettiva* di $N \times N$ in N, cioe' codifica $c: N \times N \longrightarrow N$ e proiezioni $p_i: N \longrightarrow N$ sono ricorsive (totali)
- che un potenziale candidato per N^N in **EN** deve essere della forma (e, R) con R insieme delle funzioni ricorsive totali.

Errata Corrige (parziale) [AspertiLongo91]

pag 8, Ex 1 falso con la definizione di *Top* data a lezione, il problema e' dato dagli spazi con la topologia caotica.

correzione: give an epic which is not surjective in Top_0 (la sottocategoria piena di Top dei T_0 -spazi), p.e. l'inclusione dello spazio dei razionali in quello dei reali e' epic poiche' e' densa.

pag 8, Ex 3 falso.

correzione: prove that an epic which is also a split monic is an iso.