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Introduzione e Motivazioni

Encyclopedia on Scientific and Philosophical Thought [Geymonat75]

volumes on 20th century most interesting, in particular
Physics: Relativity Theory, Quantum Mechanics
Logics: the failure of Hilbert’s program, Computability, Category Theory
Philosophy of Science (Epistemology): Falsificationism (Karl Popper), . . .

extremely valuable to provide an overview of parallel threads and their
inter-dependencies, with some attempts to go into technical aspects

Section on Category Theorya: very enthusiastic advertising of its potential

main focus on toposes and interpretation of logic in them

Categories for the Working Mathematician [MacLane71]b: very hard to read
without a good background in Mathematics

aUniversal properties vs concrete descriptions of mathematical constructions
b1977 Italian translation by Betti, Carboni, Galuzzi, Meloni
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Introduzione e Motivazioni

Nowadays there several books, e.g. [AspertiLongo91], that do not require as
much mathematical background as [MacLane71], but some background is needed
in order to provide examples.

Perhaps using “web technology” and platforms for “collaborative work” one could
envisage an e-book that shares definitions and theorems form Category Theory,
but examples and applications are customized on the readers background
knowledge and interests.

Links to relevant material for this course and to further readings can be found in
the web page

http://www.disi.unige.it/person/MoggiE/AILA07/
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Introduzione e Motivazioni

[Goguen91]: why category theory is useful (in computer science, and more generally in
a young subject, poorly organized, that needs all the help that it can get):

Formulating definitions and theories (CT provides guidelines)

Carrying out proofs

Discovering and exploiting relations with other fields

sufficiently abstract formulations can reveal surprising connections

Dealing with abstraction and representation independence

a copernican revolution w.r.t. set theory: CT looks at objects trought their relations with other objects

Formulating conjectures and research directions mainly through relations with other fields

Conceptual unification (by abstraction and use of few fundamental concepts)

CT useful also in a mature subject (e.g. to export ideas to other subjects):

more general/abstract reformulations or cleaner/unified reformulations

There are also bad uses of CT, e.g. : specious generality, categorical overkill.
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Part 1 - [AspertiLongo91, Ch 1]
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Category, Graph and Diagram

A category C consists of

a collection C0 of objects, notation a ∈ C

a collection C1 of morphisms (arrows, maps)

operations dom, cod: C1 > C0 assigning to each arrow a domain and codomain

we write f ∈ C[a, b] or a
f
> b or f : a > b when a = dom(f) and b = cod(f)

an operation id: C0 > C1 assigning to each object a an identity ida ∈ C[a, a]

a composition operation ◦ assigning to each pair f and g of composable arrows

a
f
> b

g
> c a composite arrow g ◦ f ∈ C[a, c]

and identity and composition satisfy the following properties

(identity) idb ◦f = f = f ◦ ida for any a
f
> b

(associativity) h ◦ (g ◦ f) = (h ◦ g) ◦ f for any a
f
> b

g
> c

h
> d
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Category, Graph and Diagram

A grapha G consists of
a collection G0 of nodes (vertexes)
a collection G1 of arcs (edges, arrows)
operations dom, cod:G1 > G0 assigning to each arc a source and target

we write a
f
> b when a = dom(f) and b = cod(f)

Any category C has an underlying graph dom, cod: C1 > C0

Graph is the category of small graphs (i.e. G0 and G1 are sets) with arrows

(g0, g1) ∈ Graph[G,G′]
∆
⇐⇒ g0:G0 > G′0 and g1:G1 > G′1 s.t.

a
f
> b in G implies g0(a)

g1(f)
> g0(b) in G′

aIn Graph Theory what we call graph is called a directed multi-graph.
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Category, Graph and Diagram

Given a category C and a small graph G a diagram D of shape G in C is a graph
morphism (d0, d1) from G to the underlying graph of C, i.e. D corresponds to a
consistent labeling of nodes and arcs of G with objects and arrows of C

given a path p = 〈ai
fi
> ai+1|i < n〉 from a0 to an in G we write D[p] for the arrow

in C[d0(a0), d0(an)] obtained by composing the arrows d1(fi) (when n = 0 then
D[p] is the identity on d0(a0))

A diagram D commutes ∆
⇐⇒ for every pair of paths p and p′ in G with the same

source and target (say a to b) D[p] = D[p′] (as arrows in C[d0(a), d0(b)])

commuting diagrams expressing the (identity) and (associativity) properties

a ida > a

b

f

∨
idb >

<

f

b

f

∨

a g ◦ f > c

b

f

∨
h ◦ g >

g

>

d

h

∨
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Examples

Dogma 1: to each species of mathematical structure, there corresponds a category
whose objects have that structure, and whose morphisms preserve it.
C Objects a Morphisms f ∈ C[a1, a2]

Set sets X functions f ∈ X1 > X2

to be precise morphisms are triples (X1, f,X2)

pSet sets X partial maps f ∈ X1 ⇀ X2

Rel sets X relations R ⊆ X1 ×X2

Mon monoids (X, ·, 1) homomorphisms f :X1 > X2

x 1 = x = 1 x (x1 x2) x3 = x1 (x2 x3) f(11) = 12 f(x1 ·1 x2) = f(x1) ·2 f(x2)

Grp groups (X, ·, 1, −1) homomorphisms f :X1 > X2

monoid s.t. x · x−1 = 1 = x−1 · x monoid homomorphism: f(x−1) = f(x)−1

Vect vector spaces linear transformations

Top topological spaces (X, τ) continuous maps f :X1 > X2

τ ⊆ P(X) closed w.r.t. ∪ and finite ∩ O ∈ τ2 ⊃ f−1(O) ∈ τ1

PO partial orders (X,≤) monotone maps f :X1 > X2

x1 ≤1 x2 ⊃ f(x1) ≤2 f(x2)
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Examples

a collection C induces a discrete category C (i.e. every arrow is an identity):
C0 = C1 = C and dom(a) = a = cod(a)

a preorder (X,≤), i.e. ≤⊆ X ×X is reflexive and transitive, induces a category C
where every C[a, b] has at most one element:
C0 = X, C1 =≤, dom(a, b) = a and cod(a, b) = b

⊆ is a preorder on sets (indeed a partial order)
∈ is not a preorder on sets (e.g. X ∈ X fails in ZF set theory)

a monoid (X, ·, 1), induces a category C with exactly one object:
C0 = {∗}, C1 = X, id∗ = 1 and x1 ◦ x2 = x1 · x2

Categories from (your favorite) propositional logic

entailment A1 ⊢ A2 is a preorder on propositions, thus it induces a category Ent

a more interesting category Prf is obtained by taking as A1
p
> A2 proofs of the

entailment A1 ⊢ A2
a

aIntuitionistic proofs = typed λ-terms, see [AspertiLongo91, Ch 8] Teoria delle Categorie – p. 5



Examples from Algebra

Let Ω be an algebraic signature, i.e. a family 〈Ωn|n〉 of sets (of operator symbols)
indexed by natural numbers (considered as arities)

TΩ(X) denotes the set of Ω-terms with variables included in the set X

TΩ is the category of (finite) sets and substitutions TΩ[X1, X2]
∆
= X2 > TΩ(X1)

given ρ1:X2 > TΩ(X1) and ρ2:X3 > TΩ(X2), the composite ρ2 ◦ ρ1 is the

ρ:X3 > TΩ(X1) s.t. ρ(x) ∆
= t[ρ1] with t = ρ2(x) ∈ TΩ(X2)

an Ω-algebra is a pair (X, [[−]]), where X is a set and [[−]] is an interpretation of the
operator symbols in X, i.e. [[op]]:Xn > X for op ∈ Ωn

AlgΩ is the category of Ω-algebras and Ω-homomorphismsa

Xn
1 fn > Xn

2

X1

[[op]]1

∨
f > X2

[[op]]2

∨

aSee [AspertiLongo91, Sec 4.1]
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Addendum on pCL and pCAs

partial Combinatory Logic (pCL) is a theory in Logic of Partial Terms (M ↓ means M

defined, M1 = M2 means terms defined and equal, M1 ≃ M2 means M1 ↓ ∨M2 ↓⊃ M1 = M2)

Terms M : : = x | K | S |M1M2 partial application (possibly other constants c)

Axioms K x y = x and S x y ↓ and S x y z ≃ x z (y z)

additional axioms are: (tot) xy ↓ (ext) (∀z.xz ≃ yz) ⊃ x = y

the abstraction [x]M is a term defined by induction on M satisfying the following
properties: x 6∈ FV([x]M), ([x]M) ↓ and ([x]M)x ≃M

[x]x
∆
= I

∆
= SKK [x]y

∆
= K y [x]c

∆
= K c [x]M1M2

∆
= S([x]M1)([x]M2)

a model of pCL (called pCA) is non trivial ∆
⇐⇒ K 6= S.

Kleene’s applicative structure ω = (N, ·), where m · n ≃ {m}(n), is a pCA

There is an encoding n of n ∈ N in pCL and a term MU s.t. in any non-trivial pCA
MUe m ≃ n⇐⇒ {e}(m) ≃ n (when the pCA is non-total, then MUe m ↓⇐⇒ {e}(m) ↓)

i.e. in pCL every partial recursive function is representable

Church’s encoding n ∆
= [x][y]xny, where M0N

∆
= N and Mn+1N

∆
= M(MnN)
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Examples from Computability

EN is the category of numbered sets
(objects) X = (X, e) with e:N ≫ X (i.e. e onto map)

(arrows) X1

f
> X2

∆
⇐⇒ exists a recursive f ′:N → N s.t.

X1 f > X2

N

e1

∧∧

f ′ > N

e2

∧∧

Let A = (A, ·) be a partial Combinatory Algebra, i.e. · is a partial application and

exist K,S ∈ A s.t. K a b = a, S a b ↓ and S a b c ≃ a c (b c) for any a, b, c ∈ A

A-Set is the category of sets with an A-realizability relation

(objects) X = (X, ‖−) with ‖− ⊆ A×X onto ∀x ∈ X.∃a.a‖−x

(arrows) X1

f
> X2

∆
⇐⇒ X1

f
> X2 has a realizer r a‖−1x implies r a‖−2f(x)
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Examples from Category Theory

The category Cat whose objects are (small) categories (by Dogma 1)a

the dualb category Cop of C: Cop
0 = C0 and Cop[a, b] = C[b, a]

idop
a = ida and g ◦op f = f ◦ g

the product category C ×D of C and D: (C ×D)0 = C0×D0 and (C ×D)1 = C1×D1

id(a,a′) = (ida, ida′) and (g, g′) ◦ (f, f ′) = (g ◦ f, g′ ◦ f ′)

the slicec category C/a of C over a ∈ C: (C/a)0 = {f ∈ C1| cod(f) = a}
C/a[f : b→ a, f ′: b′ → a] = {g ∈ C[b, b′]|f ′ ◦ g = f} in fact (f, g, f ′))

A category D is a subcategory of C ∆
⇐⇒ D0 ⊆ C0 and D[a, b] ⊆ C[a, b], and

identities and composition in D coincide with those in C

D is a full subcategory when in addition D[a, b] = C[a, b]

Set is a subcategory of Rel (but it is not full), since functions are relations (with certain properties)

aMorphisms in Cat are functors, see [AspertiLongo91, Def 3.1.1]
bDuality is a powerful technique of Theory applicable to definitions and theorems.
cThe objects of Set/I corresponds to I-indexed families of sets.
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Special Morphisms

Given a category C we say that

a
e
> b is epic ∆

⇐⇒ f ◦ e = g ◦ e implies f = g when c ∈ C and f, g ∈ C[b, c]

a
m
> b is monic ∆

⇐⇒ m ◦ f = m ◦ g implies f = g when c ∈ C and f, g ∈ C[c, a]

monic and epic are dual properties, i.e. m is monic in C ⇐⇒ m is epic in Cop

a
i
> b is iso ∆

⇐⇒ j ◦ i = ida and i ◦ j = idb for some (unique) j ∈ C[b, a]

iso is a self-dual property, i.e. i is iso in C ⇐⇒ i is iso in Cop

a
e
> b is a split epic ∆

⇐⇒ e ◦m = idb for some m ∈ C[b, a]

there is a dual property of split monic

The following statements and their dual hold (proofs are by diagram chasing):

e split epic =⇒ e epic

m monic and split epic =⇒ m iso

we write a >
m
> b when m is monic and a

e
≫ b when e is epic
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Special Morphisms

In Set one has the following concrete characterizations

e epic⇐⇒ e is surjective⇐⇒ e split epic (by the axiom of choice)

m monic⇐⇒ m is injective (m: a > b split monic⇐⇒ m monic and a 6= ∅)

i iso⇐⇒ i is bijective

Give concrete characterizations in other sample categories, in particular consider

C is a monoid, i.e. a category with exactly one object

C is a preorder (every arrow is both monic and epic)
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Part 2 - [AspertiLongo91, Ch 2]
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Thinking Categorically (special objects)

0 ∈ C is initial ∆
⇐⇒ ∀a ∈ C.∃!f ∈ C[0, a]

1 ∈ C is terminal ∆
⇐⇒ ∀a ∈ C.∃!f ∈ C[a, 1]

initial and terminal are dual properties, i.e. a is terminal in C ⇐⇒ a is initial in Cop

The following statements say that initial objects are determined up to unique iso

if 0 is initial and 0
i
> 0′ is an iso, then 0′ is initial

if 0 and 0′ are initial, then they are isomorphic and the iso is unique

dual statements hold for terminal objects

there are categories without initial/terminal objects (e.g. the empty category)

In Set one has the following concrete characterizations

X is initial⇐⇒ X = ∅ (∅ is both initial and terminal in Rel and pSet)

X is terminal⇐⇒ X has exactly one element

Give concrete characterizations in other sample categories.
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Thinking Categorically (special objects)

0 ∈ C is initial ∆
⇐⇒ ∀a ∈ C.∃!f ∈ C[0, a]

1 ∈ C is terminal ∆
⇐⇒ ∀a ∈ C.∃!f ∈ C[a, 1]

initial and terminal are dual properties, i.e. a is terminal in C ⇐⇒ a is initial in Cop

The property of being initial/terminal is a simple form of universal property, i.e.

a property P (x) expressed in the language of Category Theory, s.t.

the structures x satisfying the property are determined up to unique iso

thus the structures on which P (x) is defined are the objects of a category
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Thinking Categorically (universal properties I)

Given a category

a1 <
π1

a
π2

> a2 is a product diagram in C ∆
⇐⇒

for any a1 <
f1

b
f2

> a2 ∃!f s.t.

a1 < π1 a π2 > a2

b

f

∧

f 2

>

<

f
1 commutes

we write a1 × a2 for a and 〈f1, f2〉 for f

product diagrams for a1 and a2 are determined up to unique iso, i.e.

if a1 <
π′

1 a′
π′

2> a2 is another product diagram, then

∃!i iso s.t.

a1 < π′
1 a′ π′

2 > a2

a

i

∧
π 2

>

<

π
1 commutes
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Thinking Categorically (universal properties I)

a coproduct diagram a1
ι1
> a <

ι2
a2 is the dual of a product diagram, i.e.

for any a1
f1

> b <
f2

a2 ∃!f s.t.

a1 ι1 > a < ι2 a2

b

f

∨

<

f 2

f
1

>

commutes

we write a1 + a2 for a and [f1, f2] for f

coproduct diagrams for a1 and a2 are determined up to unique iso (by duality)

the definitions of product and coproduct diagram generalize from the binary to
I-indexed case (where I is a set)

when I = ∅ the definitions coincide with that of terminal and initial object.

The notation introduced for binary products and coproducts is modified as follows
∏

i∈I

ai and
∐

i∈I

ai and 〈fi|i ∈ I〉 and [fi|i ∈ I]
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Thinking Categorically (universal properties I)

In Set for any pair of object X1 and X2 we have that

X1 <
π1

X1 ×X2
π2

> X2 is a product diagram, where
X1 ×X2 is the cartesian product and πi(x1, x2) = xi

X1
ι1
> X1 ⊎X2 <

ι2
X2 is a coproduct diagram, where

X1 ⊎X2 is the disjoint union {(i, x)|x ∈ Xi} and ιi(x) = (i, x)

When C is a preorder one has

an initial object 0 is a least element ⊥, and a terminal object 1 is a top element ⊤

a product a1 × a2 is a greatest lower bound a1 ∧ a2, and
a coproduct a1 + a2 is a least upper bound a1 ∨ a2

When the objects involved exist, there are canonical isomorphisms

a× 1 ∼= a a1 × a2
∼= a2 × a1 (a1 × a2)× a3

∼= a1 × (a2 × a3)

similar isomorphisms hold by replacing × with + and 1 with 0

In Set (in biCCCs, but not in general) the canonical maps below are iso

0 > a× 0 (a× a1) + (a× a2) > a× (a1 + a2)
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Thinking Categorically (universal properties II)

Given a category with a terminal object 1

1
z
> aN

s
> aN is a natural number object (NNO for short) diagram in C ∆

⇐⇒

for any 1
fz
> a

fs
> a ∃!f s.t.

1 z > aN s > aN

a

f

∨
fs >

f
z

>

a

f

∨

commutes

NNO diagrams are determined up to unique iso

In Set a NNO diagram is given by 1
z
> N

s
> N , where

N is the set of natural numbers,
z(∗) = 0 (when 1 is the singleton {∗}),

s(n) = n+ 1 is the successor function,

If C has N -indexed coproducts, then
∐

n∈N

1 is a NNO.

EN has a NNO (and finite coproducts), but does not have N -indexed coproducts.
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Thinking Categorically (universal properties II)

Given a category with binary products

c× a
ev
> b is an exponential diagram in C ∆

⇐⇒

for any c′ × a
f
> b ∃!f ′: c′ → c s.t.

c× a ev > b

c′ × a

f ′ × ida

∧

f

>

commutes

where f ′ × ida
∆
= 〈f ′ ◦ π1, π2〉, we write ba for c and Λ(f) for f ′

exponential diagrams are determined up to unique iso

In Set an exponential diagram is Y X ×X
ev
> Y , where Y X is the set of

functions Set[X,Y ] and ev(f, x) = f(x)

In A-Set an exponential diagram is Y X ×X
ev
> Y , where Y X is the set of

realizable maps A-Set[X,Y ] with an obvious realizability relation

In EN the exponential object NN does not exists (N is the NNO)

in Ent (for propositional logic) BA is implication A ⊃ B Teoria delle Categorie – p. 14



Thinking Categorically (universal properties II)

C has enough points ∆
⇐⇒ it has a terminal object 1 and for any f, g ∈ C[a, b]

(∀x: 1→ a.f ◦ x = g ◦ x) ⊃ f = g

C is a cartesian category (has finite products) ∆
⇐⇒ it has a terminal object 1 and

binary products a1 × a2 for any pair of objects

C is a cartesian closed category (CCC for short) ∆
⇐⇒ it is cartesian and it has

exponentials ba for any pair of objects

C is a bi-cartesian closed category (biCCC for short) ∆
⇐⇒ it is cartesian closed

and it has finite coproducts In a biCCC
a

i∈n

(a × ai) > a × (
a

i∈n

ai) is an iso.

PO, A-Set, Cat are biCCC. Graph, Mon, Grp, Top are not CCC.

Equational reformulation

πi ◦ 〈f1, f2〉 = fi and 〈π1 ◦ f, π2 ◦ f〉 = f : b > a1 × a2

[f1, f2] ◦ ιi = fi and [f ◦ ι1, f ◦ ι2] = f : a1 + a2 > b

ev ◦ (a× Λ(f)) = f and Λ(ev ◦ (f ′ × ida)) = f ′: c′ > ba
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Addendum: Internal Languages

The internal language L of a category C consists of

types t: : = a | . . . and contexts Γ: : = x: t | . . ., with a object of C and x variable

raw terms M : : = x | f(M) | . . . with f arrow of C, and several judgments
Γ ⊢ M : t asserting well-formedness of term M

x
x: t ⊢ x: t

f
Γ ⊢ M : t

Γ ⊢ f(M): t′
[[t]]

f
> [[t′]]

Γ ⊢ M1 = M2: t asserting equality of well-formed terms

The interpretation [[−]] of L in C goes a follows

types t and contexts Γ are interpreted by objects of C [[a]] = [[x: a]]
∆
= a

well-formed terms Γ ⊢ M : t are interpreteda by arrows f : [[Γ]] > [[t]]

[[x: t ⊢ x: t]]
∆
= ida with a = [[t]] and [[Γ ⊢ f(M): t′]]

∆
= f ◦ [[Γ ⊢ M : t]]

equality judgments are interpreted by equality of arrows.

athe interpretation is defined by induction on the unique derivation of Γ ⊢ M : t.
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Addendum: Internal Languages

The internal language L of a category C consists of

types t: : = a | . . . and contexts Γ: : = x: t | . . ., with a object of C and x variable

raw terms M : : = x | f(M) | . . . with f arrow of C, and several judgments
Γ ⊢ M : t asserting well-formedness of term M

x
x: t ⊢ x: t

f
Γ ⊢ M : t

Γ ⊢ f(M): t′
[[t]]

f
> [[t′]]

Γ ⊢ M1 = M2: t asserting equality of well-formed terms

Substitution is Composition

subst
Γ ⊢ M : t x: t ⊢ N : t′

Γ ⊢ [M/x]N : t′
is an admissible rule

[[Γ ⊢ [M/x]N : t′]] = g ◦ f if [[Γ ⊢ M : t]] = c
f
> a and [[x: t ⊢ N : t′]] = a

g
> b
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Addendum: Internal Languages

The internal language L of a category C consists of

types t: : = a | . . . and contexts Γ: : = x: t | . . ., with a object of C and x variable

raw terms M : : = x | f(M) | . . . with f arrow of C, and several judgments
Γ ⊢ M : t asserting well-formedness of term M

x
x: t ⊢ x: t

f
Γ ⊢ M : t

Γ ⊢ f(M): t′
[[t]]

f
> [[t′]]

Γ ⊢ M1 = M2: t asserting equality of well-formed terms

Equality of Terms

Γ ⊢ M : t

Γ ⊢ M = M : t

Γ ⊢ M1 = M2: t

Γ ⊢ M2 = M1: t

Γ ⊢ M1 = M2: t Γ ⊢ M2 = M3: t

Γ ⊢ M1 = M3: t

congr
Γ ⊢ M1 = M2: t x: t ⊢ M : t′

Γ ⊢ [M1/x]M = [M2/x]M : t′
subst

Γ ⊢ M : t x: t ⊢ M1 = M2: t′

Γ ⊢ [M/x]M1 = [M/x]M2: t′

id
x: t ⊢ x = ida(x): t

a = [[t]] comp
x: t ⊢ h(x) = g(f(x)): t′

h = [[t]]
f
>

g
> [[t′]]
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Addendum: Internal Languages for Cartesian Categories

types t: : = a | 1 | t1 × t2 and contexts Γ: : = x: t | 1 | Γ, x: t

raw terms M : : = x | f(M) | () | (M1,M2) | π1(M) | π2(M)

additional rules for well-formedness of terms

Γ, x: t ⊢ x: t
x 6∈ Γ

Γ ⊢ M : t

Γ, x: s ⊢ M : t
x 6∈ Γ

Γ ⊢ (): 1

Γ ⊢ M1: t1 Γ ⊢ M2: t2

Γ ⊢ (M1,M2): t1 × t2

Γ ⊢ M : t1 × t2

Γ ⊢ πi(M): ti

Interpretation of types and terms require a choice of product diagrams.

There are Γ ⊢ M : t with multiple derivations, this can be avoided with a different choice of rules.

additional rules for equality of terms
Γ ⊢ M : 1

Γ ⊢ M = (): 1

Γ ⊢ M1: t1 Γ ⊢ M2: t2

Γ ⊢ πi(M1, M2) = Mi: ti

Γ ⊢ M : t1 × t2

Γ ⊢ M = (π1(M), π2(M)): t1 × t2
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Thinking Categorically (universal properties III)

a′
m
> a is an equalizer of f1, f2: a > b in C ∆

⇐⇒ f1 ◦m = f2 ◦m and

for any c
g
> a s.t. f1 ◦ g = f2 ◦ g ∃!g

′: c > a′ s.t. g = m ◦ g′

equalizers are determined up to unique iso

a coequalizer b
e
> b′ of f1, f2: a > b is the dual of an equalizer, i.e.

e ◦ f1 = e ◦ f2 and

for any b
g
> c s.t. g ◦ f1 = g ◦ f2 ∃!g

′: b′ > c s.t. g = g′ ◦ e

The following statements hold:
m equalizer =⇒ m monic
m split monic =⇒ m equalizer
m equalizer and epic =⇒ m iso

In Set an equalizer of f1, f2:X > Y is X ′ m
> X, where

X ′ = {x|f1(x) = f2(x)} and m is the inclusion of X ′ in X.
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Thinking Categorically (universal properties III)

a1 <
p1

a′
p2

> a2 is a pullback of a1
f1

> b <
f2

a2 in C ∆
⇐⇒ f1 ◦ p1 = f2 ◦ p2 and

for any a1 <
g1

c
g2

> a2 s.t. f1 ◦ g1 = f2 ◦ g2 ∃!g
′: c > a′ s.t. gi = pi ◦ g

′

the commuting diagram

a′ p2 > a2

a1

p1

∨
f1 > b

f2

∨

is called a pullback square

a pullback corresponds to a product of f1 and f2 in the slice category C/b, thus

(with some abuse of notation) we write a1 ×b a2 for a′ and 〈g1, g2〉b for g′

pullbacks are determined up to unique iso

a pushout b1
q1

> b′ <
q2

b2 of b1 <
f1

a
f2

> b2 is the dual of a pullback

In Set a pullback of X1
f1

> Y <
f2

X2 is X1 <
p1

X ′ p2

> X2, where
X ′ = {(x1, x2)|f1(x1) = f2(x2)} and pi(x1, x2) = xi
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Thinking Categorically (universal properties III)

Properties of Pullbacks

Given a commuting diagram

b3 h2 > b2 h1 > b1

(2) (1)

a3

g3

∨
f2 > a2

g2

∨
f1 > a1

g1

∨

if (1) and (2) are pullback squares, then the outer rectangle is a pullback square

if the outer rectangle and (1) are pullback squares, then (2) is a pullback square

If

b2 g > b1

a2

m2

∨
f > a1

m1

∨

is a pullback square and m1 is monic, then m2 is monic
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Subobjects and Toposes

In Set Theory the definition of subset exploits the membership relation ∈, while
in a category C subobjects must be defined in terms of arrows

Mono(a) is the preorder whose elements are monic a′ >
m
> a into a and

m1 ≤ m2
∆
⇐⇒ ∃m.m1 = m2 ◦m (m is necessarily unique and monic)

a subobject of a is the equivalence class [m] of a monic into a w.r.t. the

equivalence m1 ≡ m2
∆
⇐⇒ m1 ≤ m2 ∧m2 ≤ m1 ⇐⇒ ∃!i iso s.t. m2 = m1 ◦ i

Sub(a) is the partial order whose elements are subobjects of a and

[m1] ≤ [m2]
∆
⇐⇒ m1 ≤ m2 (the choice of representatives is irrelevant)

a global element of a is a map 1
x
> a (with 1 terminal object of C)

global elements of a are necessarily monic and x1 ≤ x2 ⇐⇒ x1 ≡ x2

In Set the subobjects of X are in bijective correspondence with the subsets of X

Y ∈ P(X) corresponds to [mY ], where mY is the inclusion of Y into X, moreover

the bijection is an isomorphism of partial orders between Sub(X) and (P(X),⊆)

singleton subsets correspond to (equivalence classes of) global elements
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Subobjects and Toposes

SKIP
Other set-theoretic notions that have a category theoretic reformulation are

a relation between a and b (in C) is a subobject of a× b

the category Rel(C), s.t. Rel(C)[a, b] consists of the relations between a and b,
exists only when C has certain properties (the difficulty is to define composition)

a partial map from a to b (in C) is the equivalence class of a <
m
< a′

f
> b w.r.t.

the equivalence (m1, f1) ≡ (m2, f2)
∆
⇐⇒ ∃!i iso s.t. m2 = m1 ◦ i ∧ f2 = f1 ◦ i

the category pMap(C), s.t. pMap(C)[a, b] consists of the partial maps from a to b,
exists only when C has certain properties (e.g. it suffices to have all pullbacks)
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Subobjects and Toposes

1 >
t
> Ω (with 1 terminal object)a is a subobject classifier in C ∆

⇐⇒

for any a′ >
m
> a monic ∃!f s.t.

a f > Ω

a′

m

∧

∧

> 1

t

∧

∧

is a pullback square

subobject classifiers are determined up to unique iso

C is a topos ∆
⇐⇒ it is a CCC with all pullbacks and a subobject classifier (there are

other equivalent definitions).

Toposes are well-behaved categories, suitable to interpret intuitionistic HOL. They
were introduced by Lawvere and Tierney (as a substitute for set theory). For more
details see [BarrWells83].

Set is a topos and a subobject classifier is given by a global element t of a two
elements set, e.g. the set Ω = {true, false}. Also the full subcategory Fin of finite
sets is a topos (and the topos structure is inherited from Set).

aThis property of 1 is a consequence of the universal property of the monic t.
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Addendum: Logic in a Topos

The interpretation of conjunction Ω×Ω
∧
> Ω, implication Ω×Ω

⊃
> Ω and universal

quantification Ωa ∀a
> Ω are the unique maps s.t. the following squares are pullbacks

Ω× Ω
∧

> Ω

1 ∼= 1× 1

t× t

∧

∧

> 1

t

∧

∧
Ωa ∀a

> Ω

1 ∼= 1a

ta

∧

∧

> 1

t

∧

∧
Ω× Ω

⊃
> Ω

≤

m

∧

∧

> 1

t

∧

∧

where m equalizer of Ω× Ω
∧

>

π1
> Ω

In intuitionistic HOL all logical constants are definable from ⊃ and ∀

A ∨ B
∆

⇐⇒ ∀x: Ω.(A ⊃ x) ⊃ (B ⊃ x) ⊃ x and A ∧ B
∆

⇐⇒ ∀x: Ω.(A ⊃ B ⊃ x) ⊃ x.
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Part 3 - [AspertiLongo91, Ch 3]
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Functors

A functor F from C to D, notation F : C > D , consists of

operations F0: C0 > D0 and F1: C1 > D1 subscripts are usually omitted s.t.

F preserves domain and codomain: a
f
> b in C implies Fa

Ff
> Fb in D

F preserves identity and composition: F (ida) = idFa and F (g ◦ f) = Fg ◦ Ff

Cat is the category of (small) categories and functors (the definition of identity functors
and functor composition are obvious).

F : C > D is faithful ∆
⇐⇒ ∀a, b ∈ C.∀f, g ∈ C[a, b]. Ff = Fg implies f = g

F : C > D is full ∆
⇐⇒ ∀a, b ∈ C.∀g ∈ D[Fa, Fb].∃f ∈ C[a, b] s.t. g = Ff

F : C > D equivalencea ∆
⇐⇒ full, faithful and ∀b ∈ D.∃a ∈ C s.t. b ∼= Fa in D

In Cat “monic =⇒ faithful” and “iso =⇒ equivalence”, but “epic =⇒ full” fails.
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Functors

Dogma 2: to any natural construction on structures of one species, yielding structures
of another species, there corresponds a functor from the category of the first species
to the category of the second.

Functors between discrete categories correspond to functions between the
underlying collections of objects

Functors between preorders correspond to monotonic maps

Functors between monoids correspond to monoid homomorphisms

If C is a subcategory of D, then there is a inclusion functor In: C > D, i.e.

In(a) = a and In(f) = f . In is monic. When C is full, then also In is full.

Given C whose objects are sets with additional structure (and arrows are functions
respecting the structure), there is a forgetful functor U : C > Set, which maps
an object to the underlying set and is the identity on arrows (thus U is faithful).
Examples are: Mon, Grp, Top, PO, AlgΩ, EN, A-Set. Similarly one can define

U : Grp > Mon mapping a group to the underlying monoid (this U is also full)

U0, U1: Graph > Set mapping a graph to the underlying set of nodes/arcs.

U : Cat > Graph mapping a category to the underlying graph. Teoria delle Categorie – p. 21



Functors

Dogma 2: to any natural construction on structures of one species, yielding structures
of another species, there corresponds a functor from the category of the first species
to the category of the second.

diagonal functor ∆: C > C × C is given by ∆(a) = (a, a) and ∆(f) = (f, f)

projection functor πi: C1 × C2 > Ci is given by πi(a1, a2) = ai and πi(f1, f2) = fi

Given a biCCC C, we define the following functors (using choice)

×: C × C > C mapping (a1, a2) to a1 × a2, where a1 <
π1

a1 × a2
π2

> a2 is
a chosen product diagram

+: C × C > C mapping (a1, a2) to a1 + a2, where a1
ι1
> a1 + a2 <

ι2
a2 is

a chosen coproduct diagram

−a: C > C (for each a ∈ C) mapping b to ba, where ba × a
ev
> b is a chosen

exponential diagram. ba is contravariant in a, i.e. we have a binary functor
Cop × C > C mapping (a, b) to ba.

The definition of f1 × f2, f1 + f2 and ga (and the proof that they preserve identities and composition)

exploit the universal properties of products, coproducts and exponentials.
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Functors

Dogma 2: to any natural construction on structures of one species, yielding structures
of another species, there corresponds a functor from the category of the first species
to the category of the second.

Given a category C with pullbacks, for each a
f
> b we define (using choice) the

pullback functor f∗: C/b > C/a mapping c
g
> b to c′

g′

> a, where
c′ f ′ > c

a

g′

∨
f > b

g

∨

is a chosen pullback square.

the pullback functor induces a monotonic map f∗: Sub(b) > Sub(a), called
inverse image

C is locally small ∆
⇐⇒ ∀a, b ∈ C the collection C[a, b] is a set.

Given a locally small C, the hom-functor C[−,−]: Cop × C > Set maps (a, b) to
C[a, b], while C[f, g] is the function h 7→ g ◦ h ◦ f (with the appropriate domain).
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Functors

Dogma 2: to any natural construction on structures of one species, yielding structures
of another species, there corresponds a functor from the category of the first species
to the category of the second.

There are two functors extending the powerset P(X) construction on sets

the contravariant powerset P : Setop > Set mapping f :Y > X into
Pf :P(X) > P(Y ), where Pf(X ′) = f−1(X ′) = {y|f(y) ∈ X ′}

the covariant powerset ∃: Set > Set mapping f :X > Y to
∃f :P(X) > P(Y ), where ∃f(X ′) = f(X ′) = {f(x)|x ∈ X ′}

Give examples of construction on sets that do not extend to a functor on Set
e.g. case analysis on the cardinality of X set, or on whether X is a member of a given set.

Give examples of functors between some of the concrete categories defined so far
A faithful functor from EN into A-Set, exploiting the encoding of N in any non-trivial pCA

Full and faithful functors from Set into Top, PO and A-Set

Functors from Top to PO and conversely

Teoria delle Categorie – p. 21



Natural Transformations

Given two functors F,G: C > D, a natural transformation τ :F > G consists of

an operation τ : C0 > D1, we may write τa for τ(a) , s.t.

∀a ∈ C.τa ∈ D[Fa,Ga] and ∀a, b ∈ C.∀f ∈ C[a, b]. τb ◦ Ff = Gf ◦ τa

or equivalently, for all a
f
> b in C the squarea

Fa τa > Ga

Ga

Ff

∨
τb > Gb

Gf

∨

commutes in D

To make explicit also the categories involved we write C
F >
⇓ τ
G >

D

aThey are called naturality squares.
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Natural Transformations

Dogma 3: to each natural translation from a construction F :A > B to a
construction G:A > B there corresponds a natural transformation F > G.

the identity natural transformation A
F >
⇓ idF

F >
B is idF (a) = idFa

if A

F1 >
⇓ τ1
F2 >
⇓ τ2
F3 >

B the vertical composite A
F1 >

⇓ τ2 ◦ τ1
F3 >

B is (τ2 ◦ τ1)a = τ2(a) ◦ τ1(a)

In fact, (when A is small) there is a functor category BA of functors F :A > B and

natural transformations, we write Nat[F,G] for BA[F,G] . Moreover, there is a functor

ev:BA ×A > B s.t. ev(F, a) = Fa, which is an exponential diagram in Cat.
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Natural Transformations

Dogma 3: to each natural translation from a construction F :A > B to a
construction G:A > B there corresponds a natural transformation F > G.

if A
F1 >
⇓ τ1
G1 >

B
F2 >
⇓ τ2
G2 >

C the horizontal composite A

F2 ◦ F1
>

⇓ τ2τ1

G2 ◦G1
>
C is

F2(F1a)
F2(τ1(a))

> F2(G1a)

G2(F1a)

τ2(F1a)

∨

G2(τ1(a))
> G2(G1a)

τ2(G1a)

∨

(τ
2 τ

1 )a
>

the square commute by naturality of τ2
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Natural Transformations

Dogma 3: to each natural translation from a construction F :A > B to a
construction G:A > B there corresponds a natural transformation F > G.

A
F >
⇓ τ
G >

B is a natural iso ∆
⇐⇒ ∃τ ′:G > F s.t. τ ◦ τ ′ = idG and τ ′ ◦ τ = idF

τ is a natural iso⇐⇒
τ natural and ∀a ∈ A. τa iso in B ⇐⇒
τ is an iso in BA (provided A is small)

“F :A > B is an equivalence” can be rephrased as follow (using choice):
exists G:B > A and natural isos G ◦ F > idA and F ◦G > idB

universal properties induce both functors and natural transformations, e.g. if C is a
biCCC, then in addition to the functors −×−, −+− and −a we have

C × C
× >
⇓ πi

πi >
C C × C

πi >
⇓ ιi
+ >

C C

−a × a
>

⇓ ev
idC >

C where

πi(a1, a2) is a1 × a2
πi
> ai , ιi(a1, a2) is ai

ιi
> a1 + a2 , ev(b) is ba × a

ev
> b
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Yoneda

F : C > Set is representable ∆
⇐⇒ exists a ∈ C and a natural iso φ: C[a,−] > F

one can recast universal properties in terms of representable functors, e.g.

a product diagram a1 <
π1

a
π2

> a2 corresponds to a natural iso from
C[−, a]: Cop > Set to (C × C)[−, (a1, a2)] ◦∆

a coproduct diagram a1
ι1
> a <

ι2
a2 corresponds to a natural iso from

C[a,−]: C > Set to (C × C)[(a1, a2),−] ◦∆

an exponential diagram c× a
ev
> b corresponds to a natural iso from

C[−, c]: Cop > Set to C[−× a, b]

a subobject classifier 1
t
> Ω corresponds to a natural iso from C[−,Ω] to a

suitable contravariant functor Sub(−)

Yoneda lemma: given F : C > Set and a ∈ C the following mapping is a bijection

ψ: Nat[C[a,−], F ] > F (a) s.t. ψ:φ > φa(ida) since φb(f : a → b) = Ff(φa(ida))

Yoneda embedding: given a small C, the category of presheaves SetC
op

is a topos,

and the functor Y : C > SetC
op

s.t. Y a = C[−, a] is full and faithful
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Addendum SKIP: Properties of Presheaves

A product diagrama πi:F > Fi in SetC
op

b for the I-indexed family 〈Fi|i ∈ I〉 is

F (a)
∆
=

∏

i∈I

Fi(a) F (f)
∆
=

∏

i∈I

Fi(f) πi(a)
∆
= πi:

∏

i∈I

Fi(a) > Fi(a)

A subobject classifier 1
t
> Ω is (where a, b, c ∈ C and f ∈ C[b, a] and g ∈ C[c, b])

Ω(a)
∆
= {X ∈

∏

b∈C

P(C[b, a])|∀g.Xb ◦ g ⊆ Xc} (ΩfX)c
∆
= {g|f ◦ g ∈ Xc} (ta)b

∆
= C[b, a]

By Yoneda we must have Ω(a) ∼= Nat[Y a,Ω] ∼= Sub(Y a)

An exponential diagram H × F
ev
> G in SetC

op

is

H(a)
∆
= {s ∈

∏

f∈C/a

(Fb→ Gb)|∀f, g.

Fb sf > Gb

Fc

Fg

∨
sf◦g > Gc

Gg

∨

} (Hfs)g
∆
= sf◦g

eva(s, x)
∆
= sida

(x)

aSimilarly coproducts, equalizers and pullbacks diagram are definable pointwise.
bWhen C is a preorder, the objects of SetC

op
are Kripke sets. Teoria delle Categorie – p. 24



Addendum: Internal Categories [AspertiLongo91, Sec 7.3]

Many mathematical notions can be recast within an ambient category E , so that one
recovers the original notion when E = Set. For instance:

When E has finite products, an internal monoid in a E consists of an object M ∈ E
two arrows 1 e > M < m M ×M s.t. certain diagrams commute

1 × M
e × id

> M × M <
id×e

M × 1

M

m

∨ <

π1
π
2

>

M × M × M
id×m

> M × M

M × M

m × id

∨
m > M

m

∨

Mon(E) is (by dogma 1) the category whose objects are monoids in E .

When E has finite limits, one can recast basic notions (and results) of Category
Theory within E , e.g. an internal category consists of two objects C0, C1 ∈ E and

arrows C0

< d1

i >
< d0

C1 < c C1 ×0 C1
a s.t. certain diagrams commute.

Cat(E) is (by dogma 1) the category whose objects are categories in E .

aC1 ×0 C1 is the pullback of C1 d1 > C0 < d0 C1. Teoria delle Categorie – p. 25



Addendum: Internal Categories [AspertiLongo91, Sec 7.3]

Many mathematical notions can be recast within an ambient category E , so that one
recovers the original notion when E = Set.

Moreover, an ambient category E can serve as a non-standard universe, where
properties (expressed in the internal language and) inconsistent with classical Set

Theory (thus not valid in Set) become true SEMANTIC FREEDOM . For instance

there are biCCC (even toposes) with a NNO N s.t. every map N > N is
Turing-computable (in Set this is false for cardinality reasons)

there are CCC E (even toposes) with nontrivial reflexive objects, i.e. a U s.t.
UU

� U or UU ∼= U (in Set only the terminal object 1 is reflexive)

there are CCC E (even toposes) with nontrivial objects U with fix-point operators,
i.e. a map fix:UU > U s.t. f :UU ⊢ f(fix f) = fix f :U (in Set only 1 has fix)
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Addendum: Indexed Categories [AspertiLongo91, Sec 7.1]

Given a set I and a category A of structures of a certain species, one can define a
category AI whose objects are I-indexed families of objects of A. Given a base
category B, then one can take ABop

as the category of B-indexed objects of A.

If B is the discrete category corresponding to a set I, then functors A:Bop > A
correspond to I-indexed families 〈ai|i ∈ I〉.

An internal set in B, i.e. a b ∈ B, induces a B-indexed set B[−, b]:Bop > Set, via

the full and faithful Yoneda embedding Y :B > SetB
op

.

For many species of mathematical structures (that can be recast within B), one has a
Yoneda-like embedding Y :A(B) > ABop

. Yoneda-like embeddings exist for the
following categories A (of mathematical structures): Mon, Grp, PO, Graph, Cat.

B-indexed notions generalize internal notions within B

In particular, B-indexed notions do not rely on additional properties of B.
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Addendum: Indexed Categories [AspertiLongo91, Sec 7.1]

A B-indexed category is a functor C:Bop > CATa (CAT includes large

categories), we may write Cb for C(b) and f∗ for C(f)

A B-indexed functor F :C > D is a family of functors Fb:Cb > Db s.t.
Ca Fa > Da

Cb

f∗

∨
Fb > Db

f∗

∨

commutes for each

a

b

f

∧

in B

A B-indexed natural transformation τ :F > G is a family of natural

transformations τb:Fb > Gb s.t.

Ca

Fa
>

⇓ τa

Ga
>

Da

Cb

f∗

∨ Fb
>

⇓ τb

Gb

>
Db

f∗

∨

commutes for each

a

b

f

∧

in B

aWe adopt the strict notion, see also the notion of fibration.
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Addendum: Indexed Categories [AspertiLongo91, Sec 7.1]

Given B with a choice of finite products, then B is the B-indexed category s.t.

the fiber Bb has the same objects of B and arrows Bb[x, y] = B[b× x, y]

the identity for x and the composite of g2 ∈ Bb[y, z] and g1 ∈ Bb[x, y] are

b× x
π2

> x and b× x
〈π1, g1〉

> b× y
g

2
> z

given f : b > a the re-indexing functor f∗:Ba > Bb is s.t.

f∗(x) = x and f∗(g) = b× x
f × id

> a× x
g

> y when g ∈ Ba[x, y]

Given B with a coherent choice of pullbacks, then B/ is the B-indexed category s.t.

the fiber B/b is the slice category B/b

given f : b > a the re-indexing functor along f is f∗:B/a > B/ba

Objects of B/b are b-indexed family f : a→ b. An x ∈ Bb can be identified with the
constant b-indexed family π1: b× x→ b. Indeed, there is a full and faithful B-indexed

functor In:B > B/ s.t. Inb(x) = b× x
π1

> b and Inb(g) = b× x
〈π1,g〉

> b× y.

aA coherent choice of pullbacks ensures that id∗ = id and (f1 ◦ f2)
∗ = f∗2 ◦ f

∗
1 .
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Addendum: Hyperdoctrines [Lawvere69]

An B-hyperdoctrine P is a B-indexed category s.t. each fiber Pb is a preordera.

Given B with pullbacksb, then Sub is the B-hyperdoctrine s.t.

the fiber Subb is the partial order Sub(b) of subobjects of b

given f : b > a the re-indexing along f is inverse image f∗: Sub(a) > Sub(b).

Predicate Logic can be interpreted in an hyperdoctrinec as follows:

types and contexts are interpreted by objects in B

well-formed terms are interpreted by arrows in B, and composition is substitution

well-formed formula are interpreted by objects in Pb, entailment is interpreted by
the preorder on Pb, and re-indexing is substitution.

aIn some cases one may require the fibers to be partial orders.
bWith a coherent choice of pullbacks, one can take Mono (full B-indexed subcategory of B/)
cUsually there are additional requirements, e.g. B is cartesian and each Pb is biCCC.
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Addendum: Hyperdoctrines [Lawvere69]

The internal language L of a B-hyperdoctrine P extends the language of B with

raw formulas A: : = p(M) | . . . with p object of some fiber Pb, and the judgments

Γ ⊢ A asserting well-formedness of formula A p
Γ ⊢ M : t

Γ ⊢ p(M)
p ∈ P[[t]]

Γ ⊢ A1 =⇒ A2 asserting that A1 entails A2

well-formed formula Γ ⊢ A are interpreted by objects in P[[Γ]]

[[Γ ⊢ p(M)]]
∆
= f∗(p) with f = [[Γ ⊢ M : t]]

Substitution is Re-indexing

subst
Γ ⊢ M : t x: t ⊢ A

Γ ⊢ [M/x]A
is an admissible rule

[[Γ ⊢ [M/x]A]] = f∗(p) if [[Γ ⊢ M : t]] = c
f
> a and [[x: t ⊢ A]] = p ∈ Pa
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Addendum SKIP: Enriched Categories [Kelly82]

Given a cartesian category Va, a V-enriched category C consists of

a collection C0 of objects

a family of objects C[a, b] ∈ V with a, b ∈ C0

two families of arrows ia: 1 > C[a, a] and ca,b,c: C[b, c]× C[a, b] > C[a, c] s.t.

1 × C[a, b] > C[a, b] < C[a, b] × 1

C[b, b] × C[a, b]

ib × id

∨
c > C[a, b]

w

w

w

w

w

w

w

w

w

w

< c C[a, b] × C[a, a]

id×ia

∨

C[c, d] × C[b, c] × C[a, b]
c × id

> C[b, d] × C[a, b]

C[c, d] × C[a, c]

id×c

∨
c > C[a, d]

c

∨

V-enriched functors and natural transformations are defined in the obvious way.

Given a CCC V, then V is the V-enriched category s.t. V [a, b]
∆
= ba for any a, b ∈ V

An ultra-metric space (X, d), i.e. d(x, z) ≤ max{d(x, y), d(y, z)}, is a V-enriched
category, where V is the poset of real numbers ≥ 0 with the reverse order (thus 0
is terminal and max(x, y) is the product of x and y).

a The notion does not extend to other structures (it suffices to take V monoidal) .
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Part 4 - [AspertiLongo91, Ch 5]
give examples of hyperdoctrines

go back to Yoneda

Teoria delle Categorie – p. 29



Universal Arrows

Given a functor F : C > D and an object d ∈ D

a universal arrow from d to F consists of a pair 〈u, c〉 with c ∈ C and d
u
> Fc s.t.

∀a ∈ C.∀f : d > Fa. ∃!f ′: c > a s.t.

d u > Fc

Fa

Ff ′

∨

f

>

a universal arrow 〈u, c〉 from d to F is determined up to unique iso, i.e.

if c
i
> c′ is an iso in C, then 〈(Fi) ◦ u, c′〉 is a universal arrow from d to F

if 〈u′, c′〉 is a universal arrow from d to F , then

∃!i: c > c′ iso s.t.

d u > Fc

′

Fc′

Fi

∨

u

>
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Universal Arrows

Given a functor F : C > D and an object d ∈ D

a universal arrow from d to F consists of a pair 〈u, c〉 with c ∈ C and d
u
> Fc s.t.

∀a ∈ C.∀f : d > Fa. ∃!f ′: c > a s.t.

d u > Fc

Fa

Ff ′

∨

f

>

a universal arrow from F to d consists of a pair 〈c, u〉 with c ∈ C and Fc
u
> d s.t.

∀a ∈ C.∀f :Fa > d. ∃!f ′: a > c s.t.

d < u Fc

Fa

Ff ′

∧

<

f

〈c, u〉 universal from F to d⇐⇒ 〈u, c〉 universal from d to F op: Cop > Dop.
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Reformulations and Examples

A universal arrow 〈u, c〉 from d ∈ D to F : C > D corresponds to
an initial object in the category d ↑ F given by
(objects) 〈f, a〉 with a ∈ C and f ∈ D[d, Fa]

(arrows) 〈f1, a1〉
g
> 〈f2, a2〉 with g ∈ C[a1, a2] s.t.

d f1 > Fa1

Fa2

Fg

∨

f
2

>

commutes

When C and D are locally small, then exists a universal arrow from d to F ⇐⇒
the functor D[d, F−]: C > Set is representable

if 〈u, c〉 is a universal arrow, then
φ: C[c,−] > D[d, F−] s.t. φa(f) = (Ff) ◦ u is a natural iso

if φ: C[c,−] > D[d, F−] is a natural iso, then 〈φc(idc), c〉 is a universal arrow.
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Reformulations and Examples

Any universal property (for C) introduced so far can be recast in terms of universal
arrows to/from a functor F : C > D by a suitable choice of D and F .

an I-indexed coproduct diagram ιi: ci > c corresponds to a universal arrow

〈〈ιi|i ∈ I〉, c〉 from 〈ci|i ∈ I〉 to ∆: C > CI , where ∆(c)
∆
= 〈c|i ∈ I〉 and CI is

(objects) I-indexed families a = 〈ai|i ∈ I〉 of objects of C

(arrows) 〈fi|i ∈ I〉: a > b provided ∀i ∈ I.fi ∈ C[ai, bi]

dually, I-indexed product diagrams corresponds to universal arrows from ∆

an equalizer a
m
> a1 of f1, f2: a1 > a2 corresponds to a universal arrow

〈a, (m, fi ◦ n)〉 from ∆: C > C
→→ to (f1, f2), where ∆(c)

∆
= (idc, idc) and C

→→ is

(objects) pairs f = (f1, f2: a1 > a2) of parallel arrows in C

(arrows) (h1, h2): f > g provided

a1 h1 > b1

a2

f1

∨
h2 > b2

g1

∨

and

a1 h1 > b1

a2

f2

∨
h2 > b2

g2

∨
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Reformulations and Examples

Any universal property (for C) introduced so far can be recast in terms of universal
arrows to/from a functor F : C > D by a suitable choice of D and F .

an exponential diagram ev: c× a > b corresponds to a universal arrow 〈c, ev〉
from −× a: C > C to b

a subobject classifier t ∈ Sub(Ω) corresponds to a universal arrow from 1 ∈ Set to
Sub: Cop > Set, where Sub(a) is the set of subobjects of a in C and

Sub(f : b > a)[m: a′ > > a]
∆
= [m′] with

b f > a

b′

m′

∧

∧

> a′

m

∧

∧

is a pullback

When F : C > D is a monotonic maps between preorders, a universal arrow from d
to F amounts to the least c s.t. d ≤ Fc.
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Reformulations and Examples

Any universal property (for C) introduced so far can be recast in terms of universal
arrows to/from a functor F : C > D by a suitable choice of D and F .

More Examples
We have given several examples of functors, do the universal arrows to/from these
functor exists? For instance, consider the forgetful functors U : C > Set

C aX s.t. u:X > U(aX) univ. bX s.t. u:U(bX) > X univ.

Mon aX = free monoid X∗ on X when |X| = 1: bX = 1

Grp aX = free group on X when |X| = 1: bX = 1

Top aX = (X,P(X)) discrete top. on X bX = (X, {∅, X}) chaotic top. on X

PO aX = (X,=) discrete p.o. on X when |X| ≤ 1: bX = (X,=)

AlgΩ aX = free Ω-algebra TΩ(X) on X NO unless Ω trivial

A-Set when |X| < ℵ0: aX =
∐

x∈X

1 bX = (X,A×X) uniform rel. on X

EN when 0 < |X| < ℵ0: aX =
∐

x∈X

1 when |X| = 1: bX = 1
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Reformulations and Examples

Any universal property (for C) introduced so far can be recast in terms of universal
arrows to/from a functor F : C > D by a suitable choice of D and F .

More Examples
We have given several examples of functors, do the universal arrows to/from these
functor exists? For instance, consider the following inclusion functors

In: Set > Rel, for each Y ∈ Rel a universal arrow from In to Y is
〈P(Y ), RY 〉 where RY ⊆ P(Y )× Y s.t. RY (Y ′, y)⇐⇒ y ∈ Y ′

In: Set > pSet, for each Y ∈ pSet a universal arrow from In to Y is
〈Y + 1, pY 〉 where pY :Y + {⊥} ⇀ Y s.t. pY (y) = y and pY (⊥) undefined

In: pSet > Rel, for each Y ∈ Rel a universal arrow from In to Y is
〈P(Y )− {∅}, R′

Y 〉 where R′
Y ⊆ (P(Y )− {∅})× Y s.t. RY (Y ′, y)⇐⇒ y ∈ Y ′
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Adjunctions

An adjunction 〈F,G, φ〉 from C to D consists of

two functors F : C > D and G:D > C, called left and right adjoint

a natural isomorphism Cop ×D

D[F−,−]
>

⇓ φ

C[−, G−]
>

Set (this requires C and D to be locally small)

Notation C
F >
⊥

< G
D or F ⊣ G or G ⊢ F for F left adjoint to G (G right adjoint to F )

Prop. An adjunction 〈F,G, φ〉: C > D induces two natural transformations

(unit) η: idC > GF ηc
∆
= φc,Fc(idFc) s.t. 〈ηc, F c〉 universal from c to G

(counit) ǫ:FG > idD ǫd
∆
= φ−1

Gd,d(idGd) s.t. 〈Gd, ǫd〉 universal from F to d

moreover (Gǫ) ◦ (ηG) = idG and (ǫF ) ◦ (Fη) = idF
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Adjunctions

Prop. Given G:D > C and for each c ∈ C a 〈uc, dc〉 universal from c to G ,

exists a unique adjunction 〈F,G, φ〉 s.t. dc = Fc and uc = ηc. F and φ are given by

Fc
∆
= dc and F (f : a > b)

∆
= the unique f ′: da > db s.t.

a ua > Gda

comm.

b

f

∨
ub > Gdb

Gf ′

∨

φc,d:D[dc, d] > C[c,Gd] is the mapping g > (Gg ◦ uc)

(functoriality of F , naturality and bijectivity of φ follow from the properties of universal arrows)

Dual. Given F : C > D and for each d ∈ D a 〈cd, ud〉 universal from F to d ,

exists a unique adjunction 〈F,G, φ〉 s.t. cd = Gd and ud = ǫd.

Corr. If both F1 and F2 are left (right) adjoint to G, then they are naturally isomorphic.
Follows from the fact that universal arrows from c to G (from G to c) are determined up to unique iso.

Prop. Given F : C > D equivalence, exists 〈F,G, φ〉 adjunction s.t. η and ǫ are isos.
One has to make use of choice, in order to pick cd and id s.t. id: F (cd) > d iso. Teoria delle Categorie – p. 32



Logic and Adjunctions

Dogma (Lawvere): every logical constant corresponds to an adjunction.

when C and D are preorders, adjunctions 〈F,G, φ〉 amounts to Galois connections,

i.e. pairs of monotonic maps 〈F,G〉 s.t. ∀c ∈ C, d ∈ D. F c ≤ d⇐⇒ c ≤ Gd

Moreover, Gd = ∨{c|Fc ≤ d} and Fc = ∧{d|c ≤ Gd}

Ent[τ ] preorder of syntactic formulas A(x) ordered by entailment x: t ⊢ A =⇒ B

P [X] partial order (P(X),⊆) of semantic predicates over X ordered by inclusion

All logical structure on P [X] (the same holds for Ent[τ ]) is induced by adjuntions:

⊥ ⊣! ⊣ ⊤ where !:P [X] > 1 is the unique functor into the one object category 1

∨ ⊣ ∆ ⊣ ∧ where ∆:P [X] > P [X]× P [X] is the diagonal functor

− ∧ a ⊣ a ⊃ − (in general there is no La s.t. La ⊣ − ∧ a)

∃f ⊣ Pf ⊣ ∀f for X <
f

Y , with Pf :P [X] > P [Y ] s.t. Pf(X ′)
∆
= {y|f(y) ∈ X ′}

∃f (Y ′)
∆
= {x|∃y.f(y) = x ∧ y ∈ Y ′} and ∀f (Y ′)

∆
= {x|∀y.f(y) = x ⊃ y ∈ Y ′}

From ∃f and ∀f one can define the usual quantifiers ∃Y , ∀Y : P [X × Y ] > P [X] and =X∈ P [X × X]
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Logic and Adjunctions

Dogma (Lawvere): every logical constant corresponds to an adjunction.

Bi-rules for entailment inspired by adjunctions

Γ,⊥ ⊢X B

Γ, A ⊢X ⊤

Γ, A1 ⊢X B

Γ, A2 ⊢X B

Γ, A1 ∨A2 ⊢X B

Γ, A ⊢X B1

Γ, A ⊢X B2

Γ, A ⊢X B1 ∧B2

What does Γ, A means? Γ ∧A in intuitionistic logic, Γ⊗Aa in linear logic

⊤′
Γ ⊢X B

Γ,⊤ ⊢X B
∧′

Γ, A1, A2 ⊢X B

Γ, A1 ∧A2 ⊢X B
⊃′

Γ, C,A ⊢X B

Γ, C ⊢X A ⊃ B

Γ, A ⊢X,x B

Γ,∃x.A ⊢X B
x 6∈ Γ, B

Γ, A ⊢X,x B

Γ, A ⊢X ∀x.B
x 6∈ Γ, A =′

[x/y]Γ ⊢X,x [x/y]B

Γ, x = y ⊢X,x,y B

Note. P hyperdocrine and the adjunctions are indexed, i.e. commute with re-indexing.
Correspondingly logical constants commute with substitution, e.g. [M/y](∃x.A) ≡ ∃x.[M/y]A (x 6∈ M ).

a
⊗ bifunctor and I object with natural isos I ⊗ a ∼= a, a ⊗ (b ⊗ c) ∼= (a ⊗ b) ⊗ c and a ⊗ b ∼= b ⊗ a.
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Addendum: Monads and Adjunctions

Every adjunction 〈F,G, φ〉: C > D induces a monad a on C, i.e. a triple (T, η, µ) where

T : C > C Tc
∆
= G ◦ F

η: idC > T and µ:T 2 > T η unit and µ ∆
= GǫF with ǫ counit s.t.

T 3 µT > T 2

T 2

Tµ

∨
µ > T

µ

∨

T ηT > T 2 < Tη T

T

µ

∨ <

id T

id
T

>

commute

Every monad T on C is induced by an adjunction, there are two canonical choices

C
<

⊤
In >

CT Kleisli C
< U

⊤
>
CT Eilenberg-Moore

a
There is a dual notion of comonad on D. Different adjunctions may induce the same monad/comonad.
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Addendum: Monads and Adjunctions

The Kleisli construction C
< G

⊤
In >

CT

unless stated otherwise a
f
> b means f ∈ C[a, b] and ida and g ◦ f are identity and composition in C

CT has the same objects of C, CT [a, b]
∆
= C[a, T b], the identity on a is ηa and the

composite of f ∈ CT [a, b] and g ∈ CT [b, c] is g∗ ◦ f , where g∗ ∆
= µc ◦ Tg

In(a) = a and In(f : a > b) = ηb ◦ f

G (right adjoint to In) is G(a) = Ta and G(f : a > Tb) = f∗.

Prop [Manes76]. There is a bijection between monads and Kleisli triples (T, η,−∗), i.e.

an operation T : C0 > C0, a family ηa ∈ C[a, Ta] of arrows and a family
−∗: C[a, T b] > C[Ta, Tb] of operations s.t.

f∗ ◦ ηa = f , η∗a = idTa , (g∗ ◦ f)∗ = g∗ ◦ f∗ where f : a > Tb and g: b > Tc.

A Kleisli triple induces a monad, in particular Tf
∆
= (ηb ◦ f)∗ and µa

∆
= id∗

Ta

Conversely a monad induces a Kleisli triple, in particular f∗ ∆
= µb ◦ Tf .
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Addendum: Monads and Adjunctions

The Eilenberg-Moore C
< U

⊤
F >

CT construction

CT is the category whose objects are T -algebras (a, α), i.e. α:Ta > a s.t.
T 2a µa > Ta

Ta

Tα

∨
α > a

α

∨

a ηa > Ta

a

α

∨

id
a

>

and (a, α)
f
> (b, β)

∆
⇐⇒

Ta Tf > Tb

a

α

∨
f > b

β

∨

identities and composition are inherited from C, e.g. id(a,α) = ida

U(a, α) = a and U(f) = f

F (left adjoint to U ) is Fa = (Ta, µa) and Ff = Tf
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Part 5 - [AspertiLongo91, Ch 6]
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Cones and Limits

Given a diagram D in C (i.e. a morphism from a graph G to the underlying graph of C)

a cone to D consists of an object c ∈ C and a family fi ∈ C[c,D(i)] of arrows

indexed by nodes i ∈ G s.t. D(e) ◦ fi = fj for any arc i
e
> j in G

Cones(D) is the category whose objects are cones (a, 〈fi|i〉) and whose arrows

h: (a, 〈fi|i〉) > (b, 〈gi|i〉) are h ∈ C[a, b] s.t. gi = fi ◦ h for any node i ∈ G

identities and composition are inherited from C

a limit for D is a terminal object in Cones(D).

Dual notions: cocone (fi ∈ C[D(i), c]), Cocones(D), colimit (initial in Cocones(D)).

I-indexed products, equalizers and pullbacks are instances of limits:

(products) are limits for diagrams whose shape is a discrete graph (i.e. without arcs)

(equalizers) are limits for diagrams of shape ·→→·

(pullbacks) are limits for diagrams of shape · → · ← ·

Dogma 4: a diagram D in C can be seen as a system on constraints, and then a limit
for D represents all possible solutions of the system.
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Cones and Limits

C is G-complete ∆
⇐⇒ every diagram D of shape G in C has a limit

C is complete ∆
⇐⇒ every smalla diagram D in C has a limit

C is finitely complete ∆
⇐⇒ every finite diagram D in C has a limit

Given a graph G and a category C, the category Diagram(G, C) consists of

(objects) diagrams D of shape G in C

(arrows) 〈fi|i ∈ G〉:D1 > D2
∆
⇐⇒

D1(i) fi> D2(i)

comm.

D1(j)

D1(e)

∨

fj> D2(j)

D2(e)

∨

for any arc e: i→ j in G

Let ∆: C > Diagram(G, C) be s.t. ∆(c)(i) = c, ∆(c)(e) = idc and ∆(f : a→ b)i = f .

Prop. A limit for a diagram D of shape G amounts to a universal arrow from ∆ to D.

aThe shape of D is a small graph, i.e. the collections of nodes and arcs are sets.
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Existence of Limits

Thm. Given a graph G, if C has all G0-indexed and G1-indexed products and equalizers
for any pair of parallel arrows, then any diagram D of shape G in C has a limit.

Let c0
∆
=

∏

i

D(i) , c1
∆
=

∏

e:i→j

D(j) and g1, g2: c0 > c1 be the unique arrows s.t.

D(i) <
πi

c0

D(j)

D(e)

∨
<
πe

c1

g1

∨

c0

c1

g2

∨

πe
> D(j)

π
j

>

commute for any e: i→ j in G

let l: c > > c0 be an equalizer of g1, g2: c0 > c1 and li
∆
= πi ◦ l: c > D(i)

then (c, 〈li|i〉) is a limit for D.

In fact, given (a, 〈fi|i〉 cone to D the arrow f
∆
= 〈fi|i〉: a > c0 is s.t. g1 ◦ f = g2 ◦ f ,

thus ∃!f ′: a > c s.t. f = l ◦ f ′ (or equivalently fi = li ◦ f
′ for any i ∈ G).
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Preservation and Creation of Limits

Given a functor F :A > B

if D:G > A is a diagram in A, then F ◦D is a diagram in B (of the same shape)

if (a, 〈fi|i〉) is a cone for D, then (Fa, 〈Ffi|i〉) is a cone for F ◦D

F preserves limits for D ∆
⇐⇒ (Fa, 〈Ffi|i〉) limit for F ◦D when (a, 〈fi|i〉) limit for D

F creates limits for D ∆
⇐⇒ (b, 〈gi|i〉) limit for F ◦D implies

∃!(a, 〈fi|i〉) cone for D s.t. b = Fa and ∀i.gi = Ffi

moreover this unique cone is a limit for D

Thm. If F has a left adjoint, then F preserves limits for any diagram D in A.

Corr. Given an object a in a CCC, −a preserves limits and −× a preserves colimits.

Thm.a If the category A is locally small and complete, then F has a left adjoint⇐⇒

F preserves limits and satisfies the solution set condition

∀b ∈ B.∃〈gi: b→ Fai|i ∈ Ib〉 small family of arrows s.t.

∀b
g
> Ga.∃i ∈ Ib.g = (Ff) ◦ gi for some ai

f
> a.

aIt is called Adjoint Functor Theorem and is due to Peter Freyd.
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Preservation and Creation of Limits

Given a functor F :A > B

if D:G > A is a diagram in A, then F ◦D is a diagram in B (of the same shape)

if (a, 〈fi|i〉) is a cone for D, then (Fa, 〈Ffi|i〉) is a cone for F ◦D

F preserves limits for D ∆
⇐⇒ (Fa, 〈Ffi|i〉) limit for F ◦D when (a, 〈fi|i〉) limit for D

F creates limits for D ∆
⇐⇒ (b, 〈gi|i〉) limit for F ◦D implies

∃!(a, 〈fi|i〉) cone for D s.t. b = Fa and ∀i.gi = Ffi

moreover this unique cone is a limit for D

Thm. If T is a monad on C, then U : CT > C creates limits for any diagram D in CT .

The category Top is complete and cocomplete. The forgetful functor U : Top > Set
preserves limits and colimits. However, U does not create limits (nor colimits).
Consider a diagram of shape · in Top, i.e. a topological space X = (X, τ).

A limit cone for U(X) in Set is X
idX

> X, but there are several cones Y
f
> X in Top s.t. Uf = idX ,

i.e. take Y = (X, τ ′) with τ ′ ⊇ τ (and f = idX ). Only when taking Y = X one has a limit cone in Top.
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Part 6 - Informal concepts (defined by examples) vs Mathematical notions
Possibility Modalities vs Monads

Collection Types vs Monads
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Modalities and Monads

We consider modalities only in propositional logica:

W set of possible worlds

P
∆
= (P(W ),⊆) complete boolean algebra of propositions

An accessibility relation R ⊆W ×W , induces two operators 3R,2R:P > P

3R(p)
∆
= {u ∈W |∃v.uRv ∧ v ∈ p} possibility modality

2R(p)
∆
= {u ∈W |∀v.uRv ⊃ v ∈ p} necessity modality

Properties of 3R (2R satisfies dual properties)

monotonicity (also called functoriality):
A =⇒ B

3RA =⇒ 3RB

sup-preservation:
∨

i∈I

3(pi)⇐⇒ 3R(
∨

i∈I

pi) ( =⇒ follows from functoriality)

aFor more general settings see [ReyesZolfaghari91], [GhilardiMeloni88].
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Modalities and Monads

We consider modalities only in propositional logica:

W set of possible worlds

P
∆
= (P(W ),⊆) complete boolean algebra of propositions

Given a monotonic map (functor) F :P > P

F (p)
∆
=

∧
{q|p ≤ q ∧F (q) ≤ q} is the smallest closure (monad) generated by F , i.e.

p ≤ F (p) = F
2
(p) and F (p) ≤ F (p)

if F preserves countable sups, then F (p) =
∨
{Fn(p)|n ∈ N}

if F = 3R, then F = 3R∗ (R∗ is the reflexive and transitive closure of R)

Concluding remarks

some possibility modalities 3R are not closures (monads).

possibility modalities 3R satisfied properties not valid for arbitrary closures.

aFor more general settings see [ReyesZolfaghari91], [GhilardiMeloni88].
Teoria delle Categorie – p. 40



Collection Types and Monads [Manes98]

Collection types in the setting of database languages [Buneman&al]a

Mτ type of collections c s.t. the elements of c have type τ

Comprehension notation - M has (at least) the structure of a strong monad

Γ, x1: τ1, . . . , xj−1: τj−1 ⊢ ej :Mτj 1 ≤ j ≤ n

Γ, x1: τ1, . . . , xn: τn ⊢ e: τ

Γ ⊢ {e|x1 ← e1, . . . , xn ← en}:Mτ
where x← e generalizes x ∈ e

unit η: τ > Mτ is x: τ ⊢ {x}:Mτ

if f : τ > Mτ ′, then f∗:Mτ > Mτ ′ is c:Mτ ⊢ {x′|x← c, x′ ← f(x)}:Mτ ′

strength t: τ ×Mτ ′ > M(τ × τ ′) is x: τ, c:Mτ ′ ⊢ {(x, x′)|x′ ← c}:M(τ × τ ′)

A collection c ∈Mτ should have a finitely many elements. There should be

an empty collection 0:Mτ and

the union c1 + c2:Mτ of two collections c1, c2:Mτ

aShare some features with computational types [Moggi, Wadler].
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Collection Types and Monads [Manes98]

Collection types in the setting of database languages [Buneman&al]a

Mτ type of collections c s.t. the elements of c have type τ

Monads T(Ω,E) on Set induced by algebraic theories are called finitary monadsb

(Ω, E) algebraic theory ∆
⇐⇒ Ω algebraic signature and E set of Ω-equations

Alg(Ω,E) full subcategory of AlgΩ of Ω-algebras satisfying the equations in E

U : AlgΩ > Set has a left adjoint, TΩ monad on Set induced by the adjunction

also U : Alg(Ω,E) > Set has a left adjoint, the monad T(Ω,E) monad on Set is s.t.
T(Ω,E)(X) = TΩ(X)/ =E with =E equivalence on TΩ(X) induced by E.

[Manes98] characterizes collection monads in Set in terms of algebraic theories

M collection monad⇐⇒ induced by a balanced algebraic theory (Σ, E), i.e.
FV(M1) = FV(M2) for any equation M1 = M2 ∈ E

Concluding remark: collection types correspond to a special class of strong monads.

aShare some features with computational types [Moggi, Wadler].
bThere is also a purely category-theoretic definition.

Teoria delle Categorie – p. 41



Alcuni Esercizi
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Esercizio 1

Sia (A, ·) una struttura applicativa parziale con due elementi I e B t.c.

I x = x

B x y ↓ e B x y z ≃ x (y z)

questo basta per avere una categoria A-Set, e tale categoria ha oggetti iniziali e
terminali ed equalizzatori.

Reminder
A-Set is the category of sets with an A-realizability relation

(objects) X = (X, ‖−) with ‖− ⊆ A×X onto ∀x ∈ X.∃a.a‖−x

(arrows) X1

f
> X2

∆
⇐⇒ X1

f
> X2 has a realizer r a‖−1x implies r a‖−2f(x)
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Esercizio 2

Far vedere che se (A, ·) e’ una pCA, allora A-Set ha prodotti e coprodotti binari (quindi
ha prodotto e coprodotti finiti) e ha esponenziali. Sappiamo gia’ che A-Set ha oggetti
iniziali e terminali ed equalizzatori. Si frutti la completezza combinatoria di una pCA,
data dall’esistenza di un algoritmo di astrazione [x]M t.c.

x 6∈ FV([x]M) ([x]M) ↓ ([x]M)x ≃M

per far vedere che esistono combinatori per codificare coppie ed inclusioni disgiunte.

Sottocategorie piene di A-Set

X = (X, ‖−) effective ∆
⇐⇒ ∀a, x, x′. if a‖−x and a‖−x′, then x = x′

cioe’ un a realizza al piu’ un x (quindi a identifica univocamente x)
tali oggetti sono chiusi per prodotti, coprodotti, equalizzatori, e sono un
exponential ideal, cioe’ Y X effective when Y effective

X = (X, ‖−) uniform ∆
⇐⇒ ∃a s.t. ∀x. a‖−x

cioe’ esiste un a che realizza tutti gli x (quindi a non fornisce alcuna informazione)
tali oggetti sono chiusi per prodotti (ma non per coprodotti), equalizzatori, e sono
un exponential ideal
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Esercizio 3

Usando un argomento diagonale si dimostra che non esiste una funzione unviersale
U :N ×N > N per le funzioni ricorsive totali. Questo fatto si usa per dimostrare che
in EN non e’ cartesianamente chiusa.
Si osservi che

e ∈ EN[(idN , N), (e,X)], infatti e’ realizzata da idN

i prodotti in EN si possono definire usando una codifica effettiva e bigettiva di
N ×N in N , cioe’ codifica c:N ×N > N e proiezioni pi:N > N sono
ricorsive (totali)

che un potenziale candidato per NN in EN deve essere della forma (e,R) con R
insieme delle funzioni ricorsive totali.
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Errata Corrige (parziale) [AspertiLongo91]
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pag 8, Ex 1 falso con la definizione di Top data a

lezione, il problema e’ dato dagli spazi con la topologia

caotica.

correzione: give an epic which is not surjective in Top0

(la sottocategoria piena di Top dei T0-spazi), p.e.

l’inclusione dello spazio dei razionali in quello dei reali

e’ epic poiche’ e’ densa.

pag 8, Ex 3 falso.

correzione: prove that an epic which is also a split monic

is an iso.
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