
Monads and E�ectsNick Benton1, John Hughes2, and Eugenio Moggi3?1 Microsoft Research2 Chalmers Univ.3 DISI, Univ. di Genova, Genova, Italymoggi@disi.unige.itAbstract. A tension in language design has been between simple se-mantics on the one hand, and rich possibilities for side-e�ects, exceptionhandling and so on on the other. The introduction of monads has madea large step towards reconciling these alternatives. First proposed byMoggi as a way of structuring semantic descriptions, they were adoptedby Wadler to structure Haskell programs, and now o�er a general tech-nique for delimiting the scope of e�ects, thus reconciling referential trans-parency and imperative operations within one programming language.Monads have been used to solve long-standing problems such as addingpointers and assignment, inter-language working, and exception handlingto Haskell, without compromising its purely functional semantics. Thecourse will introduce monads, e�ects and related notions, and exemplifytheir applications in programming (Haskell) and in compilation (MLj).The course will present typed metalanguages for monads and relatedcategorical notions, and describe how they can be further re�ned by in-troducing e�ects.

? Research partially supported by MURST and ESPRIT WG APPSEM.

1 Monads and Computational TypesMonads, sometimes called triples, have been considered in Category Theory(CT) relatively late (only in the late �fties). Monads and comonads (the dualof monads) are closely related to adjunctions, probably the most pervasive no-tion in CT. The connection between monads and adjunctions was establishedindependently by Kleisli and Eilenberg-Moore in the sixties. Monads, like ad-junctions, arise in many contexts (e.g. in algebraic theories). Good CT referencesfor monads are [Man76,BW85,Bor94]. It is not surprising that monads arise alsoin applications of CT to Computer Science (CS). We will use monads for givingdenotational semantics to programming languages, and more speci�cally as away of modeling computational types [Mog91]:. . . to interpret a programming language in a category C, we distinguishthe object A of values (of type A) from the object TA of computations(of type A), and take as denotations of programs (of type A) the elementsof TA. In particular, we identify the type A with the object of values (oftype A) and obtain the object of computations (of type A) by applying anunary type-constructor T to A. We call T a notion of computation, sinceit abstracts away from the type of values computations may produce.Example 1. We give few notions of computation in the category of sets.{ partiality TA = A?, i.e. A+ f?g, where ? is the diverging computation{ nondeterminism TA = Pfin(A), i.e. the set of �nite subsets of A{ side-e�ects TA = (A�S)S , where S is a set of states, e.g. a set UL of storesor a set of input/output sequences U�{ exceptions TA = A+E, where E is the set of exceptions{ continuations TA = R(RA), where R is the set of results{ interactive input TA = (�X:A + XU), where U is the set of characters.More explicitly TA is the set of U -branching trees with only �nite paths andA-labelled leaves{ interactive output TA = (�X:A+ (U�X)), i.e. U��A up to iso.Further examples (in the category of cpos) could be given based on the denota-tional semantics for various programming languagesRemark 2. Many of the examples above are instances of the following one: givena single sorted algebraic theory Th, let TA = jTTh(A)j, i.e. the carrier of thefree Th-algebra TTh(A) over A. One could consider combinations of the examplesabove, e.g.{ TA = ((A+E)�S)S and TA = ((A�S)+E)S capture imperative programswith exceptions{ TA = �X:Pfin(A + (Act�X)) captures parallel programs interacting via aset Act of actions (in fact TA is the set of �nite synchronization trees up tostrong bisimulation)

{ TA = �X:Pfin((A + X)�S)S captures parallel imperative programs withshared memory.[Wad92] advocates a similar idea to mimic impure programs in a pure functionallanguage. Indeed the Haskell community has gone a long way in exploiting thisapproach to reconcile the advantages of pure functional programming with the
exibility of imperative (or other styles of) programming. The analogies of com-putational types with e�ect systems [GL86] have been observed by [Wad92], butformal relations between the two have been established only recently (e.g. see[Wad98]).In the denotational semantics of programming languages there are other in-formal notions modeled using monads, for instance collection types in databaselanguages [BNTW95] or collection classes in object-oriented languages [Man98].It is important to distinguish the mathematical notion of monad (or its re�ne-ments) from informal notions, such as computational and collection types, whichare de�ned by examples. In fact, these informal notions can be modeled with abetter degree of approximation by considering monads with additional proper-ties or additional structures. When considering these re�nements, it is often thecase that what seems a natural requirement for modeling computational typesis not appropriate for modeling collection types, for instance:{ It seems natural that programming languages can express divergent compu-tations and more generally they should support recursive de�nitions of pro-grams; therefore computational types should come equipped with a constant? : TA for the divergent computation and a (least) �x-point combinatorY : (TA! TA)! TA.{ While it seems natural that a collection should have only a �nite numberof elements, and there should be an empty collection ; : TA and a way ofmerging two collections using a binary operation + : TA! TA! TA.There are several equivalent de�nitions of monad (the same happens withadjunctions). [Man76] gives three de�nitions of monad/triple called: in monoidform (the one usually adopted in CT books), in extension form (the most in-tuitive one for us), and in clone form (which takes composition in the Kleislicategory as basic). We consider only triples in monoid and extension form.Notation 1 We assume knowledge of basic notions from category theory, suchas category, functor and natural transformation. In some cases familiarity withuniversal constructions (products, sums, exponentials) and adjunction is as-sumed. We use the following notation:{ given a category C we write:jCj for the set/class of its objects,C(A;B) for the hom-set of morphisms from A to B,g � f and f ; g for the composition A f - B g - C,idA for the identity on A{ F : C ! D means that F is a functor from C to D, and� : F :! G means that � is a natural transformation from F to G

{ C � G>F - D means that G is right adjoint to F (F is left adjoint to G).De�nition 3 (Kleisli triple/triple in extension form). A Kleisli tripleover a category C is a triple (T; �; �), where T : jCj ! jCj, �A : A ! TA forA 2 jCj, f� : TA! TB for f : A! TB and the following equations hold:{ ��A = idTA{ �A; f� = f for f : A! TB{ f�; g� = (f ; g�)� for f : A! TB and g : B ! TC.Kleisli triples have an intuitive justi�cation in terms of computational types{ �A is the inclusion of values into computationsa : A �A7�! [a] : TA{ f� is the extension of a function f from values to computations to a functionfrom computations to computations, which �rst evaluates a computation andthen applies f to the resulting valuea : A f7�! f a : TBc : TA f�7�! let a(c in f a : TBIn order to justify the axioms for a Kleisli triple we have �rst to introduce acategory CT whose morphisms correspond to programs. We proceed by analogywith the categorical semantics for terms, where types are interpreted by objectsand terms of type B with a parameter (free variable) of type A are interpretedby morphisms from A to B. Since the denotation of programs of type B aresupposed to be elements of TB, programs of type B with a parameter of type Aought to be interpreted by morphisms with codomain TB, but for their domainthere are two alternatives, either A or TA, depending on whether parameters oftype A are identi�ed with values or computations of type A. We choose the �rstalternative, because it entails the second. Indeed computations of type A are thesame as values of type TA. So we take CT (A;B) to be C(A; TB). It remains tode�ne composition and identities in CT (and show that they satisfy the unit andassociativity axioms for categories).De�nition 4 (Kleisli category). Given a Kleisli triple (T; �; �) over C, theKleisli category CT is de�ned as follows:{ the objects of CT are those of C{ the set CT (A;B) of morphisms from A to B in CT is C(A; TB){ the identity on A in CT is �A : A! TA{ f 2 CT (A;B) followed by g 2 CT (B;C) in CT is f ; g� : A! TC.

It is natural to take �A as the identity on A in the category CT , since it maps aparameter x to [x], i.e. to x viewed as a computation. Similarly composition inCT has a simple explanation in terms of the intuitive meaning of f�, in factx : A f7�! f x : TB y : B g7�! g y : TCx : A f ;g�7�! let y(f x in g y : TCi.e. f followed by g in CT with parameter x is the program which �rst evaluatesthe program f x and then feed the resulting value as parameter to g. At thispoint we can give also a simple justi�cation for the three axioms of Kleisli triples,namely they are equivalent to the following unit and associativity axioms, whichsay that CT is a category:{ f ; ��B = f for f : A! TB{ �A; f� = f for f : A! TB{ (f ; g�);h� = f ; (g;h�)� for f : A! TB, g : B ! TC and h : C ! TD.Example 5. We go through the examples of computational types given in Ex-ample 1 and show that they are indeed part of suitable Kleisli triples.{ partiality TA = A?(= A+ f?g)�A is the inclusion of A into A?if f : A! TB, then f� ? = ? and f� a = f a (when a 2 A){ nondeterminism TA = Pfin(A)�A is the singleton map a 7! fagif f : A! TB and c 2 TA, then f� c = [ff xjx 2 cg{ side-e�ects TA = (A�S)S�A is the map a 7! �s : S:(a; s)if f : A! TB and c 2 TA, then f� c = �s : S:(let (a; s0) = c s in f a s0){ exceptions TA = A+E�A is the injection map a 7! inl aif f : A ! TB, then f�(inr e) = inr e (where e 2 E) and f�(inl a) = f a(where a 2 A){ continuations TA = R(RA)�A is the map a 7! (�k : RA:k a)if f : A! TB and c 2 TA, then f� c = (�k : RB :c(�a : A:f a k)){ interactive input TA = (�X:A+XU)�A maps a to the tree consisting only of one leaf labelled with aif f : A! TB and c 2 TA, then f� c is the tree obtained by replacing leavesof c labelled by a with the tree f a{ interactive output TA = (�X:A+ (U�X))�A is the map a 7! (�; a)if f : A ! TB, then f� (s; a) = (s � s0; b), where f a = (s0; b) and s � s0 isthe concatenation of s followed by s0.Exercise 6. De�ne Kleisli triples in the category of cpos similar to those givenin Example 5, but ensure that each computational type TA has a least element?. DIFFICULT: in cpos there are three Kleisli triple for nondeterminism, onefor each powerdomain construction.

Exercise 7. When modeling a programming language the �rst choice to makeis which category to use. For instance, it is impossible to �nd a monad overthe category of sets which support recursive de�nitions of programs, one shouldwork in the category of cpos (or similar categories). Moreover, there are otheraspects of programming languages that are orthogonal to computational types,e.g. recursive and polymorphic types, that cannot be models in the category ofsets (one has to work in categories like that of cpos or in realizability models).If one wants to model a two-level language, where there is a notion of staticand dynamic, then the following categories are particularly appropriate{ the category s(C), where C can be any CCC, is de�ned as followsan object is a pair (As; Ad) with As; Ad 2 jCj, As is the static and Ad is thedynamic part;a morphism in s(C)((As; Ad); (Bs; Bd)) is a pair (fs; fd) with fs 2 C(As; Bs)and fd 2 C(As�Ad; Bd), thus the static part of the result depends only onthe static part of the input.{ the category Fam(C), where C can be any CCC with small limits, is de�nedas followsan object is a family (Aiji 2 I) with I a set and Ai 2 jCj for every i 2 I ;a morphism in Fam(C)((Aiji 2 I); (Bj jj 2 J)) is a pair (f; g) with f : I ! Jand g is an I-index family of morphisms s.t. gi 2 C(Ai; Bfi) for every i 2 I .De�ne Kleisli triples in the categories s(C) and Fam(C) similar to those givenin Example 5 (assume that C is the category of sets). Notice that in a two-levellanguage static and dynamic computations don't have to be the same.1.1 Monads and Related NotionsThis section contains de�nitions and facts, that are not essential to the sub-sequent developments. First we establish the equivalence of Kleisli triples andmonads.De�nition 8 (Monad/triple in monoid form). A monad over C is a triple(T; �; �), where T : C ! C is a functor, � : idC :! T and � : T 2 :! T are naturaltransformations and the following diagrams commute:T 3A �TA- T 2A TA �TA- T 2A �T�A TA@@@@@idTA R 	�����idTAT 2AT�A ? �A - TA�A? TA�A?Proposition 9. There is a bijection between Kleisli triples and monads.

Proof. Given a Kleisli triple (T; �; �), the corresponding monad is (T; �; �),where T is the extension of the function T to an endofunctor by taking T f =(f ; �B)� for f : A! B and �A = id�TA. Conversely, given a monad (T; �; �), thecorresponding Kleisli triple is (T; �; �), where T is the restriction of the functorT to objects and f� = (T f);�B for f : A! TB.De�nition 10 (Eilenberg-Moore category). Given a monad (T; �; �) overC, the Eilenberg-Moore category CT is de�ned as follows:{ the objects of CT are T -algebras, i.e. morphisms � : TA! A in C s.t.T 2A �A - TA A �A - TA@@@@@idA RTAT� ? � - A�? A�?A is called the carrier of the T -algebra �{ a morphism f 2 CT (�; �) from � : TA ! A to � : TB ! B is a morphismf : A! B in C s.t. TA Tf - TB
TA� ? f - B�?identity and composition in CT are like in C.Any adjunction C � G>F - D induces a monad over C with T = F ;G. TheKleisli and Eilenberg-Moore categories can be used to prove the converse, i.e. thatany monad over C is induced by an adjunction. Moreover, the Kleisli category canbe identi�ed with the full sub-category of CT consisting of the free T -algebras.Proposition 11. Given a monad (T; �; �) over C there are two adjunctionsC � U>F - CT C � U 0>F 0 - CT

which induce T . Moreover, there is a full and faithful functor � : CT ! CT s.t.C F - CT@@@@@F 0 R CT�6Proof. The action of functors on objects are as follows: U(� : TA ! A) �= A,FA �= �A : T 2A! TA, U 0A �= TA, F 0A �= A, and �A �= �A : T 2A! TA.De�nition 12 (Monad morphism). Given (T; �; �) and (T 0; �0; �0) monadsover C, a monad-morphism from the �rst to the second is a natural transfor-mation � : T :! T 0 s.t. :A �A - TA � �A T 2A@@@@@�0A RT 0A�A ? T 0(TA)�TA?I@@@@@�0A T 02AT 0�A?An equivalent de�nition of monad morphism (in terms of Kleisli triples) is afamily of morphisms �A : TA! T 0A for A 2 jCj s.t.{ �A;�A = �0A{ f�;�B = �A; (f ;�B)�0 for f : A! TBWe write Mon(C) for the category of monads over C and monad morphisms.There is also a more general notion of monad morphism, which does not requirethat the monads are over the same category. Monad morphisms allow to viewT 0-algebras as T -algebras with the same underlying carrier, more preciselyProposition 13. There is a bijective correspondence between monad morphisms� : T ! T 0 and functors V : CT 0 ! CT s.t. CT 0 V - CT@@@@@U R CU?

Proof. The action of V on objects is V (�0 : T 0A ! A) �= �A;�0 : TA! A, and�A is de�ned in terms of V as �A �= TA T�0A- T (T 0A) V �0A- T 0A.Remark 14. [Fil99] uses a layering �A : T (T 0A)! T 0A of T 0 over T in place of amonad morphism �A : TA! T 0A. The two notions are equivalent, in particular�A is given by V �0A, i.e. �T 0A;�0A.2 Metalanguages with Computational TypesIt is quite inconvenient to work directly in a speci�c category or with a speci�cmonad. Mathematical logic provides a simple solution to abstract away fromspeci�c models: �x a language, de�ne what is an interpretation of the languagein a model, �nd a formal system (on the language) that capture the desiredproperties of models. When the formal system is sound, one can forget aboutthe models and use the formal system instead. Moreover, if the formal systemis also complete, then nothing is lost (as far as one is concerned with propertiesexpressible in the language, and valid in all models). Several formal systems havebeen proved sound and complete w.r.t. certain class of categories:{ many sorted equational logic corresponds to categories with �nite products;{ simply typed �-calculus corresponds to cartesian closed categories (CCC);{ intuitionistic higher-order logic corresponds to elementary toposes.Remark 15. To ensure soundness w.r.t. the given classes of models, the aboveformal systems should cope with the possibility of empty carriers. While inmathematical logic it is often assume that all carriers are inhabited. CategoricalLogic is the branch of CT devoted mainly at establishing links between formalsystems and classes of categorical structures.Rather than giving a complete formal system, we say how to add computationaltypes to your favorite formal system (for instance higher-order �-calculus, or a�-calculus with dependent types like a logical framework). The only assumptionwe make is that the formal system should include many sorted equational logic(this rules out systems like the linear �-calculus). More speci�cally we assumethat the formal system has the following judgments{ � `, i.e. � is a well-formed context{ � ` � type, i.e. � is a well-formed type in context �{ � ` e : � , i.e. e is a well-formed term of type � in context �{ � ` � prop, i.e. � is a well-formed proposition in context �{ � ` �, i.e. the well-formed proposition � in context � is trueand that the following rules are part of the formal system (or derivable){ ; ` � ` � type�; x : � ` x 62 DV(�) � `� ` x : � � = � (x)

{ � ` e1 : � � ` e2 : �� ` (e1 = e2 : �) prop this says when an equation is well-formed{ weak � ` � � ` ��; x : � ` � x 62 DV(�) sub � ` e : � �; x : � ` �� ` �[x := e]{ � ` e : �� ` e = e : � � ` e1 = e2 : �� ` e2 = e1 : � � ` e1 = e2 : � � ` e2 = e3 : �� ` e1 = e3 : �cong �; x : � ` � prop � ` e1 = e2 : � � ` �[x := e1]� ` �[x := e2]Remark 16. More complex formal systems may require other forms of judgment,e.g. equality of types (and contexts), or other sorts besides type (along the lineof Pure Type Systems). The categorical interpretation of typed calculi, includingthose with dependent types, is described in [Pit00b,Jac99].The rules for adding computational types are{ T � ` � type� ` T� type lift � ` e : �� ` [e]T : T�let � ` e1 : T�1 �; x : �1 ` e2 : T�2� ` letT x(e1 in e2 : T�2 x 62 FV(�2)[e]T is the program/computation that simply returns the value e, whileletT x(e1 in e2 is the computation which �rst evaluates e1 and binds theresult to x, then evaluates e2.In calculi without dependent types the side-condition x 62 FV(�2) in the let-rule is automatically satis�ed. From now on we ignore such side-conditions.{ let.� � ` e : T�1 �; x : �1 ` e1 = e2 : T�2� ` letT x(e in e1 = letT x(e in e2 : T�2this rule expresses congruence for the let-binder.{ assoc � ` e1 : T�1 �; x1 : �1 ` e2 : T�2 �; x2 : �2 ` e3 : T�3� ` letT x2((letT x1(e1 in e2) in e3 =letT x1(e1 in (letT x2(e2 in e3) : T�3this rule says that only the order of evaluation matters (not the parentheses).{ T.� � ` e1 : �1 �; x : �1 ` e2 : T�2� ` letT x([e1]T in e2 = e2[x := e1] : T�2T.� � ` e : T�� ` letT x(e in [x]T = e : T�these rules say how to eliminate trivial computations (i.e. of the form [e]T).Remark 17. [Mog91] describes the interpretation of computational types in asimply typed calculus, and establishes soundness and completeness results, while[Mog95] extends such results to logical systems including evaluation modalitiesproposed by Pitts.For interpreting computational types monads are not enough, one has to useparameterized monads. The parameterization is directly related to the form oftype-dependency allowed by the typed calculus under consideration. The need to

consider parametrized forms of categorical notions is by now a well-understoodfact in categorical logic (it is not a peculiarity of computational types).We sketch the categorical interpretation in a category C with �nite products ofa simply typed metalanguage with computational types (see [Mog91] for moredetails). The general pattern for interpreting a simply typed calculus accordingto Lawvere's functorial semantics goes as follows{ a context � ` and a type ` � type are interpreted by objects of C, by abuseof notation we indicate these objects with � and � respectively;{ a term � ` e : � is interpreted by a morphism f : � ! � in C;{ a (well formed) equational � ` e1 = e2 : � is true i� f1 = f2 : � ! � asmorphisms in C.Figure 1 gives the relevant clauses of the interpretation. Notice that for in-terpreting let one needs a parameterized extension operation �, which mapsf : C�A! TB to f� : C�TA! TB.RULE SYNTAX SEMANTICST ` � type = �` T� type = T�lift � ` e : � = f : � ! �� ` [e]T : T� = f ; �� : � ! T�let � ` e1 : T�1 = f1 : � ! T�1�; x : �1 ` e2 : T�2 = f2 : ���1 ! T�2� ` letT x(e1 in e2 : T�2 = (id� ; f1); f�2 : � ! T�2Fig. 1. simple interpretation of computational types2.1 Syntactic Sugar and Alternative PresentationsOne can de�ne convenient derived notation, for instance:{ an iterated-let (letT x(e in e), which is de�ned by induction on jej = jxjletT ;(; in e �� e letT x0; x(e0; e in e �� letT x0(e0 in (letT x(e in e)Haskell's do-notation, inspired by monad comprehension (see [Wad92]), ex-tends the iterated-let by allowing pattern matching and local de�nitions

In higher-order �-calculus, the type- and term-constructors can be replacedby constants:{ T becomes a constant of kind � ! �, where � is the kind of all types;{ [e]T and letT x(e1 in e2 are replaced by polymorphic constantsunitT : 8X : �:X ! TX letT : 8X;Y : �:(X ! TY)! TX ! TYwhere unitT �= �X : �:�x : X:[x]T andletT �= �X; Y : �:�f : X ! TY:�c : TX:letT x(c in f x.In this way the rule (let.�) follows from the �-rule for �-abstraction, and the otherthree equational rules can be replaced with three equational axioms withoutpremises, e.g. T:� can be replaced byX;Y : �; x : X; f : X ! TY ` letT x([x]T in f x = f x : TYThe polymorphic constant unitT corresponds to the natural transformation�. In higher-order �-calculus one can de�ne also polymorphic constantsmapT : 8X;Y : �:(X ! Y)! TX ! TY flatT : 8X : �:T 2X ! TXcorresponding to the action of the functor T on morphisms and to the naturaltransformation �{ mapT �= �X; Y : �:�f : X ! Y:�c : TX:letT x(c in [f x]T{ flatT �= �X : �:�c : T 2X:letT x(c inxThe axiomatization taking as primitive the polymorphic constants unitT andletT amounts to the de�nition of triple in extension form, one can envisage analternative axiomatization corresponding to that of triple in monoid form, whichtakes as primitive the polymorphic constants mapT , unitT and flatT .2.2 Categorical De�nitions in the MetalanguageThe main point for introducing a metalanguage is to provide an alternative toworking directly with models/categories. In particular, one expect that categor-ical notions related to monads, such as algebra and monad morphisms, can bereformulated axiomatically in a metalanguage with computational types.De�nition 18 (Eilenberg-Moore algebras). � : TA! A is a T -algebra i�{ x : A ` � [x]T = x : A{ c : T 2A ` �(letT x(c inx) = �(letT x(c in [� x]T) : Af : A! B is a T -algebra morphism from � : TA! A to � : TB ! B i�{ c : TA ` f(� c) = �(letT x(c in [fx]T) : B

We can consider metalanguages with many computational types, correspond-ing to di�erent monads on the same category. In particular, to de�ne monadmorphisms we use a metalanguage with two computational types T and T 0.De�nition 19 (Monad morphism). A constant � : 8X : �:TX ! T 0X is amonad morphism from T to T 0 i�{ X : �; x : X ` � X [x]T = [x]T 0 : T 0X{ X;Y : �; c : TX; f : X ! TY ` � Y (letT x(c in f x) =letT 0 x(� X c in� Y (f x) : T 0Y3 Metalanguages for Denotational SemanticsTranslation of a language into another provides a simple and general way to givesemantics to the �rst language in terms of a semantics for the second. In deno-tational semantics it is quite common to de�ne the semantics of a programminglanguage PL by translating it into a typed metalanguage ML. The idea is asold as denotational semantics (see [Sco93]), so the main issue is whether it canbe made into a viable technique capable of dealing with complex programminglanguages. Before being more speci�c about what metalanguages to use, let usdiscuss what are the main advantages of semantics via translation:{ to reuse the same ML for translating several programming languages.PL1: : : HHHHHtransljML interp- CPLn�����transl*Here we are implicitly assuming that de�ning a translation from PL to MLis simpler than directly de�ning an interpretation of PL.In this case it is worth putting some e�ort in the study of ML. In fact, oncecertain properties of ML have been established (e.g. reasoning principles orcomputational adequacy), it is usually easy to transfer them to PL via thetranslation.{ to chooseML according to certain criteria, usually not met by programminglanguages, e.g.� a metalanguage built around few orthogonal concepts is simpler to study,on the contrary programming languages often introduce syntactic sugarfor the bene�t of programmers;� ML may be equipped with a logic so that it can be used for formalizingreasoning principles or for translating speci�cation languages;� ML may be chosen as the internal language for a class of categories (e.g.CCC) or for a speci�c semantic category (e.g. that of sets or cpos).

{ to use ML for hiding details of semantic categories (see [Gor79]). For in-stance, whenML is the internal language for a class of categories, it has oneintended interpretation in each of them, therefore a translation intoML willinduce a variety of interpretations C1PL transl- ML�����interp * : : :HHHHHinterp j Cneven when ML has only one intended interpretation, it may be di�cult towork with the semantic category directly.A good starting point for a metalanguage is to build it on top of a fairlystandard typed �-calculus, more controversial issues are:{ whether the metalanguage should be equipped with some logic (ranging fromequational logic to higher-order predicate logic).{ whether the metalanguage should be itself a programming language (i.e. tohave an operational semantics).We will discuss how the metalanguages with computational types can helpin structuring the translation from PL to ML by the introduction of auxiliarynotation (see [Mos92,Mog91])PL transl- ML(�) transl- MLand by incrementally de�ning auxiliary notation (as advocated in [Fil99],[LHJ95,LH96] and [CM93,Mog97])PL transl- ML(�n) transl- : : : transl- ML(�0) transl- MLRemark 20. The solutions proposed are closely related to general techniquesin algebraic speci�cations, such as abstract datatype, stepwise re�nement andhierarchical speci�cations.3.1 Computational Types and StructuringA typical problem of denotational and operational semantics is the following:when a programming language is extended, its semantics may need to be exten-sively rede�ned. For instance, when extending a pure functional language withside-e�ects or exceptions we have to rede�ne the operational/denotational se-mantics every time we considered a di�erent extension. The problem remainseven when the semantics is given via translation in a typed lambda-calculus:one would keep rede�ning the translation. In [Mos90] this problem is identi�ed

very clearly, and it is stressed how the use of auxiliary notation may help inmaking semantic de�nitions more reusable.[Mog91] identi�esmonads as an important structuring device for denotationalsemantics (but not for operational semantics!). The basic idea is that thereis a unary type constructor T , called a notion of computation, and termsof type T� , should be thought as programs which computes values of type � .The interpretation of T is not �xed, it varies according to the computationalfeatures of the programming language under consideration. Nevertheless, onecan identi�es some operations (for specifying the order of evaluation) and basicproperties of them, which should be common to all notions of computation. Thissuggests to translate a programming language PL into a metalanguageMLT (�)with computational types, where the signature � gives additional operations(and their properties). In summary, the monadic approach to denotationalsemantics consists of three steps, i.e. given a programming language PL:{ identify a suitable metalanguage MLT (�), this hides the interpretation ofT and � like an interface hides the implementation of an abstract datatype,{ de�ne a translation of PL into MLT (�),{ construct a model of MLT (�), e.g. via translation into a metalanguageMLwithout computational types.By a suitable choice of �, one can �nd a simple translation from PL toMLT (�),which usually does not have to be rede�ned (only extended) when PL is ex-tended, At the same time one can keep the translation of MLT (�) into MLfairly manageable.To exemplify the use of computational types, we consider several program-ming languages (viewed as �-calculi with constants), and for each of them wede�ne translations into a metalanguage MLT (�) with computational types, fora suitable choice of �, and indicate a possible interpretation for computationaltypes and �.CBN Translation: Haskell We consider a simple fragment of Haskell corre-sponding to the following typed �-calculus (we ignore issues of type inference,thus terms have explicit type information):� 2 TypeHaskell ::= Int type of integers�1 ! �2 functional type�1��2 product typee 2 ExpHaskell ::= x variablen j e0 + e1 numerals and integer additionif0 e0 then e1 else e2 conditional(let x : � = e1 in e2) local de�nition�x : �:e recursive de�nition�x : �:e abstraction

e1 e2 application(e1; e2) pairing�i e projectionThe type system for Haskell derives judgments of the form � ` e : � saying� 2 TypeHaskell �n 2 TypeInt Int�1 ! �2 T�n1 ! T�n2�1��2 T�n1 �T�n2e 2 ExpHaskell en 2 Expx xn [n]Te0 + e1 letT x0; x1(en0 ; en1 in [x0 + x1]Tif0 e0 then e1 else e2 letT x(en0 in if x = 0 then en1 else en2(letx : � = e1 in e2) (�x : T�n:en2) en1�x : �:e Y �n (�x : T�n:en)�x : �:e [�x : T�n:en]Te1 e2 letT f(en1 in f en2(e1; e2) [(en1 ; en2)]T�i e letT x(en in�i xFig. 2. CBN translation of Haskellthat a term e has type � in the typing context � . In denotational semanticsone is interested in interpreting only well-formed terms (since programs rejectedby a type-checker are not allowed to run), thus we want to de�ne a translationmapping well-formed terms � `PL e : � of the programming language into well-formed terms � `ML e : � of the metalanguage (with computational types).More precisely, we de�ne a translation n by induction on types � and raw termse, called the CBN translation (see Figure 2). When fxi : �iji 2 mg `PL e : �is a well-formed term of Haskell, one can show that fxi : T�ni ji 2 mg `ML en :T�n is a well-formed term of the metalanguage with computational types. Thesignature � for de�ning the CBN translation of Haskell consists of{ Y : 8X : �:(TX ! TX)! TX , a (least) �x-point combinator{ a signature for the datatype of integers.Remark 21. The key feature of the CBN translation is that variables in theprogramming languages are translated into variables ranging over computationaltypes. Another important feature is the translation of types, which basicallyguides (in combination with operational considerations) the translation of terms.Exercise 22. Extend Haskell with polymorphism, as in 2nd-order �-calculus, i.e.� 2 TypeHaskell ::= X j : : : j 8X : �:� e 2 ExpHaskell ::= : : : j �X : �:e j e �

There is a problem to extend the CBN translation to polymorphic types. Toovercome the problem assume that computational types commutes with poly-morphism, i.e. the following map is an isoc : T (8X : �:�) - �X : �:letT x(c in [x X]T : 8X : �:T �In realizability models several monads (e.g. lifting) satisfy this property, indeedthe isomorphism is often an identity.Algol Translation Some CBN languages (including Algol and PCF) allowcomputational e�ects only at base types. Computational types play a limitedrole in structuring the denotational semantics of these languages, nevertheless itis worth to compare the translation of such languages with that of Haskell. Weconsider an idealized-Algol with a �xed set of locations. Syntactically it is anextension of (simple) Haskell with three base types: Loc for integer locations, Intfor integer expressions, and Cmd for commands. In Algol-like languages a locationis often identi�ed with a pair consisting of an expression and an acceptor, i.e.Loc � (Int; Int! Cmd).� 2 TypeAlgol ::= Loc j Int j Cmd j �1 ! �2 j �1��2e 2 ExpAlgol ::= x j l locationj n j e0 + e1 j !e contents of a locationif0 e0 then e1 else e2skip j e0 := e1 null and assignment commandse0; e1 sequential composition of commands(let x : � = e1 in e2) j �x : �:e j �x : �:e j e1 e2 j (e1; e2) j �i eThe Algol translation a (see Figure 3) is de�ned by induction on types �and raw terms e. When fxi : �iji 2 mg `PL e : � is a well-formed term of Algol,one can show that fxi : �ai ji 2 mg `ML ea : �a is a well-formed term of themetalanguage with computational types.Remark 23. The Algol translation seems to violate a key principle, namely thatthe translation of a program should have computational type. But in Algol validprograms are expected to be terms of base type, and the Algol translation in-deed maps base types to computational types. More generally, one should observethat the Algol translation maps Algol types in (carriers of) T -algebras. IndeedT -algebras for a (strong) monads are closed under (arbitrary) products and ex-ponentials, more precisely: A1�A2 is the carrier of a T -algebra whenever A1 andA2 are, and BA is the carrier of a T -algebra whenever B is [EXERCISE: provethese facts in the metalanguage]. The T -algebra structure on the translation oftypes is used for de�ning the translation of terms, namely to extend the let and�x-point combinator from computational types to T -algebras:{ *let � ` e1 : T�1 �; x : �1 ` e2 : U(� : T�2 ! �2)� ` �letT x(e1 in e2 �= �(letT x(e1 in [e2]T) : U(� : T�2 ! �2)

� 2 TypeAlgol �a 2 TypeLoc TLocInt T IntCmd T1�1 ! �2 �a1 ! �a2�1��2 �a1��a2e 2 ExpAlgol ea 2 Expx xn [n]Te0 + e1 letT x0; x1(ea0 ; ea1 in [x0 + x1]Tif0 e0 then e1 else e2 �letT x(ea0 in if x = 0 then ea1 else ea2(letx : � = e1 in e2) (�x : �a:ea2) ea1�x : �:e �Y �a (�x : �a:ea)�x : �:e �x : �a:eae1 e2 ea1 ea2(e1; e2) (ea1 ; ea2)�i e �i eal [l]T!e letT l(ea in get lskip [()]Te0 := e1 letT l; n(ea0 ; ea1 in set l ne0; e1 letT (ea0 in ea1Fig. 3. Algol translation

{ *Y �; x : � ` e : U(� : T� ! �)� ` �Y � (�x : �:e) �= �(Y � (�c : T�:[e[x := � c]]T) : U(� : T� ! �)The Algol translation suggests to put more emphasis on T -algebras. Indeed,[Lev99] has proposed a metalanguage for monads with two classes of types:value types interpreted by objects in C, and computation types interpreted byobjects in CT .The signature � for de�ning the Algol translation consists of{ Y : 8X : �:(TX ! TX)! TX , like for the Haskell translation{ a signature for the datatype of integers, like for the Haskell translation{ a type Loc of locations, with a �xed set of constants l : Loc, and operationsget : Loc! T Int and set : Loc! Int! T1 to get/store an integer from/intoa location.Remark 24. In Algol expressions and commands have di�erent computationale�ects, namely: expressions can only read the state, while commands can alsomodify the state. Therefore, one would have to consider two monads, TsrA = AS?for state reading computations and TseA = (A�S)S? for computations with side-e�ects, and a monad morphism from Tsr to Tse.CBV Translation: SML We consider a simple fragment of SML with integerlocations. Syntactically the language is a minor variation of idealized Algol,more precisely: Cmd is replaced by Unit and skip by (), sequential compositionof commands has been removed (because de�nable), recursive de�nitions arerestricted to functional types.� 2 TypeSML ::= Loc j Int j Unit j �1 ! �2 j �1��2e 2 ExpSML ::= x j l j n j e0 + e1 j !e j if0 e0 then e1 else e2 j () j e0 := e1 j(letx : � = e1 in e2) j �f : �1 ! �2:�x : �1:e j�x : �:e j e1 e2 j (e1; e2) j �i eThe CBV translation v (see Figure 4) is de�ned by induction on types �and raw terms e. When fxi : �iji 2 mg `PL e : � is a well-formed term of SML,one can show that fxi : �vi ji 2 mg `ML ev : T�v is a well-formed term of themetalanguage with computational types. The signature � for de�ning the CBVtranslation is the same used for de�ning the Algol translation.Exercise 25. So far we have not said how to interpret the metalanguages used astarget for the various translations. Propose interpretations of the metalanguagesin the category of cpos: �rst choose a monad for interpreting computationaltypes, then explain how the other symbols in the signature � should be inter-preted.Exercise 26. The translations considered so far allow to validate equational lawsfor the programming languages, by deriving the translation of the equational

� 2 TypeSML �v 2 TypeLoc LocInt IntUnit 1�1 ! �2 �v1 ! T�v2�1��2 �v1��v2e 2 ExpSML ev 2 Expx [x]Tn [n]Te0 + e1 letT x0; x1(ev0 ; ev1 in [x0 + x1]Tif0 e0 then e1 else e2 letT x(ev0 in if x = 0 then ev1 else ev2(letx : � = e1 in e2) letT x(ev1 in ev1�f : �1 ! �2:�x : �1:e �Y (�1 ! �2)v (�f : (�1 ! �2)v:�x : �v1 :ev)�x : �:e [�x : �v:ev]Te1 e2 letT f; x(ev1 ; ev2 in f x(e1; e2) letT x1; x2(ev1 ; ev2 in [(x1; x2)]T�i e letT x(ev in [�i x]Tl [l]T!e letT l(ev in get l() [()]Te0 := e1 letT l; n(ev0 ; ev1 in set l nFig. 4. CBV translation of SMLlaws in the metalanguage. Say whether � and � for functional types, i.e. (�x :�1:e2) e1 = e2[x := e1] : �2 and (�x : �1:e x) = e : �1 ! �2 with x 62 FV(e), arevalid in Haskell, Algol or SML. If they are not valid suggest weaker equationallaws that can be validate. This exercise indicates that one should be careful totransfer reasoning principle for the �-calculus to functional languages.Exercise 27. Consider Haskell with integer locations, and extend the CBN trans-lation accordingly. Which signature � should be used?Exercise 28. In SML one can create new locations using the construct ref e.Consider this extension of SML, and extend the CBV translation accordingly.Which signature � and monad T in the category of cpos should be used?Exercise 29. Consider SML with locations of any type, and extend the CBVtranslation accordingly. Which signature � should be used (you may �nd con-venient to assume that the metalanguage includes higher-order �-calculus)? Itis very di�cult to �nd monads able to interpret such a metalanguage.3.2 Incremental Approach and Monad TransformersThe monadic approach to denotational semantics has a caveat. When the pro-gramming language PL is complex, the signature � identi�ed by the monadic

approach can get fairly large, and the translation of MLT (�) into ML maybecome quite complicated.One can alleviate the problem by adopting an incremental approach inde�ning the translation of MLT (�) into ML. The basic idea is to adapt to thissetting the techniques and modularization facilities advocated for formal soft-ware development, in particular the desired translation of MLT (�) into MLcorresponds to the implementation of an abstract datatype (in some given lan-guage). In an incremental approach, the desired implementation is obtained bya sequence of steps, where each step constructs an implementation for a morecomplex datatype from an implementation for a simpler datatype.Haskell constructor classes (and to a less extend SML modules) providea very convenient setting for the incremental approach (see [LHJ95]): thetype inference mechanism allows concise and readable de�nitions, whiletype-checking detects most errors. What is missing is only the ability toexpress and validate (equational) properties, which would require extrafeatures typical of Logical Frameworks (see [Mog97]).To make the approach viable, we need a collection of self-contained parameter-ized polymorphic modules with the following features:{ they should be polymorphic, i.e. for any signature � (or at least for a widerange of signatures) the module should take an implementation of � andconstruct an implementation of � +�new, where �new is �xed{ they could be parametric, i.e. the construction and the signature �new maydepend on parameters of some �xed signature �par.The polymorphic requirement can be easily satis�ed, when one can implement�new without changing the implementation of � (this is often the case in soft-ware development). However, the constructions we are interested in are not per-sistent, since they involve a re-implementation of computational types, and con-sequently of �. The translations we need to consider are of the formI : MLT (�par +� +�new)!MLT (�par +�)where �new are the new symbols de�ned by I , � the old symbols rede�ned byI , and �par the parameters of the construction (which are una�ected by I). Ingeneral I can be decomposed in{ a translation Inew : MLT (�par + �new) ! MLT (�par) de�ning the newsymbols (in �new) and rede�ning computational types,{ translations Iop :MLT (�op)!MLT (�par +�op) rede�ning an old symbolop in isolation (consistently with the rede�nition of computational types),for each possible type of symbol one may have in �.Recently [Fil99] has proposed a more
exible approach, which uses meta-languages with several monads Ti (rather than only one), and at each step it

introduces a new monad T 0 and new operations (de�ned in term of the pre-existing ones), without changing the meaning of the old symbols. Therefore, oneis considering de�nitional extensions, i.e. translations of the formI :MLT 0;Ti2n(�old +�0new)!MLTi2n(�old)which are the identity on MLTi2n(�old). In Filinski's approach one can usethe translations Inew and Iop, whenever possible, and more ad hoc de�nitionsotherwise. In fact, when Filinski introduces a new monad T 0, he introduces alsotwo operations called monadic re
ection and rei�cationre
ect : 8X : �:� ! T 0X reify : 8X : �:T 0X ! �that establish a bijection between T 0X and its implementation � (i.e. a type inthe pre-existing language). Therefore, one can de�ne operations related to T 0 bymoving back and forth between T 0 and its implementation (as done in the caseof operations de�ned on an abstract datatype).Semantically amonad transformer is a function F : jMon(C)j ! jMon(C)jmapping monads (over a category C) to monads. We are interested in monadtransformers for adding computational e�ects, therefore we require that for anymonad T there should be a monad morphism inT : T ! FT . It is often the casethat F is a functor on Mon(C), and in becomes a natural transformation fromidMon(C) to F . Syntactically a monad transformer is a translationIF :MLT 0;T (�par)!MLT (�par)which is the identity on MLT (�par). In other words we express the new monadT 0 in terms of the old monad T (and the parameters speci�ed in �par). In thesequel we describe (in a higher-order �-calculus) several monad transformerscorresponding to the addition of a new computational e�ect, more precisely wede�ne{ the new monad T 0, and the monad morphism in : T ! T 0{ the operations on T 0-computations associated to the new computational ef-fect{ an operation op0 : 8X : �:A ! (B ! T 0X) ! T 0X extending to T 0-computations a pre-existing operation op : 8X : �:A ! (B ! TX) ! TXon T -computations.Monad Transformer Ise for Adding Side-E�ects{ signature �par for parametersstates S : �{ signature �new for new operationslookup lkp0 : T 0Supdate upd0 : S ! T 01

{ de�nition of new monad T 0 and monad morphism in : T ! T 0T 0X �= S ! T (X�S)[x]T 0 �= �s:[(x; s)]TletT 0 x(c in f x �= �s:letT (x; s0)(c s in f x s0in X c �= �s:letT x(c in [(x; s)]Tde�nition of new operationslkp0 �= �s:[(s; s)]Tupd0 s �= �s0:[(�; s)]Textension of old operationop0 X a f �= �s:op (X�S) a (�b:f b s)Remark 30. The operations lkp0 and upd0 do not �t the format for op. However,given an operation �op : A ! TB one can de�ne an operation op : 8X : �:A !(B ! TX)! TX in the right format by taking op X a f �= letT b(�op a in f b.Monad Transformer Iex for Adding Exceptions{ signature �par for parametersexceptions E : �{ signature �new for new operationsraise raise0 : 8X : �:E ! T 0Xhandle handle0 : 8X : �:(E ! T 0X)! T 0X ! T 0X{ de�nition of new monad T 0 and monad morphism in : T ! T 0T 0X �= T (X +E)[x]T 0 �= [inl x]TletT 0 x(c in f x �= letT u(c in (caseu of x) f x jn) [inr n]T)in X c �= letT x(c in [inl x]Tde�nition of new operationsraise0 X n �= [inr n]Thandle0 X f c �= letT u(c in (caseu of x) [inl x]T jn) f n)extension of old operationop0 X a f �= op (X +E) a fRemark 31. In this case the de�nition of op0 is particularly simple, and onecan show that the same de�nition works for extending a more general type ofoperations.Monad Transformer Ico for Adding Complexity{ signature �par for parametersmonoidM : �1 :M� :M !M !M (we use in�x notation for �)

to prove that T 0 is a monad, we should add axioms saying that (M; 1; �) isa monoid{ signature �new for new operationscost tick0 :M ! T 01{ de�nition of new monad T 0 and monad morphism in : T ! T 0T 0X �= T (X�M)[x]T 0 �= [(x; 1)]TletT 0 x(c in f x �= letT (x;m)(c in (letT (y; n)(f x in [(y;m � n)]T)in X c �= letT x(c in [(x; 1)]Tde�nition of new operationstick0 m �= [(�;m)]Textension of old operationop0 X a f �= op (X�M) a fMonad Transformer Icon for Adding Continuations{ signature �par for parametersresults R : �{ signature �new for new operationsabort abort0 : 8X : �:R! T 0Xcall-cc callcc0 : 8X;Y : �:((X ! T 0Y)! T 0X)! T 0X{ de�nition of new monad T 0 and monad morphism in : T ! T 0T 0X �= (X ! TR)! TR[x]T 0 �= �k:k xletT 0 x(c in f x �= �k:c (�x:f x k)in X c �= �k:letT x(c in k xde�nition of new operationsabort0 X r �= �k:[r]Tcallcc0 X Y f �= �k:f (�x:�k0:[k x]T) kextension of old operationop0 X a f �= �k:op R a (�b:f b k)Remark 32. The operation callcc0 does not �t the speci�ed format for an oldoperation, and there is no way to massage it into such format. Unlike the othersmonad transformers, Icon does not extend to a functor on Mon(C).Exercise 33. For each of the monad transformer, prove that T 0 is a monad.Assume that T is a monad, and use the equational axioms for higher-order �-calculus with sums and products, including �-axioms.Exercise 34. For each of the monad transformer, de�ne a �x-point combinatorfor the new computational types Y 0 : 8X : �:(T 0X ! T 0X) ! T 0X given a�x-point combinator for the old computational types Y : 8X : �:(TX ! TX)!TX . In some cases one should use the derived �x-point combinator �Y for carriersof T -algebras.

Exercise 35. De�ne a monad transformer Isr for state-readers, i.e. T 0X �= S !TX . What could be �new? De�ne a monad morphism from Tsr to Tse.Exercise 36. Check which monad transformers commutes (up to isomorphism).For instance, Ise and Iex do not commute, more precisely one gets{ Tse+exX = S ! T ((X + E)�S) when adding �rst side-e�ects and thenexceptions{ Tex+seX = S ! T ((X�S) + E) when adding �rst exceptions and thenside-e�ectsExercise 37. For each of the monad transformer, identify equational laws for thenew operations speci�ed in �new, and show that such laws are validated by thetranslation. For instance, Ise validates the following equations:s : S ` letT 0 �(upd0 s in lkp0 = letT 0 [s]T 0(upd0 s in : T 0Ss; s0 : S ` letT 0 �(upd0 s inupd0 s0 = upd0 s0 : T 01s : S ` letT 0 s(lkp0 inupd0 s = [�]T 0 : T 01X : �; c : T 0X ` letT 0 s(lkp0 in c = c : T 0XExercise 38 (Semantics of E�ects). Given a monad T over the category of sets:{ De�ne predicates for c 2 T 0X �= S ! T (X�S) corresponding to the prop-erties \c does not read from S" and \c does not write in S".notice that such predicates are extensional, therefore a computation thatreads the state and then rewrites it unchanged, is equivalent to a computa-tion that ignores the state.{ De�ne a predicate for c 2 T 0X �= T (X + E) corresponding to the property\c does not raise exceptions in E".

4 Monads in HaskellSo far we have focussed on applications of monads in denotational semantics,but since Wadler's in
uential papers in the early 90s they have also becomepart of the toolkit that Haskell programmers use on a day to day basis. Indeed,monads have proven to be so useful in practice that the language now includesextensions speci�cally to make programming with them easy. In the next fewsections we will see how monads are represented in Haskell, look at some of theirapplications, and try to explain why they have had such an impact.4.1 Implementing Monads in HaskellThe representation of monads in Haskell is based on theKleisli triple formulation:recall De�nition 1.4:A Kleisli triple over a category C is a triple (T; �; �), where T : jCj !jCj, �A : A ! TA for A 2 jCj, f� : TA ! TB for f : A ! TB and thefollowing equations hold: . . .In Haskell, T corresponds to a parameterised type, � is called return, and � iscalled >>=. This would suggest the following types:return :: a -> T a(>>=) :: (a -> T b) -> (T a -> T b)where a and b are Haskell type variables, so that these types are polymorphic.But notice that we can consider >>= to be a curried function of two arguments,with types (a -> T b) and T a. In practice it is convenient to reverse thesearguments, and instead give >>= the type(>>=) :: T a -> (a -> T b) -> T bNow the metalanguage notation let x(e1 in e2 can be conveniently expressed ase1 >>= \x -> e2(where \x -> e is Haskell's notation for �x:e). Intuitively this binds x to theresult of e1 in e2; with this in mind we usually pronounce \>>=" as \bind".Example 39. The monad of partiality can be represented using the built-inHaskell typedata Maybe a = Just a | NothingThis de�nes a parameterised type Maybe, whose elements are Just x for anyelement x of type a (representing a successful computation), or Nothing (repre-senting failure).The monad operators can be implemented as

return a = Just am >>= f = case m ofJust a -> f aNothing -> Nothingand failure can be represented byfailure = NothingAs an example of an application, a division function which operates on pos-sibly failing integers can now be de�ned asdivide :: Maybe Int -> Maybe Int -> Maybe Intdivide a b = a >>= \m ->b >>= \n ->if n==0 then failureelse return (a `div` b)Try unfolding the calls of >>= in this de�nition to understand the gain in claritythat using monadic operators brings.Example 40. As a second example, we show how to implement the monad ofside-e�ects in Haskell. This time we will need to de�ne a new type, State s a,to represent computations producing an a, with a side-e�ect on a state of types. Haskell provides three ways to de�ne types:type State s a = s -> (s,a)newtype State s a = State (s -> (s,a))data State s a = State (s -> (s,a))The �rst alternative declares a type synonym: State s a would be in everyrespect equivalent to the type s -> (s,a). This would cause problems later:since many monads are represented by functions, it would be di�cult to tell justfrom the type which monad we were talking about.The second alternative declares State s a to be a new type, di�erent fromall others, but isomorphic to s -> (s,a). The elements of the new type arewritten State f to distinguish them from functions. (There is no need for thetag used on elements to have the same name as the type, but it is often convenientto use the same name for both).The third alternative also declares State s a to be a new type, with elementsof the form State f, but in contrast to newtype the State constructor is lazy:that is, State ? and ? are di�erent values. This is because data declarationscreate lifted sum-of-product types, and even when the sum is trivial it is stilllifted. Thus State s a is not isomorphic to s -> (s,a) | it has an extraelement | and values of this type are more costly to manipulate as a result.We therefore choose the second alternative. The monad operations are noweasy to de�ne:

return a = State (\s -> (s,a))State m >>= f = State (\s -> let (s',a) = m sState m' = f ain m' s')The state can be manipulated usingreadState :: State s sreadState = State (\s -> (s,s))writeState :: s -> State s ()writeState s = State (_ -> (s,()))For example, a function to increment the state could be expressed using thesefunctions asincrement :: State Int ()increment = readState >>= \s ->writeState (s+1)4.2 The Monad Class: Overloading return and BindHaskell programmers make use of many di�erent monads; it would be awkwardif return and >>= had to be given di�erent names for each one. To avoid this,we use overloading so that the same names can be used for every monad.Overloading in Haskell is supported via the class system: overloaded namesare introduced by de�ning a class containing them. A class is essentially a signa-ture, with a di�erent implementation for each type. The monad operations area part of a class Monad, whose de�nition is found in Haskell's standard prelude:class Monad m wherereturn :: a -> m a(>>=) :: m a -> (a -> m b) -> m bHere the class parameter m ranges over parameterised types; read the declarationas \A parameterised type m is a Monad if it supports implementations of returnand >>= with the given types".Implementations of these operations are provided by making a correspondinginstance declaration, for example:instance Monad Maybe wherereturn a = Just am >>= f = case m ofJust a -> f aNothing -> Nothingwhich corresponds to the de�nition of the Maybe monad given earlier. For themonad of side-e�ects, we write

instance Monad (State s) wherereturn a = State (\s -> (s,a))State m >>= f = State (\s -> let (s',a) = m sState m' = f ain m' s')Notice that although we de�ned the type State with two parameters, and theMonad class requires a type with one parameter, Haskell allows us to create thetype we need by partially applying the State type to one parameter: types withmany parameters are `curried'. Indeed, we chose the order of the parameters inthe de�nition of State with this in mind.Now when the monadic operators are applied, the type at which they areused determines which implementation is invoked. This is why we were carefulto make State a new type above.A great advantage of overloading the monad operators is that it enables usto write code which works with any monad. For example, we could de�ne afunction which combines two monadic computations producing integers into acomputation of their sum:addM a b = a >>= \m ->b >>= \n ->return (m+n)Since nothing in this de�nition is speci�c to a particular monad, we can use thisfunction with any: addM (Just 2) (Just 3) is Just 5, but we could also useaddM with the State monad. The type assigned to addM re
ects this, it is1addM :: (Monad m) => m Int -> m Int -> m IntThe \(Monad m) =>" is called a context, and restricts the types which may besubstituted for m to instances of the class Monad.Although addM is perhaps too specialised to be really useful, we can derive avery useful higher-order function by generalising over +. Indeed, Haskell's stan-dard Monad library provides a number of such functions, such asliftM :: Monad m => (a -> b) -> m a -> m bliftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m csequence :: Monad m => [m a] -> m [a]With these de�nitions,addM = liftM2 (+)Programming with monads is greatly eased by such a library.Exercise 41. Give a de�nition of sequence. The intention is that each compu-tation in the list is executed in turn, and a list made of the results.1 Actually type inference produces an even more general type, since the arithmetic isalso overloaded, but we will gloss over this.

Finally, Haskell provides syntactic sugar for >>= to make monadic programsmore readable: the do-notation. For example, the de�nition of addM above couldequivalently be written asaddM a b = do m <- an <- breturn (m+n)The do-notation is de�ned bydo e = edo x <- e = e >>= (\x -> do c)cdo e = e >>= (_ -> do c)cApplying these rules to the de�nition of addM above rewrites it into the form�rst presented. The do-notation is simply a shorthand for bind, but does makeprograms more recognisable, especially for beginners.Example 42. As an example of monadic programming, consider the problem ofdecorating the leaves of a tree with unique numbers. We shall use a parameterisedtree typedata Tree a = Leaf a | Bin (Tree a) (Tree a)and de�ne a functionunique :: Tree a -> Tree (a,Int)which numbers the leaves from 1 upwards in left-to-right order. For example,unique (Bin (Bin (Leaf 'a') (Leaf 'b')) (Leaf 'c'))= Bin (Bin (Leaf ('a',1)) (Leaf ('b',2))) (Leaf ('c',3))Intuitively we think of an integer state which is incremented every time a leaf isencountered: we shall therefore make use of the Statemonad to de�ne a functionunique' :: Tree a -> State Int (Tree (a,Int))First we de�ne a function to increment the state,tick :: State Int Inttick = do n <- readStatewriteState (n+1)return nand then the de�nition of unique' is straightforward:unique' (Leaf a) = do n <- tickreturn (Leaf (a,n))unique' (Bin t1 t2) = liftM2 Bin (unique' t1) (unique' t2)

Notice that we use liftM2 to apply the two-argument function Bin to the resultsof labelling the two subtrees; as a result the notational overhead of using a monadis very small.Finally we de�ne unique to invoke the monadic function and supply an initialstate:unique t = runState 1 (unique' t)runState s (State f) = snd (f s)It is instructive to rewrite the unique function directly, without using amonad | explicit state passing in the recursive de�nition clutters it signi�cantly,and creates opportunities for errors that the monadic code completely avoids.5 Applying MonadsSo far we have shown how monads are represented in Haskell, and how thelanguage supports their use. But what are monads used for? Why have theybecome so prevalent in Haskell programs? In this section we try to answer thesequestions.5.1 Input/Output: the Killer ApplicationHistorically, input/output has been awkward to handle in purely functional lan-guages. The same applies to foreign function calls: there is no way to guaranteethat a function written in C, for example, does not have side e�ects, so callingit directly from a Haskell program would risk compromising Haskell's purelyfunctional semantics.Yet it is clear enough that input/output can be modelled in a purely func-tional way: we must just consider a program to be a function from the state ofthe universe before it is run, to the state of the universe afterwards. One possibil-ity is to write the program in this way: every function depending on the externalstate would take the universe as a parameter, and every function modifying itwould return a new universe as a part of its result. For example a program tocopy one �le to another might be written ascopy :: String -> String -> Universe -> Universecopy from to universe =let contents = readFile from universeuniverse' = writeFile to contents universein universe'Such a program has a purely functional semantics, but is not easy to im-plement. Of course, we cannot really maintain several copies of the universeat the same time, and so `functions' such as writeFile must be implementedby actually writing the new contents to the �lestore. If the programmer then

accidentally or deliberately returns universe instead of universe' as the �-nal result of his program, then the purely functional semantics is not correctlyimplemented. This approach has been followed in Clean though, using a lineartype system to guarantee that the programmer manipulates universes correctly[BS96].However, having seen monads we would probably wish to simplify the pro-gram above by using a State monad to manage the universe. By de�ningtype IO a = State Universe aand altering the types of the primitives slightly toreadFile :: String -> IO StringwriteFile :: String -> String -> IO ()then we can rewrite the �le copying program ascopy :: String -> String -> IO ()copy from to = do contents <- readFile fromwriteFile to contentswhich looks almost like an imperative program for the same task2.This program is both purely functional and e�ciently implementable: it isquite safe to write the output �le destructively. However, there is still a risk thatthe programmer will de�ne inappropriate operations on the IO type, such assnapshot :: IO Universesnapshot = State (\univ -> (univ, univ))The solution is just tomake the IO type abstract [JW93]! This does not change thesemantics of programs, which remains purely functional, but it does guaranteethat as long as all the primitive operations on the IO type treat the universe ina proper single-threaded way (which all operations implemented in imperativelanguages do), then so does any Haskell program which uses them.Since the IO monad was introduced into Haskell, it has been possible to writeHaskell programs which do input/output, call foreign functions directly, and yetstill have a purely functional semantics. Moreover, these programs look verylike ordinary programs in any imperative language. The contortions previouslyneeded to achieve similar e�ects are not worthy of description here.The reader may be wondering what all the excitement is about here: after all,it has been possible to write ordinary imperative programs in other languagesfor a very long time, including functional languages such as ML or Scheme; whatis so special about writing them in Haskell? Two things:2 The main di�erence is that we read and write the entire contents of a �le in oneoperation, rather than byte-by-byte as an imperative program probably would. Thismay seem wasteful of space, but thanks to lazy evaluation the characters of theinput �le are only actually read into memory when they are needed for writing tothe output. That is, the space requirements are small and constant, just as for abyte-by-byte imperative program.

{ Input/output can be combined cleanly with the other features of Haskell,in particular higher-order functions, polymorphism, and lazy evaluation. Al-though ML, for example, combines input/output with the �rst two, the abil-ity to mix lazy evaluation cleanly with I/O is unique to Haskell with monads| and as the copy example shows, can lead to simpler programs than wouldotherwise be possible.{ Input/output is combined with a purely functional semantics. In ML, forexample, any expression may potentially have side-e�ects, and transforma-tions which re-order computations are invalid without an e�ect analysis toestablish that the computations are side-e�ect free. In Haskell, no expres-sion has side-e�ects, but some denote commands with e�ects; moreover, thepotential to cause side-e�ects is evident in an expression's type. Evaluationorder can be changed freely, but monadic computations cannot be reorderedbecause the monad laws do not permit it.Peyton-Jones' excellent tutorial [Pey01] covers this kind of monadic program-ming in much more detail, and also discusses a useful re�nement to the semanticspresented here.5.2 Imperative AlgorithmsMany algorithms can be expressed in a purely functional style with the samecomplexity as their imperative forms. But some e�cient algorithms depend crit-ically on destructive updates. Examples include the UNION-FIND algorithm,many graph algorithms, and the implementation of arrays with constant timeaccess and modi�cation. Without monads, Haskell cannot express these algo-rithms with the same complexity as an imperative language.With monads, however, it is easy to do so. Just as the abstract IO monad en-ables us to write programs with a purely functional semantics, and give them animperative implementation, so an abstract state transformer monad ST allows usto write purely functional programs which update the state destructively [LJ94]3.Semantically the type ST a is isomorphic to State -> (State,a), where Stateis a function from typed references (locations) to their contents. In the imple-mentation, only one State ever exists, which is updated destructively in place.Operations are provided to create, read, and write typed references:newSTRef :: a -> ST (STRef a)readSTRef :: STRef a -> ST awriteSTRef :: STRef a -> a -> ST ()Here STRef a is the type of a reference containing a value of type a. Otheroperations are provided to create and manipulate arrays.The reason for introducing a di�erent monad ST, rather than just providingthese operations over the IO monad, is that destructive updates to variables in3 While the IO monad is a part of Haskell 98, the current standard [JHe+99], theST monad is not. However, every implementation provides it in some form; thedescription here is based on the Hugs modules ST and LazyST [JRtYHG+99].

a program are not externally visible side-e�ects. We can therefore encapsulatethese imperative e�ects using a new primitiverunST :: ST a -> awhich semantically creates a new State, runs its argument in it, and discardsthe �nal State before returning an a as its result. (A corresponding functionrunIO would not be implementable, because we have no way to `discard the �nalUniverse'). In the implementation of runST, States are represented just by acollection of references stored on the heap; there is no cost involved in creatinga `new' one therefore. Using runST we can write pure (non-monadic) functionswhose implementation uses imperative features internally.Example 43. The depth-�rst search algorithm for graphs uses destructively up-dated marks to identify previously visited nodes and avoid traversing them again.For simplicity, let us represent graph nodes by integers, and graphs using thetypetype Graph = Array Int [Int]A graph is an array indexed by integers (nodes), whose elements are the listof successors of the corresponding node. We can record which nodes have beenvisited using an updateable array of boolean marks, and program the depth-�rstsearch algorithm as follows:dfs g ns = runST (do marks <- newSTArray (bounds g) Falsedfs' g ns marks)dfs' g [] marks = return []dfs' g (n:ns) marks =do visited <- readSTArray marks nif visited then dfs' g ns markselse do writeSTArray marks n Truens' <- dfs' g ((g!n)++ns) marksreturn (n:ns')The function dfs returns a list of all nodes reachable from the given list of rootsin depth-�rst order, for example:dfs (array (1,4) [(1,[2,3]), (2,[4]), (3,[4]), (4,[1])]) =[1,2,4,3]The type of the depth-�rst search function isdfs :: Graph -> [Int] -> [Int]It is a pure, non-monadic function which can be freely mixed with other non-monadic code.Imperative features combine interestingly with lazy evaluation. In this ex-ample, the output list is produced lazily: the traversal runs only far enough to

produce the elements which are demanded. This is possible because, in the codeabove, return (n:ns') can produce a result before ns' is known. The recursivecall of dfs' need not be performed until the value of ns' is actually needed4.Thus we can e�ciently use dfs even for incomplete traversals: to search for the�rst node satisfying p, for example, we can usehead (filter p (dfs g roots))safe in the knowledge that the traversal will stop when the �rst node is found.King and Launchbury have shown how the lazy depth-�rst search functioncan be used to express a wide variety of graph algorithms both elegantly ande�ciently [KL95].The ST monad raises some interesting typing issues. Note �rst of all thatits operations cannot be implemented in Haskell with the types given, evenine�ciently! The problem is that we cannot represent an indexed collection ofvalues with arbitrary types { if we tried to represent States as functions fromreferences to contents, for example, then all the contents would have to have thesame type. A purely functional implementation would need dependent types, toallow the type of a reference's contents to depend on the reference itself. Thusthe ST monad gives the Haskell programmer indirect access to dependent types,and indeed, sometimes other applications which require dependent types can beprogrammed in terms of ST.Secondly, we must somehow prevent references created in one State beingused in another | it would be hard to assign a sensible meaning to the result.This is done by giving the ST type an additional parameter, which we may thinkof as a `state identi�er': ST s a is the type of computations on state s producingan a. Reference types are also parameterised on the state identi�er, so the typesof the operations on them become:newSTRef :: a -> ST s (STRef s a)readSTRef :: STRef s a -> ST s awriteSTRef :: STRef s a -> a -> ST s ()These types guarantee that ST computations only manipulate references lyingin `their' State.But what should the type of runST be? It is supposed to create a new Stateto run its argument in, but if we give it the typerunST :: ST s a -> athen it will be applicable to any ST computation, including those which ma-nipulate references in other States. To prevent this, runST is given a rank-2polymorphic type:runST :: (forall s. ST s a) -> a4 Hugs actually provides two variations on the ST monad, with and without lazy be-haviour. The programmer chooses between them by importing either ST or LazyST.

(and Hugs has been extended with rank-2 polymorphism just to make this pos-sible). This type ensures that the argument of runST can safely be run in anyState, in particular the new one which runST creates.Example 44. The expressionrunST (newSTRef 0)is not well-typed. Since newSTRef 0 has the type ST s (STRef s Int), thenrunST would have to produce a result of type STRef s Int | but the scope ofs does not extend over the type of the result.Example 45. The expressionrunST (do r<-newSTRef 0return (runST (readSTRef r)))is not well-typed either, because the argument of the inner runST is not poly-morphic | it depends on the state identi�er of the outer one.The inclusion of the ST monad and assignments in Haskell raises an interest-ing question: just what is a purely functional language? Perhaps the answer is:one in which assignment has a funny type!5.3 Domain Speci�c Embedded LanguagesSince the early days of functional programming, combinator libraries have beenused to de�ne succinct notations for programs in particular domains [Bur75].There are combinator libraries for many di�erent applications, but in this sectionwe shall focus on one very well-studied area: parsing. A library for writing parserstypically de�nes a type Parser a, of parsers for values of type a, and combinatorsfor constructing and invoking parsers. These might includesatisfy :: (Char -> Bool) -> Parser Charto construct a parser which accepts a single character satisfying the given pred-icate,(|||) :: Parser a -> Parser a -> Parser ato construct a parser which accepts an input if either of its operands can parseit, andrunParser :: Parser a -> String -> ato invoke a parser on a given input.A parsing library must also include combinators to run parsers in sequence,and to build parsers which invoke functions to compute their results. Wadlerrealised that these could be provided by declaring the Parser type to be a monad[Wad92]. Further combinators can then be de�ned in terms of these basic ones,such as a combinator accepting a particular character,

literal :: Char -> Parser Charliteral c = satisfy (==c)and a combinator for repetition,many :: Parser a -> Parser [a]many p = liftM2 (:) p (many p) ||| return []which parses a list of any number of ps.Given such a library, parsing programs can be written very succinctly. Asan example, we present a function to evaluate arithmetic expressions involvingaddition and multiplication:eval :: String -> Inteval = runParser exprexpr = do t <- termliteral '+'e <- exprreturn (t+e)||| termterm = do c <- closedliteral '*'t <- termreturn (c*t)||| closedclosed = do literal '('e <- exprliteral ')'return e||| numeralnumeral = do ds <- many (satisfy isDigit)return (read ds)With a good choice of combinators, the code of a parser closely resembles thegrammar it parses56!In recent years, a di�erent view of such combinator libraries has becomepopular: we think of them as de�ning a domain speci�c language (DSL), whose5 In practice the resemblance would be a little less close: real parsers for arithmetic ex-pressions are left-recursive, use a lexical analyser, and are written to avoid expensivebacktracking. On the other hand, real parsing libraries provide more combinators tohandle these features and make parsers even more succinct! See [HM98] for a gooddescription.6 Notice how important Haskell's lazy evaluation is here: without it, these recursivede�nitions would not make sense!

constructions are the combinators of the library [Hud98]. With this view, thislittle parsing library de�nes a programming language with special constructionsto accept a symbol and to express alternatives.Every time a functional programmer designs a combinator library, then, wemight as well say that he or she designs a domain speci�c programming lan-guage, integrated with Haskell. This is a useful perspective, since it encouragesprogrammers to produce a modular design, with a clean separation between thesemantics of the DSL and the program that uses it, rather than mixing com-binators and `raw' semantics willy-nilly. And since monads appear so often inprogramming language semantics, it is hardly surprising that they appear oftenin combinator libraries also!We will return to the implementation of the parsing library in the next sec-tion, after a discussion of monad transformers.6 Monad Transformers in HaskellThe Haskell programmer who makes heavy use of combinators will need to im-plement a large number of monads. Although it is perfectly possible to de�nea new type for each one, and implement return and >>= from scratch, it saveslabour to construct monads systematically where possible. The monad trans-formers of section 3.2 o�er an attractive way of doing so, as Liang, Hudak andJones point out [LHJ95].Recall the de�nition:A monad transformer is a function F : jMon(C)j ! jMon(C)j, i.e. afunction mapping monads (over a category C) to monads. We are inter-ested in monad transformers for adding computational e�ects, thereforewe require that for any monad T there should be a monad morphisminT : T ! FT .We represent monad transformers in Haskell by types parameterised on a monad(itself a parameterised type), and the result type | that is, types of kind(* -> *) -> * -> *. For example, the partiality monad transformer is rep-resented by the typenewtype MaybeT m a = MaybeT (m (Maybe a))According to the de�nition, MaybeT m should be a monad whenever m is, whichwe can demonstrate by implementing return and >>=:instance Monad m => Monad (MaybeT m) wherereturn x = MaybeT (return (Just x))MaybeT m >>= f =MaybeT (do x <- mcase x ofNothing -> return NothingJust a -> let MaybeT m' = f a in m')

Moreover, according to the de�nition of a monad transformer above, there shouldalso be a monad morphism from m to MaybeT m | that is, it should be possibleto transform computations of one type into the other. Since we need to de-�ne monad morphisms for many di�erent monad transformers, we use Haskell'soverloading again and introduce a class of monad transformersclass (Monad m, Monad (t m)) => MonadTransformer t m wherelift :: m a -> t m aHere t is the monad transformer, m is the monad it is applied to, and lift isthe monad morphism7. Now we can make MaybeT into an instance of this class:instance Monad m => MonadTransformer MaybeT m wherelift m = MaybeT (do x <- mreturn (Just x))The purpose of the MaybeT transformer is to enable computations to fail: weshall introduce operations to cause and handle failures. One might expect theirtypes to befailure :: MaybeT m ahandle :: MaybeT m a -> MaybeT m a -> MaybeT m aHowever, this is not good enough: since we expect to combine MaybeT with othermonad transformers, the monad we actually want to apply these operationsat may well be of some other form | but as long as it involves the MaybeTtransformer somewhere, we ought to be able to do so.We will therefore overload these operations also, and de�ne a class of `Maybe-like' monads8:class Monad m => MaybeMonad m wherefailure :: m ahandle :: m a -> m a -> m aOf course, monads of the form MaybeT m will be instances of this class, but laterwe will also see others. In this case, the instance declaration isinstance Monad m => MaybeMonad (MaybeT m) wherefailure = MaybeT (return Nothing)MaybeT m `handle` MaybeT m' =MaybeT (do x <- mcase x ofNothing -> m'Just a -> return (Just a))7 Here we step outside Haskell 98 by using a multiple parameter class { an extensionwhich is, however, supported by Hugs and many other implementations. We makem a parameter of the class to permit the de�nition of monad transformers whichplace additional requirements on their argument monad.8 Usually the standard Haskell class MonadPlus with operations mzero and mplus isused in this case, but in the present context the names MaybeMonad, failure andhandle are more natural.

Finally, we need a way to `run' elements of this type. We de�nerunMaybe :: Monad m => MaybeT m a -> m arunMaybe (MaybeT m) = do x <- mcase x ofJust a -> return afor this purpose. (We leave unde�ned how we `run' an erroneous computation,thus converting an explicitly represented error into a real Haskell one).We have now seen all the elements of a monad transformer in Haskell. Tosummarise:{ We de�ne a type to represent the transformer, say TransT, with two param-eters, the �rst of which should be a monad.{ We declare TransT m to be a Monad, under the assumption that m alreadyis.{ We declare TransT to be an instance of class MonadTransformer, thus de�n-ing how computations are lifted from m to TransT m.{ We de�ne a class TransMonad of `Trans-like monads', containing the opera-tions that it is TransT's purpose to support.{ We declare TransT m to be an instance of TransMonad, thus showing that itdoes indeed support them.{ We de�ne a function to `run' (TransT m)-computations, which producesm-computations as a result. In general runTrans may need additional pa-rameters | for example, for a state transformer we probably want to supplyan initial state.We can carry out this program to de�ne monad transformers for, among others,{ state transformers, represented bynewtype StateT s m a = StateT (s -> m (s, a))supporting operations in the class9class Monad m => StateMonad s m | m -> s wherereadState :: m swriteState :: s -> m (){ environment readers, represented bynewtype EnvT s m a = EnvT (s -> m a)supporting operations in the class9 This class declaration uses Mark Jones' functional dependencies, supported by Hugs,to declare that the type of the monad's state is determined by the type of the monaditself. In other words, the same monad cannot have two di�erent states of di�erenttypes. While not strictly necessary, making the dependency explicit enables thetype-checker to infer the type of the state much more often, and helps to avoidhard-to-understand error messages about ambiguous typings.

class Monad m => EnvMonad env m | m -> env whereinEnv :: env -> m a -> m ardEnv :: m envwhere rdEnv reads the current value of the environment, and inEnv runs itsargument in the given environment.{ continuations, represented bynewtype ContT ans m a = ContT ((a -> m ans) -> m ans)supporting operations in the classclass Monad m => ContMonad m wherecallcc :: ((a -> m b) -> m a) -> m awhere callcc f calls f, passing it a function k, which if it is ever calledterminates the call of callcc immediately, with its argument as the �nalresult.Two steps remain before we can use monad transformers in practice. Firstly,since monad transformers only transform one monad into another, we must de�nea monad to start with. Although one could start with any monad, it is naturalto use a `vanilla' monad with no computational features { the identity monadnewtype Id a = Id aThe implementations of return and >>= on this monad just add and remove theId tag.Secondly, so far the only instances in class MaybeMonad are of the formMaybeT m, the only instances in class StateMonad of the form StateT s m, andso on. Yet when we combine two or more monads, of course we expect to use thefeatures of both in the resulting monad. For example, if we construct the monadStateT s (MaybeT Id), then we expect to be able to use failure and handleat this type, as well as readState and writeState.The only way to do so is to give further instance declarations, which de�nehow to `lift' the operations of one monad over another. For example, we can liftfailure handling to state monads as follows:instance MaybeMonad m => MaybeMonad (StateT s m) wherefailure = lift failureStateT m `handle` StateT m' = StateT (\s -> m s `handle` m' s)Certainly this requires O(n2) instance declarations, one for each pair of monadtransformers, but there is unfortunately no other solution.The payo� for all this work is that, when we need to de�ne a monad, we canoften construct it quickly by composing monad transformers, and automaticallyinherit a collection of useful operations.

Example 46. We can implement the parsing library from section 5.3 by combin-ing state transformation with failure. We shall let a parser's state be the inputto be parsed; running a parser will consume a part of it, so running two parsersin sequence will parse successive parts of the input. Attempting to run a parsermay succeed or fail, and we will often wish to handle failures by trying a di�erentparser instead. We can therefore de�ne a suitable monad bytype Parser a = StateT String (MaybeT Id) awhose computations we can run usingrunParser p s = runId (runMaybe (runState s p))It turns out that the operator we called ||| earlier is just handle, and satisfyis simply de�ned bysatisfy :: (s -> Bool) -> Parser s ssatisfy p = do s<-readStatecase s of[] -> failurex:xs -> if p x then do writeState xsreturn xelse failureThere is no more to do.6.1 Monads and DSLs: a DiscussionIt is clear why monads have been so successful for programming I/O and im-perative algorithms in Haskell | they o�er the only really satisfactory solution.But they have also been widely adopted by the designers of combinator libraries.Why? We have made the analogy between a combinator library and a domainspeci�c language, and since monads can be used to structure denotational se-mantics, it is not so surprising that they can also be used in combinator libraries.But that something can be used, does not mean that it will be used. The de-signer of a combinator library has a choice: he need not slavishly follow the OneMonadic Path | why, then, have so many chosen to do so? What are the over-whelming practical bene�ts that
ow from using monads in combinator librarydesign in particular?Monads o�er signi�cant advantages in three key areas. Firstly, they o�er adesign principle to follow. A designer who wants to capture a particular func-tionality in a library, but is unsure exactly what interface to provide to it, can bereasonably con�dent that a monadic interface will be a good choice. The monadinterface has been tried and tested: we know it allows the library user great
exibility. In contrast, early parsing libraries, for example, used non-monadicinterfaces which made some parsers awkward to write.Secondly, monads can guide the implementation of a library. A library de-signer must choose an appropriate type for his combinators to work over, and his

task is eased if the type is a monad. Many monad types can be constructed sys-tematically, as we have seen in this section, and so can some parts of the librarywhich operate on them. Given a collection of monad transformers, substantialparts of the library come `for free', just as when we found there was little leftto implement after composing the representation of Parsers from two monadtransformers.Thirdly, there are bene�ts when many libraries share a part of their inter-faces. Users can learn to use each new library more quickly, because the monadicpart of its interface is already familiar. Because of the common interface, it isreasonable to de�ne generic monadic functions, such as liftM2, which work withany monadic library. This both helps users, who need only learn to use liftM2once, and greatly eases the task of implementors, who �nd much of the func-tionality they want to provide comes for free. And of course, it is thanks to thewidespread use of monads that Haskell has been extended with syntactic sugarto support them | if each library had its own completely separate interface,then it would be impractical to support them all with special syntax.Taken together, these are compelling reasons for a library designer to choosemonads whenever possible.7 Exercises on MonadsThis section contains practical exercises, intended to be solved using Hugs ona computer. Since some readers will already be familiar with Haskell and willhave used monads already, while others will be seeing them for the �rst time,the exercises are divided into di�erent levels of di�culty. Choose those whichare right for you.The Hugs interpreter is started with the commandhugs -98The
ag informs hugs that extensions to Haskell 98 should be allowed | andthey are needed for some of these exercises. When Hugs is started it prompts fora command or an expression to evaluate; the command \:?" lists the commandsavailable. Hugs is used by placing de�nitions in a �le, loading the �le into theinterpreter (with the \:l" or \:r" command), and typing expressions to evaluate.You can obtain information on any de�ned name with the command \:i", anddiscover which names are in scope using \:n" followed by a regular expressionmatching the names you are interested in. Do not try to type de�nitions inresponse to the interpreter's prompt: they will not be understood.7.1 Easy ExercisesChoose these exercises if you were previously unfamiliar with monads or Haskell.Exercise 47. Write a functiondir :: IO [String]

which returns a list of the �le names in the current directory. You can obtainthem by running ls and placing the output in a �le, which you then read. Youwill need to import module System, which de�nes a function system to executeshell commands | place \import System" on the �rst line of your �le. A stringcan be split into its constituent words using the standard function words, andyou can print values (for testing) using the standard function print.Exercise 48. Write a functionnodups :: [String] -> [String]which removes duplicate elements from a list of strings | the intention is toreturn a list of strings in the argument, in order of �rst occurrence. It is easyto write an ine�cient version of nodups, which keeps a list of the strings seenso far, but you should use a hash table internally so that each string in theinput is compared against only a few others. (The choice of hash function is notparticularly important for this exercise, though). Moreover, you should producethe result list lazily. Test this by runninginteract (unlines . nodups . lines)which should echo each line you then type on its �rst occurrence.You will need to use Haskell lists, which are written by enclosing their ele-ments in square brackets separated by commas, and the cons operator, whichis \:". Import module LazyST, and use newSTArray to create your hash table,readSTArray to read it, and writeSTArray to write it. Beware of Haskell's lay-out rule, which insists that every expression in a do begin in the same column| and interprets everything appearing in that column as the start of a newexpression.Exercise 49. The implementation of the MaybeT transformer is given above, butthe implementations of the StateT, EnvT and ContT transformers were onlysketched. Complete them. (ContT is quite di�cult, and you might want to leaveit for later).Exercise 50. We de�ne the MaybeT type bynewtype MaybeT m a = MaybeT (m (Maybe a))What if we had de�ned it bynewtype MaybeT m a = MaybeT (Maybe (m a))instead? Could we still have de�ned a monad transformer based on it?Exercise 51. We de�ned the type of Parsers above bytype Parser a = StateT String (MaybeT Id) aWhat if we had combined state transformation and failure the other way round?type Parser a = MaybeT (StateT String Id) aDe�ne an instance of StateMonad for MaybeT, and investigate the behaviour ofseveral examples combining failure handling and side-e�ects using each of thesetwo monads. Is there a di�erence in their behaviour?

7.2 Moderate ExercisesChoose these exercises if you are comfortable with Haskell, and have seen monadsbefore.Exercise 52. Implement a monad MaybeST based on the built-in ST monad,which provides updateable typed references, but also supports failure and failurehandling. If m fails in m `handle` h, then all references should contain the samevalues on entering the handler h that they had when m was entered.Can you add an operatorcommit :: MaybeST ()with the property that updates before a commit survive a subsequent failure?Exercise 53. A di�erent way to handle failures is using the typenewtype CPSMaybe ans a =CPSMaybe ((a -> ans -> ans) -> ans -> ans)This is similar to the monad of continuations, but both computations and con-tinuations take an extra argument | the value to return in case of failure. Whena failure occurs, this argument is returned directly and the normal continuationis not invoked.Make CPSMaybe an instance of class Monad and MaybeMonad, and de�nerunCPSMaybe.Failure handling programs often use a great deal of space, because failurehandlers retain data that is no longer needed in the successful execution. Yetonce one branch has progressed su�ciently far, we often know that its failurehandler is no longer relevant. For example, in parsers we usually combine parsersfor quite di�erent constructions, and if the �rst parser succeeds in parsing morethan a few tokens, then we know that the second cannot possibly succeed. Canyou de�ne an operatorcut :: CPSMaybe ans ()which discards the failure handler, so that the memory it occupies can be re-claimed? How would you use cut in a parsing library?7.3 Di�cult ExercisesThese should give you something to get your teeth into!Exercise 54. Implement a domain speci�c language for concurrent programming,using a monad Process s a and typed channels Chan s a, with the operationschan :: Process s (Chan s a)send :: Chan s a -> a -> Process s ()recv :: Chan s a -> Process s ato create channels and send and receive messages (synchronously),

fork :: Process s a -> Process s ()to start a new concurrent task, andrunProcess :: (forall s. Process s a) -> ato run a process. By analogy with the ST monad, s is a state-thread identi-�er which is used to guarantee that channels are not created in one call ofrunProcess and used in another. You will need to write the type of runProcessexplicitly | Hugs cannot infer rank 2 types.Exercise 55. Prolog provides so-called logical variables, whose values can be re-ferred to before they are set. De�ne a type LVar and a monad Logic in termsof ST, supporting operationsnewLVar :: Logic s (LVar s a)readLVar :: LVar s a -> awriteLVar :: LVar s a -> a -> Logic s ()where s is again a state-thread identi�er. The intention is that an LVar should bewritten exactly once, but its value may be read beforehand, between its creationand the write | lazy evaluation is at work here. Note that readLVar does nothave a monadic type, and so can be used anywhere. Of course, this can onlywork if the value written to the LVar does not depend on itself. Hint: You willneed to usefixST :: (a -> ST s a) -> ST s ato solve this exercise | fixST (\x -> m) binds x to the result produced by mduring its own computation.Exercise 56. In some applications it is useful to dump the state of a programto a �le, or send it over a network, so that the program can be restarted in thesame state later or on another machine. De�ne a monad Interruptable, withan operationdump :: Interruptable ()which stops execution and converts a representation of the state of the programto a form that can be saved in a �le. The result of running an Interruptablecomputation should indicate whether or not dumping occurred, and if so, providethe dumped state. If s is a state dumped by a computation m, then resume m sshould restart m in the state that s represents. Note that m might dump severaltimes during its execution, and you should be able restart it at each point.You will need to choose a representation for states that can include everytype of value used in a computation. To avoid typing problems, convert valuesto strings for storage using show.You will not be able to make Interruptable an instance of class Monad,because your implementations of return and >>= will not be su�ciently poly-morphic | they will only work over values that can be converted to strings.This is unfortunate, but you can just choose other names for the purposes ofthis exercise. One solution to the problem is described in [Hug99].

8 Intermediate Languages for CompilationWe have seen how monads may be used to structure the denotational semanticsof languages with implicit computational e�ects and how they may be used toexpress and control the use of computational e�ects in languages like Haskell, inwhich the only implicit e�ect is the possibility of non-termination. We now turnto the use of monads in the practical compilation of languages, such as ML, withimplicit side e�ects. Much of this material refers to the MLj compiler for Stan-dard ML [BKR98], and its intermediate language MIL (Monadic IntermediateLanguage) [BK99].8.1 Compilation by TransformationIt should not be a surprise that ideas which are useful in structuring seman-tics also turn out to be useful in structuring the internals of compilers since, byimplementing rules for deriving program equivalences, there is a sense in whichcompilers actually do semantics. Even in the absence of sophisticated static anal-yses, compilers for functional languages typically work by translating the user'sprogram into an intermediate form and then performing a sequence of rewriteson the intermediate representation before translating that into lower-level codein the backend. These rewrites are intended to preserve the semantics (i.e. theobservable behaviour) of the user's program, whilst improving the e�ciency ofthe �nal program in terms of execution speed, dynamic memory usage and/orcode size. Hence the rewriting rules used by the compiler should be observa-tional equivalences, and if they are applied locally (i.e. independently of thesurrounding context) then they should be instances of an observational congru-ence relation. Of course, the hard part is that the compiler also has to decidewhen applying a particular semantic equation is likely to be an improvement.8.2 Intermediate LanguagesThe reasons for having an intermediate language at all, rather than just doingrewriting on the abstract syntax tree of the source program, include:1. Complexity. Source languages tend to have many sophisticated syntacticforms (e.g. nested patterns or list comprehensions) which are convenient forthe programmer but which can be translated into a simpler core language,leaving fewer cases for the optimizer and code generator to deal with.2. Level. Many optimizing transformations involve choices which cannot beexpressed in the source language because they are at a lower level of ab-straction. In other words, they involve distinctions between implementationdetails which the source language cannot make. For example{ All functions in ML take a single argument { if you want to pass morethan one then you package them up as a single tuple. This is simpleand elegant for the programmer, but we don't want the compiled codeto pass a pointer to a fresh heap-allocated tuple if it could just pass

a couple of arguments on the stack or in registers. Hence MIL (likeother intermediate languages for ML) includes both tuples and multiplearguments and transforms some instances of the former into the latter.{ MIL also includes datastructures with `holes' (i.e. uninitialized values).These are used to express a transformation which turns some non-tailcalls into tail calls and have linear typing rules which prevent holes beingdereferenced or �lled more than once [Min98].Of course, there are many levels of abstraction between the source and targetlanguages, so it is common for compilers to use several di�erent intermediatelanguages at di�erent phases.10However, in these notes we shall not be concerned so much with the com-plexity of realistic source languages, or with expressing low-level implementationdetails in intermediate languages. Instead, we will be interested in the slightlymore nebulous idea that a good intermediate language may be more uniform,expressive and explicit than the source.Many important transformations do not involve concepts which are essen-tially at a lower-level level of abstraction than the source language, but cannevertheless be anywhere between bothersome and impossible to express or im-plement directly on the source language syntax.The equational theory of even a simpli�ed core of the source language maybe messy and ill-suited to optimization by rewriting. Rather than have a com-plex rewriting system with conditional rewrites depending on various kinds ofcontextual information, one can often achieve the same end result by translat-ing into an intermediate language with a better-behaved equational theory. Itis typically the case that a `cleaner' intermediate language makes explicit someaspects of behaviour which are implicit in the source language.11 Examples:{ Many intermediate languages introduce explicit names for every intermediatevalue. Not only are the names useful in building various auxiliary datastruc-tures, but they make it easy to, for example, share subexpressions. A verytrivial case would belet val x = ((3,4),5)in (#1 x, #1 x)endwhich we don't want to simplify to the equivalent((3,4),(3,4))because that allocates two identical pairs. One particularly straighforwardway to get a better result is to only allow introductions and eliminations tobe applied to variables or atomic constants, so the translation of the originalprogram into the intermediate form is10 Or to have one all-encompassing intermediate datatype, but the ensure that theinput and output of each phase satisfy particular additional constraints.11 Which can make such intermediate representations larger than the correspondingsource.

let val y = (3,4)in let val x = (y,5)in (#1 x, #1 x)endendwhich rewrites tolet val y = (3,4)in let val x = (y,5)in (y, y)endendand then tolet val y = (3,4)in (y, y)endwhich is probably what we wanted.{ MIL contains an unusual exception-handling construct because SML's handleconstruct is unable to express some commuting conversion-style rewriteswhich we wished to perform [BK01].{ Some compilers for higher-order languages use a continuation passing style(CPS) lambda-calculus as their intermediate language (see, for example,[App92,KKR+86]). There are translations of call by value (CBV) and callby name (CBN) source languages into CPS. Once a program is in CPS, itis sound to apply the full unrestricted �; � rules, rather than, say, the morerestricted �v ; �v rules which are valid for �v (the CBV lambda calculus).Moreover, as Plotkin shows in his seminal paper [Plo75], � and � on CPSterms prove strictly more equivalences between translated terms than do �vand �v on the corresponding �v terms. Hence, a compiler for a CBV languagewhich translates into CPS and uses �� can perform more transformationsthan one which just uses �v and �v on the source syntax.CPS transformed terms make evaluation order explict (which makes themeasier to compile to low-level imperative code in the backend), allow tail-callelimination be be expressed naturally, and are particularly natural if thelanguage contains call/cc or other sophisticated control operators.However, Flanagan et al. [FSDF93] argue that compiling CBV lambda-calculus via CPS is an unnecessarily complicated and indirect technique.The translation introduces lots of new �-abstractions and new, essentiallytrivial, `administrative redexes'. To generate good code, and to identify ad-ministrative redexes, real CPS compilers treat abstractions introduced bythe translation process di�erently from those originating in the original pro-gram and e�ectively undo the CPS translation in the backend, after havingperformed transformations. Flanagan et al. show that the same e�ect can beobtained by using a �-calculus with let and peforming A-reductions to reach

an A-normal form. A-reductions were introduced in [SF93] and are de�nedin terms of evaluation contexts. Amongst other things, A-normal forms nameall intermediate values and only apply eliminations to variables or values.An example of an A-reduction is the following:E [if V then N1 else N2] �! if V then E [N1] else E [N2]where E [�] is an evaluation context. Flanagan et al. observe that most non-CPS (`direct style') compilers perform some A-reductions in a more-or-lessad hoc manner, and suggest that doing all of them, and so working withA-normal forms, is both more uniform and leads to faster code.Typed Intermediate Languages One big decision when designing an inter-mediate language is whether or not it should be typed. Even when the sourcelanguage has strong static types, many compilers discard all types after theyhave been checked, and work with an untyped intermediate language. Morerecently, typed intermediate languages have become much more popular in com-pilers (and in the fashionable area of mobile code security). Examples of typedcompiler intermediate languages include FLINT [Sha97], the GHC intermediatelanguage [Jon96] and MIL. The advantages of keeping type information aroundin an intermediate language include:{ Types are increasingly the basis for static analyses, optimizing transforma-tions and representation choices. Type-based optimization can range fromthe use of sophisticated type systems for static analyses to exploitation ofthe fact that static types in the source language provide valuable informationwhich it would be foolish to ignore or recompute. For example, the fact thatin many languages pointers to objects of di�erent types can never alias canbe used to allow more transformations. The MLj compiler uses simple typeinformation to share representations, using a single Java class to implementseveral di�erent ML closures.{ Type information can be used in generating backend code, for example ininterfacing to a garbage collector or allocating registers.{ Type-checking the intermediate representation is a very good way of �ndingcompiler bugs.12{ It's particularly natural if the language allows types to be re
ected as values.{ It's clearly the right thing to do if the target language is itself typed. This isthe case for MLj (since Java bytecode is typed) and for compilers targettingtyped assembly language [MWCG99].But there are disadvantages too:{ Keeping type information around and maintaining it during transformationscan be very expensive in both space and time.12 And this really is a signi�cant advantage!

{ Unless the type system is complex and/or rather non-standard, restrictingthe compiler to work with typable terms can prohibit transformations. Evensomething like closure-conversion (packaging functions with the values oftheir free variables) is not trivial from the point of view of typing [MMH96].�MLT as a Compiler Intermediate Language Several researchers have sug-gested that Moggi's computational metalanguage �MLT [Mog89,Mog91] mightbe useful as the basis of a typed intermediate language.13Benton [Ben92] proposed the use of the computational metalanguage as away of expressing the optimizations which may be performed as a result ofstrictness analysis in compilers for CBN languages such as Haskell. Earlier workon expressing the use of strictness analysis was largely in terms of a somewhatinformal notion of changes in `evaluation strategy' for �xed syntax. It is muchmore elegant to reason about changes in translation of the source language intosome other language which itself has a �xed operational semantics. In the caseof a pure CBN source language (such as PCF [Plo77]), however, one cannot(directly) use a source-to-source translation to express strictness-based transfor-mations. Adding a strict let construct with typing rule� `M : A �; x : A ` N : B� ` let x =M in N : Bwhere let x = M in N �rst evaluates M to Weak Head Normal Form (WHNF)before substituting for x in N , allows one to express basic strictness optimiza-tions, such as replacing the application M N with let x = N in (M x) whenM is known to be strict. But this is only half the story { we'd also like to beable to perform optimizations based on the fact that certain expressions (suchas x in our example) are known to be bound to values in WHNF and so neednot be represented by thunks or re-evaluated. To capture this kind of informa-tion, Benton suggested a variant of the computational metalanguage in whichan expression of a value type A is always in WHNF and the computation typeTA is used for potentially unevaluated expressions which, if they terminate, willyield values of type A. The default translation of a call-by-name expression oftype A ! B is then to an intermediate language expression of type of typeT ((A! B)n) = T (TAn ! TBn), i.e. a computation producing a function fromcomputations to computations. An expression denoting a strict function which isonly called in strict contexts, by contrast, can be translated into an intermediatelanguage term of type T (An ! TBn) : a computation producing a function fromvalues to computations.Exercise 57. The `standard' denotational semantics of PCF is in the CCC ofpointed !-cpos and continuous maps, with [[int]] = Z? and function space inter-preted by [[A! B]] = [[B]][[A]]. This semantics is adequate for a CBN operational13 The author, like several others, persistently refers to �MLT as the computationallambda calculus, although Moggi actually invented that name for his �c, a di�er-ent calculus (without computational types). This doesn't seem to have ever causedterrible confusion, but one should be aware of it.

semantics in which the notion of observation is termination of closed terms ofground type. It seems natural that one could give a semantics to PCF with astrict let construct just by de�ning[[let x =M in N]]� = �? if [[M]]� = ?[[N]]�[x 7! [[M]]�] otherwisebut in fact, the semantics is then no longer adequate. Why? How might onemodify the semantics to �x the problem? How good is the modi�ed semanticsas a semantics of the original language (i.e. without let)?Other authors addressed the problem of expressing strictness-based trans-formations by varying a translation of the source language into continuationpassing style [BM92,DH93]. The two strands of work were then brought to-gether by Danvy and Hatcli� [HD94], who showed how various CPS transformscould be factored through translations into the computational metalanguage andhow the administrative reductions of CPS, and Flanagan et al.'s A-reductions,corresponded to applying the �-reduction and commuting conversions (see Sec-tion 11) associated with the computation type constructor in the computationalmetalanguage. Danvy and Hatcli� also suggest that the computational metalan-guage could make an attractive compiler intermediate language.Peyton Jones et al. [JLST98] proposed the use of an intermediate languagebased on the computational metalanguage as a common framework for compilingboth call-by-value and call-by-name languages.14 Barthe et al. [BHT98] addcomputational types to the pure type systems (PTS) to obtain monadic versionsof a whole family of higher-order typed lambda calculi (such as F! and theCalculus of Constructions) and advocate the use of such calculi as compilerintermediate languages for languages which combine polymorphic type and/ormodule systems with side-e�ects.9 Type and E�ect Systems9.1 IntroductionThe work referred to in the previous section concerns using a well-behaved inter-mediate language (A-normal forms, CPS or �MLT) to perform sound rewritingon a programs written in languages with `impure' features. All those interme-diate languages make some kind of separation (in the type system and/or thelanguage syntax) between `pure' values and `impure' (potentially side-e�ecting)computations. The separation is, however, fairly crude and there are often goodreasons for wanting to infer at compile-time a safe approximation15 to just which14 Unfortunately, [JLST98] contains an error: the semantics of the intermediate lan-guage L2 does not actually satisfy the monad equations.15 As is always the case with static analyses, precise information is uncomputable, sowe have to settle for approximations. In this case, that means overestimating thepossible side-e�ects of an expression.

side-e�ects may happen as a result of evaluating a particular expression. Thiskind of e�ect analysis is really only applicable to CBV languages, since CBNlanguages do not usually allow any side-e�ects other than non-termination.Historically, the �rst e�ect analyses for higher order languages were developedto avoid a type soundness problem which occurs when polymorphism is combinednaively with updateable references. To see the problem, consider the following(illegal) SML program:let val r = ref (fn x=> x)in (r := (fn n=>n+1);!r true)endUsing the `obvious' extension of the Hindley-Milner type inference rules to coverreference creation, dereferencing and assignment, the program above would type-check:1. (fn x=>x) has type �! �, so2. ref (fn x=>x) has type (�! �)ref3. generalization then gives r the type scheme 8�:(�! �)ref4. so by specialization r has type (int ! int)ref, meaning the assignmenttypechecks5. and by another specialization, r has type (bool! bool)ref, so6. !r has type bool! bool, so the application type checks.However, it is clear that the program really has a type error, as it will try toincrement a boolean.To get around this problem, Gi�ord, Lucassen, Jouvelot, Talpin and others[GL86,GJLS87,TJ94] developed type and e�ect systems. The idea is to have are�ned type system which infers both the type and the possible e�ects which anexpression may have, and to restrict polymorphic generalization to type variableswhich do not appear in side-e�ecting expressions. In the example above, onewould then infer that the expression ref (fn x=>x) creates a new reference cellof type � ! �. This prevents the type of r being generalized in the let rule,so the assignment causes � to be uni�ed with int and the application of !r totrue then fails to typecheck.16It should be noted in passing that there are a number of di�erent waysof avoiding the type loophole. For example, Tofte's imperative type discipline[Tof87] using `imperative type variables' was used in the old (1990) version of theStandard ML De�nition, whilst Leroy and Weis proposed a di�erent scheme fortracking `dangerous' type variables (those appearing free in the types of expres-sions stored in references) [LW91]. A key motivation for most of that work was16 Depending on the order in which the inference algorithm works, the applicationmight alternatively cause � to be uni�ed with bool and then the error would bediscovered in the assignment. This is an example of why giving good type errormessages is hard.

to allow as much polymorphic generalization as possible to happen in the letrule, whilst still keeping the type system sound. However, expensive and unpre-dictable inference systems which have a direct impact on which user programsactually typecheck are not often a good idea. In 1995, Wright published a study[Wri95] indicating that nearly all existing SML code would still typecheck andrun identically (sometimes modulo a little �-expansion) if polymorphic general-ization were simply restricted to source expressions which were syntactic values(and thus trivially side-e�ect free). This simple restriction was adopted in therevised (1997) SML De�nition and research into fancy type systems for impurepolymorphic languages seems to have now essentially ceased.However, there are still very good reasons for wanting to do automatic ef-fect inference. The most obvious is that more detailed e�ect information allowscompilers to perform more aggressive optimizations. Other applications includevarious kinds of veri�cation tool, either to assist the programmer or to checksecurity policies, for example. In SML, even a seemingly trivial rewrite, such asthe dead-code eliminationlet val x = M1 in M2 end �! M2 (x 62 FV (M2))is generally only valid if the evaluation of M1 doesn't diverge, perform I/O,update the state or throw an exception (though it is still valid if M1 reads fromreference cells or allocates new ones).179.2 The Basic IdeaThere are now many di�erent type and e�ect systems in the literature, but theyall share a common core. (The book [NHH99] contains, amongst other things,a fair amount on e�ect systems and many more references than these notes.) Atraditional type system infers judgements of the formx1 : A1; : : : ; xn : An `M : Bwhere the Ai and B are types. A type and e�ect system infers judgements ofthe form x1 : A1; : : : ; xn : An `M : B; "which says that in the given typing context, the expression M has type B ande�ect ". The e�ect " is drawn from some set E whose elements denote sets ofactual e�ects which may occur at runtime (in other words, they are abstractionsof runtime e�ects, just as types are abstractions of runtime values). Exactly whatis in E depends not only on what runtime e�ects are possible in the language,but also on how precise one wishes to make the analysis. The simplest non-triviale�ect system would simply take E to have two elements, one (usually written ;)17 The reader who thinks that this is a silly example because `programmers never writecode like that' is quite mistaken. Immediately unused bindings may not be commonin the original source, but they are frequently created as a result of other rewrites.

denoting no e�ect at all (`pure'), and the other just meaning `possibly has somee�ect'. Most e�ect systems are, as we shall see, a little more re�ned than this.The �rst thing to remark about the form of a type and e�ect judgement isthat an e�ect appears on the right of the turnstile, but not on the left. Thisis because we are only considering CBV languages, and that means that atruntime free variables will always be bound to values, which have no e�ect. Ane�ect system for an impure CBN language, were there any such thing, wouldhave pairs of types and e�ects in the context too.18 Because variables are alwaysbound to values, the associated type and e�ect rule will be:�; x : A ` x : A; ;The second point is that E actually needs to be an algebra, rather thanjust a set; i.e. it has some operations for combining e�ects de�ned on it. Con-sider the e�ectful version of the rule for a simple (strict, non-polymorphic, non-computational) let expression:� `M : A; "1 �; x : A ` N : B; "2� ` let x =M in N : B; ?What should the e�ect of the compound expression be? Dynamically, M will beevaluated, possibly performing some side-e�ect from the set denoted by "1 and,assuming the evaluation of M terminated with a value V , then N [V=x] will beevaluated and possibly perform some side-e�ect from the set denoted by "2. Howwe combine "1 and "2 depends on how much accuracy we are willing to pay forin our static analysis. If we care about the relative ordering of side-e�ects thenwe might take elements of E to denote sets of sequences (e.g. regular languages)over some basic set of e�ects and then use language concatenation "1 � "2 tocombine the e�ects in the let rule. Commonly, however, we abstract away fromthe relative sequencing and multiplicity of e�ects and just consider sets of basice�ects. In this case the natural combining operation for the let rule is someabstract union operation.19For the conditional expression, the following is a natural rule:� `M : bool; "0 � ` N1 : A; "1 � ` N2 : A; "2� ` (if M then N1 else N2) : A; "0 � ("1 ["2)If we were not tracking sequencing or multiplicity, then the e�ect in the conclu-sion of the if rule would just be "0 ["1 ["2, of course.18 Although the mixture of CBN and side-e�ects is an unpredictable one, Haskell doesactually allow it, via the `experts-only' unsafePerformIO operation. But I'm stillnot aware of any type and e�ect system for a CBN language.19 E�ect systems in the literature often include a binary [operation in the formalsyntax of e�ect annotations, which are then considered modulo unit, associativity,commutativity and idempotence. For very simple e�ect systems, this is unnecessar-ily syntactic, but it's not so easy to avoid when one also has e�ect variables andsubstitution.

The other main interesting feature of almost all type and e�ect systems is theform of the rules for abstraction and application, which make types dependenton e�ects, in that the function space constructor is now annotated with a `latente�ect' A "! B. The rule for abstraction looks like:�; x : A `M : B; "� ` (�x : A:M) : A "! B; ;because the �-abstraction itself is a value, and so has no immediate e�ect (;) butwill have e�ect " when it is applied, as can be seen in the rule for application:� `M : A "1! B; "2 � ` N : A; "3� `M N : B; "2 � "3 � "1The overall e�ect of evaluating the application is made up of three separatee�ects { that which occurs when the function is evaluated, that which occurswhen the argument is evaluated and �nally that which occurs when the bodyof the function is evaluated. (Again, most e�ect systems work with sets ratherthan sequences, so the combining operation in the conclusion of the applicationrule is just [.)The �nal thing we need to add to our minimal skeleton e�ect system is someway to weaken e�ects. The collection E of e�ects for a given analysis always hasa natural partial order relation � de�ned on it such that " � "0 means "0 denotesa larger set of possible runtime side-e�ects than ". Typically � is just the subsetrelation on sets of primitive e�ects. The simplest rule we can add to make ausable system is the sube�ecting rule:� `M : A; " " � "0� `M : A; "0Exercise 58. De�ne a toy simply-typed CBV functional language (integers, booleans,pairs, functions, recursion) with a �xed collection of global, mutable integer vari-ables. Give it an operational and/or denotational semantics. Give a type ande�ect system (with sube�ecting) for your language which tracks which globalvariables may be read and written during the evaluation of each expression (soan e�ect will be a pair of sets of global variable names). Formulate and prove asoundness result for your analysis. Are there any closed terms in your languagewhich require the use of the sube�ect rule to be typable at all?9.3 More Precise E�ect SystemsOne of the great things about static analyses is that one can always tweak anyanalysis system to make it more accurate.20 There are a number of naturaland popular ways to improve the precision of the hopelessly weak `simple-types'approach to e�ect analysis sketched in the previous section.20 This corollary to the unsolvability of the Halting Problem is known as `The FullEmployment Theorem for Compiler Writers'.

Subtyping The bidirectional
ow of information in type systems or analyseswhich simply constrain types to be equal frequently leads to an undesirable lossof precision. For example, consider an e�ect analysis of the following very sillyML program (and forget polymorphism for the moment):let fun f x = ()fun pure () = ()fun impure () = print "I'm a side-effect"val m = (f pure, f impure)in pureendIf they were typed in isolation, the best type for pure would be unit ;! unitand impure would get unit fprintg! unit (assuming that the constant print hastype string fprintg! unit). However, the fact that both of them get passed to thefunction f means that we end up having to make their types, including the latente�ects, identical. This we can do by applying the sube�ecting rule to the bodyof pure and hence deriving the same type unit fprintg! unit for both pure andimpure. But then that ends up being the type inferred for the whole expression,when it's blindingly obvious that we should have been able to deduce the moreaccurate type unit ;! unit.The fact that the argument type of f has to be an impure function type haspropogated all the way back to the de�nition of pure. Peyton Jones has giventhis phenomenon the rather apt name of the poisoning problem. One solution isto extend to notion of sube�ecting to allow more general subtyping. We replacethe sube�ecting rule with� `M : A; " " � "0 A � A0� `M : A0; "0where � is a partial order on types de�ned by rules likeA0 � A B � B0 " � "0A "! B � A0 "0! B0 and A � A0 B � B0A�B � A0 �B0Note the contravariance of the function space constructor in the argument type.Using the subtyping rule we can now get the type and e�ect we'd expect forour silly example. The de�nitions of pure and impure are given di�erent types,but we can apply the subtyping rule (writing 1 for unit)�; pure : (1 ;! 1) ` pure : (1 ;! 1); ; 1 � 1 1 � 1 ; � fprintg(1 ;! 1) � (1 fprintg! 1) ; � ;�; pure : (1 ;! 1) ` pure : (1 fprintg! 1); ;

to coerce the use of pure when it is passed to f to match the required argumenttype whilst still using the more accurate type inferred at the point of de�nitionas the type of the whole expression.E�ect Polymorphism Another approach to the poisoning problem is to intro-duce ML-style polymorphism at the level of e�ects (this is largely orthogonal towhether we also have polymorphism at the level of types). We allow e�ects tocontain e�ect variables and then to allow the context to bind identi�ers to typeschemes, which quantify over e�ect variables.Consider the following programlet fun run f = f ()fun pure () = ()fun impure () = print "Poison"fun h () = run impurein run pureendIn this case, even with subtyping, we end up deriving a type and e�ect ofunit; fprintg for the whole program, though it actually has no side e�ect. Withe�ect polymorphism, we can express the fact that there is a dependency betweenthe e�ect of a particular call to run and the latent e�ect of the function whichis passed at that point. The de�nition of run gets the type scheme8a:(unit a! unit) a! unitwhich is instantiated with a = ; in the application to pure and a = fprintgin the application to impure (which is actually never executed). That lets usdeduce a type and e�ect of unit; ; for the whole program.Regions One of the most in
uential ideas to have come out of work on typeand e�ect systems is that of regions : static abstractions for sets of dynamicallyallocated run-time locations. If (as in the earlier exercise) one is designing ane�ect system to track the use of mutable storage in a language with a �xed setof global locations, there are two obvious choices for how precisely one tracksthe e�ects { either one records simply whether or not an expression might reador write some unspeci�ed locations, or one records a set of just which locationsmight be read or written. Clearly the second is more precise and can be usedto enable more transformations. For example, the evaluation of an expressionwhose only e�ect is to read some locations might be moved from after to beforethe evaluation of an expression whose e�ect is to write some locations if the setof locations possibly read is disjoint from the set of locations possibly written.But no real programming language (with the possible exception of ones de-signed to be compiled to silicon) allows only a statically �xed set of mutablelocations. When an unbounded number of new references may be allocated dy-namically at runtime, a static e�ect system clearly cannot name them all in

advance. The simple approach of just having one big abstraction for all loca-tions (`the store') and tracking only whether some reading or some writing takesplace is still sound, but we would like to be more precise.In many languages, the existing type system gives a natural way to partitionthe runtime set of mutable locations into disjoint sets. In an ML-like language, anint ref and a bool ref are never aliased, so one may obtain a useful increasein precision by indexing read, write and allocation e�ects by types. Ignoringpolymorphism again, we might takeE = Pfrd(A);wr(A); al(A) j A a typeg(Note that types and e�ects are now mutually recursive.)But we can do even better. Imagine that our language had two quite distincttypes of references, say red ones and blue ones, and one always had to saywhich sort one was creating or accessing. Then clearly a red reference and a bluereference can never alias, we could re�ne our e�ect types system to track thecolours of references involved in store e�ects, and we could perform some moretransformations (for example commuting an expression which can only writeblue integer references with one which only reads red integer references).In its simplest form, the idea of region inference is to take a typing derivationfor a monochrome program and to �nd a way of colouring each reference typeappearing in the derivation subject to preserving the validity of the derivation(so, for example, a function expecting a red reference as an argument can never beapplied to a blue one). It should be clear that the aim is to use as many di�erentcolours as possible. The colours are conventionally called regions, because onecan imagine that dynamically all the locations of a given colour are allocated ina particular region of the heap.21So now we have three static concepts: type, e�ect and region. Each of thesecan be treated monomorphically, with a subwidget relation or polymorphically.The type and e�ect discipline described by Talpin and Jouvelot in [TJ94] ispolymorphic in all three components and indexes reference e�ects by both regionsand types.Perhaps the most interesting thing about regions is that we can use them toextend our inference system with a rule in which the e�ect of the conclusion issmaller than the e�ect of the assumption. Consider the following examplefun f x = let val r = ref (x+1)in !rend21 Alternatively, one might think that any runtime location will have a unique allocationsite in the code and all locations with the same allocation site will share a colour,so one could think of a region as a set of static program points. But this is a lesssatisfactory view, since more sophisticated systems allow references allocated at thesame program point to be in di�erent regions, depending on more dynamic contextualinformation, such as which functions appear in the call chain.

A simple e�ect system would assign f a type and e�ect like int fal;rdg! int; ;,which seems reasonable, since it is indeed a functional value which takes integersto integers with a latent e�ect of allocating and reading. But the fact that fhas this latent e�ect is actually completely unobservable, since the only uses ofstorage it makes are completely private. In this case it is easy to see that f isobservationally equivalent to the completely pure successor functionfun f' x = x+1which means that, provided the use to which we are going to make of e�ectinformation respects observational equivalence22 we could soundly just forget allabout the latent e�ect of f and infer the type int ;! int for it instead. How doregions help? A simple type, region and e�ect derivation looks like this����; x:int ` x+1:int; ;�; x:int ` (ref x+1):int ref�; fal�g ����; x:int; r:int ref� `(!r):int; frd�g�; x:int ` (let r=ref x+1 in !r):int; fal�; rd�g� ` (fn x=>let r=ref x+1 in !r) : int fal�;rd�g! int; ;where � is a region. Now this is a valid derivation for any choice of �; in particular,we can pick � to be distinct from any region appearing in � . That means that thebody of the function does not have any e�ect involving references imported fromits surrounding context. Furthermore, the type of the function body is simplyint, so whatever the rest of the program does with the result of a call to thefunction, it cannot have any dependency on the references used to produce it.Such considerations motivate the e�ect masking rule� `M : A; "� `M : A; " n frd�; al�;wr� j � 62 � ^ � 62 AgUsing this rule before just before typing the abstraction in the derivation abovedoes indeed allow us to type f as having no observable latent e�ect.One of the most remarkable uses of region analysis is Tofte and Talpin'swork on static memory management [TT97]: they assign region-annotated typesto every non-base value (rather than just mutable references) in an intermedi-ate language where new lexically-scoped regions are introduced explicitly by aletregion � in ...end construct. For a well-typed and annotated program inthis language, no value allocated in region � will be referenced again after theend of the letregion block introducing �. Hence that region of the heap may22 This should be the case for justifying optimising transformations or inferring moregenerous polymorphic types, but might not be in the case of a static analysis toolwhich helps the programmer reason about, say, memory usage.

be safely reclaimed on exiting the block. This technique has been successfullyapplied in a version of the ML Kit compiler in which there is no runtime garbagecollector at all. For some programs, this scheme leads to dramatic reductions inruntime space usage compared with traditional garbage collection, whereas forothers the results are much worse. Combining the two techniques is possible, butrequires some care, since the region-based memory management reclaims mem-ory which will not be referenced again, but to which there may still be pointersaccessible from the GC root. The GC therefore needs to avoid following these`dangling pointers'.The soundness of e�ect masking in the presence of higher-type referencesand of region-based memory management is not at all trivial to prove. Both[TJ94] and [TT97] formulate correctness in terms of a coinductively de�ned con-sistency relation between stores and typing judgements. A number of researchershave recently published more elementary proofs of the correctness of region cal-culi, either by translation into other systems [BHR99,dZG00] or by more directmethods [HT00,Cal01].10 Monads and E�ect Systems10.1 IntroductionThis section describes how type and e�ect analyses can be presented in terms ofmonads and the computational metalanguage. Although this is actually ratherobvious, it was only recently that anybody got around to writing anything seri-ous about it. In ICFP 1998, Wadler published a paper [Wad98] (later extendedand corrected as [WT99]) showing the equivalence of a mild variant of the e�ectsystem of Talpin and Jouvelot [TJ94] and a version of the computational met-alanguage in which the computation type constructor is indexed by e�ects. Inthe same conference, Benton, Kennedy and Russell described the MLj compiler[BKR98] and its intermediate language MIL, which is a similar e�ect-re�nedversion of the computational metalanguage. Also in 1998, Tolmach proposed anintermediate representation with a hierarchy of monadic types for use in com-piling ML by transformation [Tol98].The basic observation is that the places where the computation type construc-tor appears in the call-by-value translation of the lambda calculus into �MLTcorrespond precisely to the places where e�ect annotations appear in type ande�ect systems. E�ect systems put an " over each function arrow and on theright-hand side of turnstiles, whilst the CBV translation adds a T to the end ofeach function arrow and on the right hand side of turnstiles. Wadler started witha CBV lambda calculus with a value-polymorphic type, region and e�ect systemtracking store e�ects (without e�ect masking). He then showed that Moggi'sCBV translation of this language into a version of the metalanguage in whichthe computation type constructor is annotated with a set of e�ects (and themonadic let rule unions these sets) preserves typing, in that� `eff M : A; ") � v `mon Mv : T"(Av)

whereintv = int(A "! B)v = Av ! T"(Bv)Wadler also de�ned an instrumented operational semantics for each of the twolanguages and used these to prove subject reduction type soundness results in thestyle of Wright and Felleisen [WF94]. The instrumented operational semanticsrecords not only the evaluation of an expression and a state to a value and anew state, but also a trace of the side e�ects which occur during the evaluation;part of the de�nition of type soundness is then that when an expression has astatic e�ect ", any e�ect occuring in the dynamic trace of its evaluation must becontained in ".Tolmach's intermediate language has four monads:1. The identity monad, used for pure, terminating computations;2. The lifting monad, used to model potential non-termination;3. The monad of exceptions and non-termination;4. The ST monad, which combines lifting, exceptions and the possibility ofperforming output.These are linearly ordered, with explicit monad morphisms used to coerce com-putations from one monad type to a larger one. Tolmach gives a denotationalsemantics for his intermediate language (using cpos) and presents a number ofuseful transformation laws which can be validated using this semantics.10.2 MIL-lite: Monads in MLjMIL-lite is a simpli�ed fragment of MIL, the intermediate language used in theMLj compiler. It was introduced by Benton and Kennedy in [BK99] as a basisfor proving the soundness of some of the e�ect-based optimizing transforma-tions performed by MLj. Compared with many e�ect systems in the literature,MIL only performs a fairly crude e�ect analysis { it doesn't have regions, ef-fect polymorphism or masking. MIL-lite further simpli�es the full language byomitting type polymorphism, higher-type references and recursive types as wellas various lower level features. Nevertheless, MIL-lite is far from trivial, com-bining higher-order functions, recursion, exceptions and dynamically allocatedstate with e�ect-indexed computation types and subtyping.Types and terms MIL-lite is a compiler intermediate language for which we�rst give an operational semantics and then derive an equational theory, so thereare a couple of design di�erences between it and Moggi's equational metalan-guage. The �rst is that types are strati�ed into value types (ranged over by �)and computation types (ranged over by
); we will have no need of computationsof computations. The second di�erence is that the distinction between compu-tations and values is alarmingly syntactic: the only expressions of value typesare normal forms. It is perhaps more elegant to assign value types to a wider

collection of pure expressions than just those in normal form. That is the wayWadler's e�ect-annotated monadic language is presented, and it leads naturallyto a strati�ed operational semantics in which there is one relation de�ning thepure reduction of expressions of value type to normal form and another de�ningthe possibly side-e�ecting evaluation of computations.Given a countable set E of exception names, MIL-lite types are de�ned by� ::= unit j int j intref j � � � j � + � j � !

 ::= T"(�) " � E = f?; r; w; ag] EWe write bool for unit + unit. Function types are restricted to be from valuesto computations as this is all we shall need to interpret a CBV source language.The e�ects which we detect are possible failure to terminate (?), reading froma reference, writing to a reference, allocating a new reference cell and raisinga particular exception E 2 E . Inclusion on sets of e�ects induces a subtypingrelation: � 6 � � 2 funit; int; intrefg " � "0 � 6 � 0T"(�) 6 T"0 (� 0)�1 6 � 01 �2 6 � 02�1 � �2 6 � 01 � � 02 �1 6 � 01 �2 6 � 02�1 + �2 6 � 01 + � 02 � 0 6 �
 6
0� !
 6 � 0 !
0Re
exivity and transitivity are consequences of these rules.There are two forms of typing judgment: � ` V : � for values and � `M :
for computations, where in both cases � is a �nite map from term variables tovalue types (because the source language is CBV). We assume a countable setL of locations. The typing rules are shown in Figure 5 and satisfy the usualweakening, strengthening and substitution lemmas. We will sometimes use G torange over both value and computation terms and � to range over both valueand computation types. Most of the terms are unsurprising, but we do use anovel construct try x(M catch fE1:M1; : : : ; En:Mng inNwhich should be read \Evaluate the expression M . If successful, bind the resultto x and evaluate N . Otherwise, if exception Ei is raised, evaluate the exceptionhandler Mi instead, or if no handler is applicable, pass the exception on." A fulldiscussion of the reasons for adopting the try-handle construct may be found in[BK01], but for now observe that it nicely generalises both handle and Moggi'smonadic let, as illustrated by some of the syntactic sugar de�ned in Figure 6.For ease of presentation the handlers are treated as a set in which no ex-ception E appears more than once. We let H range over such sets, and writeH nE to denote H with the handler for E removed (if it exists). We sometimesuse map-like notation, for example writing H(E) for the term M in a handlerE:M 2 H , and writing dom(H) for fE j E:M 2 Hg. We write � ` H :
 tomean that for all E:M 2 H , � `M :
.

�; x : � ` x : � � ` n : int � ` () : unit � ` ` : intref ` 2 L� ` V : �i� ` iniV : �1 + �2 i = 1; 2 � ` V1 : �1 � ` V2 : �2� ` (V1; V2) : �1 � �2�; x : �; f : � ! T"[f?g(� 0) `M : T"(� 0)� ` (rec f x =M) : � ! T"(� 0) � ` V : �1� ` V : �2 �1 6 �2� ` V1 : � !
 � ` V2 : �� ` V1 V2 :
 � ` V : �� ` val V : T;(�)� `M : T"(�) � ` H : T"0 (� 0) �; x : � ` N : T"0(� 0)� ` try x(M catchH inN : T"ndom(H)["0(� 0) � ` raise E : TfEg(�)� ` V : �1 � �2� ` �iV : T;(�i) i = 1; 2 � ` V : �1 + �2 f�; xi : �i `Mi :
gi=1;2� ` (case V of in1x1:M1 ; in2x2:M2) :
� ` V : int� ` ref V : Tfag(intref) � ` V : intref� ` !V : Tfrg(int) � ` V1 : intref � ` V2 : int� ` V1 := V2 : Tfwg(unit)� ` V1 : int � ` V2 : int� ` V1 + V2 : T;(int) � ` V1 : int � ` V2 : int� ` V1 = V2 : T;(bool) � `M :
1� `M :
2
1 6
2Fig. 5. Typing rules for MIL-lite�x: M def= rec f x =M (f =2 FV (M))
 def= (rec f x = f x) ()false def= in1()true def= in2()if V thenM2 elseM1 def= case V of in1x1:M1; in2x2:M2 (xi =2 FV (Mi))let x(M inN def= try x(M catch fg inNlet x1(M1;x2(M2 inN def= let x1(M1 in let x2(M2 inNM ;N def= let x(M inN (x =2 FV (N))M handleH def= try x(M catchH in val xset f`1 7! n1; : : : ; `k 7! nkg def= `1 := n1 ; : : : ; `k := nk ; val ()assert (`; n) def= let v(!`; b((v = n) in if b then val () else
assert f`1 7! n1; : : : ; `k 7! nkg def= assert (`1; n1) ; : : : ; assert (`k; nk) ; val ()Fig. 6. Syntactic sugar

The analysis The way in which the MIL-lite typing rules express a simplee�ects analysis should be fairly clear, though some features may deserve fur-ther comment. The ! introduction rule incorporates an extremely feeble, butnonetheless very useful, termination test: the more obvious rule would insist that? 2 ", but that would prevent �x:M from getting the natural derived typing ruleand would cause undesirable non-termination e�ects to appear in, particularly,curried recursive functions.Just as with traditional e�ect systems, the use of subtyping increases theaccuracy of the analysis compared with one which just uses simple types orsube�ecting.There are many possible variants of the rules. For example, there is a stronger(try) rule in which the e�ects of the handlers are not all required to be the same,and only the e�ects of handlers corresponding to exceptions occurring in " areunioned into the e�ect of the whole expression.Exercise 59. Give examples which validate the claim that the ! introductionrule gives better results than the obvious version with ? 2 ".MIL-lite does not include recursive types or higher-type references, becausethey would make proving correctness signi�cantly more di�cult. But can you de-vise candidate rules for an extended language which does include these features?They're not entirely obvious (especially if one tries to make the rules reasonablyprecise too). It may help to considerdatatype U = L of U->Uandlet val r = ref (fn () => ())val _ = r := (fn () => !r ())in !rendOperational semantics We present the operational semantics of MIL-lite us-ing a big-step evaluation relation �;M + �0; R where R ranges over value termsand exception identi�ers and � 2 States def= L *�n Z.Write �;M + if �;M + �0; R for some �0; R and bGc for the set of locationnames occuring in G. If �;� 2 States then (� / �) 2 States is de�ned by(� /�)(`) = �(`) if that's de�ned and �(`) otherwise.In [BK99], we next prove a number of technical results about the operationalsemantics, using essentially the techniques described by Pitts in his lectures[Pit00a]. Since most of that material is not directly related to monads or e�ects,we will omit it from this account, but the important points are the following:{ We are interested in reasoning about contextual equivalence, which is a type-indexed relation between terms in context :� ` G =ctx G0 : �

�; val V + �; V �; raise E + �;E �; �i(V1; V2) + �; Vi�; n+m + �; n+m �;n = n + �; true �; n = m + �; false (n 6= m)�; !` + �;�(`) �; ` := n + �[` 7! n]; () �; ref n + �] [` 7! n]; `�;Mi[V=xi] + �0; R�; case iniV of in1x1:M1 ; in2x2:M2 + �0; R i = 1; 2�;M [V=x; (rec f x =M)=f] + �0; R�; (rec f x =M) V + �0; R �;M + �0; V �0; N [V=x] + �00; R�; try x(M catchH inN + �00; R�;M + �0; E �0;M 0 + �00; R�; try x(M catchH inN + �00; R H(E) =M 0�;M + �0; E�; try x(M catchH inN + �0; E E =2 dom(H)Fig. 7. Evaluation relation for MIL-lite{ Rather than work with contextual equivalence directly, we show that contex-tual equivalence coincides with ciu equivalence, which shows that only certainspecial contexts need be considered to establish equivalence. For MIL-lite,ciu equivalence is the open extension of the relation de�ned by the followingclauses:� If M1 : T"(�) and M2 : T"(�) we write M1 �M2 : T"(�) and say M1 isciu equivalent to M2 at type T"(�) when 8N;H such that x : � ` N :
and ` H :
, and 8� 2 States such that dom� � bM1;M2; H;Nc wehave�; try x(M1 catchH inN + , �; try x(M2 catchH inN +� If V1 : � and V2 : � then we write V1 � V2 : � for val V1 � val V2 : T;(�).10.3 Transforming MIL-liteSemantics of E�ects We want to use the e�ect information expressed in MIL-lite types to justify some optimizing transformations. Our initial inclination wasto prove the correctness of these transformations by using a denotational seman-tics. However, giving a good denotational semantics of MIL-lite is surprisinglytricky, not really because of the multiple computational types, but because ofthe presence of dynamically allocated references. Stark's thesis [Sta94] examinesequivalence in a very minimal language with dynamically generated names inconsiderable detail and does give a functor category semantics for a language

with higher order functions and integer references. But MIL-lite is rather morecomplex than Stark's language, requiring a functor category into cpos (ratherthan sets) and then indexed monads over that. Worst of all, the resulting se-mantics turns out to be very far from fully abstract { it actually fails to validatesome of the most elementary transformations which we wished to perform. So wedecided to prove correctness of our transformations using operational techniquesinstead.Most work on using operational semantics to prove soundness of e�ect anal-yses involves instrumenting the semantics to trace computational e�ects in someway and then proving that `well-typed programs don't go wrong' in this modi-�ed semantics. This approach is perfectly correct, but the notion of correctnessand the meaning of e�ect annotations is quite intensional and closely tied tothe formal system used to infer them. Since we wanted to prove the soundnessof using the analysis to justify observational equivalences in an uninstrumentedsemantics, we instead tried to characterise the meaning of e�ect-annotated typesas properties of terms which are closed under observational equivalence in theuninstrumented semantics. To give a simple example of the di�erence betweenthe two approaches, a weak e�ect system (such as that in MIL-lite) will onlyassign a term an e�ect which does not contain w if the evaluation of that termreally does never perform a write operation. A region-based analysis may infersuch an e�ect if it can detect that the term only writes to private locations. Butthe property we really want to use to justify equations is much more extensional:it's that after evaluating the term, the contents of all the locations which wereallocated before the evaluation are indistinguishable from what they were tostart with.The decision not to use an instrumented semantics is largely one of taste,but there is another (post hoc) justi�cation. There are a few places in the MLjlibraries where we manually annotate bindings with smaller e�ect types thancould be inferred by our analysis, typically so that the rewrites can dead-codethem if they are not used (for example, the initialisation of lookup tables usedin the
oating point libraries). Since those bindings do have the extensionalproperties associated with the type we force them to have, the correctness resultfor our optimizations extends easily to these manually annotated expressions.We capture the intended meaning [[�]] of each type � in MIL-lite as the setof closed terms of that type which pass all of a collection of cotermination testsTests� � States�Ctxt� �Ctxt� where Ctxt� is the set of closed contexts witha �nite number of holes of type �. Formally:[[�]] def= fG : � j 8(�;M [�];M 0[�]) 2 Tests� :bM [G];M 0[G]c � dom�) (�;M [G] +$ �;M 0[G] +) gWe de�ne Tests� inductively as shown in Figure 8.

Testsint def= fg Testsintref def= fg Testsunit def= fgTests�1��2 def= Si=1;2f(�;M [�i[�]];M 0[�i[�]]) j (�;M [�];M 0[�]) 2 Tests�igTests�1+�2 def= Si=1;2f(�; case [�] of inix:M [x] ; in3�iy:
;case [�] of inix:M 0[x] ; in3�iy:
) j (�;M [�]; M 0[�]) 2 Tests�igTests�!
 def= f(�;M [[�] V];M 0[[�] V]) j V 2 [[�]]; (�;M [�];M 0[�]) 2 Tests
gTestsT"� def= f(�; let x([�] in set�0;M [x]; let x([�] in set�0;M 0[x])j (�0;M [�];M 0[�]) 2 Tests� ; � 2 Statesg [Se 62" Testse;�whereTests?;� def= f(�; [�]; val ()) j � 2 StatesgTestsw;� def= f(�; let y(!` in try x([�] catchE:M inN;try x([�] catchE:let y(!` inM in let y(!` inN)j y : int; x : � ` N :
; y : int `M :
;� 2 States; ` 2 dom�gTestsr;� def= f(�; d(�;�;E); try x([�] catchE:assert� / �; raise E inN;d(�;�;E); ` := n; try x([�] catchE:assert �[` 7! n] / �; raise Ein assert (`; (�[` 7! n] / �)(`)); ` := (� / �)(`);N)j E 2 E; �;� 2 States; dom� � dom� 3 `; n 2 Z;x : � ` N :
g[f(�; [�] handleE:
; set�0; [�] handleE:
) j �;�0 2 States; E 2 EgTestsE;� def= f(�; [�]; [�] handleE:N) j � 2 States;` N :
gTestsa;� def= f(�; let x([�]; y((set�; [�]) inN; let x([�]; y(val x inN)j � 2 States; x : �; y : � ` N :
gandK�n def= f` 7! n j ` 2 dom(�)gd(�;�;E) def= set K�0; (([�]; val ()) handleE:val ()); assert K�0 / �;set K�1; (([�]; val ()) handleE:val ()); assert K�1 / �; set�Fig. 8. De�nition of Tests�

Although these de�nitions appear rather complex, at value types they actu-ally amount to a familiar-looking logical predicate:Lemma 101{ [[int]] = fn j n 2 Zg, [[intref]] = f` j ` 2 Lg and [[unit]] = f()g.{ [[�1 � �2]] = f(V1; V2) j V1 2 [[�1]]; V2 2 [[�2]]g{ [[� !
]] = fF : � !
 j 8V 2 [[�]]:(F V) 2 [[
]]g{ [[�1 + �2]] = Si=1;2finiV j V 2 [[�i]]g utLemma 102 If � 6 �0 then [[�]] � [[�0]]. utWe also have to prove an operational version of admissibility for the predicateassociated with each type. This follows from a standard `compactness of evalua-tion' or `unwinding' result which is proved using termination induction, but weomit the details. Finally, we can prove the `Fundamental Theorem' for our logicalpredicate, which says that the analysis is correct in the sense that whenever aterm is given a particular type it actually satis�es the property associated withthat type:Theorem 60. If xi : �i ` G : � and Vi 2 [[�i]] then G[Vi=xi] 2 [[�]]. utAlthough we have explained the meaning of the logical predicate at valuetypes, it seems worth commenting a little further on the de�nitions of Testse;� .The intention is that the extent of Testse;� is the set of computations of typeTE(�) which de�nitely do not have e�ect e. So, passing all the tests in Tests?;�is easily seen to be equivalent to not diverging in any state and passing all thetests in TestsE;� means not throwing exception E in any state.The tests concerning store e�ects are a little more subtle. It is not too hard tosee that Testsw;� expresses not observably writing the store. Similarly, Testsr;�tests (contortedly!) for not observably reading the store, by running the compu-tation in di�erent initial states and seeing if the results can be distinguished bya subsequent continuation.The most surprising de�nition is probably that of Testsa;� , the extent ofwhich is intended to be those computations which do not observably allocateany new storage locations. This should include, for example, a computationwhich allocates a reference and then returns a function which uses that referenceto keep count of how many times it has been called, but which never revealsthe counter, nor returns di�erent results according to its value. However, thede�nition of Testsa;� does not seem to say anything about store extension; whatit actually captures is those computations for which two evaluations in equivalentinitial states yield indistinguishable results. Our choice of this as the meaning of`doesn't allocate' was guided by the optimising transformations which we wishedto be able to perform rather than a deep understanding of exactly what it meansto not allocate observably, but in retrospect it seems quite reasonable.

�-� � ` V1 : �1 � ` V2 : �2� ` �i(V1; V2) �= val Vi : T;(�i) �-T � ` V : � �; x : � `M :
� ` let x(val V inM �= M [V=x] :
�-!�; x : �; f : � ! T"[f?g(� 0) `M : T"(� 0) � ` V : �� ` (rec f x =M) V �=M [V=x; rec f x =M=f] : T"(� 0)�-+� ` V : �i �; x1 : �1 `M1 :
 �; x2 : �2 `M2 :
� ` case iniV of in1x1:M1; in2x2:M2 �=Mi[V=xi] :
�-� � ` V : �1 � �2� ` let x1(�1V ;x2(�2V in val (x1; x2) �= val V : T;(�1 � �2)�-+ � ` V : �1 + �2� ` case V of in1x1:val (in1x1); in2x2:val (in2x2) �= val V : T;(�1 + �2)�-! � ` V : � !
� ` rec f x = V x �= V : � !
 �-T � `M :
� ` let x(M in val x �=M :
cc1 � `M1 : T"1(�1) �; y : �1 `M2 : T"2(�2) �; y : �1; x : �2 `M3 : T"3(�3)� ` let x((let y(M1 inM2) inM3 �= let y(M1;x(M2 inM3 : T"1["2["3 (�3)cc2 � ` V : �1 + �2 f�; xi : �i `Mi : T"(�)g �; x : � ` N : T"0(� 0)� ` let x(case V of finixi:Mig inN �= case V of finixi:let x(Mi inNg : T"["0(� 0)�-E � `M :
 � ` H :
 �; x : � ` N :
� ` try x(raiseE catch (E:M);H inN �=M :
�-E � `M : T"(�) � ` H : T"0(� 0) �; x : � ` N : T"0(� 0)� ` try x(M catch (E:raise E);H inN �= try x(M catchH inN : T"["0(� 0)Fig. 9. E�ect-independent equivalences (1)

E�ect-independent equivalences Figure 9 presents some typed observationalcongruences that correspond to identities from the equational theory of the com-putational lambda calculus, and Figure 10 presents equivalences that involvelocal side-e�ecting behaviour.23 Directed variants of many of these are usefultransformations that are in fact performed by MLj (although the duplicationof terms in cc2 is avoided by introducing a special kind of abstraction). Theseequations can be derived without recourse to our logical predicate, by makinguse of a rather strong notion of equivalence called Kleene equivalence that caneasily be shown to be contained in ciu equivalence. Two terms are Kleene equiv-alent if they coterminate in any initial state with syntactically identical resultsand the same values in all accessible locations of the store (Mason and Talcottcall this `strong isomorphism' [MT91]).� ` V : int � `M : T"(�)� ` let x(ref V inM �=M : T"[fag(�)� ` V : intref �; x : int; y : int `M : T"(�)� ` let x(!V ; y(!V inM �= let x(!V ; y(val x inM : T"[frg(�)� ` V1 : int � ` V2 : int �; x1 : intref; x2 : intref `M : T"(�)� ` let x1(ref V1;x2(ref V2 inM �= let x2(ref V2; x1(ref V1 inM : T"[fag(�)� ` V1 : intref � ` V2 : int �; x : int `M : T"(�)� ` V1 := V2; let x(!V1 inM �= V1 := V2;M [V2=x] : T"[fr;wg(�)Fig. 10. E�ect-independent equivalences (2)The beta-equivalences and commuting conversions of Figure 9 together withthe equivalences of Figure 10 are derived directly as Kleene equivalences. Deriva-tion of the eta-equivalences involves �rst deriving a number of extensionalityproperties using ciu equivalence; similar techniques are used in [Pit97].E�ect-dependent equivalences We now come to a set of equivalences thatare dependent on e�ect information, which are shown in Figure 11. Notice howthe �rst three of these equations respectively subsume the �rst three local equiv-alences of Figure 10. Each of these equivalences is proved by considering evalua-tion of each side in an arbitrary ciu-context and then using the logical predicateto show that if the evaluation terminates then so does the evaluation of the otherside in the same context.23 Some side conditions on variables are implicit in our use of contexts. For example,the �rst equation in Figure 10 has the side condition that x 62 fv(M).

discard� `M : T"1(�1) � ` N : T"2(�2)� ` let x(M inN �= N : T"1["2�2where "1 � fr; agcopy � `M : T"(�) �; x : �; y : � ` N : T"0(� 0)� ` let x(M ; y(M inN �= let x(M ; y(val x inN : T"["0(� 0)where fr; ag \ " = ; or fw; ag \ " = ;swap � `M1 : T"1(�1) � `M2 : T"2(�2) �; x1 : �1; x2 : �2 ` N : T"3 (�3)� ` let x1(M1; x2(M2 inN �= let x2(M2; x1(M1 inN : T"1["2["3(�3)where "1; "2 � fr; a;?g or "1 � fa;?g; "2 � fr; w; a;?gdead-try � `M : T"(�) � ` H : T"0 (� 0) �; x : � ` N : T"0(� 0)� ` try x(M catchH inN �= try x(M catchH n E inN : T"["0(� 0)where E =2 "Fig. 11. E�ect-dependent equivalences10.4 E�ect-Dependent Rewriting in MLjIn practice, much of the bene�t MLj gets from e�ect-based rewriting is simplyfrom dead-code elimination (discard and dead-try). A lot of dead code (particu-larly straight after linking) is just unused top-level function bindings, and thesecould clearly be removed by a simple syntactic check instead of a type-basede�ect analysis. Nevertheless, both unused non-values which detectably at mostread or allocate and unreachable exception handlers do occur fairly often too,and it is convenient to be able to use a single framework to eliminate themall. Here is an example (from [BK01]) of how tracking exception e�ects workstogether with MIL's unusual handler construct to improve an ML program forsumming the elements of an array:fun sumarray a =let fun s(n,sofar) = let val v = Array.sub(a,n)in s(n+1, sofar+v)end handle Subscript => sofarin s(0,0)endBecause the SML source language doesn't have try, the programmer has madethe handler cover both the array access and the recursive call to the inner func-tion s. But this would prevent a na��ve compiler from recognising that call astail-recursive. In MLj, the intermediate code for s looks like (in MLish, ratherthan MIL, syntax):fun s(n,sofar) =try val x = try val v = Array.sub(a,n)

catch {}in s(n+1, sofar+v)endcatch Subscript => sofarin xendA commuting conversion turns this intofun s(n,sofar) = try val v = Array.sub(a,n)catch Subscript => sofarin try val x = s(n+1, sofar+v)catch Subscript => sofarin xendendThe e�ect analysis detects that the recursive call to s cannot, in fact, ever throwthe Subscript exception, so the function is rewritten again tofun s(n,sofar) = try val v = Array.sub(a,n)catch Subscript => sofarin s(n+1, sofar+v)endwhich is tail recursive, and so gets compiled as a loop in the �nal code forsumarray.Making practical use of the swap and copy equations is more di�cult { al-though it is easy to come up with real programs which could be usefully improvedby sequences of rewrites including those equations, it is hard for the compiler tospot when commuting two computations makes useful progress towards a moresigni�cant rewrite. The most signi�cant e�ect-based code motion transformationwhich we do perform is pulling constant, pure computations out of functions (inparticular, loops), a special case of which is� `M : T;(�3) �; f : �1 ! T"[?(�2); x : �1; y : �3 ` N : T"(�2)� ` val (rec f x = let y(M inN) �= let y(M in val (rec f x = N) : T;(�1 ! T"(�2))where there's an implied side condition that neither f nor x is free in M . This isnot always an improvement (if the function is never applied), but in the absenceof more information it's worth doing anyway. Slightly embarassingly, this is notan equivalence which we have proved correct using the techniques described here,however.One other place where information about which expressions commute couldusefully be applied is in a compiler backend, for example in register allocation.We haven't tried this in MLj since a JIT compiler will do its own job of al-locating real machine registers and scheduling real machine instructions later,which makes doing a very `good' job of compiling virtual machine code unlikelyto produce great improvements in the performance of the �nal machine code.

An early version of the compiler also implemented a type-directed uncurryingtransformation, exploiting the isomorphism�1 ! T;(�2 ! T"(�3)) �= �1 � �2 ! T"(�3)but this can lead to extra work being done if the function is actually partiallyapplied, so this transformation also seems to call for auxiliary information to begathered.10.5 E�ect Masking and Monadic EncapsulationWe have seen that it is not too hard to recast simple e�ect systems in a monadicframework. But what is the monadic equivalent of e�ect masking? The answeris something like the encapsulation of side-e�ects provided by runST in Haskell,but the full connection has not yet been established.Haskell allows monadic computations which make purely local use of stateto be encapsulated as values with `pure' types by making use of a cunning trickwith type variables which is very similar to the use of regions in e�ect systems.Brie
y (see Section 5 for more information), the state monad is parameterizednot only by the type of the state s, but also by another `dummy' type variabler.24 In MLish syntax:datatype ('r,'s,'a) ST = S of 's -> 's * 'aThe idea is that the r parameters of types inferred for computations whose statesmight interfere will be uni�ed, so if a computation can be assigned a type which isparametrically polymorphic in r, then its use of state can be encapsulated. Thisis expressed using the runST combinator which is given the rank-2 polymorphictype runST : 8s; a:(8r:(r; s; a)ST)! aJust as the soundness of e�ect masking and of the region calculus is hard toestablish, proving the correctness of monadic encapsulation is di�cult. Earlyattempts to prove soundness by subject reduction [LS97] are now known to beincorrect.More recently, Semmelroth and Sabry have succeeded in de�ning a CBV lan-guage with monadic encapsulation, relating this to a language with e�ect mask-ing and proving type soundness [SS99]. Moggi and Palumbo have also addressedthis problem [MP99], by de�ning a slightly di�erent form of monadic encapsula-tion (without the `bogus' type parameter) and proving a type soundness resultfor a language in which the stateful operations are strict. Proving soundness formonadic encapsulation in a CBN language with lazy state operations is still, sofar as I am aware, an open problem.24 Actually, Haskell's built-in state monad is not parameterized on the type of the stateitself.

11 Curry-Howard Correspondence and MonadsThis section provides a little optional background on a logical reading of thecomputational metalanguage and explains the term `commuting conversion'.Most readers will have some familiarity with the so-called Curry-HowardCorrespondence (or Isomorphism, aka the Propositions-as-Types Analogy). Thisrelates types in certain typed lambda calculi to propositions in intuitionisticlogics, typed terms in context to (natural deduction) proofs of propositions fromassumptions, and reduction to proof normalization. The basic example of thecorrespondence relates the simply typed lambda calculus with function, pairand disjoint union types to intutionisitic propositional logic with implication,conjunction and disjunction [GLT89].Whilst it may be true that almost no realistic programming language corre-sponds accurately to anything which might plausibly be called a logic (because ofthe presence of general recursion, if nothing else), logic and proof theory can stillprovide helpful insights into the design of programming languages and interme-diate languages. Partly this seems to be because proof theorists have developeda number of taxonomies and criteria for `well-behavedness' of proof rules whichturn out to be transferable to the design of `good' language syntax.The computational metalanguage provides a nice example of the applicabilityof proof theoretic ideas (see [BBdP98] for details). If one reads the type rules forthe introduction and elimination of the computation type constructor logically,then one ends up with an intuitionistic modal logic (which we dubbed `CL-logic')with a slightly unusual kind of possibility modality, �. In sequent-style naturaldeduction form: � ` A� ` �A(�I) � ` �A �;A ` �B� ` �B (�E)Interestingly, not only was (the Hilbert-style presentation of) this logic discov-ered by Fairtlough and Mendler (who call it `lax logic') in the context of hard-ware veri�cation [FM95], but it had even been considered by Curry in 1957[Cur57]! Moreover, from a logical perspective, the three basic equations of thecomputational metalanguage arise as inevitable consequences of the form of theintroduction and elimination rules, rather than being imposed separately.The way in which the �-rule for the computation type constructor arisesfrom the natural deduction presentation of the logic is fairly straightforward { thebasic step in normalization is the removal of `detours' caused by the introductionand immediate elimination of a logical connective:���A (�I)�A [A] � � � [A]����B (�E)�B �! ���[A] � � � ���[A]����B

� `M : A� ` valM : TA �; x : A ` N : TB� ` let x(valM in N : TB �! � ` N [M=x] : TBNatural deduction systems can also give rise to a secondary form of normal-isation step which are necessary to ensure that normal deductions satisfy thesubformula property, for example. These occur when the system contains elimi-nation rules which have a minor premiss (Girard calls this a `parasitic formula'and refers to the necessity for these extra reduction `the shame of natural de-duction' [GLT89]). In general, when we have such a rule, we want to be ableto commute the last rule in the derivation of the minor premiss down past therule, or to move the application of a rule to the conclusion of the eliminationup past the elimination rule into to the derivation of the minor premiss. Theonly important cases are moving eliminations up or introductions down. Suchtransformations are called commuting conversions. The elimination rule for dis-junction (coproducts) in intuitionisitic logic gives rise to commuting conversionsand so does the elimination for the � modality of CL-logic. The restriction onthe form of the conclusion of our (�E) rule (it must be modal) means that therule gives rise to only one commuting conversion:{ A deduction of the form����A [A]����B (�E)�B [B]����C (�E)�Ccommutes to ����A [A]����B [B]����C (�E)�C (�E)�COn terms of the computational metalanguage, this commuting conversion in-duces the `let of a let' associativity rule:� `M : TA �; y : A ` P : TB� ` let y (M in P : TB �; x : B ` N : TC� ` let x((let y (M in P) in N : TC �!� `M : TA �; y : A ` P : TB �; y : A; x : B ` N : TC�; y : A ` let x(P in N : TC� ` let y (M in (let x(P in N) : TC

Commuting conversions are not generally optimizing tranformations in theirown right, but they reorganise code so as to expose more computationally sig-ni�cant � reductions. They are therefore important in compilation, and mostcompilers for functional languages perform at least some of them. MLj is some-what dogmatic in performing all of them, to reach what we call cc-normal form,from which it also turns out to be particularly straighforward to generate code.As Danvy and Hatcli� observe [HD94], this is closely related to working withA-normal forms, though the logical/proof theoretic notion is an older and moreprecisely de�ned pattern.

AcknowledgementsWe have used Paul Taylor's package for diagrams.References[App92] A. W. Appel. Compiling with Continuations. Cambridge UniversityPress, 1992.[BBdP98] P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computationaltypes from a logical perspective. Journal of Functional Programming,8(2):177{193, March 1998. Preliminary version appeared as TechnicalReport 365, University of Cambridge Computer Laboratory, May 1995.[Ben92] P. N. Benton. Strictness Analysis of Lazy Functional Programs. PhDthesis, Computer Laboratory, University of Cambridge, December 1992.[BHR99] A. Banerjee, N. Heintze, and J. G. Reicke. Region analysis and thepolymorphic lambda calculus. In Fourteenth IEEE Symposium on Logicand Computer Science, 1999.[BHT98] G. Barthe, J. Hatcli�, and P. Thiemann. Monadic type systems: Puretype systems for impure settings. In Proceedings of the Second HOOTSWorkshop, Stanford University, Palo Alto, CA. December, 1997, Elec-tronic Notes in Theoretical Computer Science. Elsevier, February 1998.[BK99] N. Benton and A. Kennedy. Monads, e�ects and transformations. InThird International Workshop on Higher Order Operational Techniquesin Semantics (HOOTS), Paris, volume 26 of Electronic Notes in Theo-retical Computer Science. Elsevier, September 1999.[BK01] N. Benton and A. Kennedy. Exceptional syntax. Journal of FunctionalProgramming, 2001. To appear.[BKR98] N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML toJava bytecodes. In 3rd ACM SIGPLAN Conference on Functional Pro-gramming, September 1998.[BM92] G. L. Burn and D. Le Metayer. Proving the correctness of compileroptimisations based on a global program analysis. Technical ReportDoc 92/20, Department of Computing, Imperial College, London, 1992.[BNTW95] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of program-ming with complex objects and collection types. Theoretical ComputerScience, 149(1), 1995.[Bor94] F. Borceux. Handbook of Categorial Algebra. Cambridge UniversityPress, 1994.[BS96] Erik Barendsen and Sjaak Smetsers. Uniqueness typing for functionallanguages with graph rewriting semantics. Mathematical Structures inComputer Science, pages 579{612, 1996.[Bur75] W. Burge. Recursive Programming Techniques. Addison-Wesley Pub-lishing Company, Reading, Mass., 1975.[BW85] M. Barr and C. Wells. Toposes, Triples and Theories. Springer, 1985.[Cal01] C. Calcagno. Strati�ed operational semantics for safety and correctnessof the region calculus. In 28th ACM SIGPLAN-SIGACT Symposium onPrinciples of Programming Languages, January 2001.[CM93] P. Cenciarelli and E. Moggi. A syntactic approach to modularity indenotational semantics. In CTCS 1993, 1993. CWI Tech. Report.

[Cur57] H. B. Curry. The elimination theorem when modality is present. Journalof Symbolic Logic, 17(4):249{265, January 1957.[DH93] O. Danvy and J. Hatcli�. CPS transformation after strictness analysis.ACM Letters on Programming Languages and Systems, 1(3), 1993.[dZG00] S. dal Zilio and A. Gordon. Region analysis and a �-calculus with groups.In 25th International Symposium on Mathematical Foundations of Com-puter Science, August 2000.[Fil99] A. Filinski. Representing layered monads. In POPL'99. ACM Press,1999.[FM95] M. Fairtlough and M. Mendler. An intuitionistic modal logic with appli-cations to the formal veri�cation of hardware. In Proceedings of Com-puter Science Logic 1994, volume 933 of Lecture Notes in ComputerScience. Springer-Verlag, 1995.[FSDF93] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence ofcompiling with continuations. In Proceedings of the 1993 Conference onProgramming Language Design and Implementation. ACM, 1993.[GJLS87] D. K. Gi�ord, P. Jouvelot, J. M. Lucassen, and M. A. Sheldon. FX-87reference manual. Technical Report MIT/LCS/TR-407, MIT Labora-tory for Computer Science, 1987.[GL86] D.K. Gi�ord and J.M. Lucassen. Integrating functional and imperativeprogramming. In ACM Conference on Lisp and Functional Program-ming. ACM Press, 1986.[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Number 7 inCambridge Tracts in Theoretical Computer Science. Cambridge Univer-sity Press, 1989.[Gor79] M.J.C. Gordon. Denotational Description of Programming Languages.Springer, 1979.[HD94] J. Hatcli� and O. Danvy. A generic account of continuation-passingstyles. In Proceedings of the 21st Annual Symposium on Principles ofProgramming Languages. ACM, January 1994.[HM98] Graham Hutton and Erik Meijer. Monadic parsing in haskell. Journalof Functional Programming, 8(4):437{444, July 1998.[HT00] S. Helsen and P. Thiemann. Syntactic type soundness for the regioncalculus. In Workshop on Higher Order Operational Techniques in Se-mantics, volume 41 of Electronic Notes in Theoretical Computer Science.Elsevier, September 2000.[Hud98] P. Hudak. Modular domain speci�c languages and tools. In FifthInternational Conference on Software Reuse, pages 134{142, Victoria,Canada, June 1998.[Hug99] John Hughes. Restricted Datatypes in Haskell. In Third Haskell Work-shop. Utrecht University technical report, 1999.[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studiesin Logic and the Foundations of Mathematics. North Holland, 1999.[JHe+99] Simon Peyton Jones, John Hughes, (editors), Lennart Augustsson,Dave Barton, Brian Boutel, Warren Burton, Joseph Fasel, Kevin Ham-mond, Ralf Hinze, Paul Hudak, Thomas Johnsson, Mark Jones, JohnLaunchbury, Erik Meijer, John Peterson, Alastair Reid, Colin Runci-man, and Philip Wadler. Report on the Programming LanguageHaskell 98, a Non-strict, Purely Functional Language. Available fromhttp://haskell.org, February 1999.

[JLST98] S. L. Peyton Jones, J. Launchbury, M. B. Shields, and A. P. Tolmach.Bridging the gulf: A common intermediate language for ML and Haskell.In Proceedings of POPL'98. ACM, 1998.[Jon96] S. L. Peyton Jones. Compiling Haskell by program transformation: Areport from the trenches. In Proceedings of the European Symposiumon Programming, Linkping, Sweden, number 1058 in Lecture Notes inComputer Science. Springer-Verlag, January 1996.[JRtYHG+99] Mark P Jones, Alastair Reid, the Yale Haskell Group, the Oregon Grad-uate Institute of Science, and Technology. The hugs 98 user manual.Available from http://haskell.org/hugs, 1994-1999.[JW93] Simon Peyton Jones and Philip Wadler. Imperative functional program-ming. In 20'th Symposium on Principles of Programming Languages,Charlotte, North Carolina, January 1993. ACM Press.[KKR+86] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams.Orbit: An optimizing compiler for Scheme. In Proceedings of the ACMSIGPLAN Symposium on Compiler Construction, SIGPLAN Notices,pages 219{233, 1986.[KL95] D. King and J. Launchbury. Structuring depth-�rst search algorithmsin haskell. In Conf. Record 22nd Symp. on Principles of ProgrammingLanguages, pages 344{354, San Francisco, California, 1995. ACM.[Lev99] P.B. Levy. Call-by-push-value: a subsuming paradigm (extended ab-stract). In Typed Lambda-Calculi and Applications, volume 1581 ofLNCS. Springer, 1999.[LH96] S. Liang and P. Hudak. Modular denotational semantics for compilerconstruction. In ESOP'96, volume 1058 of LNCS. Springer, 1996.[LHJ95] S. Liang, P. Hudak, and M. Jones. Monad transformers and modularinterpreters. In POPL'95. ACM Press, 1995.[LJ94] J. Launchbury and S. Peyton Jones. Lazy functional state threads. InProceedings of the 1994 SIGPLAN Conference on Programming Lan-guage Design and Implementation (PLDI), June 1994.[LS97] J. Launchbury and A. Sabry. Monadic state: Axiomatisation and typesafety. In Proceedings of the International Conference on FunctionalProgramming. ACM, 1997.[LW91] X. Leroy and P. Weis. Polymorphic type inference and assignment. InProceddings of the 1991 ACM Conference on Principles of ProgrammingLanguages. ACM, 1991.[Man76] E. Manes. Algebraic Theories. Graduate Texts in Mathematics.Springer, 1976.[Man98] E Manes. Implementing collection classes with monads. MathematicalStructures in Computer Science, 8(3), 1998.[Min98] Y. Minamide. A functional represention of data structures with a hole.In Proceedings of the 25rd Symposium on Principles of ProgrammingLanguages, 1998.[MMH96] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. InConference Record of the 23rd Annual ACM SIGPLAN-SIGACT Sympo-sium on Principles of Programming Languages, St. Petersburg, Florida.ACM, January 1996.[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedingsof the 4th Annual Symposium on Logic in Computer Science, Asiloomar,CA, pages 14{23, 1989.

[Mog91] E. Moggi. Notions of computation and monads. Information and Com-putation, 93(1), 1991.[Mog95] E. Moggi. A semantics for evaluation logic. Fundamenta Informaticae,22(1/2), 1995.[Mog97] E. Moggi. Metalanguages and applications. In Semantics and Logics ofComputation, volume 14 of Publications of the Newton Institute. Cam-bridge University Press, 1997.[Mos90] P. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbookof Theoretical Computer Science, chapter 11. MIT press, 1990.[Mos92] P. Mosses. Action Semantics. Number 26 in Cambridge Tracts in The-oretical Computer Science. Cambridge University Press, 1992.[MP99] E. Moggi and F. Palumbo. Monadic encapsulation of e�ects: A re-vised approach. In Proceedings of the Third International Workshop onHigher-Order Operational Techniques in Semantics, Electronic Notes inTheoretical Computer Science. Elsevier, September 1999.[MT91] I. Mason and C. Talcott. Equivalences in functional languages withe�ects. Journal of Functional Programming, 1:287{327, 1991.[MWCG99] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typedassembly language. ACM Transactions on Programming Languages andSystems, 21(3):528{569, May 1999.[NHH99] F. Nielson, H. R. Hielson, and C. Hankin. Principles of Program Anal-ysis. Springer-Verlag, 1999.[Pey01] Simon Peyton Jones. Tackling the awkward squad: monadic in-put/output, concurrency, exceptions, and foreign-language calls inHaskell. In R Steinbrueggen, editor, Engineering theories of softwareconstruction, Marktoberdorf Summer School 2000, NATO ASI Series.IOS Press, 2001.[Pit97] A. M. Pitts. Operationally-based theories of program equivalence. InP. Dybjer and A. M. Pitts, editors, Semantics and Logics of Computa-tion, Publications of the Newton Institute, pages 241{298. CambridgeUniversity Press, 1997.[Pit00a] A. M. Pitts. Operational semantics and program equivalence. revisedversion of lectures at the international summer school on applied seman-tics. This volume, September 2000.[Pit00b] A.M. Pitts. Categorical logic. In S. Abramsky, D.M. Gabbay, and T.S.E.Maibaum, editors, Handbook of Logic in Computer Science, volume 5.Oxford University Press, 2000.[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus.Theoretical Computer Science, pages 125{159, 1975.[Plo77] G. D. Plotkin. LCF considered as a programming language. TheoreticalComputer Science, 5:223{255, 1977.[Sco93] D.S. Scott. A type-theoretic alternative to CUCH, ISWIM, OWHY.Theoretical Computer Science, 121, 1993.[SF93] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. Lisp and Symbolic Computation, 6(3/4):289{360, 1993.[Sha97] Z. Shao. An overview of the FLINT/ML compiler. In Proceedings ofthe 1997 ACM Workshop on Types in Compilation, Amsterdam. ACM,June 1997.[SS99] M. Semmelroth and A. Sabry. Monadic encapsulation in ML. In Pro-ceedings of the International Conference on Functional Programming.ACM, 1999.

[Sta94] I. D. B. Stark. Names and Higher Order Functions. PhD thesis, Com-puter Laboratory, University of Cambridge, 1994.[TJ94] J.-P. Talpin and P. Jouvelot. The type and e�ect discipline. Informationand Computation, 111(2), June 1994. Revised from LICS 1992.[Tof87] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhDthesis, Department of Computer Science, University of Edinburgh, 1987.[Tol98] A. Tolmach. Optimizing ML using a hierarchy of monadic types. InProceedings of the Workshop on Types in Compilation, Kyoto, March1998.[TT97] M. Tofte and J.-P. Talpin. Region-based memory management. Infor-mation and Computation, 132(2), February 1997.[Wad92] P. Wadler. Comprehending monads. Mathematical Structures in Com-puter Science, 2, 1992.[Wad98] P. Wadler. The marriage of e�ects and monads. In International Con-ference on Functional Programming. ACM Press, 1998.[WF94] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.Information and Computation, 115(1):38{94, 15 November 1994.[Wri95] A. Wright. Simple imperative polymorphism. LISP and Symbolic Com-putation, 8:343{355, 1995.[WT99] P. Wadler and P. Thiemann. The marriage of e�ects and monads. Sub-mitted to ACM Transactions on Computational Logic, 1999.

