
Computational Types, Collection Types and Monads
PhD course@UNIMI 2012-09

(last update September 12, 2012)

Eugenio Moggi

moggi@unige.it

DIBRIS, Univ. of Genova

– p. 1

PART 1

Denotational Semantics of Programming Languages
. . . via translation into a Metalanguage

Computational Types and Collection Types:
Informal Concepts and Simple Examples

– p. 2

Denotational Semantics [Scott-Strachey 1969]

Denotational Semantics is directly inspired by Mathematical Logic.

The semantics of a (programming) language PL is given by an interpretation (the
intended model) of its syntax in suitable mathematical structures (domains)

a type (syntactic category) τ of PL is interpreted by a domain [[τ]]

a term (syntactic entity) e of PL of type τ is interpreted by an element in [[τ]]

The interpretation is compositional, i.e. it is defined by induction on the syntax

The interpretation can be described by a translation from the (programming)
language PL to a (mathematical) metalanguage ML, e.g. the language of Set
Theory or some Typed Lambda Calculus

PL transl - ML interp - C

In contrast, the Operational Semantics [Landin 1964] of PL is given by a (virtual)
machine for executing terms of PL.

Note. Recursive definitions are pervasive in general purpose programming
languages, but introduce semantic complications. However, the semantics of
computational effects can be given independently from recursive definitions. – p. 3

Denotational Semantics of a Simple Imperative Language

Let IMP be an imperative language with a global store, where each location l ∈ L
stores a natural number n ∈ nat, and with the following syntactic categories

expressions e ∈ Exp of type nat, that cannot modify the store

commands c ∈ Cmd, that can modify the store

For the semantics of IMP it suffices to take sets as domains.

Interpretation of Syntactic Categories
If expressions are always defined and commands have no loops, then

τ [[τ]]

Exp S - nat, where S
∆
= L→ nat is the set of stores

Cmd S - S

– p. 4

Denotational Semantics of a Simple Imperative Language

Let IMP be an imperative language with a global store, where each location l ∈ L
stores a natural number n ∈ nat, and with the following syntactic categories

expressions e ∈ Exp of type nat, that cannot modify the store

commands c ∈ Cmd, that can modify the store

For the semantics of IMP it suffices to take sets as domains.

Interpretation of Syntactic Categories
If expressions can be ill-defined, but commands have no loops, then

τ [[τ]]

Exp S - (nat + {err}), where S
∆
= L→ nat is the set of stores

Cmd S - (S + {err})

– p. 4

Denotational Semantics of a Simple Imperative Language

Let IMP be an imperative language with a global store, where each location l ∈ L
stores a natural number n ∈ nat, and with the following syntactic categories

expressions e ∈ Exp of type nat, that cannot modify the store

commands c ∈ Cmd, that can modify the store

For the semantics of IMP it suffices to take sets as domains.

Interpretation of Syntactic Categories
If expressions can be ill-defined and commands can have loops, then

τ [[τ]]

Exp S - (nat + {err}), where S
∆
= L→ nat is the set of stores

Cmd S - (S + {err, div})

– p. 4

Denotational Semantics of a Simple Functional Language

Let PCF be a functional language with the following syntactic categories

expressions e ∈ Exp[τ] of type τ , where τ : : = nat | τ1 → τ2

For the semantics of PCF sets suffice, if recursive definitions are not allow. However,
in the presence of recursive definitions, we need to use cpos (or similar structures).

Addendum on ω-cpos
An ω-cpo is a poset (X,≤) s.t. every ω-chain (xn|n ∈ ω), i.e. ∀n.xn ≤ xn+1, has a
least upper bound (lub) denoted ⊔nxn, i.e. (⊔nxn) ≤ y ⇐⇒ (∀n.xn ≤ y)

a set X corresponds to a flat cpo (X,=)

lifting X⊥ is the cpo obtained by adding a least element ⊥ to the cpo X

cartesian product X × Y and disjoint union X + Y extend to cpos

X - Y is the cpo of ω-continuous maps f from cpo X to cpo Y , i.e.
f is monotonic, x ≤ y =⇒ f(x) ≤ f(y), and

f preserves lubs of ω-chains, f(⊔nxn) = ⊔nf(xn)

if X is a cpo with a least element ⊥, then every ω-continuous map f :X - X

has a least fix-point x = f(x) given by x
∆
= ⊔nf

n(⊥).
– p. 5

Denotational Semantics of a Simple Functional Language

Let PCF be a functional language with the following syntactic categories

expressions e ∈ Exp[τ] of type τ , where τ : : = nat | τ1 → τ2

For the semantics of PCF sets suffice, if recursive definitions are not allow. However,
in the presence of recursive definitions, we need to use cpos (or similar structures).

Interpretation of Syntactic Categories
If expressions do not include recursive definitions, then

τ [[τ]]

Exp[nat] nat, i.e. the set of natural numbers

Exp[τ1 → τ2] [[Exp[τ1]]] - [[Exp[τ2]]]

Question. What should be the interpretation if expressions can be ill-defined?

– p. 5

Denotational Semantics of a Simple Functional Language

Let PCF be a functional language with the following syntactic categories

expressions e ∈ Exp[τ] of type τ , where τ : : = nat | τ1 → τ2

For the semantics of PCF sets suffice, if recursive definitions are not allow. However,
in the presence of recursive definitions, we need to use cpos (or similar structures).

Interpretation of Syntactic Categories
If expressions include recursive definitions and parameters are not evaluated before a
function call (CBN semantics), then

τ [[τ]]

Exp[nat] nat⊥, where nat is the flat cpo of natural numbers

Exp[τ1 → τ2] ([[Exp[τ1]]] - [[Exp[τ2]]])⊥

– p. 5

Denotational Semantics of a Simple Functional Language

Let PCF be a functional language with the following syntactic categories

expressions e ∈ Exp[τ] of type τ , where τ : : = nat | τ1 → τ2

For the semantics of PCF sets suffice, if recursive definitions are not allow. However,
in the presence of recursive definitions, we need to use cpos (or similar structures).

Interpretation of Syntactic Categories
If expressions include recursive definitions and parameters are evaluated before a
function call (CBV semantics), then

τ [[τ]]

Exp[nat] nat⊥, where nat is the flat cpo of natural numbers

Exp[τ1 → τ2] ([[Exp[τ1]]]
⊥
- [[Exp[τ2]]])⊥

where (X⊥
⊥
- Y⊥) is the cpo of strict maps f in X⊥

- Y⊥, i.e. f(⊥) = ⊥.

(−
⊥
- −) is a clumsy constructiona , defined only on cpos with a least element.

However, (X⊥
⊥
- Y⊥) is isomorphic to X - Y⊥.

aThe domains originally proposed by Scott had always a least element. – p. 5

Addendum on Syntax and Semantics

Before giving the operational or denotation semantics of a PL, it can be convenient to
restructure the syntax of PL, e.g. by introducing auxiliary syntactic categories.
Before giving the interpretation [[τ]] of a type (syntactic category) of PL, it can be
convenient to introduce auxiliary semantic domains.

Examples

S
∆
= L→ nat is an auxiliary domain for giving the semantics of IMP

Numeral expressions V al ⊂ Exp can be introduced as an auxiliary syntactic
category of IMP , s.t. [[V al]] = nat

Value expressions V al[τ] ⊂ Exp[τ] can be introduced as auxiliary syntactic
categories of PCF , to give a clearer definition of the CBV and CBN semantics

τ [[τ]] in CBN [[τ]] in CBV

V al[nat] nat like in CBN

Exp[τ] [[V al[τ]]]⊥ like in CBN

V al[τ1 → τ2] [[Exp[τ1]]] - [[Exp[τ2]]] [[V al[τ1]]] - [[Exp[τ2]]]

– p. 6

Computational Types [Mog91]

Basic idea: distinguish the domain A for interpreting values (of type τ) from the
domain MA for interpreting programs/expressions (of type τ). The unary
constructor M is called a notion of computation.

Categorical semantics: study M in the setting of a generic category C, but
concrete examples given in the category of sets or ω-cpos.

Metalanguages: extends ML with computational types Mτ and related terms

ret
e: τ

ret e:Mτ
every value corresponds to a trivial computation

do
e1:Mτ1 x: τ1 ⊢ e2:Mτ2

do {x← e1; e2}:Mτ2
sequential execution of computations

fix
x:Mτ ⊢ e:Mτ

fixx.e:Mτ
recursive definition of computations

PL transl - MLM (Σ) transl - ML - C

Coherence: categorical semantics⇐⇒ syntax+equational theory of metalanguage

– p. 7

Examples of Computational Types/Notions of Computation

Simple examples in sets

partiality MA = A+ {⊥}, ⊥ represents the diverging computation

nondeterminism MA = Pfin(A) set of finite subsets of A , also a collection type

side-effects MA = (A× S)
S , S is a set of states, e.g. UL or U∗

state-readers MA = AS , S is a set of states

exceptions MA = A+ E, E set of exceptions

continuations MA = R(RA), R set of results

interactive input MA = µX.A+XU , i.e. U -branching trees with A-labeled leaves,
µX.τ is the initial solution to the domain equation X = τ

interactive output MA = µX.A+ (U ×X) ∼= U∗ ×A

soft constrains MA = A
fin
→ S where S = (|S|,+, ∗, 0, 1) semi-ring, i.e. the set of

functions p:A→ |S| with finite support {a ∈ A|p(a) = 0} , also a collection type

algebraic terms MA = TΣ(A) where Σ single-sorted algebraic signature, i.e. the set
of Σ-terms with variables in A (generalizes to algebraic theory). See also
algebraic approach to computational effects [PP01,HPP02,PP09]. – p. 8

Examples of Computational Types/Notions of Computation

Simple examples in cpos, MA has a least element, thus it supports recursive
definitions of computations

partiality MA = A⊥, i.e. lifting

nondeterminism MA = some powerdomain

side-effects MA = (A× S)⊥
S

state-readers MA = A⊥
S , S is a set of states

exceptions MA = (A+ E)⊥

continuations MA = R(RA), R cpo with ⊥

interactive input MA = µX.(A+XU)⊥,
µX.τ is the initial solution to the domain equation X = τ

interactive output MA = µX.(A+ (U ×X))⊥

– p. 8

Examples of Computational Types/Notions of Computation

More complex examples in sets

MA = ((A+ E)× S)
S imperative programs with exceptions

MA = ((A× S) + E)
S imperative programs with exceptions,

the state is lost when an exception is raised

MA = (A+ E)
S expressions with errors/exceptions

MA = µX.Pfin(A+ (U ×X)) nondeterministic interactive programs,
related to synchronization trees up to strong bisimulation

MA = µX.Pfin((A+X)× S)
S parallel imperative programs,

related to resumptions and small-step operational semantics

– p. 8

Collection Types [BNTW95], aka Bulk Types [WT91]

Basic idea: c ∈MA is a finite collection of elements of A.

Categorical semantics: a lot in common with the categorical semantics of
computational types. Concrete examples given in the category of sets.

DB intermediate languages (for source-to-source optimization) with collection
types Mτ and related terms

unit
e: τ

{e}:Mτ
singleton collection

flat
e:M(Mτ)

flat e:Mτ
flattening of a collection of collections

map
e1:Mτ1 x: τ1 ⊢ e2: τ2

{e2|x← e1}:Mτ2
comprehension for collections

0:Mτ empty collection and +:Mτ ×Mτ →Mτ union of two collections
==:Mτ ×Mτ → bool test for equality of two collections

Note. equality of collections should be decidable, while equality of programs is not!
– p. 9

Examples of Collection Types

Standard examples in sets

sets MA = Pfin(A) set of finite subsets of A

lists MA = A∗ set of finite lists of A

bags MA = A
fin
→ nat, i.e. the set of functions p:A→ nat with finite support

{a ∈ A|p(a) = 0}

binary trees MA = {0}+ (µX.A+ (X ×X)), i.e. the set consisting of binary trees
with A-labeled leaves.

Counter-examples in Sets

MA = A+ {0}, the union of two collections is problematic.

MA = AS . When S is infinite, a collection can have infinitely many elements.
When S is finite (but not empty), the empty collection and the union of two
collections are problematic. When S is empty, there is only one collection.

– p. 10

PART 2

From Lambda Calculus to Category Theory [Scott 1980]
A Categorical Manifesto [Goguen 1991]

A Taste of Category Theory [Asperti-Longo 1991, Pierce 1991]
focused on Monads

– p. 11

Category Theory (CT) as a Pure Theory of functions [Sco80]

Theories of functions (application/composition) in alternative to Set Theory:
1920s Combinatory Logic by Schönfinkel (1987-1889) and Curry (1900-1982)
1930s Lambda Calculus by Church (1903-1995)
1940s Category Theorya by Eilenberg (1913-1998) and MacLane (1909-2005).

CT as a copernican change of view w.r.t. Set Theory:

how sets/classes are build from other sets/classes vs
how objects relate to other objects (in the same category).

Derogative nickname of CT abstract nonsense.

[Sco80] (Curry’s 80th birthday): CT as a milk-and-water theory of functions
Dana Scott (1932-) PhD student of Church, ACM Turing Award 1976
Emeritus Professor of Comp. Sci., Phil. and Math. Logic at CMU

axiomatic freedom (offered by CT) + naive view (using the right spectacles), e.g.
every model of the extensional untyped lambda calculus is a reflexive object
(U → U) ∼= U in a CCC C (6= the category of sets).

Issue. What is the minimal categorical setting to study computational/collection types?

aInitial motivations from Algebraic Topology, rather than foundationals. – p. 12

A Categorical Manifesto [Gog91]

Why Category Theory can be useful in Computer Science (or in a young subject,
poorly organized, that needs all the help that it can get):

Formulating definitions and theories (CT provides guidelines)

Discovering and exploiting relations with other fields

sufficiently abstract formulations can reveal surprising connections

Dealing with abstraction and representation independence

Formulating conjectures and research directions,
mainly through relations with other fields

Conceptual unification (by abstraction and use of few fundamental concepts)

CT useful also in a mature subject (e.g. to export ideas to other subjects):

more general/abstract reformulations or cleaner/unified reformulations.

– p. 13

[Asperti-Longo 1991, Ch 1]

– p. 14

Category, Graph and Diagram

A category C consists of

a collection C0 of objects, notation a ∈ C

a collection C1 of morphisms (arrows, maps)

operations dom, cod: C1 - C0 assigning to each arrow a domain and codomain

we write f ∈ C[a, b] or a
f- b or f : a - b when a = dom(f) and b = cod(f)

an operation id: C0 - C1 assigning to each object a an identity ida ∈ C[a, a]

a composition operation ◦ assigning to each pair f and g of composable arrows

a
f- b

g- c a composite arrow g ◦ f ∈ C[a, c]

and identity and composition satisfy the following properties

(identity) idb ◦f = f = f ◦ ida for any a
f- b

(associativity) h ◦ (g ◦ f) = (h ◦ g) ◦ f for any a
f- b

g- c
h- d

– p. 15

Category, Graph and Diagram

A grapha G consists of
a collection G0 of nodes (vertexes)
a collection G1 of arcs (edges, arrows)
operations dom, cod:G1 - G0 assigning to each arc a source and target

we write a
f- b when a = dom(f) and b = cod(f)

Any category C has an underlying graph dom, cod: C1 - C0

Graph is the category of small graphs (i.e. G0 and G1 are sets) with arrows

(g0, g1) ∈ Graph [G,G′]
∆
⇐⇒ g0:G0 - G′0 and g1:G1 - G′1 s.t.

a
f- b in G implies g0(a)

g1(f)- g0(b) in G′

aIn Graph Theory what we call graph is called a directed multi-graph.

– p. 15

Category, Graph and Diagram

Given a category C and a small graph G a diagram D of shape G in C is a graph
morphism (d0, d1) from G to the underlying graph of C, i.e. D corresponds to a
consistent labeling of nodes and arcs of G with objects and arrows of C

given a path p = (ai
fi- ai+1|i < n) from a0 to an in G we write D[p] for the arrow

in C[d0(a0), d0(an)] obtained by composing the arrows d1(fi) (when n = 0 then
D[p] is the identity on d0(a0))

A diagram D commutes ∆
⇐⇒ for every pair of paths p and p′ in G with the same

source and target (say a to b) D[p] = D[p′] (as arrows in C[d0(a), d0(b)])

commuting diagrams expressing the (identity) and (associativity) properties

a ida - a

b

f

?
idb -�

f

b

f

?

a g ◦ f - c

b

f

?
h ◦ g -

g

-

d

h

?

– p. 15

Examples

Dogma 1 [Gog91]: to each species of mathematical structure, there corresponds a
category whose objects have that structure, and whose morphisms preserve it.

C Objects a Morphisms f ∈ C[a1, a2]

Set sets X functions f ∈ X1
- X2

to be precise morphisms are triples (X1, f,X2)

Inc sets X inclusions (functions)

Rel sets X relations R ⊆ X1 ×X2

Set, Inc and Rel same objects, but different morphisms

Mon monoids (X, ·, 1) homomorphisms f :X1
- X2

x · 1 = x = 1 · x (x1 · x2) · x3 = x1 · (x2 · x3) f(11) = 12 f(x1 ·1 x2) = f(x1) ·2 f(x2)

PO partial orders (X,≤) monotone maps f :X1
- X2

x1 ≤1 x2 =⇒ f(x1) ≤2 f(x2)

ω-CPO ω-cpos (X,≤) ω-continuous maps f :X1
- X2

– p. 16

Examples

a collection C induces a discrete category C (i.e. every arrow is an identity):
C0 = C1 = C and dom(a) = a = cod(a)

a preorder (X,≤), i.e. ≤⊆ X ×X is reflexive and transitive, induces a category C
where every C[a, b] has at most one element:
C0 = X, C1 =≤, dom(a, b) = a and cod(a, b) = b

⊆ is a preorder on sets (indeed a partial order)
∈ is not a preorder on sets (e.g. X ∈ X fails in ZF set theory)

a monoid (X, ·, 1), induces a category C with exactly one object:
C0 = {∗}, C1 = X, id∗ = 1 and x1 ◦ x2 = x1 · x2

– p. 16

Examples from Algebra

Let Σ be an algebraic signature, i.e. a family (Σn|n) of sets (of operator symbols)
indexed by natural numbers (considered as arities)

TΣ(X) denotes the set of Σ-terms with variables included in the set X

TΣ is the category of (finite) sets and substitutions TΣ[X1, X2]
∆
= X2

- TΣ(X1)

given ρ1:X2
- TΣ(X1) and ρ2:X3

- TΣ(X2), the composite ρ2 ◦ ρ1 is the

ρ:X3
- TΣ(X1) s.t. ρ(x) ∆

= t[ρ1] with t = ρ2(x) ∈ TΣ(X2)

a Σ-algebra is a pair (A, [[−]]), where A is a set and [[−]] is an interpretation of the
operator symbols in A, i.e. [[op]]:An - A for op ∈ Σn

Alg Σ is the category of Σ-algebras and Σ-homomorphismsa

An
1 fn - An

2

A1

[[op]]1

?
f - A2

[[op]]2

?

One can define also the categories T(Σ,E) and Alg (Σ,E), with E set of Σ-equations.

aSee [AspertiLongo91, Sec 4.1] – p. 17

Examples from Computability

EN is the category of numbered sets
(objects) X = (X, e) with e:N -- X (i.e. e onto map)

(arrows) X1

f- X2
∆
⇐⇒ exists a recursive f ′:N → N s.t.

X1 f - X2

N

e1

66

f ′ - N

e2

66

Let A = (A, ·) be a partial Combinatory Algebra, i.e. · is a partial application and

exist K,S ∈ A s.t. K a b = a, S a b ↓ and S a b c ≃ a c (b c) for any a, b, c ∈ A

A-Set is the category of sets with an A-realizability relation

(objects) X = (X, ‖−) with ‖− ⊆ A×X onto ∀x ∈ X.∃a.a‖−x

(arrows) X1

f- X2
∆
⇐⇒ X1

f- X2 has a realizer r a‖−1x implies r a‖−2f(x)

– p. 18

Examples from Category Theory

The category Cat whose objects are (small) categories (by Dogma 1)a

the dualb category Cop of C: Cop0 = C0 and Cop[a, b] = C[b, a]

idopa = ida and g ◦op f = f ◦ g

the product category C ×D of C and D: (C ×D)0 = C0×D0 and (C ×D)1 = C1×D1

id(a,a′) = (ida, ida′) and (g, g′) ◦ (f, f ′) = (g ◦ f, g′ ◦ f ′)

A category D is a subcategory of C ∆
⇐⇒ D0 ⊆ C0 and D[a, b] ⊆ C[a, b], and

identities and composition in D coincide with those in C

D is a full subcategory when in addition D[a, b] = C[a, b]
Set is a subcategory of Rel (but it is not full), since functions are relations (with certain properties)

Alg (Σ,E) is a full subcategory of Alg Σ, and also of Alg (Σ,E′) when E′ ⊂ E

TΣ is a basically a full subcategory of Alg Σ, as TΣ(X) is the carrier of a Σ-algebra.

aMorphisms in Cat are functors, see [AspertiLongo91, Def 3.1.1]
bDuality is a powerful technique of Theory applicable to definitions and theorems.

– p. 19

Special Morphisms

Given a category C we say that

a
e- b is epic ∆

⇐⇒ f ◦ e = g ◦ e implies f = g when c ∈ C and f, g ∈ C[b, c]

a
m- b is monic ∆

⇐⇒ m ◦ f = m ◦ g implies f = g when c ∈ C and f, g ∈ C[c, a]

monic and epic are dual properties, i.e. m is monic in C ⇐⇒ m is epic in Cop

a
i- b is iso ∆

⇐⇒ j ◦ i = ida and i ◦ j = idb for some (unique) j ∈ C[b, a]

iso is a self-dual property, i.e. i is iso in C ⇐⇒ i is iso in Cop

a
e- b is a split epic ∆

⇐⇒ e ◦m = idb for some m ∈ C[b, a]

there is a dual property of split monic

The following statements and their dual hold (proofs are by diagram chasing):

e split epic =⇒ e epic

m monic and split epic =⇒ m iso

we write a-
m- b when m is monic and a

e-- b when e is epic
– p. 20

Special Morphisms

In Set one has the following concrete characterizations

e epic⇐⇒ e is surjective⇐⇒ e split epic (by the axiom of choice)

m monic⇐⇒ m is injective (m: a - b split monic⇐⇒ m monic and a 6= ∅)

i iso⇐⇒ i is bijective

Give concrete characterizations in other sample categories, in particular consider

C is a monoid, i.e. a category with exactly one object

C is a preorder (every arrow is both monic and epic)

– p. 20

[Asperti-Longo 1991, Ch 2]

– p. 21

Thinking Categorically (special objects)

0 ∈ C initial ∆
⇐⇒ ∀a ∈ C.∃!f ∈ C[0, a] 1 ∈ C terminal ∆

⇐⇒ ∀a ∈ C.∃!f ∈ C[a, 1]

initial and terminal are dual properties, i.e. a is terminal in C ⇐⇒ a is initial in Cop

The following statements say that initial objects are determined up to unique iso

if 0 is initial and 0
i- 0′ is an iso, then 0′ is initial

if 0 and 0′ are initial, then they are isomorphic and the iso is unique

In Set one has the following concrete characterizations

X is initial⇐⇒ X = ∅ (∅ is both initial and terminal in Rel and pSet)

X is terminal⇐⇒ X has exactly one element

The property of being initial/terminal is a simple form of universal property, i.e.

a property P (x) expressed in the language of Category Theory, s.t.

the structures x satisfying the property are determined up to unique iso

thus the structures on which P (x) is defined are the objects of a category

– p. 22

Thinking Categorically (universal properties I)

a1 �π1

a
π2- a2 is a product diagram in C ∆

⇐⇒

for any a1 �f1
b

f2- a2 ∃!f s.t.

a1 � π1 a π2
- a2

b

f

6

f 2

-

�

f
1 commutes

we write a1 × a2 for a and (f1, f2) for f

product diagrams for a1 and a2 are determined up to unique iso, i.e.

if a1 �π′
1 a′

π′
2- a2 is another product diagram, then

∃!i iso s.t.

a1 � π′
1 a′ π′

2
- a2

a

i

6

π 2

-

�

π
1 commutes

product diagrams are objects in the category of cones a1 �f1
b

f2- a2
– p. 23

Thinking Categorically (universal properties I)

a coproduct diagram a1
ι1- a �ι2

a2 is the dual of a product diagram, i.e.

for any a1
f1- b �f2

a2 ∃!f s.t.

a1 ι1 - a � ι2 a2

b

f

?�

f 2

f
1

-

commutes

we write a1 + a2 for a and [f1, f2] for f

coproduct diagrams for a1 and a2 are determined up to unique iso (by duality)

The notion of product/coproduct diagram generalizes to the I-indexed case (with I set)

when I = ∅ the definitions coincide with that of terminal and initial object

the notation introduced for binary products and coproducts is modified as follows
∏

i∈I

ai and
∐

i∈I

ai and (fi|i ∈ I) and [fi|i ∈ I]

– p. 23

Thinking Categorically (universal properties I)

In Set for any pair of object X1 and X2 we have that

X1
�π1

X1 ×X2
π2- X2 is a product diagram, where

X1 ×X2 is the cartesian product and πi(x1, x2) = xi

X1
ι1- X1 ⊎X2

�ι2
X2 is a coproduct diagram, where

X1 ⊎X2 is the disjoint union {(i, x)|x ∈ Xi} and ιi(x) = (i, x)

In Rel X1 ⊎X2 is both the product and the coproduct of X1 and X2. In Inc the product
is X1 ∩X2 and the coproduct is X1 ∪X2. When C is a preorder one has

an initial object 0 is a least element ⊥, and a terminal object 1 is a top element ⊤

a product a1 × a2 is a greatest lower bound a1 ∧ a2, and
a coproduct a1 + a2 is a least upper bound a1 ∨ a2

When the objects involved exist, there are canonical isomorphisms

a× 1 ∼= a a1 × a2 ∼= a2 × a1 (a1 × a2)× a3 ∼= a1 × (a2 × a3)

similar isomorphisms hold by replacing × with + and 1 with 0

In Set (in biCCCs, but not in general) the canonical maps below are iso

0 - a× 0 (a× a1) + (a× a2) - a× (a1 + a2)
– p. 23

Thinking Categorically (universal properties II)

Given a category with binary products

c× a
ev- b is an exponential diagram in C ∆

⇐⇒

for any c′ × a
f- b ∃!f ′: c′ → c s.t.

c× a ev - b

c′ × a

f ′ × ida

6

f

-

commutes

where f ′ × ida
∆
= (f ′ ◦ π1, π2), we write ba for c and Λ(f) for f ′

exponential diagrams are determined up to unique iso

In Set an exponential diagram is Y X ×X
ev- Y , where Y X is the set of

functions Set[X,Y] and ev(f, x) = f(x)

In ω-CPO an exponential diagram is Y X ×X
ev- Y , where Y X is the set of

ω-continuous maps ω-CPO[X,Y] with the pointwise order

In A-Set an exponential diagram is Y X ×X
ev- Y , where Y X is the set of

realizable maps A-Set[X,Y] with an obvious realizability relation – p. 24

Thinking Categorically (universal properties II)

C has enough points ∆
⇐⇒ it has a terminal object 1 and for any f, g ∈ C[a, b]

(∀x: 1→ a.f ◦ x = g ◦ x) =⇒ f = g

C is a cartesian category (CC for short) ∆
⇐⇒ it has a terminal object 1 and binary

products a1 × a2 for any pair of objects

C is a cartesian closed category (CCC for short) ∆
⇐⇒ it is cartesian and it has

exponentials ba for any pair of objects

C is a bi-cartesian closed category (biCCC for short) ∆
⇐⇒ it is cartesian closed

and it has finite coproducts In a biCCC
∐

i∈n

(a× ai) - a× (
∐

i∈n

ai) is an iso.

Set, PO, ω-CPO, A-Set, Cat are biCCC. Inc , Rel, Graph , Mon , EN are not CCC.

Equational reformulation

πi ◦ (f1, f2) = fi and (π1 ◦ f, π2 ◦ f) = f : b - a1 × a2

[f1, f2] ◦ ιi = fi and [f ◦ ι1, f ◦ ι2] = f : a1 + a2 - b

ev ◦ (a× Λ(f)) = f and Λ(ev ◦ (f ′ × ida)) = f ′: c′ - ba
– p. 24

Addendum: Internal LanguageML for Categories

The internal language ML of a category C consists of

types τ : : = a | . . . and contexts Γ: := x: τ | . . ., with a object of C and x variable

raw terms e: : = x | f(e) | . . . with f arrow of C, and several judgments
Γ ⊢ e: τ asserting well-formedness of term e

x
x: τ ⊢ x: τ

f
Γ ⊢ e: τ

Γ ⊢ f(e): τ ′
[[τ]]

f- [[τ ′]]

Γ ⊢ e1 = e2: τ asserting equality of well-formed terms

The interpretation [[−]] of ML in C goes a follows

types τ and contexts Γ are interpreted by objects of C [[a]]
∆
= a [[x: τ]]

∆
= [[τ]]

well-formed terms Γ ⊢ e: τ are interpreteda by arrows f : [[Γ]] - [[τ]]

[[x: τ ⊢ x: τ]]
∆
= ida with a = [[τ]] and [[Γ ⊢ f(e): τ ′]]

∆
= f ◦ [[Γ ⊢ e: τ]]

equality judgments are interpreted by equality of arrows.

athe interpretation is defined by induction on the unique derivation of Γ ⊢ e: τ .
– p. 25

Addendum: Internal LanguageML for Categories

The internal language ML of a category C consists of

types τ : : = a | . . . and contexts Γ: := x: τ | . . ., with a object of C and x variable

raw terms e: : = x | f(e) | . . . with f arrow of C, and several judgments
Γ ⊢ e: τ asserting well-formedness of term e

x
x: τ ⊢ x: τ

f
Γ ⊢ e: τ

Γ ⊢ f(e): τ ′
[[τ]]

f- [[τ ′]]

Γ ⊢ e1 = e2: τ asserting equality of well-formed terms

Substitution is Composition

subst
Γ ⊢ e: τ x: τ ⊢ e′: τ ′

Γ ⊢ e′[x: e]: τ ′
is an admissible rule

[[Γ ⊢ e′[x: e]: τ ′]] = g ◦ f if [[Γ ⊢ e: τ]] = c
f- a and [[x: τ ⊢ e′: τ ′]] = a

g- b

– p. 25

Addendum: Internal LanguageML for Categories

The internal language ML of a category C consists of

types τ : : = a | . . . and contexts Γ: := x: τ | . . ., with a object of C and x variable

raw terms e: : = x | f(e) | . . . with f arrow of C, and several judgments
Γ ⊢ e: τ asserting well-formedness of term e

x
x: τ ⊢ x: τ

f
Γ ⊢ e: τ

Γ ⊢ f(e): τ ′
[[τ]]

f- [[τ ′]]

Γ ⊢ e1 = e2: τ asserting equality of well-formed terms

Equality of Terms

Γ ⊢ e: τ

Γ ⊢ e = e: τ

Γ ⊢ e1 = e2: τ

Γ ⊢ e2 = e1: τ

Γ ⊢ e1 = e2: τ Γ ⊢ e2 = e3: τ

Γ ⊢ e1 = e3: τ

congr
Γ ⊢ e1 = e2: τ x: τ ⊢ e: τ ′

Γ ⊢ e[x: e1] = e[x: e2]: τ ′
subst

Γ ⊢ e: τ x: τ ⊢ e1 = e2: τ ′

Γ ⊢ e1[x: e] = e2[x: e]: τ ′

id
x: τ ⊢ x = ida(x): τ

a = [[τ]] comp
x: τ ⊢ h(x) = g(f(x)): τ ′

h = [[τ]]
f- g- [[τ ′]]

– p. 25

Addendum: Internal LanguageML× for Cartesian Categories

types τ : : = a | 1 | τ1 × τ2 and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = x | f(e) | () | (e1, e2) | π1(e) | π2(e)

additional rules for well-formedness of terms
x: τ ∈ Γ

Γ ⊢ x: τ Γ ⊢ (): 1

Γ ⊢ e1: τ1 Γ ⊢ e2: τ2

Γ ⊢ (e1, e2): τ1 × τ2

Γ ⊢ e: τ1 × τ2

Γ ⊢ πi(e): τi

Interpretation of types and terms require a choice of product diagrams.

substitution substpar

{Γ ⊢ ei: τi | i ∈ n}

(xi: τi|i ∈ n) ⊢ e′: τ ′

Γ ⊢ e′[xi: ei|i ∈ n]: τ ′
substinc

Γ ⊢ e: τ

Γ, x: τ ⊢ e′: τ ′

Γ ⊢ e′[x: e]: τ ′

additional rules for equality of terms
Γ ⊢ e: 1

Γ ⊢ e = (): 1

Γ ⊢ e1: τ1 Γ ⊢ e2: τ2

Γ ⊢ πi(e1, e2) = ei: τi

Γ ⊢ e: τ1 × τ2

Γ ⊢ e = (π1(e), π2(e)): τ1 × τ2

– p. 26

Monad M on C in extension form (M, η, _∗) [Man76]

M : C0 - C0
a ∈ C0

a
ηa- Ma

a
f- Mb

Ma
f∗

- Mb
s.t.

Ma
η∗a -

idMa

- Ma

a
f - Mb

g∗ - Mc

Ma

ηa

? (g
∗ ◦ f

)∗

-

f
∗

-

when b
g- Mc

The Kleisli category CM for a monad M

(objects) a ∈ C0, same objects of C

(arrows) CM [a, b] = C[a,Mb]

(identity) on a is ηa

(composition) of f ∈ CM [a, b] and g ∈ CM [b, c] is g∗ ◦ f

Note. The axioms for M amounts to say that CM is a category. – p. 27

Internal LanguageMLM for Categories with one Monad

types τ : : = a |Mτ , contexts Γ: := x: τ , and their interpretation [[Mτ]] = M [[τ]]

raw terms e: : = x | f(e) | ret e | do {x← e1; e2}, use retMe when more than one M

Additional rules for well-formedness of terms and their interpretation

[[Γ ⊢ e: τ]] = f

[[Γ ⊢ ret e:Mτ]] = ηa ◦ f
[[τ]] = a

[[Γ ⊢ e1:Mτ1]] = f

[[x1: τ1 ⊢ e2:Mτ2]] = g

[[Γ ⊢ do {x1 ← e1; e2}:Mτ2]] = g∗ ◦ f

Additional rules for equality of terms

Γ ⊢ e:Mτ

Γ ⊢ do {x← e; retx} = e:Mτ

Γ ⊢ e1: τ1 x1: τ1 ⊢ e2:Mτ2

Γ ⊢ do {x1 ← ret e1; e2} = e2[x1: e1]:Mτ2

Γ ⊢ e1:Mτ1 x1: τ1 ⊢ e2:Mτ2 x2: τ2 ⊢ e3:Mτ3

Γ ⊢ do {x2 ← (do {x1 ← e1; e2}); e3} = do {x1 ← e1; do {x2 ← e2; e3}}:Mτ3

– p. 28

Internal LanguageML×M and Strong Monad on a Cartesian Category

types τ : : = . . . |Mτ and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = . . . | ret e | do {x← e1; e2} with several (occurrences of) variables

Interpretation of do {x← e1; e2} and extension
c× a

f- Mb

c×Ma
f∗
c- Mb

parametric in c

[[Γ ⊢ e1:Mτ1]] = f [[Γ, x1: τ1 ⊢ e2:Mτ2]] = g

[[Γ ⊢ do {x1 ← e1; e2}:Mτ2]] = g∗c ◦ f
c = [[Γ]]

Prop. If C has enough points, then f∗
c is uniquely determined by f∗, namely ∀x: 1→ c

c×Ma f∗
c
- Mb

1×Ma

x× idMa

6

π2
- Ma

g∗

6

when

c× a f - Mb

1× a

x× ida

6

π2
- a

g

6

– p. 29

Internal LanguageML×M and Strong Monad on a Cartesian Category

types τ : : = . . . |Mτ and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = . . . | ret e | do {x← e1; e2} with several (occurrences of) variables

Interpretation of do {x← e1; e2} and extension
c× a

f- Mb

c×Ma
f∗
c- Mb

parametric in c

[[Γ ⊢ e1:Mτ1]] = f [[Γ, x1: τ1 ⊢ e2:Mτ2]] = g

[[Γ ⊢ do {x1 ← e1; e2}:Mτ2]] = g∗c ◦ f
c = [[Γ]]

Revised rules for equality of terms

Γ ⊢ e:Mτ

Γ ⊢ do {x← e; retx} = e:Mτ

Γ ⊢ e1: τ1 Γ, x1: τ1 ⊢ e2:Mτ2

Γ ⊢ do {x1 ← ret e1; e2} = e2[x1: e1]:Mτ2

Γ ⊢ e1:Mτ1 Γ, x1: τ1 ⊢ e2:Mτ2 Γ, x2: τ2 ⊢ e3:Mτ3

Γ ⊢ do {x2 ← (do {x1 ← e1; e2}); e3} = do {x1 ← e1; do {x2 ← e2; e3}}:Mτ3
– p. 29

Examples of Monads

If C is a poset (X,≤), then a monad M on C amounts to a monotonic
M :X - X s.t. ∀x ∈ X.x ≤Mx = M(Mx)

if C is also cartesian, i.e. (X,≤) has finite meets, then M is a strong monad
provided M preserves binary meets, i.e. ∀x, y ∈ X.M(x ∧ y) = M(x) ∧M(y)

If (X, ·, 1) is a monoid, then MA = A×X is part of a monad on Set, and each
monoid structure on X induces a different monad

Go back to the Examples of Computational Types and show that each M is part of
a monad (on Set or ω-CPO)

– p. 30

Semantics of Recursive Definitions andML×,M with fix

types τ : : = . . . |Mτ and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = . . . | ret e | do {x← e1; e2} | fixx.e

Interpretation
[[Γ, x:Mτ ⊢ e:Mτ]] = f

[[Γ ⊢ fixx.e:Mτ]] = f†
c

c = [[Γ]] using
c×Ma

f- Ma

c
f†
c- Ma

Simplified Semantics
Ma

f- Ma

1
f†

- Ma
in a Cartesian Category with a Monad

1 f† - Ma

Ma

f

?

f †

-

1 f† - Ma

Mb

h∗

?

g †

-

when

Ma f - Ma

Mb

h∗

?
g - Mb

h∗

?

and a
h- Mb

Example. The least fix-point in the category of ω-CPO for the lifting monad MA = A⊥.

– p. 31

Semantics of Recursive Definitions andML×,M with fix

types τ : : = . . . |Mτ and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = . . . | ret e | do {x← e1; e2} | fixx.e

Interpretation
[[Γ, x:Mτ ⊢ e:Mτ]] = f

[[Γ ⊢ fixx.e:Mτ]] = f†
c

c = [[Γ]] using
c×Ma

f- Ma

c
f†
c- Ma

Prop. If C has enough points, then f†
c is uniquely determined by f†, namely ∀x: 1→ c

c f†
c
- Ma

1

x

6

g
†

-

when

c×Ma f - Ma

1×Ma

x× idMa

6

π2
- Ma

g

6

– p. 31

Semantics of Recursive Definitions andML×,M with fix

types τ : : = . . . |Mτ and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = . . . | ret e | do {x← e1; e2} | fixx.e

Interpretation
[[Γ, x:Mτ ⊢ e:Mτ]] = f

[[Γ ⊢ fixx.e:Mτ]] = f†
c

c = [[Γ]] using
c×Ma

f- Ma

c
f†
c- Ma

Revised rules for equality of terms

fix-point
Γ, x:Mτ ⊢ e:Mτ

Γ ⊢ fixx.e = e[x: fixx.e]:Mτ

uniformity

Γ, x1:Mτ1 ⊢ e1:Mτ1 Γ, x2:Mτ2 ⊢ e2:Mτ2 Γ, x: τ1 ⊢ e:Mτ2

Γ, x1:Mτ1 ⊢ e2[x2: do {x← e1; e}] = do {x← e1; e}:Mτ2

Γ ⊢ fixx2.e2 = do {x← (fixx1.e1); e}:Mτ2

– p. 31

[Asperti-Longo 1991, Ch 3]

– p. 32

Functors

A functor F from C to D, notation F : C - D , consists of

operations F0: C0 - D0 and F1: C1 - D1 subscripts are usually omitted s.t.

F preserves domain and codomain: a
f- b in C implies Fa

Ff- Fb in D

F preserves identity and composition: F (ida) = idFa and F (g ◦ f) = Fg ◦ Ff

Cat is the category of (small) categories and functors (the definition of identity functors
and functor composition are obvious).

– p. 33

Functors

Dogma 2 [Gog91]: to any natural construction on structures of one species, yielding
structures of another species, there corresponds a functor .

Functors between discrete categories correspond to functions between the
underlying collections of objects

Functors between preorders correspond to monotonic maps

Functors between monoids correspond to monoid homomorphisms

Given C whose objects are sets with additional structure (and arrows are functions
respecting the structure), there is a forgetful functor U : C - Set, which maps
an object to the underlying set and is the identity on arrows (thus U is faithful).
Examples are: Mon , PO, ω-CPO, Alg Σ, EN, A-Set. Similarly one can define

U0, U1:Graph - Set mapping a graph to the underlying set of nodes/arcs.

U :Cat - Graph mapping a category to the underlying graph.

– p. 33

Functors

Dogma 2 [Gog91]: to any natural construction on structures of one species, yielding
structures of another species, there corresponds a functor .

diagonal functor ∆: C - C × C is given by ∆(a) = (a, a) and ∆(f) = (f, f)

projection functor πi: C1 × C2 - Ci is given by πi(a1, a2) = ai and πi(f1, f2) = fi

Given a biCC C, we define the following functors (using choice)

×: C × C - C mapping (a1, a2) to a1 × a2, where a1 �π1

a1 × a2
π2- a2 is

a chosen product diagram

+: C × C - C mapping (a1, a2) to a1 + a2, where a1
ι1- a1 + a2 �ι2

a2 is
a chosen coproduct diagram

The definition of f1 × f2, f1 + f2 (and the proof that they preserve identities and composition) exploit

the universal properties of products and coproducts.

Give examples of construction on sets that do not extend to a functor on Set
e.g. case analysis on the cardinality of X set, or on whether X is a member of a given set.

Give more examples of functors between categories defined so far
inclusion functor from EN into A-Set, exploiting the encoding of N in any non-trivial pCA

inclusion functor from Set into ω-CPO, PO and A-Set – p. 33

Natural Transformations

Given two functors F,G: C - D, a natural transformation τ :F - G consists of

an operation τ : C0 - D1, we may write τa for τ(a) , s.t.

∀a ∈ C.τa ∈ D[Fa,Ga] and ∀a, b ∈ C.∀f ∈ C[a, b]. τb ◦ Ff = Gf ◦ τa

or equivalently, for all a
f- b in C the squarea

Fa τa - Ga

Ga

Ff

?
τb - Gb

Gf

?

commutes in D

To make explicit also the categories involved we write C
F -
⇓ τ
G -

D

– p. 34

Natural Transformations

Dogma 3: to each natural translation from a construction F :A - B to a
construction G:A - B there corresponds a natural transformation F - G.

the identity natural transformation A
F -
⇓ idF
F -

B is idF (a) = idFa

if A

F1
-

⇓ τ1
F2

-
⇓ τ2
F3

-

B the vertical composite A
F1

-
⇓ τ2 ◦ τ1

F3
-
B is (τ2 ◦ τ1)a = τ2(a) ◦ τ1(a)

In fact, (when A and B are small) there is a functor category BA of functors
F :A - B and natural transformations, which is an exponential object in Cat.

Universal properties induce both functors and natural transformations, e.g. if C is a
biCC, then in addition to the functors −×− and −+− we have

C × C
× -
⇓ πi

πi
-
C C × C

πi
-

⇓ ιi
+ -

C where

πi(a1, a2) is a1 × a2
πi- ai , ιi(a1, a2) is ai

ιi- a1 + a2
– p. 34

Monad M on C in monoid form (M, η, µ)

M : C - C functor C
idC -
⇓ η
M -

C C
M2 -
⇓ µ
M -

C natural transformations s.t.

M3a
µMa- M2a Ma

ηMa- M2a �Mηa
Ma

M2a

Mµa

?

µa

- Ma

µa

?
Ma

µa

?�

idM
a

id
M
a -

Prop. There is a bijection monads in monoid form and extension form

(f : a - Mb)∗
∆
= Ma M f- M2b µb

- Mb

M(f : a - b)
∆
= (a f - b ηb- Mb)∗

µa
∆
= (Ma idMa

- Ma)∗

Note. To verify that “(M,η, µ) is a monad” there are 7 equations to check!
– p. 35

Semantics of Collection Types andML×,M with 0 and+

types τ : : = . . . |Mτ and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = . . . | {e} | flat e | {e2|x← e1} | 0 | | e1 + e2

translation {e} ∆
= ret e flat e

∆
= do {x← e;x} {e2|x← e1}

∆
= do {x← e1; ret e2}

Algebraic operations 1
0a- Ma and Ma×Ma

+a- Ma and semantics of 0 and +

1 0a - Ma

Mb

h∗

?

0
b

-

Ma×Ma +a
- Ma

Mb×Mb

h∗ × h∗

?
+b

- Mb

h∗

?

when a
h- Mb

– p. 36

Semantics of Collection Types andML×,M with 0 and+

types τ : : = . . . |Mτ and contexts Γ: := 1 | Γ, x: τ with x 6∈ Γ

raw terms e: : = . . . | {e} | flat e | {e2|x← e1} | 0 | | e1 + e2

translation {e} ∆
= ret e flat e

∆
= do {x← e;x} {e2|x← e1}

∆
= do {x← e1; ret e2}

Revised rules for equality of terms

algebraicity
Γ, x: τ1 ⊢ e:Mτ2

Γ ⊢ do {x← 0; e} = 0:Mτ2

Γ ⊢ e1, e2:Mτ1 Γ, x: τ1 ⊢ e:Mτ2

Γ ⊢ do {x← (e1 + e2); e} = (do {x← e1; e}) + (do {x← e2; e}):Mτ2

further properties of 0 and +: they form a (commutative, idempotent) monoid.

Examples. monads MA = TΣ(A)/ =E , where Σ has a constant 0 and a binary
operation +, and =E is the theory induced by a set E of equations on Σ-terms.

– p. 36

PART 3

Algebra and Monads
[Asperti-Longo 1991, Ch 5] and [Manes 1976, Man98]

– p. 37

Universal Arrows

Given a functor U :A - C and an object c ∈ C

a universal arrow from c to U consists of a pair (u, a) with a ∈ A and c
u- Ua s.t.

∀a′ ∈ A.∀u′: c - Ua′. ∃!f : a - a′ s.t.

c u - Ua

Ua′

Uf

?
u ′

-

a universal arrow (u, a) from c to U is determined up to unique iso

if a
i- a′ is an iso in A, then ((Ui) ◦ u, a′) is a universal arrow from c to U

if (u′, a′) is a universal arrow from c to U , then

∃!i: a - a′ iso s.t.

c u- Ua

′

Ua′

Ui

?
u

-

there is a dual notion of universal arrow from U to c.
– p. 38

Reformulations and Examples

A universal arrow (u, a) from c ∈ C to U :A - C corresponds to an initial object in the
category c ↑ U given by

(objects) (f, a) with a ∈ A and f ∈ C[c, Ua]

(arrows) (f1, a1)
g- (f2, a2) with g ∈ A[a1, a2] s.t.

c f1 - Ua1

Ua2

Ug

?
f
2

-
commutes

– p. 39

Reformulations and Examples

Any universal property (for A) introduced so far can be recast in terms of universal
arrows to/from a functor U :A - C by a suitable choice of C and U , for instance

an I-indexed coproduct diagram ιi: ai - a corresponds to a universal arrow

((ιi|i ∈ I), a) from (ai|i ∈ I) to ∆:A - AI , where ∆(a)
∆
= (a|i ∈ I) and AI is

(objects) I-indexed families a = (ai|i ∈ I) of objects of A

(arrows) (fi|i ∈ I): a - b provided ∀i ∈ I.fi ∈ A[ai, bi]

dually, I-indexed product diagrams corresponds to universal arrows from ∆

When U :A - C is a monotonic maps between posets, a universal arrow from c to U
amounts to the least a s.t. c ≤ Ua.
We have given several forgetful functors U :A - Set, do the universal arrows
to/from these functors exists?

A aX s.t. u:X - U(aX) univ. bX s.t. u:U(bX) - X univ.

Mon aX = free monoid X∗ on X when |X| = 1: bX = 1

PO aX = (X,=) discrete p.o. on X when |X| ≤ 1: bX = (X,=)

Alg Σ aX = free Σ-algebra TΣ(X) on X NO unless Σ trivial

– p. 39

Universal Arrows and Monads

Prop. Given a functor U :A - C and a universal arrow (uc, ac) from c to U for every
c ∈ C, one has a monad (M,η,−∗) on C given by

Mc
∆
= U(ac)

ηc
∆
= uc: c - Mc

f∗ ∆
= U(f#):Mc - Md, with f# unique arrow in A[ac, ad] s.t.

c uc
- Mc

Md

Uf#

?

f

-

Prop Every monad M on C is obtained in the way described above, by a suitable
choice of A and U :A - C. In fact, there are two canonical choices for A (and U):

The Eilenberg-Moore category CM of EM-algebra

The Kleisli category CM of programs (already introduced)

– p. 40

Universal Arrows and Monads

Def. The Eilenberg-Moore category CM of EM-algebra

(objects) a = (a ∈ C0, α ∈ C[Ma, a]) s.t.
x: a ⊢ α({x}) = x: a and x2:M

2a ⊢ α(flatx2) = α({α(x1)|x1 ← x2}):Ma

(arrows) CM [a, a′] are f ∈ C[a, a′] s.t. x1:Ma ⊢ f(α(x1)) = α′({f(x)|x← x1}): a
′

commuting diagrams equivalent to the equations above
a ηa- Ma

a

α

?

id
a -

M2a Mα- Ma

Ma

µa

?
α - a

α

?

Ma Mf- Ma′

a

α

?
f - b

α′

?

(identity) on a is ida

(composition) of f ∈ CM [a1, a2] and g ∈ CM [a2, a3] is g ◦ f

The forgetful functor U : CM - C

U(a)
∆
= a

U(f)
∆
= f ∈ C[a, b] when f ∈ CM [a, b]

– p. 40

Universal Arrows and Monads

Def. The Klesli category CM of programs

(objects) a ∈ C0, same objects of C

(arrows) CM [a, b] = C[a,Mb]

(identity) on a is ηa

(composition) of f ∈ CM [a, b] and g ∈ CM [b, c] is g∗ ◦ f

The forgetful functor U : CM - C and the comparision functor F : CM - CM

U(a)
∆
= Ma

U(f)
∆
= f∗ ∈ C[Ma,Mb] when f ∈ CM [a, b]

F (a)
∆
= (Ma, µa) the free EM-algebra on a

F (f)
∆
= f∗ ∈ CM [Fa, Fb] when f ∈ CM [a, b], because

M2a
M(f∗)- M2b

Ma

µa

?

f∗
- Mb

µb

?

(f ∗
) ∗

-

– p. 40

Algebraic Theories and Monads onC = Set

Def. An algebraic theory is a pair (Σ, E), with Σ signature Σ and E set of Σ-equations
(with variables in nat). (Σ, E) induces a monad M on C, where MA = TΣ(A)/ =E is
the set of Σ-terms with variables in A modulo the congruence =E induced by E

CM is (isomorphic to) the category Alg (Σ,E) of Σ-algebra satisfying equations E

CM is (isomorphic to) the dual of T(Σ,E), the category of sets and substitutions
modulo =E , and the comparison functor is F (X) = TΣ(X)/ =E .

Def. A functor/monad M on C is finitary ∆
⇐⇒ ∀X ∈ C0.∀y ∈MX. exist X0 ⊆fin X and

y0 ∈MX0 s.t. Mi: y0 - y, where i:X0
- X is the inclusion map of X0 into X.

The (finite) set X0 is called a support of y.

Prop. Finitary monads are (modulo iso) the monads induced by algebraic theories.

Prop. There is a bijection from op′ ∈Mn to n-ary algebraic operations op for M ,

i.e. opa: (Ma)n - Ma s.t. h∗(opa(ti|i ∈ n)) = opb(h
∗(ti)|i ∈ n) when a

h- Mb.
Proof. op′ = opn(ret i|i ∈ n) and opa(t) = do {i← op′; t(i)}.
The bijective correspondence holds for any strong monad M on a CCC C. – p. 41

Algebraic Theories and Monads onC = Set

Def. [Man98] M is a collection functor/monad ∆
⇐⇒

M finitary and for any X ∈ C and y ∈MX exists the minimum support σX(y) of y

and σX :MX - Pfin(X) is a natural transformation/monad morphism , i.e.

x:X ⊢ σX(retx) = {x}:Pfin(X)

c:MX ⊢ σX(do {x← c; f(x)}) = {x|x ∈ σX(c) ∧ y ∈ σY (f(x))}:Pfin(Y)

Prop. Collection monads are the monads induced by balanced algebraic theories
(Σ, E), i.e. FV(t) = FV(t′) for any equation t = t′ in E.
Examples. See [Man98] for examples and counter-examples of collection monads.

Algebraic Semantics of Collection Types in Set

a collection monad M (membership of a collection is well-defined)

0′ ∈M0 and +′ ∈M2 (empty collection and union of collections)

aggregate operations opX :MX - A as homomorphic extension
f#: (MX,µX) - A of f :X - A with A = (A,α) EM-algebra, i.e.
defined by structural induction on collections.

– p. 41

Algebraic Theories and Monads onC = Set

Def. [Man98] M is a collection functor/monad ∆
⇐⇒

M finitary and for any X ∈ C and y ∈MX exists the minimum support σX(y) of y

and σX :MX - Pfin(X) is a natural transformation/monad morphism , i.e.

x:X ⊢ σX(retx) = {x}:Pfin(X)

c:MX ⊢ σX(do {x← c; f(x)}) = {x|x ∈ σX(c) ∧ y ∈ σY (f(x))}:Pfin(Y)

Prop. Collection monads are the monads induced by balanced algebraic theories
(Σ, E), i.e. FV(t) = FV(t′) for any equation t = t′ in E.

Examples of EM-algebra for collection Monads

for finite sets ∃, ∀:Pfin(bool) - bool, max:Pfin(nat) - nat

for finite bags
∑

,
∏
: (nat

fin
→ nat) - nat

for finite lists cat: string∗ - string

– p. 41

Algebraic approach to Computational Effects [PP01,HPP02,PP09]

Basic idea: computational types Mτ as (abstract) datatypes in a biCCC C, with
operations opx:H(Mx)

.
→Mx to build computations

1. is op algebraic, i.e. definable from some op′x:Hx
.
→Mx or op′: b - Ma?

2. is M the monad induced by an algebraic theory? M is no longer abstract !

There are 3 ways of combining algebraic theories (computational effects)
sum Σ+ Σ′ and E + E′ (disjoint union of operations and equations)
tensor sum + op′(op(xi,j |i ∈ m)|j ∈ n) = op(op′(xi,j |j ∈ n)|i ∈ m)

distribute sum + op′(x, op(xi|i ∈ m), x′) = op(op′(x, xi, x
′|i ∈ m))

3. is op an effect handler, i.e. definable as homomorphic extension f#:Mx - a
for some EM-algebra a and f :x - a?

Examples of Algebraic Operations

side-effects lookup:L - MU , update:L× U - M1, new:U - ML

input-output read: 1 - MU , write:U - M1

exceptions raise:E - M0

continuations abort:R - MR, callccX : (M0)((M0)X) - MX
– p. 42

Algebraic approach to Computational Effects [PP01,HPP02,PP09]

Basic idea: computational types Mτ as (abstract) datatypes in a biCCC C, with
operations opx:H(Mx)

.
→Mx to build computations

1. is op algebraic, i.e. definable from some op′x:Hx
.
→Mx or op′: b - Ma?

2. is M the monad induced by an algebraic theory? M is no longer abstract !

There are 3 ways of combining algebraic theories (computational effects)
sum Σ+ Σ′ and E + E′ (disjoint union of operations and equations)
tensor sum + op′(op(xi,j |i ∈ m)|j ∈ n) = op(op′(xi,j |j ∈ n)|i ∈ m)

distribute sum + op′(x, op(xi|i ∈ m), x′) = op(op′(x, xi, x
′|i ∈ m))

3. is op an effect handler, i.e. definable as homomorphic extension f#:Mx - a
for some EM-algebra a and f :x - a?

Examples of Non-Algebraic Operations

state-readers local:S ×MX - MX where local(s, c) = λs′.c(s)

exceptions handle:MX × (MX)E - MX where
handle(retx, h) = retx and handle(raise(e), h) = h(e)

nondeterministic interactive programs por:MX ×MX - MX
– p. 42

PART 4

Monads in Haskell

– p. 43

Some Type Classes in Haskell

Type class = type (constructor) equipped with some (polymorphic) operations, but there
is no way to ensure that the operations satisfy certain (equational) properties

class Eq a where
==: : a→ a→ Bool
a type a equipped with a test for equality

class Functor f where
fmap: : (a→ b)→ f a→ f b
a type constructor f with the structure of a (strong) endofuntor

class Monad m where
>>=: :m a→ (a→ m b)→ m b
ret: : a→ ma
a type constructor m with the structure of a (strong) monad

class (Monad m)⇒MonadPlus m where
mplus: :m a→ m a→ m a
mzero: :ma
a (strong) monad with union and empty collection operations

– p. 44

The IO Monad and Interaction with the World

IO a abstract datatype, whose values describe interactions with the world

opx:H(IO x)→ IO x (polymorphic) operation that may have an effect, e.g.
read/write operations on a file

the IO-interpreter runs at the top level, it interprets only the IO-operations, and
relies on the pure interpreter e→ v for the rest

IO-computations may spawn parallel threads, thus the pure interpreter should
cope with concurrent calls!

Parallelism is not a problem in a pure functional language, when implementations
are based on term graph rewriting with in-place update.

– p. 45

The STs Monad and Encapsulation of State

STsa abstract datatype for imperative computations within region s

in Haskell a region (variable) is represented by a type (variable)
STRefsa (abstract) datatype of references (to values of type a) in region s

newSTRef : a→ STs(STRefsa)

readSTRef :STRefsa→ STsa

writeSTRef :STRefsa→ a→ STs()

eqSTRef :STRefsa→ STRefsa→ bool

– p. 46

The STs Monad and Encapsulation of State

STsa abstract datatype for imperative computations within region s

the ST -interpreter (for region s) interprets only the ST -operations, and relies on
the pure interpreter e→ v for the rest

the pure interpreter may activate the ST -interpreter using the operation
runST : (∀s.STsa)→ a, pure evaluation of (runST e): τ involves

a call to the ST -interpreter, which evaluates es:STsτ in a fresh region s

upon completion a value v: τ is returned to the pure interpreter, and the state
in region s is erased (region based memory management)
in any reasonable implementation, after evaluation runST e is replaced by v.

the Type System ensures that it is safe to reclaim the store at the end of the
imperative computation within region s, and that imperative computations in
different regions do not interfere (thus parallelism is not a problem).

IO - pure runST -
� ST

IO: global side-effects, concurrency/interference
pure: no side-effects, confluence (concurrency without interference)
STs: local side-effects, single-threaded (no concurrency)

– p. 46

Bibliographic References

– p. 47

On the benefits of Category Theory

Goguen:91 A Categorical Manifesto. MSCS 1(1), 1991

Scott:80 Relating theories of the lambda-calculus. In To H.B.

Curry: Essays in Combinatory Logic, Lambda calculus

and formalism. Hindley R., Seldin J. (ed.), 1980

Computational Types and Monads

Moggi:88 Computational lambda-calculus and monads. Edin-

burgh Univ. ECS-LFCS-88-66, 1988

Moggi:89 Computational lambda-calculus and monads. LICS,

1989

Moggi:91 Notions of computation and monads. I&C 93(1),

1991

Moggi:97 Metalanguages and applications. In Semantics and

Logics of Computation, CUP, 1997

Benton+Hughes+Moggi:02 Monads and Effects. In APPSEM

2000, LNCS 2002

Jaskelioff:09 Modular monad transformers. ESOP, 2009

Fixpoint semantics

47-1

Crole+Pitts:90 New foundations for fixpoint computations. LICS,

Evaluation Logic

Pitts:91 Evaluation logic. Banff Workshop, 1990

Moggi:94 A general semantics for evaluation logic. LICS, 1994

Monads and (Fuctional) Programming

Wadler:90 Comprehending monads. ICFP, 199

Wadler:92 The essence of functional programming. POPL,

1992

Wadler+Thiemann:03 The marriage of effects and monads.

ACM Trans. on Comp. Logic 4, 2003

Lucassen+Gifford:88 Polymorphic Effect Systems. POPL, 1987

Collection Types and Monads

Buneman+Naqvi+Tannen+Wong:95 Principles of programming

with complex objects and collection types. TCS 149(1),

1995

Manes:76 Algebraic Theories, Ernest G. Manes. Graduate

Texts in Mathematics (Springer), 1976

47-2

Manes:98 Implementing collection classes with monads. MSCS

8(3), 1998

Monads in Haskell

PeytonJones+Wadler:93 Imperative functional programming.

POPL, 1993

Launchbury+PeytonJones:95 State in Haskell. Lisp&Symb.

Comp. 8(4), 1995

Harris+Marlow+PeytonJones+Herlihy:05 Composable mem-

ory transactions. PPoPP, 2005

Hughes:00 Generalising monads to arrows. SCP 37, 2000

Algebraic Approach to computational effects

Plotkin+Power:01 Adequacy for algebraic effects. FOSSACS,

2001

Hyland+Plotkin+Power:02 Combining computational effects.

IFIP TCS, 2002

Plotkin+Pretnar:09 Handlers of algebraic effects. ESOP, 2009

47-3

	PART 1\[10pt] Denotational Semantics of Programming Languages\ ldots via translation into a Metalanguage\[10pt] Computational Types and Collection Types:\ Informal Concepts and Simple Examples
	Denotational Semantics cite {Scott-Strachey 1969}
	Denotational Semantics of a Simple Imperative Language
	Denotational Semantics of a Simple Imperative Language
	Denotational Semantics of a Simple Imperative Language

	Denotational Semantics of a Simple Functional Language
	Denotational Semantics of a Simple Functional Language
	Denotational Semantics of a Simple Functional Language
	Denotational Semantics of a Simple Functional Language

	Addendum on Syntax and Semantics
	Computational Types cite {Mog91}
	Examples of Computational Types/Notions of Computation
	Examples of Computational Types/Notions of Computation
	Examples of Computational Types/Notions of Computation

	Collection Types cite {BNTW95}, aka Bulk Types cite {WT91}
	Examples of Collection Types
	PART 2\[10pt] From Lambda Calculus to Category Theory cite {Scott 1980}\ A Categorical Manifesto cite {Goguen 1991}\[10pt] A Taste of Category Theory cite {Asperti-Longo 1991, Pierce 1991}\ focused on Monads
	Category Theory (CT)
as a Pure Theory of functions cite {Sco80}
	A Categorical Manifesto cite {Gog91}
	cite {Asperti-Longo 1991, Ch 1}
	Category, Graph and Diagram
	Category, Graph and Diagram
	Category, Graph and Diagram

	Examples
	Examples

	Examples from Algebra
	Examples from Computability
	Examples from Category Theory
	Special Morphisms
	Special Morphisms

	cite {Asperti-Longo 1991, Ch 2}
	Thinking Categorically (special objects)
	Thinking Categorically (universal properties I)
	Thinking Categorically (universal properties I)
	Thinking Categorically (universal properties I)

	Thinking Categorically (universal properties II)
	Thinking Categorically (universal properties II)

	Addendum: Internal Language ML for Categories
	Addendum: Internal Language ML for Categories
	Addendum: Internal Language ML for Categories

	Addendum: Internal Language $ML_X $ for Cartesian Categories
	Monad $M $ on $cat {C}$ in extension form $(M ,eta ,_^*)$
cite {Man76}
	Internal Language $ML_M $ for Categories with one Monad
	Internal Language $ML_{X M }$ and Strong Monad on a Cartesian Category
	Internal Language $ML_{X M }$ and Strong Monad on a Cartesian Category

	Examples of Monads
	Semantics of Recursive Definitions and $ML_{X ,M }$ with $�ix $
	Semantics of Recursive Definitions and $ML_{X ,M }$ with $�ix $
	Semantics of Recursive Definitions and $ML_{X ,M }$ with $�ix $

	cite {Asperti-Longo 1991, Ch 3}
	Functors
	Functors
	Functors

	Natural Transformations
	Natural Transformations

	Monad $M $ on $cat {C}$ in monoid form (M ,eta ,mu)
	Semantics of Collection Types and $ML_{X ,M }$ with 0 and $+$
	Semantics of Collection Types and $ML_{X ,M }$ with 0 and $+$

	PART 3\[10pt] Algebra and Monads\ cite {Asperti-Longo 1991, Ch 5} and cite {Manes 1976, Man98}
	Universal Arrows
	Reformulations and Examples
	Reformulations and Examples

	Universal Arrows and Monads
	Universal Arrows and Monads
	Universal Arrows and Monads

	Algebraic Theories and Monads on $cat {C}=	extbf {Set}$
	Algebraic Theories and Monads on $cat {C}=	extbf {Set}$
	Algebraic Theories and Monads on $cat {C}=	extbf {Set}$

	Algebraic approach to Computational Effects cite {PP01,HPP02,PP09}
	Algebraic approach to Computational Effects cite {PP01,HPP02,PP09}

	PART 4\[10pt] Monads in Haskell
	Some Type Classes in Haskell
	The IO Monad and Interaction with the World
	The ST_s Monad and Encapsulation of State
	The ST_s Monad and Encapsulation of State

	Bibliographic References

