
A Semantic Account of Rigorous Simulation?

Adam Duracz1, Eugenio Moggi2, Walid Taha3, and Zhenchao Lin4

1 Rice University, Houston, TX, USA, adam.duracz@rice.edu
2 DIBRIS, Genova Univ., Genova, Italy, moggi@unige.it

3 Halmstad Univ., Halmstad, Sweden, name.surname@hh.se
4 Zhejiang University, Hangzhou, China, cszclin@gmail.com

Abstract. Hybrid systems are a powerful formalism for modeling cyber-
physical systems. Reachability analysis is a general method for check-
ing safety properties, especially in the presence of uncertainty and non-
determinism. Rigorous simulation is a convenient tool for reachability
analysis of hybrid systems. However, to serve as proof tool, a rigorous
simulator must be correct wrt a clearly defined notion of reachability,
which captures what is intuitively reachable in finite time.

As a step towards addressing this challenge, this paper presents a rigorous
simulator in the form of an operational semantics and a specification
in the form of a denotational semantics. We show that, under certain
conditions about the representation of enclosures, the rigorous simulator
is correct. We also show that finding a representation satisfying these
assumptions is non-trivial.

Keywords: Reachability analysis; Correctness; Programming languages.

1 Introduction

The crux of the intellectual problem with Cyber-Physical Systems (CPS)
is that, for the models that we use for the physical world, such as ODEs
or DAEs, there is a huge body of knowledge that has built up since the
19th century on how to model physical systems using these abstractions.
In the computing world, we also developed a lot of abstractions over a
much shorter history, from the 1930s or so, to talk about computing.
And those two classes of abstractions don’t play together. Generally, one
has a notion of time, the other doesn’t. How do you make these systems
play together? This is a big intellectual challenge. We are basically trying
to take two fabulously developed sets of theories that have diverged, and
bring them back together. — Edward A. Lee, 2012.5

? Funded by USA National Science Foundation and Swedish Knowledge Foundation.
Most of the work on this paper was done when the authors were at Halmstad Univ.

5 Edward A. Lee, First Halmstad Colloquium, Halmstad Univ., February 10th, 2012.
Minutes 1:17-1:20 in video http://bit.ly/HC-EAL, paraphrased slightly for clarity.

No sooner had the term CPS been coined by Helen Gill in 2006 [18] that Lee
began, with such characteristic eloquence, to tirelessly inspire multitudes of re-
searchers, including the authors, to address the challenges of modeling Cyber-
Physical Systems. For us, the following issues are of particular interest:

1. A mathematics that can cope with both continuous and discrete changes.
2. The possibility of extending to an heterogeneous setting modeling methods

and practices developed only for the continuous or the discrete setting.
3. Software tools that can support modeling in an heterogeneous setting.

Hybrid automata [4, 12] and the more general hybrid systems [11] appear to
address the first issue. Reachability analysis is an important tool to address safety
in both the continuous and discrete setting, and its extension to a broader setting
is highly desirable. Other features make reachability analysis attractive. First,
it can incorporate both symbolic and numerical methods for solving continuous
dynamics, allowing a trade-off between speed and generality. Second, given the
broad applicability of the notions of “safe sets” and “bad sets”, reachability can
be used to analyze the designs of a wide range of cyber-physical systems. Third,
because of its similarity to numerical simulation, it has an intuitive appeal for a
broad audience and a more gradual learning curve than other formal methods.

Motivated by these observations, the Acumen modeling language [28, 22, 10, 25,
24, 1] allows users to describe hybrid systems that can then be simulated either
“traditionally” or “rigorously”.

Rigorous simulation [8] uses a time-bounded reachability algorithm that proceeds
in fixed size time steps, scanning the time domain from zero to a user-specified
end time, and at each step computes an over-approximation of the states reach-
able in that time interval. In [10] rigorous simulation has been used to analyze
early-stage designs of Advanced Driver Assistance Systems (ADAS).

1.1 Problem

Validated numerics, including directed rounding and other rigorous methods for
programming with floating point numbers, address the question of correctness of
numerical methods, and show how interval methods can be used to overcome this
problem [21, 23]. However, two other steps are needed to establish correctness of
a rigorous simulator (or some other tool for reachability analysis)

– to give a mathematical definition of the set of reachable states, and
– to prove that the tool computes an over-approximation of this set.

For a discrete system reachability is given by the reflexive and transitive closure
→∗ of the transition relation → describing how the state of the system changes
at each tick of the clock. What is needed is a generalization, that copes with real
time and continuous state spaces.

The category Top of topological spaces and continuous maps is an obvious
choice, in fact: a set amounts to a discrete space, an Euclidean space (more
generally a metric space) comes with the topology generated by its open balls, a
complete lattice can be equipped with Alexandrov topology or Scott topology.

1.2 Contributions and Organization of this Paper

The main contributions of this paper are the denotational semantics used as
a reference to define correctness criteria, the definition of a rigorous simulator
in the form of an operational semantics parameterized wrt an abstract data-
type of timed enclosures, a modular strategy for proving the correctness of an
operational semantics with respect to the denotational semantics. The strategy
captures our intuitive understanding of how implementation and specification
should relate. At the same time, this approach places demands on the abstract
data-type of timed enclosures. The rest of the paper is organized as follows:

– Section 2 gives an overview, driven by examples, of rigorous simulation.
– Section 3 gives the denotational semantics of a minimal modeling language,

where a model is interpreted by a hybrid system [11]. We endorse hybrid
systems for their simplicity and generality, in particular they fully support
non-determinism, which is essential to model known unknowns and don’t
care. Then, we define (time-bounded) reachability in the form of a monotonic
map induced by a (timed) transition relation.

– Section 4 describes a rigorous simulator as a small-step operational semantics
manipulating timed enclosure. We make few connections with Section 3, in
order to exemplify a possible interpretation of timed enclosure.

– Section 5 gives an interpretation for all entities used by the operational
semantics and proves correctness in the form of an assume-guarantee result.

2 Hybrid Systems and Rigorous Simulation

In a modeling language hybrid systems can be described as collections of guarded
jumps and guarded flows. To use a programming language metaphor, they are
if-statements saying when the system should change discretely or continuously.
Without going into syntactic details, we can illustrate some key concepts of
rigorous simulation with two examples:

1. Saw Tooth: This is a system that climbs continuously at speed a per second
until it reaches the height of b, at which point it resets to zero, from where
it can resume its continuous climbing behavior. As defaults we will take
parameters a = 1 and b = 1; and as initial value for height x0(0) = 0.

2. Bouncing Ball: This is a system that starts at a certain height and a certain
speed and it is subject to a downwards acceleration g until it hits the ground
at height zero, at which point it loses energy and bounces with a speed equal
to a fraction c of its speed. As defaults we will take parameters g = 1 and
c = 0.5; and as initial values for height x0(0) = 1 and for speed x1(0) = 0.

2.1 Basic Concepts

Rigorous simulation proceeds through time by discrete steps. An key concept
in rigorous simulation (or reachability analysis) is that of an enclosure, ie, a

Fig. 1. Simulation steps, Triples, Flows, and Jumps

machine-representable entity that over-approximates the set of states reached
within a time interval [0, h] by the system being simulated (or analyzed). Whereas
traditional simulation (assumes that the system is deterministic and) produces
a point approximation for the state reached at the end of a time step, Acumen’s
rigorous simulation produces a set of triples.

The first plot in Figure 1 illustrates the results for the first two time steps
in a simulation of the saw tooth example. To make the visual representation
easy to read, we start the system with an initial value that is not a point but a
set of possible values, namely, the interval [0, 0.1]. Each triple consists of three
intervals: the first (black box) over-approximates the set of values at the start,
the second (pink box) over-approximates the set of values taken by x0 during
the entire time step, and the third (black box) over-approximates the set of
values at the end, or equivalently at the start of the next time step. This plot
displays two triples that over-approximate the trajectory x0(t) = t with t < b.
The second interval in a triple always contains the other two, which give more
precise bounds for the start and the end, and help main precision across steps.

A powerful feature of rigorous simulation is the ability to start, work, and com-
pute with sets values. We started with a set of initial values because it is easier
to see on the visualization. One can also start with a single initial value, but this
exact value can be harder to see. The second plot in Figure 1 is produced
when we start with the value zero. Visualizing triples in this manner allows us
to distinguish between uncertainty due to the size of the time step and uncer-
tainty in the set of values being passed from one step to the next. Visualizing
triples enables the user to pinpoint the sources of uncertainty in results, be it
uncertainty about inputs, due to underlying numerics, or due to the fact that an
algorithm is stepping discretely through time. For example, if we allow the Saw
Tooth system start from a single initial value and run longer, we can observe
some important artifacts of how rigorous simulation deals with discrete events.

In general, the exact time when an event occurs in a continuous system may not
be representable nor computable. This means that a rigorous simulation algo-
rithm must reason about what happens when an event occurs at some unknown
time within the time step. The third plot in Figure 1 runs the simulation

Fig. 2. Jumps, Uncertainty, and Simulation Step Size

longer and shows the results after the first jump in the saw tooth system. The
results give a hint of how events are handled. In essence, we consider all values
taken by x0(t) from the start to the end of the time step. Then, we compute the
result of the jump from that set. The only question that remains is how long the
system can evolve after that point and until the end of the time step. We must
work with the worst case, ie, it can evolve for anywhere between zero and the
length of the time step. The result is that the final value at the end of the time
step is often “blurred” with uncertainty.

The reader may be alarmed that this means that uncertainty can quickly accu-
mulate due to simulation. This is only half true. Errors can also decrease during
a simulation. The two plots in Figure 2 give the simulation of the saw tooth
system for ten seconds, one with step size 0.1, the other with step size 0.01. The
plots show that a smaller step size can slow the rate at which error is added, but
it is unlikely to stop it. There are two features of rigorous simulation that can
stop and even reduce error. The first is explicit constraints. For example, in the
saw tooth example, even though the each event adds uncertainty, the value of
x0 remains bounded between 0 and 1. This is due to exploiting the information
present in the guards to the events using, for examples, the contractor techniques
advocated by Jaulin [6, 13]. The second is that when the system being studied
has stable dynamics, this dynamics can be used to absorb the uncertainties due
to simulation, and the error can eventually become smaller. This means that,
as long we are designing stable systems, accurate rigorous simulation should be
possible for good designs [9].

2.2 Zeno Behavior

More challenging problems for rigorous simulation arise from the interaction
between continuous and discrete dynamics, including Zeno [14, 26, 27, 15] and
chattering behavior [19, 17, 2, 3]. In these behaviors there is an infinite number
of discrete events (jumps) in a finite amount of time, thus the simulator has to
handle an unknown number of jumps within a single time step. Previous work
involving some of the authors [16, 15] showed how such systems can nevertheless
be rigorously simulated using enclosures, ie, by demonstrating that “no transition

Fig. 3. Rigorous Simulation past Zeno point. Two valid but divergent simulations.

can take the system outside a given enclosure”. The bouncing ball is a classic
example of a system that can exhibit Zeno behavior.

The plots on the left of Figure 3 display the height x0 and the speed x1
of the ball for the first simulation. Triples generated during a simulation step
can overlap, which leads to a red (darker pink) color. In general, a simulation
step can generate many triples, due to a wide range of uncertainties, including
whether or not a guard is true. For example, the third “falling band” for speed
starts before the end of the second falling band. This is because in some of the
possible trajectories the ball has already bounced twice, while in some others
not. Such uncertainty is natural in the presence of discrete events, and increases
close to Zeno points. This increase is captured by the increased intensity of the
red color. In this example, the maximum height that the ball reaches after each
bounce forms a geometric series. The Zeno point for this example is reached
before t = 7. Thus, this simulation successfully goes beyond the Zeno point.
What is not achieved, however, is to stop the increase of uncertainty. Increasing
uncertainty is confirmed by the (slowly) increasing size of the enclosure for both
variables as we get closer to t = 7. The plots on the right of Figure 3 confirm
this divergence. They show the simulation results for the same system with the
same initial conditions but with a bigger time step. Because this system is self-
similar as we approach the Zeno point, using a proportionally larger time step is
equivalent to zooming in around the Zeno point. The second diagram confirms
that the overall size of the enclosures is increasing.

The plots in Figure 4 show how adding an extra variable x2 for the (kinetic plus
potential) energy of the system (which changes at bounces and stays constant

Fig. 4. Rigorous Simulation past Zeno point - valid and convergent enclosures

otherwise) allows to achieve contracting enclosures for the system. To illustrate
the robustness of this phenomena, the plots on the right show a simulation for the
system but with larger time steps and much larger uncertainty about the initial
value of the height and speed at the start of simulation. As the graph shows, the
enclosures still converge. This is confirmed by the falling energy levels, which
strongly limit the set of possible values for height and speed.

3 Denotational Semantics

We define the criteria that a simulator for hybrid systems on an Euclidean space

S M
= Rn must satisfy to be considered rigorous, namely it must over-approximate

the safe evolution map Eh (see Def. 3) of the system over an initial segment [0, h]

of the continuous time-line T M
= {d:R|d ≥ 0}.

In this section we use the cartesian closed category Po of complete lattices and
monotonic maps, in particular Eh is such a map. Po is also the natural setting for

defining and comparing abstract interpretations [7]. We assume familiarity with
the category Top of topological spaces and continuous maps, some topological
notions (such as open, close and compact subset) and the definition of derivative
(in the context of Euclidean spaces).

In the rest of the paper, we write x:X for membership x ∈ X, P(X) for the set
of subsets of X, Pf(X) for the set of finite subsets of X, and make limited use
of the category Setp of sets and partial maps.

Definition 1 (HS [11]). A Hybrid System (HS for short) is a pair (F,G) of
binary relations on S, respectively called flow and jump relation, its support is

given by S(F,G)
M
= {s|∃s′.s F s′∨sG s′∨s′Gs}. Finally, H(S)

M
= P(S2)2 denotes

the complete lattice of HS on S ordered by component-wise inclusion.

As customary in mathematical logic, we must interpret syntactic entities by
mathematical entities. This semantic link is essential to relate the transforma-
tions implemented by a computer program (like a simulator) to some mathe-
matical function.

For our purposes it is useful to split the syntax in two layers:

– The upper layer considers modes q as primitive entities, and it suffices to
define our denotational and operational semantics and to prove correctness

– The lower layer gives the concrete syntax for modes, which usually depends
on the expressions handled by the libraries used, while the cardinality of X
determines the Euclidean space Rn used by the denotational semantics

mode q ∈ Q: : = . . .
model m ∈ M: : = q | m1,m2

variable x ∈ X finite set
real exp e: : = x | f(ei|i: #f)
bool exp b: : = p(ei|i: #p) | b1 ∧ b2 | b1 ∨ b2
mode q ∈ Q: : = if b flow (x′ = ex|x:X) | if b jump (x+ = ex|x:X)

More generally, flows and jumps could be boolean expressions (with variables
X, Ẋ and X,X+ respectively) denoting binary relations on Rn.

We interpret a mode q: Q by a HS [[q]]:H(S), and extend the interpretation to
models m and sets Q of modes by taking component-wise union, eg

[[m1,m2]]
M
= [[m1]] ∪ [[m2]] = (F1 ∪ F2, G1 ∪G2) when [[mi]] = (Fi, Gi):H(S)

Example 1. We describe a simple system with a parameter b: [0, 1], namely a
timer v with a timeout u, that exhibits a Zeno behaviour when b: (0, 1). Its
description as a model mT is q0, q1, q2, where

q0 = if 0 < v < u flow v′ = 1, u′ = 0 timer increases as time flows
q1 = if 0 < v = u jump v+ = 0, u+ = bu timer reset to 0 and timeout updated
q2 = if v = u = 0 jump v+ = 0, u+ = 1 timeout reset to 1

Its description as a HS HT = (F,G) = [[mT]] on R2 is

F = {((v, u), (1, 0))|0 < v < u} G = {((u, u)(0, bu))|0 < u}] {((0, 0), (0, 1))}

For cardinality reasons it is impossible to have finitary representations for all
elements of an Euclidean space S. In a complete lattice, like P(S), the order
allows us to tell when (the interpretation of) a representation approximates an
element. Similar considerations motivate the use of interval arithmetic.

Definition 2 (TR). The transition relation
(F,G)

- : P(S×T× S) of a HS is

s
d

(F,G)
- s′

M⇐⇒ d = 0 ∧ sG s′ or d > 0 ∧ ∃f : Top([0, d],S) such that

– the derivative ḟ of f is defined and continuous in (0, d)
– s = f(0), s′ = f(d) and ∀t: (0, d).f(t)F ḟ(t).

In the later case we say that f realizes the transition.

The transition relation allows to define the safe evolution map, which computes
an over-approximation of the states reachable at a given time by a HS, even
when the HS has Zeno behaviors.

Definition 3 (Safe evolution). Let C(S) be the complete lattice of closed
subsets of a topological space S (ordered by inclusion). The time-bounded tran-
sition map Th: Po(H(S)×P([0], h]×S),P([0, h]×S)) and safe evolution map
Eh: Po(H(S)× P([0, h]× S),C([0, h]× S)) are given by

– Th(H, I)
M
= {(t+ d, s′)|∃s:S.(t, s): I ∧ s d

H
- s′ ∧ t+ d ≤ h}

– Eh(H, I)
M
= the smallest E: C([0, h]× S) such that I ∪ Th(H,E) ⊆ E.

Remark 1. The map Th(H,−) corresponds to the binary relation RH on [0, h]×S
st (t, s)RH(t′, s′)

M⇐⇒ (0 ≤ t ≤ t′ ≤ h) ∧ s t′−t
H
- s′. In fact Th(H, I) = RH(I).

R∗H(I), whereR∗H is the reflexive and transitive closure ofRH, captures only what
is reachable from I in finitely many transitions, but may fail to capture what is
reachable in finite time. The safe evolution map Eh(H, I) avoids this pitfall by
requiring E to be a closed subset (see [20]). An equivalent definition of E(H, I)

in terms of RH is the smallest E: P([0, h] × S) such that I ∪ RH(E) ∪ E ⊆ E,
and E is closed because E ⊆ E is always true.

In a metric space there is another reason to use C(S) instead of P(S). If the
accuracy to discriminate among points in S is δ, then a subset S: P(S) cannot

be distinguished from the open subset B(S, δ)
M
= {s′|∃s:S.dS(s, s′) < δ}. But

S ⊆ S ⊆ B(S, δ), where S is the closure of S, ie, the smallest S′: C(S) containing
S. Therefore, one cannot distinguish two subsets of S with the same closure, no
matter how small δ is.

Example 2. Let H be HT in Example 1, then

– The transition relation
H
- is (v, u)

d- (v+d, u) when 0 ≤ v < v+d ≤ u,

(u, u)
0- (0, bu) when 0 < u, and (0, 0)

0- (0, 1); in particular, one has

(0, u)
u- (u, u)

0- (0, bu) when 0 < u.
– The relation RH, which determines the map Th(H,−), is

{((t, v, u), (t+ d, v + d, u))|0 ≤ t < t+ d ≤ h ∧ 0 ≤ v < v + d ≤ u}]
{((t, u, u), (t, 0, bu))|0 ≤ t ≤ h ∧ 0 < u}] {((t, 0, 0), (t, 0, 1))|0 ≤ t ≤ h}

thus s0R
∗
Hsn = (tn, 0, b

nu) when 0 < b, u and tn =
∑

i:n b
iu ≤ h, but the

Zeno point sω = (tω, 0, 0) is not reachable, even when tω =
∑

i:ω b
iu ≤ h.

– The set E = Eh(H, I) includes R∗H(I), sω:E when ∀n:ω.sn:E, because sω
is the limit of a sequence (sn|n:ω) in E, and R∗H(sω) ⊆ E when sω:E.

However, if H is modified so that the (0, 0)
0- (0, 1) is removed or replaced

by (0, 0)
0- (0, 0), then the system cannot progress, ie R∗H(sω) = {sω}.

A minimal requirement for a simulator used for safety analysis should be partial
correctness wrt Eh. Namely, given a symbolic description m of a HS and a
representation over-approximating a set I: P(S) of initial states the simulator
should either fail or compute an over-approximation of Eh([[m]], [0]×I), or of the
bigger set Eh([[m]], [0]× I) (see the above considerations on indistinguishability).

The following result is relevant to prove correctness in Section 5.

Lemma 1. Let Fi and Gj denote the HS (Fi,∅) and (∅, Gj) on S, then

1.
Fi∪Gj

- =
Fi

- ∪
Gj

-

2.
G0∪G1

- =
G0

- ∪
G1

-

3.
F0∪F1

- =
F0

- ∪
F1

- , if S(F0) and S(F1) are disjoint subsets of S

where S is the closure of S: P(S), ie, the smallest S′: C(S) such that S ⊆ S′.

Proof. We prove only the last claim. If f : Top([0, d],S) realizes s
d

F0∪F1

- s′, then

the image of f is a subset of S(F0 ∪ F1) = S(F0)] S(F1). By taking the inverse
image of the two disjoint closed subsets we get a partitioning of [0, d] in two
disjoint closed subsets, but [0, d] is connected, so one of them is empty. ut

Remark 2. The lemma says that the transition relation of the union of two HS
H0 and H1 (on the same state space) is the union of their transition relations
only if the flow relations of the two HS are apart, ie S(F0) and S(F1) are disjoint.

If s
d

F
- s′, then s and s′ belong to the same connected component of S(F).

Given a flow relation F and a connected component C of S(F), let FC be the
restriction of F to C. By definition the flow relations FC are pairwise apart and
F =

⋃
C FC , thus

F
- =

⋃
C FC

- . Therefore, the connected components of

S(F) could be viewed as the control modes of a hybrid automaton [5].

4 Operational semantics

The operational semantics uses some auxiliary domains and maps, which form an
abstract data-type (ADT). To establish correctness of the operational semantics
this ADT must satisfy certain properties. Here we give properties of the ADT
that do not refer directly to the denotational semantics, in Section 5 we give
more properties that make direct reference to the denotational semantics.

Enclosures. D is a countable set of enclosures d interpreted as closed subsets
[[d]]: C(S). We assume that D is closed wrt binary intersection d1∩d2, contains the

empty enclosure ∅, and the cover relation d ≤D [di|i:n]
M⇐⇒ [[d]] ⊆

⋃
i:n[[di]] is

decidable (we drop the subscript when it is clear from the context). The inclusion

relation on D is definable as d′ ⊆ d
M⇐⇒ d′ ≤ [d] and ≤ extends to a pre-order

on D∗, namely D′ ≤ D M⇐⇒ ∀d′:D′.d′ ≤ D.

A possible choice for D is the set of P -boxes in Rn, ie, cartesian products of n
closed intervals [x, y], whose endpoints are in a countable subset P of R, eg the
subset of rational numbers or the finite subset of floating point numbers.

Timed enclosures. The operational semantics uses only an ADT Z of timed
enclosures, representing over-approximations for closed subsets of T × S. An
Acumen-like implementation is Z ⊂ D×D×D containing initial e(z) = b(z) = ∅
and proper i(z), e(z) ⊆ b(z) triples, where i(z), b(z) and e(z) denotes the three
components of a z: Z. The interpretation [[z]]h: P(C([0, h]× S)) is given by

C: [[z]]h
M⇐⇒ C(0) ⊆ [[i(z)]] ∧ (∀t: (0, h).C(t) ⊆ [[b(z)]]) ∧ C(h) ⊆ [[e(z)]]

where C(t)
M
= {s|(t, s):C} when C: C([0, h]× S).

Z inherits from D intersection, defined component-wise, and the cover relation

z ≤Z [zi|i:n]
M⇐⇒ ∀C: [[z]]h.∃C ′:

∏
i:n[[zi]]h.C =

⋃
i:n C

′
i (the derived notions of

inclusion and the pre-order ≤ on Z∗ are defined as in the case of D)

Theorem 1. The following decision procedure ≤′ is sound for the cover relation
on Z, ie, z ≤′ Z =⇒ z ≤Z Z, and the converse holds when ∀d: D.[[d]] is convex

z ≤′ Z M⇐⇒ if b(z) = ∅ (ie, z is initial) then i(z) ≤D [i(z′)|z′:Z]
else b(z) ≤D [b(z′)|z′:Z ∧ b(z′) ∩ i(z) ⊆ i(z′)] and

b(z) ≤D [b(z′)|z′:Z ∧ b(z′) ∩ e(z) ⊆ e(z′)]

Proof. Soundness means C: [[z]]h∧z ≤′ [zi|i:n] =⇒ ∃C ′:
∏

i:n[[zi]]h.C =
⋃

i:n C
′
i.

The case ”z initial” is trivial, otherwise fix 0 < 0′ < h′ < h and let C ′i
M
= C∩⋃

({[0, h′]× b(zi)|b(zi)∩i(z) ≤ i(zi)} ∪ {[0′, h]× b(zi)|b(zi) ∩ e(z) ≤ e(zi)}). ut

Remark 3. In general [[z]]h is downward closed and closed wrt finite unions, but
may not have a biggest element, except when z is (d,∅,∅) or (d, d, d).

Jumping. Jump: Setp(Q × D,D) interprets jumps. Jump(q, d) ↑ when it cannot
compute an enclosure of the states reachable by jumping with q from d. We
assume the following properties

O.J Jump is strict, ie Jump(q,∅) = ∅, and
monotonic in d, ie d′ ⊆ d ∧ Jump(q, d) ↓ =⇒ Jump(q, d′) ⊆ Jump(q, d).

Flowing. Flowh: Setp(Q × D,Z) interprets flows for time step h. Flowh(q, d) ↑
when it cannot compute a timed enclosure of the states reachable by flowing
with q from d. We assume the following properties

O.F Flowh is strict, monotonic in d, and
the flow starts from d, ie z = Flowh(q, d) =⇒ z = Flowh(q, d ∩ i(z)).

Jump and Flowh are extended from D to Z as follows (and the extensions inherit
the properties assumed for the original maps, like strictness and monotonicity)

– Jump(q, z) = z′
M⇐⇒ z′ = (Jump(q, i(z)), Jump(q, b(z)), Jump(q, e(z)))

– Flowh(q, z) = z′
M⇐⇒ if b(z) = ∅ then z′ = z′i else z′ = (i(z′i), d

′
b, d
′
b) where

z′i
M
= Flowh(q, i(z)) and d′b

M
= b(Flowh(q, b(z))).

Operational rules. Fix a finite set Q: Pf(Q) of modes.

A Q-set is a sequence W : (Z× Pf(Q)× Pf(Q)× Pf(Q))∗ such that

∀(z,Qa, Qd, Qc):W.∅ ⊂ z ∧Qa]Qd]Qc ⊆ Q

– W is initial
M⇐⇒ ∀(z,Qa, Qd, Qc):W.Qa = Q.

– W is terminal
M⇐⇒ ∀(z,Qa, Qd, Qc):W.Qa = ∅.

For defining the operational semantics we make the following assumptions

O.# ∀q:Q.(∀z: Z.Jump(q, z) = ∅)∨ (∀z: Z.Flowh(q, z) = ∅), thus Q is partitioned
in flows QF (ie, modes that cannot jump) and the rest QJ (that cannot flow)

O.Q ∀q, q′:Q.∀z, z′: Z.z′ = Flowh(q, z) ∧ q 6= q′ =⇒ Flowh(q′, z′) = ∅, this says
at the level of timed enclosures that flows in Q are apart (see Remark 2).

The binary relation
Q
- on Q-sets is defined by the following rules

jump W, (z,Qa] q,Qd, Qc),W
′

Q
- W, (z,Qa, q]Qd, Qc),W

′, (z′, Q− q,∅,∅)

if ∅ ⊂ Jump(q, z) = z′

flow W, (z,Qa] q,Qd, Qc),W
′

Q
- W, (z,Qa, q]Qd, Qc),W

′, (z′, Q− q,∅,∅)

if ∅ ⊂ Flowh(q, z) = z′

done W, (z,Qa] q,Qd, Qc),W
′

Q
- W, (z,Qa, q]Qd, Qc),W

′

if Flowh(q, z) = Jump(q, z) = ∅
cover W, (z,Qa] q,Qd, Qc),W

′
Q
- W, (z,Qa, Qd, q]Qc),W

′

if z ≤ [z′|(z′, Q′a, Q′d, Q′c):W,W ′ ∧ q ∈ Q′d].

Remark 4. The side conditions of (jump), (flow) and (done) are mutually exclu-
sive by (O.#). The following rule is derivable by exploiting (O.#) and (O.Q)

flow* W, (z,Qa]q,Qd, Qc),W
′

Q
- W, (z,Qa, q]Qd, Qc),W

′, (z′, QJ , QF −q,∅)

if ∅ ⊂ Flowh(q, z) = z′, where QJ and QF are defined in assumption (O.#).

The assumptions (O.#) and (O.Q) can be recast in terms of D

O.#* ∀q:Q.(∀d: D.Jump(q, d) = ∅) ∨ (∀d: D.Flowh(q, d) = ∅)
O.Q* ∀q, q′:Q.∀d: D.∀z′: Z.z′ = Flowh(q, d) ∧ q 6= q′ =⇒ Flowh(q′, b(z′)) = ∅

but the operational rules (and the proof of correctness) treat Z as an ADT, thus
one can adopt a different implementation of Z without invalidating correctness,
provided all assumptions are cast in terms of Z.

5 Correctness

The operational semantics is defined on top of the ADT Z for timed enclosures,
thus its correctness is an assume-guarantee result of the form ”if the ADT Z
satisfies certain properties, then the operational semantics is correct”.

Assumptions We fix Q: Pf(Q), define (Fq, Gq) = [[q]]:H(S) (see Section 3), and
make the following assumptions, in addition to (O,#) and (O.Q) of Section 4

A.Z ∀z: Z.[[z]]h ⊆ C([0, h]× S) is downward closed and has a top element C(z)
A.# ∀q:Q.Fq = ∅ ∨Gq = ∅, ie, [[q]] is either a jump or a flow

A.Q ∀q, q′:Q.q 6= q′ =⇒ S(Fq) ∩ S(Fq′) = ∅, ie, [[Q]] is a hybrid automaton (see

Remark 2), since S(F) = S(F)
A.J ∀q:Q.∀z, z′: Z.Jump(q, z) = z′ ∧ C: [[z]]h =⇒ Eh(Gq,Th(Gq, C)): [[z′]]h
A.F ∀q:Q.∀z, z′: Z.Flowh(q, z) = z′ ∧ C: [[z]]h =⇒ Eh(Fq,Th(Fq, C)): [[z′]]h.

In the sequel we write q(C) for Th([[q]], C) and q+(C) for Eh([[q]], q(C)), where
q:Q and C: C([0, h]× S). By Lemma 1 the assumptions (A.#) and (A.Q) imply

[[Q′]]

- =
⋃

q:Q′
[[q]]

- , or equivalently Th([[Q′]], C) =
⋃

q:Q′ q(C), when Q′ ⊆ Q.

Remark 5. The assumptions (A.J) and (A.F) refer to the extensions of Jump and
Flowh to Z. Section 4 implements Z using a simpler ADT D, but the operational
rules refer only to Z, thus correctness holds, as far as the assumptions on Z hold.
Warning: the simple implementation of Z in terms of D defined in Section 4
satisfies a weaker property than (A.Z), see Remark 3, thus we cannot claim
correctness for an operational semantics using that implementation.

To state correctness we have to define the semantics of Q-sets W , this is done
coherently with the semantics of timed enclosures z: Z.

Definition 4. The semantics [[W]]h: P(C([0, h]× S)) for a Q-set W is

– [[(z,Qa, Qd, Qc)]]h
M
= [[z]]h: P(C([0, h]× S))

– [[W]]h
M
= {

⋃
i:n Ci|C:

∏
i:n[[W (i)]]h}, with n = |W | and W (i) i-th item in W .

Correctness says that the operational semantics computes over-approximations
of the safe evolution map. However, the computation may fail to terminate,
there is no bound on the accuracy of the over-approximations, termination and
accuracy may depend on the order in which the operational rules are applied.

Theorem 2 (Correctness). If W
∗
Q
- W ′ with W initial and W ′ terminal,

then ∀C: [[W]]h.Eh([[Q]], C): [[W ′]]h.

Correctness relies on a lemma saying that
Q
- preserves well-formed Q-sets.

Definition 5. Let (z(i), Qa(i), Qd(i), Qc(i))=W (i) and Q(i)=Qa(i)]Qd(i)]Qc(i)

for i:n = |W |, then W is a well-formed Q-set
M⇐⇒ ∃p:n ⇀ n×Q such that

1. p(i) = (j, q) =⇒ j < i, ie, n forms a forest with arcs j
q- i

2. p(i) = p(j) =⇒ i = j
3. i:n ∧ p(i) ↑ =⇒ Q(i) = Q
4. p(i) = (j, q) ∧ q:QJ =⇒ q:Qd(j) ∧ Jump(q, z(j)) = z(i) ∧Q(i) = Q− q
5. p(i) = (j, q) ∧ q:QF =⇒ q:Qd(j) ∧ Flowh(q, z(j)) = z(i) ∧Q(i) = Q− q
6. q:Qd(j) =⇒ Jump(q, z(j)) = Flowh(q, z(j)) = ∅ ∨ ∃i:n.p(i) = (j, q)
7. q:Qc(j) =⇒ z(j) ≤ [z(i)|i:n ∧ q:Qd(i)].

In particular, an initial W is well-formed by taking p such that ∀i:n.p(i) ↑.

The partial map p:n ⇀ n×Q records how items were added toW , ie, p(i) = (j, q)
means thatW (i) was added by applying (flow) or (jump) to remove q fromQa(j).

Lemma 2. If W is well-formed and W
Q
- W ′, then W ′ is well-formed.

Proof. By case analysis on the operational rule used to derive W
Q
- W ′. The

proof relies on the assumption (O.#) and the side-conditions of the operational
rules. In particular, the witness p′ that W ′ is well-formed is given by the witness
p for W in the cases (done) and (cover), while it is an extension of p in the cases
(jump) and (flow). ut

Lemma 3. If W is well-formed and terminal, then Eh([[Q]], D): [[W]]h, where
D =

⋃
{C(z(i))|i:n∧ p(i) ↑} with n = |W | and p witness that W is well-formed.

Proof. Define C ′: [[W]]h such that D ⊆ C ′ and Th([[Q]], C ′) =
⋃

q:Q q(C
′) ⊆ C ′,

therefore Eh([[Q]], D) ⊆ C ′ belongs to [[W]]h, because [[W]]h is downward closed.

For i:n let ∅ ⊂ Ci
M
= C(z(i)) the top element in [[W (i)]]h by (A.Z), C

M
=

⋃
i:n Ci

the top element in [[W]]h, C ′i
M
= Ci when p(i) ↑, C ′i

M
= q+(Cj) when p(i) = (j, q),

and C ′
M
=

⋃
i:n C

′
i, then the following properties hold

1. D ⊆ C ′, by definition of D and C ′

2. C ′ ⊆ C, because W is well-formed and C ′i = q+(Cj) ⊆ Ci when p(i) = (j, q),
by (A.#), (A.J), (A.F) and definition of Ci

3. ∀j:n.∀q:Qd(j).q+(Cj) ⊆ C ′, because W is well-formed and q+(Cj) = ∅ or
∃i:n.p(i) = (j, q) ∧ q+(Cj) = C ′i

4. ∀i:n.∀q:Qc(i).q
+(Ci) ⊆ C ′, because Ci ⊆

⋃
{Cj |j:n ∧ q:Qd(j)} by W well-

formed, and q+(Ci) =
⋃
{q+(Cj)|j:n ∧ q:Qd(j)} ⊆ C ′ by point 3

5. ∀i:n.∀q:Q(i).q(Ci) ⊆ C ′, by the points 3 and 4, because q(Ci) ⊆ q+(Ci) and
Q(i) = Qd(i)]Qc(i) by W terminal

6. ∀q:Q.q(C ′) ⊆ C ′. We prove ∀i:n.∀q:Q.q(C ′i) ⊆ C ′ by case analysis on i:n:
– if p(i) ↑, then Q(i) = Q and C ′i = Ci, thus ∀q:Q.q(C ′i) ⊆ C ′ by point 5
– p(i) = (j, q), then Q(i) = Q− q and C ′i = q+(Cj), thus q(C ′i) ⊆ C ′i ⊆ C ′

by definition of C ′i, and ∀q′:Q− q.q′(C ′i) ⊆ C ′ by point 5. ut

6 Conclusions and Future Work

The main contribution of the paper is an assume-guarantee proof of correctness
(see Sec 5) for the rigorous simulator defined in Sec 4, where the assumptions
concern an ADT Z of timed enclosures. The proof may serve as a blueprint
for similar results. For instance, one could replace safe evolution with a variant
which is robust wrt arbitrary small over-approximations of the hybrid system
and the set of initial states (see [20]), or strengthen the correctness guarantees
by specifying the accuracy of the over-approximation computed by the rigorous
simulator (this means that accuracy becomes a parameter for the simulator, the
auxiliary maps Jump and Flowh, and the statement of correctness).

We showed that a simple implementation of Z, defined in terms of an ADT D
(see Sec 4), does not satisfy the assumption that the interpretation [[z]]h has
a top element, or more precisely that [[z]]h is a principal ideal in C([0, h] × S)
ordered by inclusion. Thus, an important next step will be to determine whether
there can be an implementation of Z satisfying all assumptions. It will also be
interesting to see if there is an alternative proof of correctness that rely on the
weaker assumption that [[z]]h is only an ideal.

We sketch an implementation of Z satisfying all assumptions required by the
proof of correctness, in particular for each z: Z the ideal [[z]]h has a top element
E(z) and [[z]]h = {C: C([0, h] × S)|C ⊆ E(z)}. The basic idea is that E(z) is a
convex bounded polytope P in T×Rn such that P (t) is a box in Rn for each t:T.
More formally, we take as z: Z sequences of inequalities of the form a ≤ t ≤ b
(where 0 ≤ a, b ≤ h) or a + a′t ≤ xi ≤ b + b′t with rational coefficients and
involving n+ 1 variables, namely t for time and xi for the i-th state variable.

A sequence z of inequalities defines a closed convex subset E(z) of C([0, h]× S)
consisting of the points satisfying all inequalities (thus E(z) is a polytope), and it
is bounded when z includes an inequality a ≤ t ≤ b and at least one inequality for
each xi. Finally, the inclusion and cover relation for convex polytopes described
by conjunctions of linear inequalities with rational coefficients are decidable,
because they are Turing-reducible to linear programming.

References

1. Acumen. http://acumen-language.org, 2016.

2. Ayman Aljarbouh and Benôıt Caillaud. On the regularization of chattering ex-
ecutions in real time simulation of hybrid systems. In Baltic Young Scientists
Conference, page 49, 2015.

3. Ayman Aljarbouh, Yingfu Zeng, Adam Duracz, Benôıt Caillaud, and Walid Taha.
Chattering-free simulation for hybrid dynamical systems. In 2016 IEEE Interna-
tional Conference on Computational Science and Engineering, IEEE International
Conference on Embedded and Ubiquitous Computing, and International Symposium
on Distributed Computing and Applications to Business, Engineering and Science.
IEEE Computer Society, 2016.

4. Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-
H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The
algorithmic analysis of hybrid systems. Theoretical computer science, 138:3–34,
1995.

5. Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hybrid
automata: An algorithmic approach to the specification and verification of hybrid
systems. In Hybrid systems, pages 209–229. Springer, 1993.

6. Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence,
173(11):1079–1100, 2009.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal
of logic and computation, 2(4):511–547, 1992.

8. Adam Duracz. Rigorous Simulation: Its Theory and Applications. PhD thesis,
Halmstad University Press, 2016.

9. Adam Duracz, Ferenc A Bartha, and Walid Taha. Accurate rigorous simulation
should be possible for good designs. In Symbolic and Numerical Methods for Reach-
ability Analysis (SNR), 2016 International Workshop on, pages 1–10. IEEE, 2016.

10. Adam Duracz, Henrik Eriksson, Ferenc A. Bartha, Yingfu Zeng, Fei Xu, and Walid
Taha. Using rigorous simulation to support ISO 26262 hazard analysis and risk
assessment. In 12th International Conference on Embedded Software and Systems
(ICESS), pages 1093–1096. IEEE, 2015.

11. Rafal Goebel, Ricardo G Sanfelice, and A Teel. Hybrid dynamical systems. Control
Systems, IEEE, 29(2):28–93, 2009.

12. T. A. Henzinger. The theory of hybrid automata. In Logic in Computer Science,
pages 278–292, New Brunswick, NJ, 1996. IEEE Computer Society.

13. Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied interval anal-
ysis: with examples in parameter and state estimation, robust control and robotics.
Springer Verlag, 2001.

14. Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, and Shankar Sastry. On
the regularization of zeno hybrid automata. Systems & control letters, 38(3):141–
150, 1999.

15. Michal Konečnỳ, Walid Taha, Ferenc A. Bartha, Jan Duracz, Adam Duracz, and
Aaron D Ames. Enclosing the behavior of a hybrid automaton up to and beyond
a Zeno point. Nonlinear Analysis: Hybrid Systems, 20:1–20, 2016.

16. M. Konečný, W. Taha, J. Duracz, A. Duracz, and A. Ames. Enclosing the behavior
of a hybrid system up to and beyond a zeno point. In 1st IEEE International Con-
ference on Cyber-Physical Systems, Networks, and Applications (CPSNA), pages
120–125, 2013.

17. Edward A. Lee and Haiyang Zheng. Operational semantics of hybrid systems.
In Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation and
Control: 8th International Workshop, Zurich, Switzerland. Proceedings, pages 25–
53, Berlin, Heidelberg, 2005. Springer.

18. Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded systems: A
Cyber-Physical Systems approach. MIT Press, 2016.

19. John Lygeros. Lecture notes on hybrid systems, section 4.2. In Notes for an
ENSIETA workshop, 2004.

20. E. Moggi, A. Farjudian, A. Duracz, and W. Taha. Safe & Robust
Reachability Analysis of Hybrid Systems. ArXiv e-prints, September 2017.
https://arxiv.org/abs/1709.05658.

21. Ramon E. Moore. Interval analysis, volume 4. Prentice-Hall, 1966.
22. Walid Taha, Paul Brauner, Yingfu Zeng, Robert Cartwright, Veronica Gaspes,

Aaron Ames, and Alexandre Chapoutot. A core language for executable models
of cyber-physical systems (preliminary report). In 32nd International Conference
on Distributed Computing Systems, pages 303–308. IEEE, 2012.

23. Warwick Tucker. Validated numerics: a short introduction to rigorous computa-
tions. Princeton University Press, 2011.

24. Yingfu Zeng, Ferenc Bartha, and Walid Taha. Compile-time extensions to hybrid
odes. In Erika Ábrahám and Sergiy Bogomolov, editors, Proceedings 3rd Inter-
national Workshop on Symbolic and Numerical Methods for Reachability Analysis,
Uppsala, Sweden, volume 247 of Electronic Proceedings in Theoretical Computer
Science, pages 52–70. Open Publishing Association, 2017.

25. Yingfu Zeng, Rose Chad, Walid Taha, Adam Duracz, Kevin Atkinson, Roland
Philippsen, Robert Cartwright, and Marcia O’Malley. Modeling electromechanical
aspects of Cyber-Physical Systems. Journal of Software Engineering for Robotics,
7(1):100–119, 2016.

26. Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Zeno hybrid
systems. International journal of robust and nonlinear control, 11(5):435–451, 2001.

27. Haiyang Zheng, Edward A. Lee, and Aaron D. Ames. Beyond Zeno: Get on with
It! In Proceedings of the 9th International Conference on Hybrid Systems: Com-
putation and Control, pages 568–582, Berlin, Heidelberg, 2006. Springer.

28. Yun Zhu, Edwin Westbrook, Jun Inoue, Alexandre Chapoutot, Cherif Salama,
Marisa Peralta, Travis Martin, Walid Taha, Marcia O’Malley, Robert Cartwright,
et al. Mathematical equations as executable models of mechanical systems. In Pro-
ceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Sys-
tems, pages 1–11. ACM, 2010.

