
GDP Festschrift ENTCS, to appear

Structuring Operational Semantics:
Simplification and Computation

Eugenio Moggi1

DISI
Univ. di Genova
Genova, Italy

Abstract

The paper describes a language consisting of two layers, terms and computation rules, whose operational
semantics is given in terms of two relations: simplification and computation. Simplification is induced by
confluent rewriting on terms. Computation is induced by chemical reactions, like those in the Join-calculus.
The language can serve as metalanguage for defining the operational semantics of other languages. This is
demonstrated by defining encodings of several calculi (representing idealized programming languages).

Keywords: Operational Semantics, Confluent Rewriting, Multiset Rewriting.

Introduction

Monads are a tool for structuring the denotational semantics of programming lan-
guages, which identifies the semantics of computational effects with the choice of a
monad (see [15]). Is there a similar way of structuring operational semantics, namely
to separate computational effects from other programming language features?

Plotkin’s Structural Operational Semantics (SOS) [19] is widely accepted as
a common framework for describing operational semantics. However, its level of
generality makes it difficult to identify common patterns and points of variation.

We propose a more disciplined approach to operational semantics, comparable
approaches are the reduction semantics [25] and the Chemical Abstract Machine [1].
Our proposal for structuring operational semantics presents some analogies with the
monadic approach for structuring denotational semantics (indeed it was conceived
as a way to provide operational semantics to monadic metalanguages [16]). More
specifically, there are two layers:

1 Email: moggi@disi.unige.it

mailto:moggi@disi.unige.it

• the first is called simplification, and it amounts to confluent term rewriting
• the second (which models computational effects) is called computation, and is

based mainly on multiset rewriting.

More concretely, our proposal can also be described as a combination of Kahl’s
Pattern Matching Calculus [13] and the reflexive chemical abstract machine for the
Join-calculus of Fournet and Gonthier [7,8]. The paper is organized as follow:

• Section 1 recalls the essence of the monadic approach to denotational semantics,
mainly to establish some analogies with what we do in an operational setting (see
Section 4).

• Section 2 explains how we specify operational semantics in the context of this
paper, namely through transition systems, provides some justifications for this
choice, and mentions also known limitations.

• Section 3 (the main technical contribution of the paper) describes our approach for
structuring operational semantics in two layers: simplification and computation.

• Section 4 demonstrates the generality of our approach, by describing encodings
of several calculi (representing idealized programming languages).

Acknowledgments. I would like to thank Amr Sabry for discussions on a prelim-
inary version of the proposal, and Barry Jay for comments on a complete draft.

1 The Monadic Approach in a Nutshell

The denotational semantics of a programming language PL consists in an interpre-
tation of the language PL in some suitable mathematical structure. Like in Tarski’s
semantics the interpretation must be compositional (see [23]), i.e. the interpretation
must assign meaning to complete programs as well as program fragments, and the
meaning of a complex program fragment must be a function of the meanings of its
parts. Without loss of generality we can assume that the mathematical struc-
ture used for the interpretation forms a category C (with suitable properties and
structure), and that program fragments are interpreted by morphisms in C.

Usually, the same category C is used for the denotational semantics of different
programming languages. Therefore, one can introduce a metalanguage ML with a
given interpretation in C, and replace the interpretation [[−]]PL of PL in C with a
translation (−)PL of PL in ML. The metalanguage provides a language abstraction
for C, which hides irrelevant details, while allowing to recover the interpretation
[[−]]PL by composing the translation (−)PL with the interpretation of ML in C.

In the context of denotational semantics [15] proposed monads as a way of
modeling computational types:

. . . to interpret a programming language in a category C, we distinguish the object
A of values (of type A) from the object MA of computations (of type A), and
take as denotations of programs (of type A) the elements of MA. In particular,
we identify the type A with the object of values (of type A) and obtain the object
of computations (of type A) by applying an unary type-constructor M to A. We

call M a notion of computation, since it abstracts away from the type of values
computations may produce.

At the level of metalanguages, the most significant consequence of this observa-
tion is the extension of ML with an abstract datatype constructor for a notion of
computation. The resulting monadic metalanguage MLM has an interpretation in
C, which extends the interpretation of ML, and is parameterized in the choice of
a monad. Moreover, MLM can be used as target for translating a programming
language, often resulting in simpler and more understandable translations.

2 What Kind of Operational Semantics?

The most widely accepted approach for describing operational semantics is Plotkin’s
Structural Operational Semantics (SOS) [19]. In this approach and operational se-
mantics is given by inference rules for deriving operational judgments. There is
no prescribed format for operational judgments (indeed the approach is described
through examples), but they should include some syntactic components (corre-
sponding to program fragments), and inference rules should include some pattern
matching and transformation of these syntactic components.

However, in most cases one can adopt operational judgments of a more spe-

cific format, namely s ===⇒ s′ or s ===
l
⇒ s′. The resulting operational semantics

amounts to the definition of a transition system (TS) or a labeled transition system
(LTS). These two formats are widely used in the context of process calculi:

• A transition system (S, ===⇒), where S is a set and ===⇒ ⊆ S×S, is suitable
for describing the possible evolutions of a closed system, i.e. a system does not
interact with an external environment. An s ∈ S represents a state of the closed
system at a given time, while the transition s ===⇒ s′ says that the system in
state s may evolve (in one step) to state s′.

• A labeled transition system (S, L, ===⇒), where S and L are sets and ===⇒ ⊆
S × L× S, is suitable for describing the potential interaction of an open system
with its environment. A label l ∈ L specifies the kind of interaction between the
open system and its environment, an s ∈ S represents a state of the open system

at a given time, and a transition s ===
l
⇒ s′ says that the system in state s may

interact with the environment (as specified by l) and evolve to state s′ (provided
the interaction has occurred).

It is always possible to combine an open system with its environment and obtained
a closed system. On the other hand, given a closed system there could be several
ways of decomposing it in two parts, or the closed system could be so entangled
that there is no way to decompose it in two parts.

Although we have convincingly argued that a labeled transition system (describ-
ing an open system) can be subsumed by a transition system (for a more complex
closed system), there are limitations to their expressiveness. For instance, transi-
tion systems cannot describe continuous (or hybrid) systems, whose configuration

evolves continuously over time, nor stochastic systems, that have a probability dis-
tribution over the set of transitions. Perhaps these systems could be described by
a generalization of transition systems based on the functorial operational semantics
proposed by [24]. However, for the purpose of this paper we take transition systems
as the canonical format for describing operational semantics.

TS versus LTS.
This discussion is an aside on the trade-offs between LTS and TS, and provides

further evidence for choosing TS as the preferred format for describing operational
semantics. In general an operational (or denotational) semantics should support
reasoning about programs. In this respect, a natural question is when a program
fragment can be replaced by another program fragment without changing the ob-
servable behavior of the system. In process calculi a lot of work has been devoted in
identifying suitable observational equivalences. There is a multitude of equivalences
that have been proposes, and no clear best choice. However, a general guidelines is
that one should seek a congruence of open terms (i.e. the counterpart of program
fragments) and this congruence should depend on a set of simple observations.

The work on process calculi has used both labeled and unlabeled transition sys-
tems for defining operational semantics. LTS are suitable for describing the potential
interaction of an open system with its environment. Constructs for composing open
systems are likely to have a semantic counterpart at the level of LTS. However, work
on Higher-Order π-calculus [20] has shown that operational semantics based on TS
are preferable for specifying observational equivalences. In fact, observations on a
closed system (observations can be defined as semi-decidable predicates on states)
can be kept fairly simple, like Milner and Sangiorgi’s notion of barb, even when
the interactions between components are so complex that cannot be satisfactorily
modeled by an LTS. We refer to [8] for the discussion and definition of several equiv-
alences (for the Join calculus) and detailed comparisons among equivalences based
on TS and LTS semantics.

3 General Approach

We have taken transition systems as the canonical way of specify an operational
semantics. Our approach for structuring operational semantics blends two well-
established tools:

• confluent term rewriting and its generalizations, such as combinatory reduction
systems [14]

• multiset rewriting, in particular we borrow from the work of Berry and Boudol
on the Chemical Abstract Machine [1] and the Join calculus [7,8]

We consider transition systems where a state s ∈ S is a multiset of terms and com-
putation rules, and we call these multisets configurations (in the chemical analogy
computation rules are reaction rules and configurations are chemical solutions):

• the multiset of terms corresponds to the state of a closed system at a given time

• computation rules describe the potential evolutions of the system.

Computation rules capture the computational features of a programming language.
In most cases they involve only multiset rewriting, i.e. replacing a multiset of terms
with another multiset of terms, but they could also generate fresh names and acti-
vate new computation rules.

The non-computational features of a programming language are captured by a
relation > on terms called simplification, which is confluent and compatible,
i.e. it can be applied in any order and in any context. Simplification embodies
referential transparency, and suffices for defining the operational semantics of pure
functional languages or typed calculi for proof assistants.

Simplification can be extended to configurations (in an obvious way), and we
insist that “a computation step > is insensitive to further simplification”, i.e.

s1 > s2

s′1

∗

∨
> s′2

∗

∨

This property is a further instance of referential transparency, which allows to ig-
nore when and how simplification is done. In particular, computation rules are
insensitive to the choice of simplification strategy, thus one can safely exploit tech-
niques commonly used in implementations of pure functional languages [18], like
lazy evaluation and graph reduction.

In the rest of this section we describe a specific transition system defined in terms
of simplification and computation, while in the following section we exemplify its
use for describing the operation semantics of several calculi.

3.1 Terms

We assume three basic syntactic categories (i.e. infinite sets) that are used in the
definition of terms (and related notions):

• a ∈ A are atoms in the sense of FreshML [22] and FM-set theory [10], i.e. atoms
can be permuted (but not substituted)

• y ∈ XN are name variables, which can be substituted with atoms (and other name
variables)

• x ∈ XE are term variables, which can be substituted with arbitrary terms (in-
cluding term variables).

The definition of terms and the auxiliary notions of names and patterns are given
by the following BNF (in the sequel we consider ok and fail as special atoms, and

the clauses ok e and fail as instances of u e):

Name u ∈ N ::= a | y

Pattern p ∈ P ::= ?x | u p | ?y p

Term e ∈ E ::= x | u e | ok e | fail | (p⇒e1|e2) |

e1@e2 | e1 : p⇒e2 | (e1; e2) | let {xi = ei|i ∈ n} in e

Names u are either atom or name variables. We write A(u) and FV(u) for the
set of atoms and the set of free (name) variables in u, respectively.

Patterns p are more expressive than those in functional languages and in the
Pattern Matching Calculus (PMC) of [13] (e.g. patterns in PMC are given by the
BNF p::=?x | a p). For instance, we can define a term to test equality of atoms.
Basically we extend the patterns of PMC with features typical of Linda’s templates
[11] (and related calculi, such as µKlaim [2]):

• Declared variables are marked with ?. ?x matches any term e and binds it to x,
?y matches any name u and binds it to y.

• Name expressions u, thus also name variables y, are allowed in patterns. Therefore
it is important to distinguish a free occurrence of y the declaration ?y.

In µKlaim’s templates one can use any expression e, but these e denote elements of
domains with a decidable equality (such as strings, integers, or names for localities).

There is a linearity constrain for well-formedness of patterns, namely a variable
can be declared at most once in a pattern. The sets of atoms A(p), declared variables
DV(p) and free (name) variables FV(p) are defined by induction on p

p A(p) DV(p) FV(p)

?x ∅ {x} ∅

u p A(u, p) DV(p) FV(u, p)

?y p A(p) {y} ∪DV(p) FV(p)− {y}

p p A(p, p) DV(p, p) FV(p) ∪ (FV(p)−DV(p))
The definition of A, DV and FV is extended to comma separated sequences of

syntactic entities by point-wise union, for instance A(u, p) = A(u) ∪A(p).

The definition of FV(p) says that occurrences of y on the right of ?y are bound. We
don’t have compelling examples that exploit this feature. If one wish to forbid this
binding, then FV should be defined as FV(?y p) = FV(p) and FV(p p) = FV(p, p).

Terms e are basically borrowed from the PMC of [13] and have the following
informal semantics:

• u e is a constructor (name) applied to a sequence of terms
• ok e denotes a successful term

• fail denotes failure (e.g. of pattern matching)
• (p⇒e1|e2) denotes a function which tries to match the argument against p, if that

fails it applies e2 to the argument
• e1@e2 is function application
• e1 : p⇒e2 tries to match e1 against p, if successful it applies the matching substi-

tution to e2

• (e1; e2) allows failure recovery, namely if e1 fails, then it returns e2

• let {xi = ei|i ∈ n} in e allows mutually recursive definitions (the declared vari-
ables xi must be distinct).

The sets of atoms A(e) and free variables FV(e) are defined by induction on e. The
clauses for A(e) are straightforward, thus we give only the clauses for FV(e)

e FV(e)

x {x}

u e FV(u, e)

(p⇒e1|e2) FV(p, e2) ∪ (FV(e1)−DV(p))

e1@e2 FV(e1, e2)

(e1; e2) FV(e1, e2)

let {xi = ei|i ∈ n} in en (∪{FV(ei)|i ∈ n + 1})− {xi|i ∈ n}

e1 : p⇒e2 FV(e1, p) ∪ (FV(e2)−DV(p))

e e FV(e, e)

Examples. We give some examples of terms, the informal claims about their
operational behavior rest upon the definition of simplification (see Section 3.2).

• Test for atom equality is defined as eq ≡ (?y1⇒(y1⇒true|?y2⇒false|fail)|fail),
where true and false are some given atoms. The test enjoys the expected prop-
erties, namely for any atom a1 and a2 the term eq@a1@a2 simplifies to true if
a1 = a2, otherwise it simplifies to false.

More precisely, eq@a1 simplifies to eq1 ≡ (a1⇒true|?y2⇒false|fail), because
a1 matches ?y1. The simplification of eq1@a2 first tries to match a2 against a1,
and if that fails then it matches a2 against ?y2 (which does always succeed).

In general eq could be applied to any pair of terms e1 and e2, and simplification
of eq@e1@e2 could have two other outcomes:
· it simplifies to fail if a pattern matching fails, e.g. a e fails to match ?y1

· It gets stuck, because we cannot decide whether a term matches a pattern.
The second possibility happens because simplification is defined on open terms
(and patterns). For instance, we cannot decide whether variable x matches pat-
tern ?y1, in fact different substitution instances of x yields different outcomes.
Similarly, we cannot decide whether atom a matches pattern y, in fact different

substitution instances of y yields different outcomes.
• Lambda-abstraction λx.e can be defined as (?x⇒e|fail), in this way β-reduction

is decomposed in (two) simplification steps.
• Encoding of datatypes. In an untyped language types can be represented either

as subsets of terms or as partial equivalence relations (PER) on terms (modulo
simplification). We use atoms as constructors to form terms of the given datatype,
while destructors can be defined by pattern matching and recursion.

For instance, for the datatype N of natural numbers we use two atoms: one
for zero z : N and the other for successor s : N → N . Moreover, the destructor
it : X → (X → X) → N → X can be defined as follows

let it = (λx.λxf .(z⇒x | s ?xn⇒it@x@xf@xn | fail)) in . . .

One can easily check that it enjoys the equational properties
· it@e@ef@z simplifies to e

· it@e@ef@(s en) simplifies to ef@(it@e@ef@en)
implied by the characterization of natural number as initial algebra.

3.2 Simplification

We define a relation e > e′ on terms (modulo α-conversion), called simplification,
which is the analogue of β-reduction. Simplification is defined as the compatible
closure of the left-linear and non-overlapping rewrite rules given in Figure 1, and
it is directly inspired by reduction for the PMC of [13]), which decomposes pattern
matching in a sequence of elementary steps.

Proposition 3.1 Simplification enjoys the following properties:

• Preservation of atoms and free variables, i.e.
e > e′ implies A(e′) ⊆ A(e) and FV(e′) ⊆ FV(e)

• Equivariance
e > e′

e[π] > e′[π]
where π is a permutation of atoms and e[π] is the term obtained by permuting the
atoms in e as specified by π

• Substitutivity
e > e′

e[ρ] > e′[ρ]
where ρ maps name/term variables to names/terms respectively, and e[ρ] is paral-
lel substitution with renaming of bound variables to avoid variable capture (there-
fore it is convenient to work with terms modulo α-conversion)

• Compatibility
e > e′

C[e] > C[e′]
C[−] term context with one hole

(p⇒e1|e2)@e > (e : p⇒ok e1; e2@e)

(ok e; e′) > e

(fail; e′) > e′

e :?x⇒e′ > e′[x : e]

u e :?y p⇒e′ > e : p[y : u]⇒e′[y : u] when |e| = |p|

a e : a p⇒e′ > e : p⇒e′ when |e| = |p|

let {xi = ei|i ∈ n} in e > e[xi : let {xi = ei|i ∈ n} in ei|i ∈ n]

v@e > fail when v 6≡ (p⇒e1|e2)

(v; e′) > fail when v 6≡ ok e | fail

v :?y p⇒e′ > fail when v 6≡ u e with |e| = |p|

v : u2 p⇒e′ > fail when v 6≡ u1 e with |e| = |p|

a1 e : a2 p⇒e′ > fail when a1 6= a2 and |e| = |p|

where v ::= u e | (p⇒e1|e2) ranges on terms that cannot change top-level structure
by simplification or instantiation, and e : p⇒e′ is defined by induction on |p| = |e|
• ⇒e′ is e′

• e e : p p⇒e′ is e : p⇒(e : p⇒e′)

Fig. 1. Simplification Rules

• Confluence, i.e.

e1
∗

> e2

e′1

∗

∨

∗
> e′2

∗

∨

Simplification suffices to model most features of pure functional languages, in-
cluding records and variants, but it fails to model generativity of datatypes (which
requires generation of fresh names).

3.3 Computation Rules

Before defining the computation relation on configurations we introduce another
layer of syntax for join patterns and computation rules, which builds on top of
patterns and terms.

Join pattern J ::= {(ui pi|i ∈ n)} a multiset of patterns u p

Computation rule r ::= J > νy.R] E with R] E multiset of rules and terms

Join patterns specify trigger conditions, namely a computation rules with join
pattern J can be activated only by a multiset E that is an instance of J .

The Join-calculus [7] has simpler join patterns, consisting of patterns of the form
u ?y1 . . .?yn (or u ?y for short) with certain linearity constrains. Comparable level
of complexity for triggers can be found in the Kell calculus [3,21] and in Klaim

[6,2].
The sets of atoms A(J), declared variables DV(J) and free (name) vari-

ables FV(J) of J are defined by point-wise union, e.g. DV({(ui pi|i ∈ n)}) =
∪i∈nDV(ui pi). We impose the following linearity constrain for well-formedness
of join patterns: a term variable x can be declared at most once in J . In general,
a name variable y can be declared in more than one pattern u p of J , but a mul-
tiset E of terms is an instance of J only if all occurrences of y in J are replaced
by the same atom. For instance, {(SendTo a e1,GetFrom a e2)} is an instance of
{(SendTo ?y ?x1,GetFrom ?y ?x2)}, but {(SendTo a1 e1,GetFrom a2 e2)} is not.

Computation rule J > νy.R] E specifies the following potential evolution
of the system: an instance of J is consumed, the name variables y are replaced by
fresh atoms, and a suitable substitution instance of R] E is released.

The reaction rules J > e of the Join-calculus appear simpler, but this is de-
ceptive. In fact, the terms of the Join-calculus represent multisets of terms with
parallel composition, and allow local declarations of reaction rules and fresh names.
Therefore, computation rules can be recast as Join-calculus reaction rules (except
for our join patterns, that are inherently more expressive). We consider a strength
to have a stratification, where terms are defined independently from computation
rules, and likewise simplification is defined independently from computation.

The sets of atoms A(r) and free variables FV(r) of r are defined as follows (where
A(−) and FV(−) are extended to multisets by point-wise union)

• A(J > νy.R|E) = A(J,R, E)
• FV(J > νy.R|E) = FV(J) ∪ (FV(R,E)− y −DV(J)), i.e. the variables declared

in J and the fresh names y are bound in R] E.

Remark 3.2 The Join-calculus enjoys a local property convenient for a distributed
implementation of the calculus. Namely, one can partition the set of atoms in
such a way that: each reaction rule is located at a given element of the partition,
and messages (i.e. terms of the form a e) must move to a specific element of the
partition (uniquely determined by a) in order to get involved in a reaction. We could
impose constrains for well-formedness of computation rules, that ensure a similar
local property. For the sake of simplicity, we refrain from doing this. However, all
the examples of computation rules we consider satisfy these constrains.

The definition of simplification extends in the obvious way to computation rules
and multisets R]E. Moreover, Proposition 3.1 continues to hold if one consistently
replaces terms with multisets, e.g. compatibility becomes

Compatibility
R] E > R′] E′

C[R] E] > C[R′] E′]
C[−] multiset context with one hole

Examples. We show how computation rules could be used to define an inter-
preter for operations on references. First, we fix some atoms (type annotations are
used as informal explanation), e.g.

• prg : MY labels programs (of computational type MY), i.e. prg e means that e

is a program
• str : RX, X labels store cells, i.e. str y v means that the reference y (of type RX)

stores a value v (of type X)
• new : X → (RX → MY) → MY is the operation that takes a value v, creates a

new reference y initialized with v, and then passes y to the rest of the program
• get : RX → (X → MY) → MY is the operation that takes a reference y, fetches

the value v stored in y, and then passes v to the rest of the program

The following computational rules specify the interpretation of new and get

• prg (new ?x ?k) > νy.prg (k@y), str y x (where , is multiset union)
• prg (get ?y ?k), str ?y ?x > prg (k@x), str y x

To show that the rules induce the expected behavior we need to set up a suitable
configuration (see Section 3.4 and 4.1) including the rules, several programs and a
shared store (i.e. a multiset of terms of the form prg e and str a e).

3.4 Computation

We take as configurations closed multisets R] E, i.e. FV(R,E) = ∅. The com-
putation relation s > s′ on configurations is defined by the following rewrite
rule

s] Jρ] J > νy.R] E > s] (R] E)[y : a][ρ]] J > νy.R] E where

• ρ is a closed substitution, i.e. it maps name/term variables to atoms/closed terms
• a is a sequence of fresh atoms, i.e. not in A(s] Jρ] J > νy.R] E)
• Jρ is the instantiation of J with ρ, where −ρ is defined on patterns and join

patterns as follows (−ρ is always closed, when the substitution ρ is closed)

− −ρ

?x e where e ≡ ρ(x)

u p u[ρ] pρ

?y p a pρ where a ≡ ρ(y)

p p pρ pρ

{(ui pi|i ∈ n)} {((ui pi)ρ|i ∈ n)}

Remark 3.3 Computation on configurations makes use only of instantiation −ρ

and substitution −[ρ] with closed ρ, therefore they do not require renaming of bound
variables. This means that computation does not have to consider configurations
modulo α-conversion. On the contrary, simplification makes use of substitution −[ρ]
with arbitrary ρ, therefore it requires renaming of bound variables. This means
that simplification has to consider configurations modulo α-conversion, but some
simplification strategies could make a more restrictive use of substitution.

Proposition 3.4 Computation enjoys the following properties:

• Equivariance
s > s′

s[π] > s′[π]

• Extension
s1 > s2

s] s1 > s] s2

A(s) disjoint from A(s2)−A(s1)

• computation is preserved by simplification (Simulation), i.e.

s1 > s2

s′1

∗

∨
> s′2

∗

∨

In general the computation relation is not confluent. Moreover a computation
step cannot model a collective operation, such as a broadcast, that involve an arbi-
trarily large multiset of terms.

Transition System
At this point we have introduced all the ingredients to defines a transition system

on the set Sc of configurations.

Definition 3.5 TSc = (Sc, = c=⇒) is the transition system where the relation

=c ⇒ is given by
∗
> > , i.e. s =c ⇒ s′ provided one can go from s to s′ by

a finite sequence of simplification steps followed by one computation step.

Some simplification is essential to enable a computation step. In fact, through
simplification a multiset E of terms could become an instance of the join pattern J

that triggers a computation rule. Notice that there is no need to simply under the
scope of a binder to make E become an instance of J .

Proposition 3.6 The relation
∗
> is a bisimulation relation on TSc, i.e.

(i) if s1
∗
> s2 and s1 =c=⇒ s′1, then exists s′2 s.t. s2 =c=⇒ s′2 and s′1

∗
> s.2

(ii) if s1
∗
> s2 and s2 =c=⇒ s′2, then exists s′1 s.t. s1 =c=⇒ s′1 and s′1

∗
> s.2

Proof. Easy consequence of confluence for > and the simulation property. 2

Therefore we can replace TSc with an equivalent transition system, where states
are equivalence classes of configurations modulo simplification and S1 =C=⇒ S2

∆⇐⇒ s1 > s2 for some s1 ∈ S1 and s2 ∈ S2.

Proposition 3.7 The relation s1Rπs2
∆⇐⇒ s1[π] = s2 is a bisimulation relation on

TSc, for any permutation π on atoms

Proof. Easy consequence of equivariance for > and > . 2

Therefore we can replace TSc with an equivalent transition system, where states
are equivalence classes of configurations modulo modulo permutations of atoms,
i.e. [s] = {s[π] | π permutation}. Often there is a set of atoms with a special
meaning, e.g. for defining basic observations on configurations. In this case, one
should consider only permutations that are the identity on this set of atoms.

4 Encodings

We show the expressiveness of the transition system TSc by encoding in it abstract
machines (i.e. small-step operational semantics) for existing calculi representing
idealized programming languages. In each example of encoding first we specify

• the syntax PL of the calculus
• a transition system TSPL = (SPL, =PL=⇒), describing an abstract machine for

PL, i.e. the states in SPL involve programs in PL and usually some other stuff.

Then we define

• a compositional translation (−)∗ from PL to the set E of terms (in the monadic
approach this corresponds to a translation from PL to a metalanguage MLM)

• a translation [[−]] from SPL to the set Sc of configurations, which extends the
compositional translation (−)∗ (in the monadic approach this corresponds to
choosing a monad for interpreting MLM , more precisely the choice of computation
rules corresponds to choosing a monad).

Finally, we shown that the translation [[−]] is a good encoding. In the ideal case one
can define a lock-step bisimulation R between TSPL and TSc, i.e.

(i) if s1Rs2 and s1 =PL=⇒ s′1, then exists s′2 s.t. s2 =c=⇒ s′2 and s′1Rs′2

(ii) if s1Rs2 and s2 =c=⇒ s′2, then exists s′1 s.t. s1 =PL=⇒ s′1 and s′1Rs′2

and show that sR[[s]] for every s ∈ SPL. In other cases, when a transition in TSPL

is simulated by several transitions in TSc, one has to use relations with weaker
properties (e.g. weak bisimulations).

4.1 Monadic Metalanguage with References

We present an encoding for a monadic metalanguage with references, first described
in [16]. The encoding is particularly simple, because the operational semantics of
monadic metalanguages is defined in terms of simplification and computation. Other
monadic metalanguages with different computational effects are described in [17],
and should have similar encoding.

• The terms M ∈ PL of the monadic metalanguage are given by the following BNF
(where a ranges over atoms representing references)

M ::=x | λx.M | M1@M2 | ret M | do M1 M2 | new M | get M | set M1 M2 | a
• The states of the transition system TSPL are triples (µ|M,S) where
· M ∈ PL0 is a closed term
· µ : A

fin→ PL0 is a store, i.e. a finite maps from references to closed terms
· S ::= none | push M S is a control stack, i.e. a stack of closed terms M ∈ PL0.

The transition relation =PL=⇒ is
∗
> > , where > (simplification) is

β-reduction and > (computation) is defined by the following rules
· (µ|do M1 M2, S) > (µ|M1,push M2 S)
· (µ|ret M1,push M2 S) > (µ|M2@M1, S)
· (µ|new M,S) > (µ, a : M |ret a, S) with a ∈ A fresh
· (µ|get a, S) > (µ|ret M,S) if µ(a) = M

· (µ, a : M ′|set a M,S) > (µ, a : M |ret a, S)

The compositional translation (−)∗ (which extends in the obvious way to control
stacks) is basically the identity, if we identify λx.e with (?x⇒e|fail) and consider
the term constructors ret, do, . . . to be atoms. [[(µ|M,S)]] is the configuration
{(str a M∗|µ(a) = M)}] prg M∗ S∗] R, where str and prg are atoms (for rep-
resenting stores and program threads) and R is the set containing the following
computation rules (which are in one-one correspondence with the rules above)

• prg (do ?x1 ?x2) ?xS > prg x1 (push x2 xS)
• prg (ret ?x1) (push ?x2 ?xS) > prg (x2@x1) (push xS)
• prg (new ?x) ?xS > νy.prg (ret y) xS , str y x (where , is multiset union)
• prg (get ?y) ?xS , str ?y ?x > prg (ret x) xS , str y x

• prg (set ?y ?x) ?xS , str ?y ?x′ > prg (ret y) xS , str y x

Finally, we take as lock-step bisimulation the relation (µ|M,S)Rs
∆⇐⇒ s is equiva-

lent to [[(µ|M,S)]] modulo simplification

4.2 Join-calculus

We give an encoding for the Join-calculus, which relates TSc to the reflexive chemical
abstract machine for the Join-calculus. The key feature of this encoding is that it
does not use simplification (and the terms involved are very simple, namely those of
the form u u). We recall the syntax of the (asynchronous core of the) Join-calculus,
and refer to [8] for further details on the Join-calculus and the reflexive chemical
abstract machine. There is a basic syntactic category of variables, that we can
identify with our name variables y, the other syntactic categories are

Join Pattern J ::= y ?y | (J1|J2)

Process P ::= y y | def D in P | (P1|P2) | 0

Definition D ::= J > P | (D1 ∧D2) | >

The reflexive chemical abstract machine is defined by a transition system TSJC

whose states (called chemical solutions) are multisets of definitions D and processes
P , and the transition relation is defined in terms of heating, cooling and reaction.

We define a compositional translation (−)∗ with the following properties

• J∗ is a join pattern (| corresponds to multiset union)
• D∗ is a multiset of rules (∧ corresponds to multiset union, > to the empty set)
• P ∗

y is a multiset of terms and rules, in this case the translation depends on and
extra parameter, i.e. a name variable y which should not occur in P

The interesting clauses of the translation are:

• (def D in P)∗y = y] (y > νy, y′.D∗] P ∗
y′), where y is the set of declared variables

DV(D) and y′ 6∈ FV(D,P, y)
• (P1|P2)∗y = y] (y > νy1, y2.(P1)∗y1

] (P2)∗y2
), where y1, y2 6∈ FV(P1, P2, y)

• (J > P)∗ = J∗ > νy.P ∗
y , where y 6∈ FV(J, P)

The first clause makes essential use of the extra parameter y. If fact, we cannot
take (def D in P)∗y = ∅ > νy.D∗]P ∗

y), otherwise the rule will be always active (due
to the empty join pattern), and we would have multiple copies of D and P . On the
other hand, the translation behaves correctly only if there is exactly one occurrence
of y, thus the two clauses are designed to preserve this property.

We now define a relation R ⊆ SJC × Sc between chemical solutions (i.e. the
states of TSJC) and configurations as follows D ` P is related to s

∆⇐⇒
• there is a choice of distinct name variables yi, one for each element Pi in the

multiset P, s.t. yi is fresh for D and P
• s = D∗[ρ]] (]i Pi

∗
yi

[ρ]) for some injective map ρ from name variables to atoms

Clearly, for every chemical solution there is at least one configuration related to it.
Therefore, by making a choice we can define a translation [[−]] from SJC to Sc.

The relation R is a weak bisimulation between TSJC and TSc, more precisely
(D ` P)Rs implies

(i) s cannot be simplified, and any computation step of s is simulated by either
one reaction or one heating step of D ` P

(ii) any reaction step of D ` P is simulated by one computation step of s, and any
heating step is simulated by at most one computation step of s.

We ignore cooling steps, since their only purpose is to tie back a chemical solution
to a process P (more precisely a chemical solution of the form ` P).

4.3 Mobile Ambients: Centralized Implementation

We give an encoding of Mobile Ambients (MA) [5,4] corresponding to a centralized
implementation of MA, in the sense that the computation rules for interpreting
MA are located in one place (see Remark 3.2). We have not investigate alternative
encodings corresponding to a distributed implementation of MA along the line of
[9]. However, it is unlikely that one can avoid the technical complications (like the
used of coupled weak simulations) for proving the correctness of the distributed
implementation of MA in the Join-calculus.

In comparison to the original definition of the syntax and operational semantics
for MA, we make some adjustments, in order to make the properties of the encoding
simpler to formulate. For the syntax we take as basic syntactic categories atoms a

and name variables y (and use also names u ::=a | y). For the operational semantics
we use a transition system TSMA similar to the reflexive chemical abstract machine
(to avoid the use of structural congruence).

• The processes P ∈ PL of MA are given by the following BNF
P ::= 0 | (P1|P2) | !P | νy.P | u[P] | M.P , where M ranges over capabilities
M ::= in u | out u | open u

• The states of TSMA are nested multisets P of closed processes, i.e. SMA is the
least solution to the domain equation SMA = µ(MA0 + A × SMA), where µ(X)
is the set of finite multisets with elements in X.

• The transition relation =MA=⇒ is by the compatible closure (for nested multi-
sets) of the following rewrite rules
· 0 ⇀ ∅ P1|P2 ⇀ P1, P2 !P ⇀ P, !P
· n[P] ⇀ n[{(P)}] (the lhs is an element in MA0, i.e. process n[P], while the

rhs is an element of A× SMA, i.e. n with the singleton multiset {(P)})
· νy.P

new
⇀ P [y : n] with n fresh atom (strictly speaking this not a rewrite rule,

as the side-condition is global and n is chosen non-deterministically)

· n[in m.P, P1], m[P2]
in

> m[n[P, P1], P2]

· m[n[out m.P, P1], P2]
out

> n[P, P1], m[P2]

· open m.P, m[P]
open

> P, P
The heating rules (indicated with ⇀) are related to structural congruence,
and the reaction rules (indicated with >) correspond to reduction rules.

The compositional translation (−)∗ of MA is straightforward, for each clause in the
BNF of processes (and capabilities) we have a corresponding atom

• 0∗ = nil (P1|P2)∗ = par P ∗
1 P ∗

2 (!P)∗ = rep P ∗

• (νy.P)∗ = new (?y⇒P ∗|fail)
• (u[P])∗ = box u P ∗

• (in u.P)∗ = in u P ∗, and similarly for the other capabilities

The translation of P ∈ SMA into configurations is [[P]] = RMA] [[P]]ar , where RMA

is a set of computation rules, the atom ar is the unique identifier (UId) for the root
ambient, and [[−]]a is a multiset of terms defined by induction on nested multisets
(in particular it commutes with multiset union). The terms in [[P]]a are of the form

• prg a e is a thread executing process e in ambient a (more precisely with UId a),
in particular [[P]]a = prg a P ∗

• amb a n ap says that ambient a has name n and parent ambient ap

These terms encode the tree structure of a nested multiset, therefore for each
UId a (except the root UId ar) there should be exactly one of these terms, in
particular [[n[P]]]a = (amb a′ n a)] [[P]]a′ where a′ is a fresh UId.

Some rules in RMA introduce terms of the form opn a ap, which says that ambient a

has been opened by parent ambient ap. When this happens amb a n ap is removed,
but threads and sub-ambients in a must migrate to ap. The rules in RMA are:

• computation rules for heating
· prg ?y nil > ∅

prg ?y (par ?x1 ?x2) > prg y x1, prg y x2

prg ?y (rep ?x) > prg y x, prg y (rep x)
· prg ?y (new ?x) > νn. prg y (x@n)
· prg ?y (box ?n ?x) > νy′.amb y′ n y, prg y′ x (y′ is the UId for a new ambient

with name n)
• computation rules for capabilities
· amb ?y′ ?m ?y′′, prg ?y (in ?m ?x), amb ?y ?n ?y′′ > prg y x, amb y n y′

u p means that the matching term is read, but not removed. In other words,
(u p, J > . . .) is a shorthand for the computation rule (u p, J > . . . , |u p|),
where |p| is the term obtained by erasing the ? in pattern p.

· amb ?y′ ?m ?y′′, prg ?y (out ?m ?x), amb ?y ?n ?y′ > prg y x, amb y n y′′

· prg ?y (open ?m ?x), amb ?y′ ?m ?y > prg y x, opn y′ y

• auxiliary computation rules for open
· opn ?y′ ?y, prg ?y′ ?x > prg y x

· opn ?y′ ?y, amb ?y′′ ?n ?y′ > amb y′′ n y

Remark 4.1 One could consider an extension of MA with HO communication, i.e.

• P ::= . . . | x | 〈P 〉 | (x)P – extended BNF for processes

• 〈P1〉 | (x)P2
comm

> P2[x : P1] – additional reaction rule (for nested multisets).

It is quite easy to extend the encoding to this calculus, in fact

• the compositional translation (−)∗ for the three new clauses is
x∗ = x 〈P 〉∗put P ∗ ((x)P)∗ = get (?x⇒P ∗|fail)

• the set RMA has one extra computation rule (for communication)

prg ?y (get ?x1) | prg ?y (put ?x2) > prg y (x1@x2)

while the definition of [[P]]a requires no changes.

Finally, we take as weak bisimulation between TSMA and TSc the relation PRs
∆⇐⇒ s (modulo permutation of UId) reduces by simplification and the auxiliary

computation rules for open to [[P]]] G, where G is garbage for [[P]], i.e. a set of
terms {(opn a′i ai|i ∈ n)} where the a′i are distinct UId not occurring in [[P]]. Note
that [[P]]]G cannot be reduced further by simplification or auxiliary computation
rules for open.

Conclusions and Issues

We have proposed a general approach for structuring operational semantics, which
distinguishes between simplification and computation.

• Simplification describes things that one does not care to control/program, be-
cause they are simple and semantics preserving (referential transparency), thus
it embodies the spirit of pure functional languages, where the user should not be
concerned about evaluation strategies adopted by an implementation.

• Computation describes things that can have observable computational effects.

Our proposal builds on top of the Pattern Matching Calculus [13] and the reflex-
ive chemical abstract machine for the Join-calculus [7]. However, one could make
different choices without jeopardizing the distinction between simplification and
computation. for instance:

• allow first-class patterns, along the line of the pure pattern calculus [12]
• have more refined computation rules, that can model stochastic systems
• allow more complex configurations, to describe parts of a closed system that

cannot be modeled by a multiset of terms, e.g. a loosely specified environment.

References

[1] Berry, G. and G. Boudol, The chemical abstract machine, Theoretical Computer Science 96 (1992),
pp. 217–248.

[2] Bettini, L., V. Bono, R. D. Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese, E. Tuosto
and B. Venneri, The Klaim Project: Theory and practice, in: Global Computing - Programming
Environments, Languages, Security and Analysis of Systems, LNCS 2874 (2003).

[3] Bidinger, P. and J.-B. Stefani, The kell calculus: Operational semantics and type system, in: E. Najm,
U. Nestmann and P. Stevens, editors, FMOODS, Lecture Notes in Computer Science 2884 (2003), pp.
109–123.

[4] Cardelli, L. and A. Gordon, Mobile ambients, TCS 240 (2000).

[5] Cardelli, L. and A. D. Gordon, Mobile ambients, in: M. Nivat, editor, FoSSaCS’98, LNCS 1378 (1998),
pp. 140–155.

[6] DeNicola, R., G. Ferrari and R. Pugliese, Klaim: a kernel language for agents interaction and mobility,
IEEE Transactions on Software Engineering 24 (1998), pp. 315–330.

[7] Fournet, C. and G. Gonthier, The reflexive chemical abstract machine and the join-calculus, in: Conf.
Rec. POPL ’96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.

[8] Fournet, C. and G. Gonthier, The join calculus: A language for distributed mobile programming, in:
G. Barthe, P. Dybjer, L. Pinto and J. Saraiva, editors, Advanced Lectures from Int. Summer School on
Applied Semantics, APPSEM 2000 (Caminha, Portugal, 9–15 Sept. 2000), Lecture Notes in Computer
Science 2395, Springer-Verlag, Berlin, 2002 pp. 268–332.

[9] Fournet, C., J.-J. Lévy and A. Schmitt, An asynchronous distributed implementation fo mobile
ambients, in: J. van Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses and T. Ito, editors,
Theoretical Computer Science: Exploring New Frontiers of Theoretical Informatics, Proceedings of
the International IFIP Conference TCS 2000 (Sendai, Japan), LNCS 1872, IFIP (2000), pp. 348–364.

[10] Gabbay, M. J. and A. M. Pitts, A new approach to abstract syntax involving binders, in: Proc. 14th
Ann. IEEE Symp. Logic in Comput. Sci., 1999, pp. 214–224.

[11] Gelernter, D., Generative communication in Linda, ACM Transactions on Programming Languages
and Systems 7 (1985), pp. 80–112.

[12] Jay, B. and D. Kesner, Pure pattern calculus, in: P. Sestoft, editor, ESOP, Lecture Notes in Computer
Science 3924 (2006), pp. 100–114.

[13] Kahl, W., Basic pattern matching calculi: a fresh view on matching failure, in: Y. Kameyama and P. J.
Stuckey, editors, FLOPS, Lecture Notes in Computer Science 2998 (2004), pp. 276–290.

[14] Klop, J. W., “Combinatory Reduction Systems,” Mathematisch Centrum, Amsterdam, 1980, ph.D.
Thesis.

[15] Moggi, E., Notions of computation and monads, Information and Computation 93 (1991).

[16] Moggi, E. and S. Fagorzi, A monadic multi-stage metalanguage, in: Proc. FoSSaCS ’03, Lecture Notes
in Computer Science 2620 (2003).

[17] Moggi, E. and A. Sabry, An abstract monadic semantics for value recursion, Theoretical Informatics
and Applications 38 (2004).

[18] Peyton Jones, S. L., “The Implementation of Functional Programming Languages,” Prentice-Hall, 1987.

[19] Plotkin, G. D., A structural approach to operational semantics, Technical Report DAIMI FN-19, Aarhus
University Computer Science Department (1981).

[20] Sangiorgi, D., “Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms,”
PhD thesis CST–99–93, Department of Computer Science, University of Edinburgh (1992).

[21] Schmitt, A. and J.-B. Stefani, The kell calculus: A family of higher-order distributed process calculi, in:
C. Priami and P. Quaglia, editors, Global Computing, Lecture Notes in Computer Science 3267 (2004),
pp. 146–178.

[22] Shinwell, M. R., A. M. Pitts and M. J. Gabbay, FreshML: Programming with binders made simple, in:
Proc. 8th Int’l Conf. Functional Programming (2003).

[23] Tennent, R. D., “Semantics of Programming Languages,” Prentice Hall, New York, 1991, 7 pp.

[24] Turi, D., “Functorial Operational Semantics and Its Denotational Dual,” Ph.D. thesis, Free University,
Amsterdam (1996).

[25] Wright, A. K. and M. Felleisen, A syntactic approach to type soundness, Information and Computation
115 (1994), pp. 38–94.

	The Monadic Approach in a Nutshell
	What Kind of Operational Semantics?
	General Approach
	Terms
	Simplification
	Computation Rules
	Computation

	Encodings
	Monadic Metalanguage with References
	Join-calculus
	Mobile Ambients: Centralized Implementation

	References

