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Abstract. The model theory of simply typed and polymorphic (second-order) lambda 
calculus changes when types are allowed to be empty. For example, the “polymorphic 
Boolean” type really has ezuctly two elements in a polymorphic model only if the “absurd” 
type Vt.t is empty. The standard p-r) axioms and equational inference rules which are 
complete when all types are nonempty are not complete for models with empty types. 
Without. a little care about variable elimination, the standard rules are not even sound for 
empty types. We extend the standard system to obtain a complete proof system for models 
with empty ty@es. The completeness proof is complicated by the fact that equational “term 
models” are not so easily obtained: in contrast to the nonempty case, not every theory 
with empty types is the theory of a single model. 

1 Why empty types? 

Functional languages with polymorphic control constructs and polymorphic data types 
support an attractive programming style which has been suggested by several authors [5), 

PI9 PI, b-4, P% 1141 [161, m [191, PI. 
For example, Booleans and conditional operators aGse directly from polymorphic concepts. 
Namely, the type 

polybool ::=vt.t--,t-+t 

is often called the type of polymorphic Booleans. One closed term of type polybool is 
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The :: = At. Ax: t. xy: t. x . 

That is, True is the polymorphic projection-on-the-first-argument function, which given 
any type, t, returns the projection-on-the-first-argument function of type t * t + t. 

Notation. Read “5: t” as “x is of type t”. We reserve t as a variable ranging over types, 
writing At. M instead of At: Type. M. Full definitions appear in Section 3 below. n 

Another term of type poZybooZ is 

False :: = Ait. xx: t. xy: t. y ) 

oiz., the polymorphic projection-on-the-second-argument function. Indeed, True and False 
are the only pure, i.e., constant-free, closed terms of type polybool. Defining the polymor- 
phic conditional to be simply application: 

Cond :: = At. Xb: polybool. b t, 

we easily verify that for all x, y: t 

Condt Truexy = x 0) 

and likewise 
Cond t False x y = y (2) 

Thus it seems that Booleans and conditionals need not be added as a separate feature 
since they already appear as an intrinsic part of a polymorphic language. However, this 
appearance is misleading. For example, the equation 

Condtbyy=y (3) 

does not follow from the definitions above, even though it does follow directly from equa- 
tions (1) and (2) when b= 23ue and when b= False. The problem is that even though Due 
and False are the only two values of type polybool which are definable by pure closed terms, 
there are models with additional polymorphic Boolean elements for which equation (3) fails, 

e.g., when b = &dybool in the usual cpo-based models [22], [4]. 

Thus we arrive at the kind of question which led us to the present study: is it consistent 
to assume equation (3) as a further axiom of polymorphic calculus? More generally, is it 
consistent to assume that Due and False are the only elements of type polybool? 

Ingenious model constructions by Moggi 118) and Coquand [7] (see [3], [2]), which we shall 
not try to develop here, show that the answer is yes. 

Proposition 1.1 (Moggi, Coquand) There is a model of the polymorphic lambda calculus 
containing exactly two elements of type polybool. Equation (3) is necessarily valid in such 
a model. 
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The models satisfying Proposition (1.1) contain types with no elements. It turns out that 
this is inevitable. To see this, consider the “absurd” type Vt.t. Any element, f, of this 
type chooses, for any type (T, an element (fa) of type Q. Thus, if any type is empty, then 
the absurd type must be empty as well. The simple argument below shows that if there is 
such a choice function, f, which there trivially will be in any model without empty types, 
then equation (3) is inconsistent. 

Note that under an interpretation in which every type has at most one element, every well- 
formed equation is valid. By convention, such trivial interpretations are ruled out in the 
context of equational reasoning, so a model of type theory is required to have at least one 
type with more than one element. Now it is easy to see that in the polymorphic calculus, 
Rue=E’ulse iff every type has at most one element. Indeed, from the equation True=Fulse, 
one can derive any well-formed equation using standard inference rules. Hence, we say a 
set of equations is inconsistent ifE the equation Tkue=FuZse follows from them. This is then 
equivalent to saying the set of equations has no model. 

Proposition 1.2 In any model of polymorphic lambda calculus with all types nonempty, 
equation (8) is not valid. In particular, there must be more than two elements of type 
polybool in such a model. 

Proof. Suppose f: Vt. t and (3) holds. Let b :: = (At. AZ: t. Ay: t. (ft)). Note that b: polybool. 
Now by definition of b, we have b polybool y y = (f polybool), so by definition of Cond and 
equation (3), we have y = (f pofybool), i.e., all elements y of type polybool are equal (to 

(f poW4). h particular, True= F&e. w 

So empty types are necessary if polybool is to model Booleans exactly. Of course, polybool 
is simply one example of a type where one would like and expect the only elements to be 
the definable ones. For example, a variation of the proof of Proposition (1.2) applies to 
the type poiyint :: = Vt. (t * t) + t -+ t of Church’s “polymorphic integers”, so that without 
empty types, one must accept additional “nonstandard” polymorphic integers besides those 
definable by the familiar Church numerals. 

It is an interesting open problem to explain how these propositions generalize to other 
types. 

Coqjecture 1.3 Propositions (1.1) and (1.2) generalize to arbitrary %niversal” types u 
of the form Vtl.. . Vt,,. CT where o is an expression built from type variables tl, . . . , t, using 
---). Namely, there can be a model in which the elements of u are precisely those definable 
by the pure closed terms of type u (and moreover, no two such terms have the same value) 
ifl models may have empty types. 

Propositions (1.1) and (1.2) make it clear that 

l empty types force themselves into consideration in the context of polymorphism, and 

l having them significantly changes the theory of various familiar types such as poly- 
morphic Booleans and integers. 
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2 Problems with empty types 

Empty types complicate the relationship between models and lambda-calculus theories. 
The set of equations valid in a given collection of models is called a (semantic) the- 
ory. If we assume no type is empty, then every theory is actually the theory of a single 
“generic” model. This fact is significant in proving completeness (with respect to models 
with nonempty types) of the familiar equational reasoning (cf. [lo], [ 151, 141). It fails to 
hold when we allow empty types: 

Proposition 2.1 Let b and bl be constants denoting types. The theory of the (collection 
of all models satisfying the) equation 

Xx: bo. Xy: bl. Rue = Xx: bo. Xy: bl. False (4 

is not equal to the theory of any single model of the polymorphic lambda calculus. 

Proof. If types bo and bl are both nonempty, then by applying the functions on either side 
of the equation to arguments of these respective types, we can derive the inconsistency 
True = False. Therefore, in every model in the collection, either be must be empty, or 
bl must be empty. But it is not hard to find models in which only one of these types is 
empty. So the equation 

Xx: ba. l’kue = AZ: bo. False (5) 

which says that bb is empty, is not in the theory of the collection, nor is the corresponding 
equation about bl 

AZ: bl. T’kue = As: bl. False . (6) 

But in any single model in the collection at least one of 60, bl must be empty, so at least 
one of equations (5)) (6) must be in the theory of that model. H 

In fact, with suitable added axioms for a base-type Bool, the above argument applies to 
the simply typed lambda calculus as well. 

A related model-theoretic contrast between the situations with and without empty types is 
that without empty types there is a minimum model which is a “final” object in the space 
of models, i.e., it is a “homomorphic image of a submodel” of every model. Consequently, 
its theory is maximum, namely, contains all equations between pure closed lambda terms 
which are individually consistent [23], [l, A.1.231. 

Conjecture 2.2 There is no ma&mum pure theory-with-empty-types of simply typed nor 
of polymorphic lambda calculus. 



3 Typed terms and equations 

We now define precisely the two calculi in this paper: simply typed [l, Appendix A] and 
polymorphic [ 111, [21] lambda calculus. The types of simply typed lambda calculus are 
given by 

7 ::=a]r-+r 

where a is a constant denoting a type. (There may be more than one type constant.) 

Typed lambda terms are usually defined by assuming that there are infinitely many vari- 
ables z;, xi, . . . for each type 7. However, when we assume there is a variable x’ of type r, 
we are in fact assuming that r is nonempty. This leads us to present the syntax of terms 
in another form. 

The terms, and their types, are defined using the subsidiary notion of type assignment. A 
type assignment A is a finite set of formulas z: r, with no x occurring twice in A. We write 
A(x:a] for the type assignment 

A[z: a] = {y: r E A ] y different from x} U {x: a}. 

Terms will be written in the form A I-+ M: 7, which may be read, “under type assignment 
A, the term M has type 7.” The well-typed terms are defined as follows. 

AH x:r for z:r E A 
A~A4:a-,r, A++N:a 

Ajz.];-!.!& A 

The types of polymorphic lambda calculus are defined by adding two more clauses to the 
rules for simple types: 

7 :: = a 1 7 -+ 7 1 t I Vt .r 

Additional term formation rules for these new types are: 

A I-+ A4:Vt.r 
A H Ma: [a/+ 

where [a/t]7 is the result of substituting o for t in r, and 

AwM:r 
A I-+ Xt.M:Qt.r 

where we assume t is not free in any type occurring in A. 

Given this formulation of terms, it is natural to write equations in the form 

A++M=N:r (7) 

where it is required that A H M: r and A I+ N: r. 

To facilitate reasoning about empty types, it is convenient to add assumptions of the form 
empty(a) to type assignments. Therefore, an equation will be a formula of the form (7) 
where A is now to be the union of a type assignment A1 and a set AZ of formulas empty(a), 
and also Al H M: r and Al H N: r. 

Note that the emptiness assertions in A are not used to determine the types of terms. 
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4 Unsoundness of variable elimination 

There are no types which are empty in all models. Consequently, no type is provably 
empty in the pure lambda theory. More generally, 

Theorem 4.1 An equation is valid in att models without empty types ifl it is valid in all 
models with empty types. 

This will follow from Corollary (A.3) below. Thus, it might seem that admitting models 
with empty types should not have much affect on equational logic of terms. 

However, when we reason from equational hypotheses, the valid consequences are very 
different depending on whether em&y types are allowed. 

For example, we have remarked that the equation (5), taken with the empty type assign- 
ment, is true in a model iff the type bc is empty. In particular, from (5), we can certainly 
conclude 

x: bo H (Xx: b0. True)s = (Xs: bf~. Fatse)s: (b0 + potyboot), 

so by P-reduction, we have 

x: bo I+ Rue = False: polyboot. (8) 
Now if every type is nonempty, then the rule 

(nonempty) Au(x:a}++M=N:r 
A-M N:T 

znotfreeinM N 
= , 

is sound, since assuming something about the type of an irrelevant variable z has no effect 
on the validity of an equation. (This rule is usually not stated in proof systems for typed 
lambda calculus, since it is implicit in the usual formulation for terms over models without 
empty types.) Then from (8) and ( nonempt y), we deduce the inconsistency 

0 H TLue = False: polybool. (9) 

This is the formal confirmation of the obvious fact that the assertion that type bo is empty 
is inconsistent with the assumption that all types are nonempty. However, equation (5) is 
not inconsistent if we allow models with bo interpreted as empty. 

Thus, an equation between terms which follows under some type assignment, does not 
necessarily follow under an assignment involving only the free variables of the terms. The 
problem is that a type assignment X:O implies u is nonempty, and such an assumption 
cannot be discharged without justification when empty types are possible. In short, rule 
nonempty is not sound in when empty types are allowed. (A similar kind of unsoundness 
was already observed for many-sorted algebras in [12].) 

So extra care will be needed in manipulating type assignments when empty types occur. 
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5 Completeness 

Our proof systems will differ from the usual ones (for models without empty types) in 
two respects: we carefully specify the rules for variable elimination, and we add an axiom 
scheme and inference rule for reasoning about empty types. 

The rule for empty types is needed because even when the technical problem of variable 
discharge noted above is repaired to yield a sound lambda theory for empty types, the 
remaining standard systems are still not complete. 

Theorem 5.1 The standard axioms and equational inference rules which are complete for 
simply typed [lo] or polymorphic (41 1 am a c cu us when all types are nonempty, are not bd al 1 
complete for proving semantic consequences of equations over models with empty types. 

The proof is by a proof-theoretic analysis which we omit in this summary. 

For example, let A 1::= Xz:bo.Xy:bo.z,~z::= AZ: 60. Xy: 60. y, and f be a constant of suitable 
type. Then the equation 

implies 

Xx: bo.(fq) = AZ: bo.(fn2) 

(fm) = (h). 

This follows by the same reasoning which led to (9) if bo is not empty, and if 60 is empty, 
then ~1 = 7rs, and again it follows trivially. 

However, argument by cases like this cannot be formalized without new inference rules. 
This is what distinguishes the proof systems we describe below from previous proof systems 
for equality in models without empty types [4]. In particular as noted above, our equations 
use the additional formulas empty(a) in type assignments. 

In the appendix we give a complete proof system for equations with empty types (Theo- 
rem A.4). The proof, which we omit in this preliminary report, follows the usual proof of 
equational completeness by construction of term models, with an added twist resembling 
“model completion” in a Henkin-style completeness proof for predicate logic. The twist is 
brought on by the nonexistence of generic models noted in Proposition (2.1). 

A Appendix: proof rules 

A.1 Without empty types 

For ordinary typed lambda terms, we have the usual axioms. 

(4 A H AZ: a.M = Xy: a[y/s]M: (I -+ r provided y 4 FV(M) 

(Pl) A H (Xz:a.M)N = [N/+4:7 
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h-1) A- Xx:o.Mx= M:a+r provided x $ FV(M) 

For polymorphic lambda calculus, we need additional versions of each of these rules. 

(4 A H Xt.M = Xs.[s/t]M:tlt.a provided s $! FV(A H M: a) 

(P2) A H (xt.M)a = [o/t]M:r 

(ml A H Xt.Mt = M: Vt.a provided t @ FV(M) 

The inference rules which are sound for all models are symmetry and transitivity 

(trims) 

A-M=N:a 
AHN=M:u 

AHM=N:o,A~N=P:~ 
A-M P = :u 

congruence rules, and a rule for adding additional hypotheses to type assignments. The 
congruence rules for ordinary typed lambda calculus are 

AHMI=M~:u-‘~, AHNl=N2:a 
A H MINI = M2N2:r 

Rl) A[x:+M=N:7 
A )--) Xz:a.M = Xx:o.N:o-+r 

The additional rules for polymorphic terms are 

bng2) 

K2) 

A - Ml = M2:Vt.u, r1 = r2 
A I-+ Mlrl = M2r2: r1 t u 

AHM=N:u 

Since type assignments are explicitly included in equations, we also need the rule 

(add hyp) AwM=N:u 
HM N = Ius AGB 

for adding additional typing hypotheses. 

We write kr for provability using the axiom schemes (or), (PI), (VI), and the inference 
rules (sym), (truns), (tong,), ([I), and (udd hyp), and write -I-;“““” for provability using 
(nonempty) in addition. We write l-2 and l-r”‘@’ for the corresponding proof systems for 
polymorphic lambda calculus. We omit subscripts to refer ambiguously to either (or both) 
proof systems. 

Lemma A.1 Without equational hypotheses, rule (nonempty) is a derived rule, i.e., for 

any equation E 
k E iff pnemPtY Es 

Theorem A.2 [4] The rules for PonemptJ’ are sound and complete for deducing semantic 
consequences of equations over the class of models in which every type is nonempty. 

Corollary A.3 The rules for t- are sound and complete for deducing the equations which 
hold in all models. 
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A.2 With empty types 

The proof system for reasoning about empty types makes use of the formulas empty(a) 
in equations. We have an axiom scheme for introducing equations that use emptiness 
assert ions 

empty(o),z:a H True = False: polybool 

and an inference rule which lets us use emptiness assertions to reason by cases 

A U (z: a} I+ M = N: T, A U {empty(a)} H M = N: r 
AHM N 

5 not free in M N 
= :?- > 

We write t--““Ptv for provability using I- and the axiom and inference rule for empty types. 

The semantics of polymorphic models, in particular the meaning of satisfaction, b, follows 
[4], except of course that types may be empty. Our main result is that l-““Ptv is a sound 
and complete proof system for deducing semantic consequences of equations: 

Theorem A.4 Let I’ be a set of equations and E be any equation. Then 

rl- empty E iff r kempty Es 
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