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Sound Over-Approximation of Probabilities∗
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Abstract

Safety analysis of high confidence systems requires guaranteed bounds on
the probabilities of events of interest. Establishing the correctness of algo-
rithms that aim to compute such bounds is challenging. We address this
problem in three steps. First, we use monadic transition systems (MTS) in
the category of sets as a framework for modeling discrete time systems. MTS
can capture different types of system behaviors, but we focus on a combina-
tion of non-deterministic and probabilistic behaviors that often arises when
modeling complex systems. Second, we use the category of posets and mono-
tonic maps as a setting to define and compare approximations. In particular,
for the MTS of interest, we consider approximations of their configurations
based on complete lattices. Third, by restricting to finite lattices, we obtain
algorithms that compute over-approximations, i.e., bounds from above within
some partial order of approximants, of the system configuration after n steps.
Interestingly, finite lattices of “interval probabilities” may fail to accurately
approximate configurations that are both non-deterministic and probabilistic,
even for deterministic (and continuous) system dynamics. However, better
choices of finite lattices are available.

Keywords: probabilities, approximation, intervals, monads

1 Introduction

Model-based safety analysis of high-confidence systems requires guaranteed bounds
on the probabilities of events such as success or failure in performing a given task.
Guaranteed probability bounds are needed when we consider safety or reliability
of almost any real-world systems, whether it is a physical, computational, commu-
nication system, or a combination of such systems, like Cyber-Physical or Internet
of Things systems.

The motivation for this work comes from an industrial collaboration where
it is of interest to quantify the probability of collisions between road vehicles. In
particular two vehicles approaching a crossing from two different roads. We use this
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scenario as a motivation for the general framework we introduce. A first approach
would be to model the vehicles as point masses whose time evolutions are described
by a second order deterministic linear dynamic model. With such a model, one
could use the explicit solutions of the dynamical systems to e.g., compute feasible
regions for communication time-delays. On top of this, non-determinism as well
as probabilities can be added step by step. However, such modeling and analysis
does not capture the complexity of the system we like to model; it does not treat
non-determinism, probabilities and physics concurrently; and in most cases it does
not succeed to provide safe guarantees about the collision probabilities for the cars.
We need to address this by proposing a more realistic model on the one hand and
a rigorous computational framework on the other.

A more realistic model assumes two vehicles under Ackermann steering [10] and
includes shapes and nonlinear kinematics and dynamics, since Ackermann steering
is modeled by a dynamic system involving trigonometric expressions, making it
nonlinear. Such systems do not, in general, have solutions of closed form, which
means that the simplified approach described above does not apply. Furthermore,
complexity is added to the model by assuming that it provides a trajectory and
digital controller for the first vehicle; cooperative driving messages from the first to
the second vehicle over a fading channel; a digital controller for the second vehicle
to follow the first one based on the received messages, boundaries for the roads;
and initial conditions. The event of concern is a collision, defined as a non-empty
intersection between two vehicle shapes (or a vehicle shape and a road boundary).

An aspect of this type of scenario is under-specification, or non-determinism. It
can arise in physical models of systems where multiple behaviors are possible (for
example, a perfectly inverted pendulum, where two paths are possible from the ini-
tial state), in control components due to drift in clock speed, and in communication
components due to unquantified external factors. In contrast to probability, non-
determinism models what is not known, such as the behavior of the environment,
or the actions of an opponent. Unfortunately, defining (and correctly computing)
probability bounds becomes even more challenging when there is non-determinism.
It is useful here to point out and distinguish the following technical problems:

1. Probabilities are real-valued quantities, that are rarely known exactly.

2. Non-determinism and probabilistic behavior are distinct features, and how to
combine them correctly is not obvious.

The first problem has been addressed by extending interval methods to handle
uncertainty and imprecision in probabilities (see [14]). The second problem has been
addressed in the context of automata (see [13]), in order to define and verify the
correctness of randomized algorithms, like those used in communication protocols.

In this paper we build on these works to establish correct ways of computing
(over-approximations of) such probabilities.
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1.1 Summary and Contributions

Here we provide a summary of the paper and enlist its contributions. In order to
describe these contributions in the most conceivable way, we have to use some tech-
nical notation. Readers unfamiliar with the notation are referred to the respective
sections under consideration for definitions and explanations.

Sec 2 recalls the definition of monad and related notions, and gives a systematic
way to add non-determinism to any monad on the category of sets, in particular
one can apply it to the monad of discrete probability distributions.

Sec 3 proposes monadic transition systems (MTS), which specializes the co-
algebraic framework for discrete time system modeling (see [12]). A co-algebra
α : S → B(S), for an endofunctor B on the category of sets, describes the one-step
behavior of a system with state space S. In a MTS B is replaced by a monad M .
A monad has an underlying endofunctor, moreover allows to extend α : S →M(S)
to a map α∗ : M(S) → M(S), and view M(S) as the set of configurations. We
exemply the discretizations involved in the MTS modeling of continuous systems.

Sec 4 defines several complete lattices of approximants for subsets of probability
distributions on a measurable space (in this context an event is a measurable subset
of the space). These lattices are related to the notion of interval probability, which
has been used for modeling uncertainty and imprecision in probabilities (see [14]).

Finally, Sec 5 applies the results in Sec 4 to define an algorithm computing
over-approximations (bounds from above within a partial order of approximants)
for the configuration reached after n steps by an MTS combining non-determinism
and probability. We show that interval probabilities may not provide accurate
over-approximations for these configurations (but other approximants do).

2 Monads

This section introduces monads, which we will use to provide a uniform treatment
for non-determinism and probability. By exploiting the axiom of choice (AC), we
show that non-determinism can be added to any given monad on Set by mere
composition. This gives a way to build more complex monads, in particular to
combine non-determinism and probability, while sub-monads allow to define simpler
monads from existing ones.

Monads are an important notion in Category Theory [1, 2]. Moggi [7] proposes
strong monads to model computational types, and Manes [6] proposes collection
monads on Set to model collection types. We recall the definition of monad (aka
Kleisli triple [5]) on Set, i.e., the category with sets as objects and maps (aka
functions) as arrows.

Definition 2.1 (Monad). A monad on Set is a triple (M,η, ∗) such that if X is a
set (notation X : Set) then M(X) : Set and ηX is a map from X to M(X) (nota-
tion ηX : X →M(X)) called unit, and if f : X →M(Y ) then f∗ : M(X)→M(Y )
is its monadic extension. Moreover, η and ∗ satisfy the following equations for
any f : X →M(Y ) and g : Y →M(Z)
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1. f∗ ◦ ηX = f , namely f∗ is an extension of f

2. η∗X = idM(X), the extension of η is the identity

3. g∗ ◦ f∗ = (g∗ ◦ f)∗, the composition of two extensions is an extension.

We define the M -extension of f : X → Y as M(f) = (ηY ◦ f)∗ : M(X)→M(Y ).

Example 2.1. Trivial monads are the identity I(X) = X and the terminal monad
1(X) = 1, where 1 is a singleton set. Monads relevant for this work are:

Error (having one trap state) E(X) = X + 1, where + is disjoint union, we
write ok(x) for an element in the left component of X + 1 and fail for the
unique element in the right component; ηX(x) = ok(x), f∗(ok(x)) = f(x)
and f∗(fail) = fail.

Powerset (non-determinism with deadlock) P (X), where P (X) is the set of
subsets of X, ηX(x) = {x}, and f∗(A) =

⋃
x:A f(x). Traditionally, the empty

set ∅ represents deadlock (i.e., the lack of choice), and f∗(∅) = ∅, since f∗

preserves arbitrary unions.

The P -extension P (f) : P (X)→ P (Y ) of a map f : X → Y , is usually called
its natural set extension.

Probabilities Dd(X) = {p : X → [0, 1]|
∑
x:X p(x) = 1} is the set of discrete

probability distributions on X, note that the support sX(p) = {x|p(x) > 0}
of p must be countable (i.e., with cardinality at most ℵ0) when

∑
x:X p(x) is

bounded, ηX(x)(x′) = 1 if x = x′ else 0, and f∗(p)(y) =
∑
x:X p(x) ∗ f(x)(y).

More examples, from programming language semantics, can be found in [7].

In general, monads do not compose. However, there are two ways to define
monads from other monads: sub-monads and monad transformers. We recall the
notion of monad map (and sub-monad), and show that the error monad E and a
sub-monad P+ of P yield two monad transformers, that map a monad M to the
monads M ◦ E and P+ ◦M , respectively.

Definition 2.2 (Monad map). A monad map from M to M ′, notation σ : M →
M ′, is a family of maps σX : M(X)→M ′(X) indexed by X : Set such that

η′X(x) = σX(ηX(x)) (σY ◦ f)∗
′
(σX(c)) = σY (f∗(c))

We write Mon for the category of monads (as objects) and monad maps (as arrows).
We say that M is a sub-monad of M ′ when M(X) ⊆ M ′(X) for every X : Set
and the family of these inclusions is a monad map.

Example 2.2. The identity monad I is initial in Mon and ηM : I → M is the
unique monad map from I to M (similarly the terminal monad 1 is terminal in
Mon). In general, if M ′ is a monad and σX : M(X) → M ′(X) is a family of
injective maps, then there is at most one monad structure on M (i.e., η and ∗),
which makes σ a monad map. Examples of sub-monads of P and Dd are:
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Non-empty powerset (non-determinism) P+(X) the set of non-empty sub-
sets of X, equivalently P+(X) is P (X) without the empty set (deadlock).

Finite powerset Pf (X) ⊆ P (X) is the set of finite subsets of X.

Finite probabilities Df (X) ⊆ Dd(X) is the set of discrete probability distribu-
tions with finite support, i.e., the set of p : Dd(X) such that sX(p) is finite.

Examples of monad maps relating the monads introduced so far are

I > ηP > P+ < s Dd < ⊃ Df

E

ηE

∨

∨

> κ > P
∨

∩

< ⊃ Pf

s

∨

where ηPX(x) = {x}, ηEX(x) = ok(x), κX(ok(x)) = {x} and κX(fail) = ∅. The
support map sX : Dd(X)→ P+(X) is surjective when X is a countable set.

Prop 2.1 and 2.2 show that two constructions, relevant to the rest of the paper,
are monads transformers. Prop 2.1 is an instance of a well-known monad trans-
former, definable in any category with coproducts, while Prop 2.2 defines a new
monad transformer, that is specific to the category of sets.

Proposition 2.1. If (M,η, ∗) is a monad, then M ◦ E is the monad (M ′, η′, ∗
′
)

defined as follows:

• M ′(X) = M(E(X))

• η′X(x) = ηX(ok(x))

• f∗′(c) = f ′
∗
(c), where f : X → M(E(Y )) and f ′ : E(X) → M(E(Y )) is the

unique map such that f ′(ok(x)) = f(x) and f ′(fail) = ηY (fail).

Proof.

• If f : X →M(E(Y )), then f∗
′
(η′X(x)) = f ′(ok(x)) = f(x).

• η′X
∗′

(c) = η∗E(X)(c) = c.

• If f : X →M(E(Y )) and g : Y →M(E(Z)), then

– g∗
′
(f∗

′
(c)) = g′

∗
(f ′
∗
(c)) = (g′

∗ ◦ f ′)∗(c) and

– (g∗
′ ◦ f)∗

′
(c) = (g′

∗ ◦ f)′
∗
(c).

Therefore, it suffices to show that g′
∗ ◦ f ′ = (g′

∗ ◦ f)′ : E(X) → M(E(Z)).
This can be proved by case analysis on E(X):

– g′
∗
(f ′(ok(x)) = g′

∗
(f(x)) = (g′

∗ ◦ f)(x) = (g′
∗ ◦ f)′(ok(x))
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– g′
∗
(f ′(fail)) = g′

∗
(ηY (fail)) = g′(fail) = ηZ(fail) = (g′

∗ ◦ f)′(fail).

The result that P+ ◦M is a monad relies on the Axiom of Choice (AC):

∀x : X.∃y : Y.R(x, y) =⇒ ∃f : X → Y.∀x : X.R(x, f(x)).

Moreover, the result fails if P+ is replaced by P .

Proposition 2.2. If (M,η, ∗) is a monad, then P+ ◦M is the monad (M ′, η′, ∗
′
)

defined as follows:

• M ′(X) = P+(M(X))

• η′X(x) = {ηX(x)}

• F ∗′(C) = {f∗(c)|c : C ∧ f : Πx : X.F (x)}, where F : X → P+(M(Y )).

Proof. Given F : X → P+(M(Y )) the dependent product Πx : X.F (x) denotes the
set of maps f : X →M(Y ) such that ∀x : X.f(x) : F (x).

• If F : X → P+(M(Y )), then F ∗
′
(η′X(x)) = {f(x)|f : Πx : X.F (x)}.

By AC exists a map f : Πx : X.F (x), because ∀x : X.∃c : M(Y ).c : F (x)1.

Moreover, for every x : X and c : F (x) is in Πx : X.F (x) also the map
f [x 7→ c], which maps x to c and is equal to f on the other elements of X.

Therefore, {f(x)|f : Πx : X.F (x)} = F (x).

• η′X
∗′

(C) = {η∗X(c)|c : C} = C, since Πx : X.η′X(x) = {ηX}.

• If F : X → P+(M(Y )) and G : Y → P+(M(Z)), then

– G∗
′
(F ∗

′
(C)) = {g∗(f∗(c))|c : C ∧ f : Πx : X.F (x)∧ g : Πy : Y.G(y)} and

– (G∗
′ ◦ F )∗

′
(C) = {h∗(c)|c : C ∧ h : Πx : X.{g∗(cx)|cx : F (x) ∧ g : Πy :

Y.G(y)}}

G∗
′
(F ∗

′
(C)) ⊆ (G∗

′ ◦ F )∗
′
(C) by taking h = g∗ ◦ f and cx = f(x) for x : X.

For the other inclusion we apply AC to ∀x : X.∃cx : M(Y ).cx : F (x)∧h(x) =
g∗(cx) to get a map f : X →M(Y ), which chooses one cx for each x : X.

There is also a sub-monad relation between the original monad and the monad
constructed by these two monad transformers.

1This is valid only for P+ and not P , where it is false for every F : X → P (M(Y )) such that
∃x : X.F (x) = ∅ ∧ ∃x : X.F (x) 6= ∅.
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Proposition 2.3. The following monad maps show that (up to isomorphisms) P
is a sub-monad of P+ ◦E and every monad M is a sub-monad of P+ ◦M and M ◦E

P+ ◦ E < σ < P

M ◦ E < M(ηE) < M > ηP > P+ ◦M

where σX(A) = {fail} if A = ∅ else {ok(x)|x : A}.

3 Monadic Transition Systems

This section introduces the concept of Monadic Transition Systems (MTS), which
unifies a wide range of models, including deterministic automata, non-deterministic
automata, Markov chains, and probabilistic automata. At the end we exemplify
the use of MTS to model a scenario related to the one described in the introduction.

A transition system (TS) is a pair (S,R) with R binary relation on the set S.
A TS models the dynamics of a closed system, and R allows to model also the part
of the closed system that we do not control, typically the environment. There is
a bijection between relations R : P (S2) and maps t : S → P (S). This suggests a
generalization of TS obtained by replacing the monad P with a monad M .

Definition 3.1 (Monadic TS). Given a monad (M,η, ∗), an M -TS is a map
t : S →M(S), and we define the map T : N→M(S)→M(S) such that T0(c) = c
and Tn+1(c) = t∗(Tn(c)), which gives the configuration Tn(c) reached by the system
after n steps starting from an initial configuration c.

Example 3.1. A suitable choice of monad allows us to capture several types of
computational models (where A is a set representing an input alphabet):

• Deterministic automata t : S → SA;

• Non-deterministic automata t : S → P (S)A;

• Discrete time Markov chains t : S → Dd(S);

• Probabilistic automata t : S → Dd(S)A.

The following result says that monad maps allow to view an MTS for a simpler
monad as an MTS for a more complex monad.

Theorem 3.1. If σ : M → M ′ is a monad map and t : S → M(S) is an MTS,
then t′ = σS ◦ t : S → M ′(S) is an MTS and the following diagram commutes
M ′(S) T ′n > M ′(S)

M(S)

σS

∧

Tn > M(S)

σS

∧

thus T ′n extends Tn, when M sub-monad of M ′.
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Example 3.2. We explain why one should consider M -TS for M other than P .

• In P -TS one can have deadlock states, i.e., states s such that the set t(s) of
possible next states is empty. In physical systems deadlock states are not
realistic, thus P+-TS are more appropriate, as they exclude such states.

• For safety analysis it is convenient to add a fail state, and add a transition
from s to fail when s is considered unsafe. Therefore, the appropriate choice
is a (P+◦E)-TS. Since fail is a trap state, fail : Tn(c) means that the system
starting from the initial configuration c may fail within the first n steps.

• If a system may have also random behavior, then the appropriate choice
is a (P+ ◦ Dd ◦ E)-TS. In particular, Tn(c) allows to check whether u is
an upper-bound to the probability of failure within the first n steps, i.e.,
∀p : Tn(c).p(fail) ≤ u.

Our goal is the over-approximation of Tn(c) : M(S). This reduces to the prob-
lem of over-approximating the monadic extension t∗ : M(S)→M(S), or, more gen-
erally, a map f : M(S) → M(S). The notion of over-approximation (see Def 4.2)
requires a partial order, thus we must view M(S) as a subset of a partial order,
and move from Set to the category Po of posets and monotonic maps (see Sec 4).
When M(S) = P+(Dd(S+1)) the obvious choice of complete lattice is P (Dd(S+1))
ordered by inclusion, where over-approximations are usually called enclosures.

3.1 Limitations of MTS in Set

Restricting MTS to the category Set of sets has benefits and limitations:

Benefits: sets are simple, every monad on Set is strong in a unique way, dis-
crete probability distributions form a monad on Set, and one can add non-
determinism to any monad on Set (by exploiting the axiom of choice).

Limitations: sets are too simple to directly model systems with continuous time
or a continuous state space S, for instance the uniform distribution on the
unit interval [0, 1] is not among the discrete probability distributions on [0, 1].

However, there are ways to mitigate these limitations and make our results useful
also for analyzing systems with continuous time, namely:

• The model of a system can be modified so that it jumps to a trap state (i.e.,
one from which the system cannot exit), when a failure occurs. This amounts
to replace the state space S with S + E, where E is a set of trap states.

• The probability pt(e) that trap state e is reached at time t is monotone in t.
Thus, we can replace continuous time with a discrete subset {δ ∗n|n : N} and
approximate pt(e) with an interval [pn(e), pn+1(e)] when δ∗n ≤ t ≤ δ∗(n+1).

Moreover, Sec 4 provides over-approximations for subsets of probability distribu-
tions on any measurable space, though in Set one can consider only probability
distributions on discrete spaces.
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3.2 MTS modeling of a two-car collision

As an illustration of the proposed framework, we provide an MTS-model, whose mo-
tivation stems from an industrial collaboration, where it was of interest to quantify
the probability of collision between two cars approaching an intersection from two
different roads. The initial configuration of the system involves non-determinism
and probabilities, while the simplified deterministic dynamics models the two cars
i = 1, 2 as point masses moving on two intersecting lines according to the ODE
x′i(t) = vi, where xi(t) is the position of car i w.r.t. the intersection.

The initial positions are not known exactly, xi(0) : X(0) = [−15.1,−14.9], and
the constant speeds of the two cars depend on two random variables vi drawn from
the interval V (0) = [1.9, 2.1] according to the uniform distribution.

We say that a car collision occurs when |x1(t)| ≤ 0.5 ∧ |x2(t)| ≤ 0.5, i.e., when
both are at most 0.5m from the intersection.

We take S = ([1, 3]× [−16, 1])2, where a state ((vi, xi)|i = 1, 2) : S gives speed
and position of the two cars (including the speeds in the state is essential and makes
the system dynamics deterministic).

We turn the above description into an MTS f : S → E(S), by replacing contin-
uous time with discrete time (i.e., we choose a sampling interval δ > 0):

fail f((v1, x1), (v2, x2)) = fail when ∃d : [0, δ].∀i = 1, 2.|xi + vid| ≤ 0.5, else

safe f((v1, x1), (v2, x2)) = safe when ∃d : [0, δ].∃i = 1, 2.xi + vid > 0.5, else

move f((v1, x1), (v2, , x2)) = ((v1, y1), (v2, y2)) when ∀i = 1, 2.yi = xi + viδ ≤ 1

fail is the error state added by the monad E(−), and denotes a collision, while safe
can be any state in S such that x1 > 0.5 ∨ x2 > 0.5. By composing f : S → E(S)
with the monad morphism from E to M = P+ ◦Dd ◦ E, we can lift f to an MTS
f̄ : S → M(S) (and use Thm 3.1), needed to handle the non-determinism in the
initial positions and the random choice of accelerations.

Finally, we must define the initial configuration c : P+(Dd(S)), but the uniform
distribution on V (0) is not discrete. Thus, we partition V (0) into m intervals Vj(0)
of equal size, approximate the uniform distribution with the set of discrete distri-
butions p such that ∀j : m.

∑
v:Vj(0)

p(v) = 1/m, and define c as the setp : Dd(S) | ∃x1, x2 : X(0).∀j, k : m.
∑

v1:Vj(0),v2:Vk(0)

p((v1, x1), (v2, x2)) =
1

m2

 .

System vs models. We have one continuous model of the system, but a spectrum
of MTS-models, with parameters δ and m: δ is for time discretization and affects
only the transition map, while m affects only the initial configuration. Since these
models are so simple, we can compute the exact probability of collision pfail in the
continuous model, and compare it with those in the MTS-models, say pfail(δ,m).

The probability pfail is the max for (x1, x2) : X(0)2 of the ratio between the
areas of R1(x1, x2)∪R2(x1, x2) and V (0)2, where Ri(x1, x2) are the convex polygons
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• R1(x1, x2) = {(v1, v2) : V (0)2| − 0.5v1 ≤ x2v1 + v2(0.5− x1) ≤ 0.5v1}

• R2(x1, x2) = {(v1, v2) : V (0)2| − 0.5v2 ≤ x1v2 + v1(0.5− x2) ≤ 0.5v2}.

The max is obtained when x1 = x2 = −15.9, in this case the two polygons have

the same area and disjoint interiors, thus pfail = 2∗|Ri(x1,x2)|
0.04 = 0.86217.

pfail(δ,m) is computed similarly, but with Ri(x1, x2) replaced by the union of
the boxes in the partition of V (0)2 determined by m, that intersect Ri(x1, x2). This
union does not depend on δ and 0 ≤ pfail(δ,m)− pfail ≤ O( 1

m ) for m > 0.

4 Interval Probabilities

Intervals probabilities [14] approximate probability distributions, in the same way
as intervals approximate real numbers in interval arithmetic [8, 9]. In this section
we address the problem of over-approximating subsets of Π(X,F ), i.e., the set of
probability distributions on a measurable space (X,F ). The problem is addressed
by moving to the category Po of posets and monotonic maps, which provides the
appropriate setting to define abstract interpretations [3]. We show that interval
probabilities fail to accurately approximate systems behaviors that combine non-
determinism and probability, even for systems as simple as that in Sec 3.2. However,
there are other abstract domains, that provide more accurate approximants.

Definition 4.1 ([14]). A measurable space is a pair (X,F ), where X is a set and
F is a σ-field (aka σ-algebra) on X, i.e., a subset F ⊆ P (X) such that ∅ ∈ F and
F is closed under complement and countable unions. P (X) is the biggest σ-field on
X. A K-function (aka probability distribution) on (X,F ) is a map µ : F → [0, 1]
such that µ(X) = 1 and µ(∪nAn) =

∑
n µ(An) for every family (An|n : N) of

disjoint subsets in F . We write Π(X,F ) for the set of K-functions on (X,F ).

Example 4.1. There is an injective map ιX : Dd(X) > Π(X,P (X)) given by
ιX(p)(A) =

∑
x:A p(x), which is bijective when X is countable. Thus, results on

approximating subsets of Π(X,P (X)) turn into results on approximating subsets
of Dd(X). If (X,F ) is a measurable space and µ : Π(X,P (X)), then µF : Π(X,F ),
where µF : F → [0, 1] is µ restricted to F . However, for some (X,F ) there are
µ′ : Π(X,F ), that are not the restriction of some µ : Π(X,P (X)), e.g.

• If X has cardinality ℵ1, then ιX : Dd(X) > Π(X,P (X)) is bijective (see
[11, Thm 5.6]). Define F as the smallest σ-field on X generated by the
singletons, i.e., A : F if A or its complement is a countable subset of X.

Let µ′(A) = 0 if A is countable else 1, then µ′ : Π(X,F ), but µ′ cannot be
the restriction of some µ : Π(X,P (X)), otherwise µ′({x}) > 0 for some x : X.

• If X = [0, 1] and F is the σ-field generated by the intervals [0, a] for a : X
(this is the σ-field generated by the standard topology on [0, 1]), then the
uniform distribution µ′ : Π(X,F ) is the unique probability distribution on
(X,F ) such that µ′([0, a]) = a.
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If the continuum hypothesis is true, i.e., the cardinality of [0, 1] is ℵ1, then no
µ : Π(X,P (X)) extends the uniform distribution µ′ (i.e., µ′ = µF is false).

We use adjunctions to define over-approximation relations between two posets, a
concrete domain C and an abstract domain A (in our case a poset of approximants).

Definition 4.2. An adjunction α a γ in Po (aka Galois connection) is a pair of

maps C <
γ

α
> A in Po such that ∀c : |C|.∀a : |A|.c ≤C γ(a) ⇐⇒ α(c) ≤A a. The

map γ is called the right adjoint to α, and α the left adjoint to γ. We say that

a : A is an over-approximation of c : C
M⇐⇒ c ≤C γ(a) (notation c ≤γ a).

Remark 4.1. A simpler definition of over-approximation, given using C only, is
a is an over-approximation of c when c ≤C a. However, having a separate poset
A makes explicit the implementation choices about the set of approximants. For
instance, if C is the complete lattice of subsets of R ordered by inclusion, possible
choices for A are

1. The poset of intervals [x, x], i.e., pairs of real numbers such that x ≤ x,

ordered by [x, x] ≤A [y, y]
M⇐⇒ y ≤ x ≤ x ≤ y.

2. The finite poset of floating point intervals.

3. The finite poset of finite unions of floating point intervals.

The over-approximation relation is defined only in terms of the monotonic map γ.
In the three examples of A above the definition of γ is obvious. These γ do not
have a left adjoint, but it suffices to add a top > and bottom ⊥ element and define
γ(>) = R and γ(⊥) = ∅, to have a left adjoint. Existence of a left adjoint α is
important, since it ensures that α(c) is the best over-approximation of c : C, i.e.,
c ≤γ a ⇐⇒ α(c) ≤A a.

Definition 4.3. The following functors allow to move between Set and Po

• Set
< U
>

⊂ J >
Po

U forgetful functor U(Y,≤Y ) = Y
J embedding functor J(X) = (X,=)

J left adjoint to U

• P : Set > Po, where P(X) is the complete boolean algebra (P (X),⊆), P(f)
is the direct image map, which preserves sups (unions), thus it is monotonic.

In Po our goal can be cast as follows: find adjunctions P(D)
< γ
>
α >

A, where

D is a subset of Π(X,F ) with (X,F ) measurable space. The goal is achieved by
(Lemma 4.1 and) Thm 4.1, which offers a choice of adjunctions, where A is a com-
plete lattice (in applications the lattices of interest are finite). Def 4.4 summarizes
the poset constructions needed to define A. Thm 4.1 is proved by applying Prop 4.1,
while the lemmas ensure that we are working with complete lattices
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Definition 4.4 (Posets). Given two posets X and Y , one can define the posets:

• Y X of monotonic maps Po(X,Y ) with the point-wise order

• C(Y ) of convex sets in Y , i.e.the sub-poset of P(U(Y )) consisting of subsets
C such that ∀y1, y2 : C.∀y : Y.y1 ≤Y y ≤Y y2 =⇒ y : C

• I(Y ) of intervals in Y , i.e.the sub-poset of P(U(Y )) consisting of the subsets

[y, y]
M
= {y|y ≤Y y ≤Y y} with y ≤Y y

• Y⊥, called lifting of Y , i.e., Y extended with a new least element ⊥

Any σ-field F on X is a boolean sub-algebra of the complete boolean algebra P(X).

Remark 4.2. It is easy to show that C(Y ) is a complete lattice and I(Y ) is a
sub-poset of C(Y ), moreover

• C(Y ) = P(Y ), when Y is a flat poset (i.e., a set ordered by equality), and

• C(Y ) ∼= I(Y )⊥, when Y is a finite linear order.

We write [L,U ] for the set {y|∃l : L, u : U.l ≤Y y ≤Y u} : C(Y ), where L and U
are subsets of U(Y ). If Y is a finite poset, then each C : C(Y ) is of the form [L,U ],
where L and U are the sets of minimal and maximal elements in C, respectively.

Complete lattices, i.e., posets with all sups (and all infs), enjoy remarkable
properties in relation to adjunctions. Therefore, it is useful to know under what
assumptions a poset construction yields a complete lattice.

Proposition 4.1. If X is a complete lattice and f : Po(X,Y ), then f has a right
adjoint ⇐⇒ f preserves sups (dually, f has a left adjoint ⇐⇒ f preserves infs).

Proof. The implication from left to right is obvious, since left adjoint preserve
all colimits. The other implication holds, since fR(y) = sup{x : X|f(x) ≤Y y}
is a right adjoint to f , i.e., ∀x : X.∀y : Y.x ≤X fR(y) ⇐⇒ f(x) ≤Y y, as
f(fR(y)) ≤Y y.

Lemma 4.1. If X is a subset of Y , then P(X)
< (X ∩ −)

>
⊂ >

P(Y ).

Proof. Let ι : Set(X,Y ) be the inclusion map, then P(ι) : Po(P(X),P(Y )) is an
inclusion map, which preserves sups (i.e., unions). Therefore, P(ι) has a right
adjoint R (by Prop 4.1), and it is immediate to check R(B) = X ∩B.

Lemma 4.2. If F is a σ-field on X (ordered by inclusion) and [0, 1] is the unit
interval (linearly ordered), then Π(X,F ) is a subset of U([0, 1]F ).

Proof. If µ : Set(F, [0, 1]) is a probability distribution in Π(X,F ), then it is neces-
sarily monotonic, i.e., µ : Po(F, [0, 1]) = U([0, 1]F ).
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Lemma 4.3. If Y is a complete lattice and X a poset, then Y X , C(X) and I(Y )⊥
are complete lattices. Finite σ-fields on X are finite boolean sub-algebras of P(X).

Proof. We prove only that I(Y )⊥ has infs. More precisely, we identify I(Y )⊥ with
a subset of P(U(Y )), namely ⊥ is identifies with the empty set ∅, and show that it
is closed under intersections computed in P(U(Y )). Consider a subset S of I(Y )⊥,
if ⊥ : S, then inf S = ⊥, otherwise S = {[li, ui]|i : I}. If

⋂
i S = ∅, then inf S = ⊥,

otherwise
⋂
i S = [l, u] with l

M
= supi li ≤ u

M
= infi ui, i.e., inf S = [l, u].

As stated earlier, adjunctions capture the over-approximation relation. The
following theorem establishes sufficient conditions for the existence of such an ad-
junction for probability distributions:

Theorem 4.1 (Approximation). If (X,F ) is a measurable space, F0 is a sub-poset
of F and Y0 is a complete sub-lattice of [0, 1], then there are adjunctions

P(Π(X,F ))
< γ

>
α >

I(Y F0
0 )⊥

where γ(⊥) = ∅ and γ([l, u]) = {µ : Π(X,F )|∀A : F0.l(A) ≤ µ(A) ≤ u(A)}.

Proof. We show that γ preserves infs for subsets {[li, ui]|i : I} of I(Y F0
0 ). Y F0

0 is a

complete lattice, thus we can define l
M
= supi li and u

M
= infi ui, then

∩iγ([li, ui]) = {µ : Π(X,F )|∀i : I.∀A : F0.li(A) ≤ µ(A) ≤ ui(A)}
= {µ : Π(X,F )|∀A : F0.l(A) ≤ µ(A) ≤ u(A)}
= γ([l, u]) if (l ≤ u) else γ(⊥) = γ(inf

i
[li, ui]))

Since I(Y F0
0 )⊥ is a complete lattice, then γ has a left adjoint (by Prop 4.1).

Remark 4.3. The adjunction in Thm 4.1 factors through C(Y F0
0 ), namely

P(Π(X,F ))
< γ

>
α >

C(Y F0
0 )

< <
> �

I(Y F0
0 )⊥.

Given a measurable space (X,F ), we relate the notions of interval probabilities in
[14] to the posets and adjunctions in Thm 4.1.

• An R-probability [14, Def 2.2] is roughly an interval [l, u] : I([0, 1]F ) such that
γ([l, u]) ⊆ Π(X,F ) is non-empty. However, in [14] the maps l, u : Set(F, [0, 1])
were not required by the author to be monotonic.

• An F-probability [14, Def 2.4] is an R-probability such that [l, u] = α(γ([l, u])),
or equivalently [l, u] = α(D) for some non-empty subset D of Π(X,F ). Mono-
tonicity of l and u is not required explicitly, but it follows from the extra axiom
that a R-probability must satisfy to be a F-probability.
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• A partially determined R-probability [14, Def 2.7] consists of two subsets
Fl, Fu ⊆ F and two maps l : Set(Fl, [0, 1]) and u : Set(Fu, [0, 1]) such that
the set γ([l, u]) = {µ : Π(X,F )|∀A : Fl.l(A) ≤ µ(A) ∧ ∀A : Fu.µ(A) ≤ u(A)}
is non-empty. One can always extend l and u to F0 = Fl ∪Fu, by taking 0 as
default value for l and 1 as default value for u, so that γ([l, u]) is unchanged.

If F0 ⊆ F is a partition of X, then l, u : Set(F0, [0, 1]) are trivially monotonic,
because the partial order on F0 is equality.

• A partially determined F-probability [14, Def 2.8] with Fl = Fu = F0 ⊆ F
is an interval [l, u] : I([0, 1]F0) such that [l, u] = α(γ([l, u])), or equivalently
[l, u] = α(D) for some non-empty subset D of Π(X,F ).

5 Sound Over-Approximation Algorithm

Given an over-approximation relation defined by an adjunction, it is easy to spec-
ify the requirements for an algorithm computing over-approximations, and give
sufficient conditions for its correctness.

Specification. Given an MTS t : S → M(S), where M(S) = P+(Dd(E(S))),
and a configuration c : M(S) we would like to compute Tn(c) = (t∗)n(c) : M(S).
However, t and c are not suitable inputs for an algorithm, since the set M(S) is
uncountable (even when S is finite).

Following a standard approach in abstract interpretation, we replace M(S) with
a finite complete lattice A, the abstract domain, replace t∗ and c with their abstract
interpretations g : Po(A,A) and a : A, and compute the abstract interpretation
gn(a) : A of (t∗)n(c).

The map t∗ is monotonic and preserves non-empty unions, thus it extends in
a unique way to a monotonic union preserving map f : Po(C,C), where C is the
complete lattice P(Dd(E(S))), moreover Tn(c) = fn(c), since f extends t∗. In this
way we have moved from Set to Po, thus we can use adjunctions in Po to relate
the complete lattice C with an abstract domain A.

Choice of over-approximation relation. Since Dd(E(S)) is embedded into
Π(X,F ), where (X,F ) = (E(S), P (E(S))), by Lemma 4.1 and Thm 4.1, any choice
of finite subset F0 of F and finite sub-lattice Y0 of [0, 1] gives an adjunction between
C = P(Dd(E(S))) and the finite lattice A = I(Y F0

0 )⊥

C = P(Dd(E(S)))
< γ

>
α >

I(Y F0
0 )⊥ = A

Algorithm. Given a : A and g : Po(A,A), compute gn(a) : A. Since A is a finite
lattice, we have an algorithm, but we need to make some assumptions on a and g,
to ensure its correctness, i.e., that gn(a) over-approximates Tn(c).
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Correctness. If a : A over-approximates c : C, i.e., c ≤γ a, and g : Po(A,A)
over-approximates the extension f of t∗, i.e., ∀a : A.f(γ(a)) ≤γ g(a), then gn(a) : A
over-approximates Tn(c) = fn(c) : C, i.e., fn(c) ≤γ gn(a).

The proof is a straightforward induction on n, which relies only on having an
adjunction between C and A, thus one may consider other choices of finite lattices
A, besides interval probabilities. Moreover, the adjunction determines a best choice
of over-approximations a and g, given c and f , namely: a = α(c) and g = α ◦ f ◦ γ.

Accuracy. In addition to correctness one would like accuracy. If we focus on
the probability of failure, then we can use the monotonic map pE : C → [0, 1]
mapping a configuration c to sup{p(fail)|p : c}, and define the inaccuracy of the
result computed by the over-approximation algorithm as pE(γ(gn(a)))−pE(fn(c)).
Under the assumption of correctness, this quantity is always in the interval [0, 1],
and when it is closer to 0, it mean better accuracy.

The adjunction C
< γ
>
α >

A is the critical choice for achieving accuracy,

since it determines the unique best choice of over-approximations a and g, given
the initial configuration c : M(S) and the MTS t : S →M(S).

5.1 Example of Approximation

We apply the approach to the MTS of Sec 3.2, and show that the over-approximation
algorithm is inaccurate, whenever the abstract domain A is of the form I(Y F0

0 )⊥.
We claim (without proof) that for these simple MTS the algoritm can achieve inac-
curacy less than ε, by choosing an abstract domain of the form C(Y F0

0 ) (see Def 4.4,
Rmk 4.2 and 4.3).

Recall that the state space of the MTS f : S → E(S) is S = (SV ×SX)2, where
SV = [1, 3] and SX = [−16, 1], and f depends on a sampling interval δ > 0, but the
probability of collision is insensitive to δ, thus we fix δ = 1. The initial configuration
c : P+(Dd(S)) depends on a partition of V (0) = [1.9, 2.1] ⊂ SV into m > 0 intervals
of size 0.2/m, thus we write c(m), to make this dependency explicit. Moreover,
we must allow m to grow, in order to approximate with increasing accuracy the
uniform distribution used by the continuous model. Therefore, also the abstract
domain A(m) should depend on m. Given m > 0, define A(m) = I(Y Fm

m )⊥, where

• Ym is the sub-lattice of [0, 1] whose m+ 1 elements are i/m for i : m+ 1,

• FX(m) is the finite partition of SX into intervals of size ε = 0.2/m, similarly

• FV (m) is the finite partition of SV into intervals of size ε,

• Fm is the finite partition of S into hyper-cubes given by (FV (m)×FX(m))2.

We show that the best over-approximation [l, u] of c(m) in : A(m) is unsatisfactory.
To do this consider u, i.e., the smallest u : Y Fm

m s.t. ∀p : c(m).∀B : Fm.p(B) ≤ u(B),
and define a probability distribution q ≤ u for which the collision is certain.
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1. ∀x : X(0).∀v : V (0).∃p : c(m).p((v, x), (v, x)) = 1/m2 by definition of c(m)

2. for x : X(0) denote with BX(x) the unique B : FX s.t. x ∈ B, similarly
for v : V (0) denote with BV (v) the unique B : FV s.t. v ∈ B, then

3. ∀x : X(0).∀v : V (0).1/m2 ≤ u((BV (v)×BX(x))2)

4. by definition of FX there are at least m elements in FX that intersect X(0),
similarly there are at least m elements in FV that intersect V (0), denote them
by BX,i and BV,i with i : m

5. choose two m-tuples (xi|i : m) and (vi|i : m) s.t. ∀i : m.BX,i = BX(xi) and
∀i : m.BV,i = BV (vi), and consider the probability distribution q : Dd(S)
s.t. ∀i, j : m.q(si,j , si,j) = 1/m2, where si,j = (vj , xi)

6. clearly ∀B : Fm.q(B) ≤ u(B), and each s in the support of q leads to a
collision, because the two cars have the same speed and position.

6 Conclusions and Future Work

The main contribution of this paper is to place the notion of interval probabil-
ity in the context of the category Po of posets and monotonic maps (Sec 4), so
that one can use general techniques from abstract interpretation to compute over-
approximations of the probability of failure (Sec 5) for a system described by a
monadic transition system.

Key insights from the work are the use of monads to generalize the notion of
set extensions and of lattices and abstract interpretation as means for abstracting
away from concrete representations of bounds. The work also raises the question
of whether there is a way to avoid the reliance on the axiom of choice (AC).

Here we consider only monadic transition systems in the category of sets (Sec 2).
This is fully satisfactory for modeling systems with a discrete state space, for which
discrete probability distributions suffice, but not so for continuous or hybrid sys-
tems. In future work it will be interesting to explore the treatment of systems
with a continuous state space. The main difficulty in replacing sets with more
general spaces is the modeling of non-determinism. For instance, in the category
of measurable spaces the Giry monad [4] plays the role of the monad Dd for mod-
eling probabilistic systems, but there is no obvious analog of the monad P+, and
more importantly no systematic way for adding non-determinism to a monad on
measurable spaces. It will be interesting to explore solutions to this problem.
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