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Abstract

The aim of these course notes is to show that notions and ideas from Category
Theory can be useful tools in Computer Science, by illustrating some recent ap-
plications to the study of programming languages based on the principle “notions
of computation as monads”. The main objective is to propose a unified approach
to the denotational semantics of programming languages. The category-theoretic
notions introduced in the course will be presented with specific applications in
mind (so that they will not sound too abstract) and guidelines for linking abstract
and concrete concepts will be stressed.
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The aim of this course is to show that notions and ideas from Category Theory can
be useful tools in Computer Science for formulating definitions and theories

and structuring complex concepts, by illustrating some recent applications
to the study of programming languages ([Mog89b, Mog89a])1. To motivate the
use of Category Theory made in these notes, I find particularly enlightening few
passages from Chapter 2 of [Mos89], where Mosses gives an overview of Denotation
Semantics focusing not only on its achievements, but also on its failures.

Successes:Ë
mathematical models for programming languages (compare with opera-
tional and axiomatic approach)Ë
canonical definition of the meaning of programs (denotational model)Ë
documents the design of a programming languageË
establishes a standard for implementations, but does not specify the tech-
niques used in implementationsË
provides a basis for reasoning about the correctness (but not the com-
plexity) of programs - either directly or indirectly, like in LCF (see [GMW79])Ë
promotes insight regarding concepts underlying programming languages
(design with formal semantics in mind)

1There is another application that I would have liked to consider in this course, namely the
study data-refinement via natural transformations (see [HJ]). However, I did not feel confident
enough to present this subject, where work is still in progress.
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Failures:Ë
the denotations of simple expressions, e.g. integer expressions, might have
to be changes, when the programming language is extended (see Page 70
of [Mos89])Ë
Denotational Semantics is feasible for toy programming languages, but
does not scale up easily to real programming languages (see Page 106
of [Mos89])Ë
it is not feasible to re-use parts of the description of one programming
language into another (see Page 106 of [Mos89]).

Mosses stresses as a major shortcoming of Denotational Semantics the lack of
modularity. One would like to consider various features of programming lan-
guages in isolation, so that a study of them is feasible, but then one has to face
the problem of putting the peaces together to form complex theories for real pro-
gramming languages. In Logic it is fairly straightforward to put theories together,
and Type Theory has exploited this for studying different type constructions in
isolation and then combine them to form complex typed languages, however:Ë

types are not the only feature of programming languages, actually in simple
imperative languages types are the easy partË
there are complex concepts, e.g. that of topological group, that are not
obtained by putting together the concepts of group and topological space in
the obvious way

There should be various ways of composing theories/concepts, and a study of
such compositions is of great importance for using a structured approach to
the developement of concepts.

Ì_ÍXÌ Î Ï�Ð Ñ§Ò1Ó.ÔÖÕ1×�Ø�Ð ÙÚÏjÔÖ×_Ø�Ð
Category Theory developed mainly from Algebraic Topology through a process of
abstraction, and after some of the fundamental notions had been properly formu-
lated it has been applied to various areas of Mathematics (for our applications the
concepts used in Categorical Logic, the study of Logic through Category Theory,
will be particularly useful). These applications have sometimes required/suggested
new fundamental notions.

What does Category Theory offer:Ë
a way of thinking and general guidelines

3



Ë
an abstract view of objects, which hide the internal structure

– set Û�Ü object

– function Û�Ü morphism

and focus on how objects interrelateË
a syntax independent view of languages/theories (suggested by Categor-
ical Logic)

What to do for using Category TheoryË
reformulate intuitive ideas or mathematical concepts in category-theoretic
term, e.g. datatype constructors as adjoint functors.Ë
device languages, formal systems or logics to provide a more friendly in-
terface to technical achievements/concepts (category-theoretic or whatever)
and to make them usable by a wider number of people, e.g. lambda calculus
as formal system for cartesian closed categories (see [Sco80]).

In order to give the user some flexibility, it is important to allow extensions
of languages and additions of axioms. So formal systems should describe
entailment relations rather than specific theories.

In Computer Science, like in Physics, theories have to be tested. Category The-
ory in itself cannot be tested, because it is not about Computer Science. What has
to be judged is the way computer science concepts are linked to category-theoretic
ones, and what advantages (if any) are obtained by going through Category The-
ory.

Why not other theories. There are other theories that may take the meta-

role played by Category Theory: Universal Algebra, Logic, Type Theory. None
of them reach the level of abstraction possible in Category Theory, and some of
them has not accumulated enough technical tools or general methodologies to cope
with a wide range of situations (spanning several fields of mathematics). However,
these theories can be better than Category Theory for more specific applications.

The three levels. A concept can be viewed at three different levels:Ë
intuitive, where the concept is usually explained by examples, but has not
been formalised or made precisedË
mathematical, where the concept has been rigorously defined, so that the
examples given at the lower level fit into it
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Ë
abstract, where the mathematical concept has been abstracted from the
context in which it was made precise, and therefore can be instanciated into
other contexts (not considered before)

The existence of the first two levels does not require much justification. However,
the need of an abstract level (and of Category Theory) has not always been recog-
nised in Mathematics, because it looks like delaying the solution of a problem by
reformulating it in a more abstract terms. The definition of topological group,
exemplifies why one need the concept of group at a more abstract level (group in
a category), in order to export it from the context of sets to that of topological
spaces.

Ì_Í#Ý Þ·ßGÔÖØ.ß�àXÔIá ×�â�Ó.ÏjÔäãI×GåjØyæ�Ô
1. A Categorical Manifesto (see [Gog89]) with a textbook on Category Theory

(e.g. [Mac71, Gol79, BW85]):Ë
basic concepts of Category TheoryË
their manifestations in areas related to Computer ScienceË
methodological guidelines

The paradigm of Categorical Logic (see [KR77]) applied to programming
languages

2. Feature 1: notion of computation as monad (see [Mog89b])Ë
how the idea developedË
a justification of why monadsË
a language for monads and tensorial strengthË
how to achieve modularity: monad morphisms and monad construc-
tionsË
Denotational Semantics (see [Sch86]) revisited

3. Feature 2: the distinction types/programs and program modules (see [Mog89a])Ë
the type-theoretic explanation and basic ideas ([Mac86, HM88])Ë
a critique of the type-theoretic explanation: programming languages as
indexed-categoriesË
higher order modules

4. Composition of features, the inadequacy of the Categorical Logic paradigm
and the need of the abstract level (see [Mog89a]): programming languages
as objects of a 2-category

5



Ë
category Û�Ü objectË
functor Û�Ü 1-morphismË
natural transformation Û�Ü 2-morphism

6
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Ë
textbooks: first four chapters of [Mac71] or tutorial chapter of [Pie88]Ë
Category Theory as methodology: [Gog89]Ë
an overview of Categorical Logic (see [KR77])

Ý�ÍXÌ Ý�ö�ã@Ò1Ó.Ô�Õ1×�Ø,à|ÔÖæ
In the simplest form of categorical doctrine (see [KR77]), the one for algebraic
theories, the identificationË

theory as categoryË
model as functorË
homomorphism as natural transformation

is already unsatisfactory, because we really relate theories to categories with dis-
tinguished finite products and models to functors preserving finite products on
the nose, and more generallyË

theory as category with additional structureË
model as structure preserving functorË
homomorphism as natural transformation . . .

The vagueness of “with additional structure” demand a more radical step, which
abstracts from the category of small categories (with some additional structures) in
the same way as the definition of category abstract from its paradigmatic example:
the category of sets.
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The most natural outcome of this abstraction is the notion of 2-category, where
the category structure is enriched with a notion of morphism between morphisms,
mimicing the properties of natural transformations. We recall the definitions of
2-category, 2-functor and 2-natural transformation, i.e. the Cat-enriched analogue
of category, functor and natural transformation (see [Kel82]).

Definition 2.1.1 A 2-category ÷ is a Cat-enriched category, i.e.Ë
a class of objects Obj( ÷ )Ë
for every pair of objects c1 and c2 a category ÷ (c1, c2)Ë
for every object c an object idC

c
of ÷ (c, c) and for every triple of objects c1, c2

and c3 a functor compC
c1,c2,c3

from ÷ (c1, c2) ø¬÷ (c2, c3) to ÷ (c1, c3) satisfying
the associativity and identity axioms

– comp( , comp( , )) = comp(comp( , ), )

– comp(id, ) = = comp( , id)

Notation 2.1.2 An object f of ÷ (c1, c2) is called a 1-morphism, while an arrow
σ is called a 2-morphism. We write ; for comp( , )

c1

ù�ù ù f1ù ù[ù ù�ù ù Üú
σ1ù�ù ùoù ù[ù ù
f ′

1

ù ù Ü c2

ù¨ù ù f2ù ù[ù ùoù ù Üú
σ2ù¨ù ù�ù ù[ù ù
f ′

2

ù ù Ü c3
;û ù Ü c1

ù�ù ù f1; f2ù#ù#ùüùRù�ùoù ù Üú
σ1;σ2ù�ù ùoù#ù#ùüùRù�ù
f ′

1
; f ′

2

ù ù Ü c3

and ý for composition of 2-morphisms

c1

ù�ù ù f1ù ù[ù ùoù ù Üú
σ1ù�ù ùoù ù[ù ùoù ù Üú
σ2ù�ù ù�ù ù[ù ù
f2

ù ù Ü
c2

·û ù Ü c1

ù�ù ù f1ù ùþù ùoù ù Üú
σ1 ý σ2ù�ù ùoù ùþù ù
f2

ù ù Ü c2

Example 2.1.3 The paradigmatic example of 2-category is Cat itself (see [Mac71]):Ë
the objects are categoriesË
the 1-morphisms are functors and ; is functor composition,Ë
the 2-morphisms are natural transformations and ; and ý are respectively
horizontal and vertical composition of natural transformations.
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Definition 2.1.4 A 2-functor F from ÷ 1 to ÷ 2 is a mapping

c

ù�ù ù fù ùþù ù�ù ù Üú
σù�ù ùÿù ùþù ù
f ′

ù ù Ü c′ in ÷ 1
Fû ù Ü Fc

ù�ù ù Ffù}ù[ù ù�ùpù Üú
Fσù�ù ùoù ù[ù�ù
Ff ′

ù ù Ü Fc′ in ÷ 2

which commutes with identities, ; and ý .

Definition 2.1.5 If F1 and F2 are 2-functors from ÷ 1 to ÷ 2, then a 2-natural

transformation τ from F1 to F2 is a family
�
F1c

τcÜ F2c � c � Obj( ÷ 1) � of 1-
morphisms in ÷ 2 s.t.

c F1c ù�ù ù τcù ù[ù ùÿù ù Ü F2c���ú σÜ ���ú =�
���ú F1σÜ ���ú

���ú F2σÜ ���ú
c′ F1c

′ ù�ù ù τc′ù ù[ù ùoù ù Ü F2c
′

i.e. the functors τc;F2 and F1 ; τc′ from ÷ 1(c, c
′) to ÷ 2(F1c, F2c

′) are equal for every
c and c′ in Obj( ÷ 1).

Remark 2.1.6 There are a lot of other concepts related to 2-categories that have
no counterpart for categories: modifications, pseudo-functors, lax-functors, . . . (see
[KS74]). Unfortunately the notation and terminology is far from standard.

The incorrect formulation of the paradigm of Categorical Logic was the moti-
vating example for introducing 2-categories, so that it can be reformulated (more
abstractly) as:Ë

theory as object (of a 2-category)Ë
model as 1-morphismË
homomorphism as 2-morphism

An useful observation is that, in a 2-category we can reformulate abstractly a sub-
stantial part of category theory, so that even in such an abstract reformulation we
can still rely on category-theoretic concepts. Adjunctions, comma categories, mon-
ads, split fibrations are all examples of 2-categorical concepts, i.e. they make sense
in any 2-category. However, other concepts cannot be captured 2-categorically:
opposite categories, adjunctions with parameters (used to define exponentials),
dinatural transformations. We consider other two examples where 2-categories
are particularly appropriate.

9



Term rewriting. We have seen that an algebraic language can be viewed as a
category, with terms as morphisms and substitution as composition. To consider
term rewriting in this framework, one can view a rewriting rule as a morphism
from the redex to the contractum, e.g.

add0: (0 + n) =� n:N Ü N

add1: s(m) + n =� s(m+ n):N ø N Ü N

Exercise 2.1.6.1 Describe the rewriting of s(0 + n) to s(n) as a 2-morphism.

Intuitively vertical composition corresponds to apply a rewriting to the contractum
of another rewriting. Horizontal composition amounts to take a term M in a
context C[ ], perform two independent rewritings, one of M and the other of C[ ],
then take as contractum of C[M ] the contractum of C[ ] with the hole replaced
by the contractum of M .

Programming languages with type-constructors and polymorphic func-

tions. [HJ] proposes a reinterpretation of the paradigm of Categorical Logic in
terms of data-refinement , more generally in terms of an implementation relation
between two semantics for the same programming language:Ë

programming language as categoryË
denotational semantics as functorË
refinement as natural transformation

The paper divides a programming language in an inner part, with only basic
types and operations whose interpretation has to be supplied by the user, and an
outter part, which specify type constructors (as endofunctors) and polymorphic
operations (as natural transformations between endofunctors) with a fixed inter-
pretation in every denotational semantics. However, it seems natural to let the
user specify also the implementation of type constructors (e.g. List) and poly-
morphic functions (e.g. reverse). The paradigm proposed by Hoare should be
reformulated as follows:Ë

programming language as 2-category (with finite products)1Ë
denotational semantics as 2-functor (preserving finite products)Ë
refinement as lax-natural transformation

1This allows type constructors with any arity.
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Intuitively, in the programming language L as a 2-category 1-morphisms are names
for type constructors (with a given arity) and 2-morphisms are names for polymor-
phic functions. If L has only one object (for simplicity), then a denotation seman-
tics from L to Cat should map the only object of L to a category ÷ , 1-morphisms
to endofunctors on ÷ , 2-morphisms to natural transformation, by respecting the
arities.

Finally, to justify the choice of lax-natural transformations, we have to ask how
does the simple view of a language as a category fit in the more general one, of a
language as a 2-category, and then check whether the general notion of refinement
specialises to natural transformations.

Given a category Path(G) freely generated from a graph G, we can identify it
with the 2-category with finite products Free(G) freely generated from an object
L, 1-morphisms a: 1 Ü L for each node of G and 2-morphisms f : a =� b for each
edge from a to b in G.

Exercise 2.1.6.2 For any graph G, prove that 2-functors F :Free(G) Ü Cat pre-
serving finite products are in one-one correspondence with functors from Path(G)
to some category ÷ (take ÷ to be F (L)).

Given two 2-functors F1, F2:Free(G) Ü Cat, corresponding to functors F ′

1
:Path(G) Ü÷ 1 and F ′

2
:Path(G) Ü ÷ 2, prove that lax-natural transformations from F1 to F2

are in one-one correspondence with pairs
�
U, τ � , where U : ÷ 1 ÜÈ÷ 2 is a functor and

τ :F1;U
.Ü F2 is a natural transformation.

Prove that 2-categories, 2-functors and lax-natural transformations are a 2-
category, so the abstract paradigm for programming languages works also in this
case.

11
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We present a category-theoretic semantics of computations. An application of this
semantics is the computational λ-calculus, a modification of the typed λ-calculus
(in particular of βη-conversion), which is correct for proving equivalence of pro-
grams and independent from any specific notion of computation (see [Mog89b]).
A promising area of application for this semantics is the Denotational Semantics
of programming languages, since it suggests new ways to structure such semantics.

We review some criticisms that can be moved to the λ-calculus and the ways
it has been used for proving equivalence of programs:Ë

βη-conversion is not correct w.r.t. operational semanticsË
the type constructors of LCF , an extension of the λ-calculus based on de-
notational semantics, are not the most natural one form the point of view
of programming languages (call-by-value or call-by-name). In particular,
there are problems in establishing a clear relation between denotational and
operational semantics.Ë
modifications of the λ-calculus based on operational considerations are cor-
rect, but they lack a completeness result.

�aÍXÌ Ñ§Ò
	�ã@å�	Xà¼Ò��� �cØ,×�Õ_Ø.Ò
� � à��aÕ�	WÒ�jÕGåjÒ Õ�ÔÖæ
The direct connections between the pure λ-calculus (i.e. the subject of [Bar81])
and functional programming languages sometimes do not go beyond the binding
mechanism of λ-abstraction (see [McC62, Lan64]). This is not surprising if we
look at the history of the type free lambda calculus (Preface of [Bar81]): “Around
1930 the type free lambda calculus was introduced as a foundation for logic and
mathematics. Due to the appearance of paradoxes, this aim was not fulfilled,
however. Nevertheless a consistent part of the theory turned out to be quite
successful as a theory of computations. It gave an important momentum to early
recursion theory and more recently to computer science. . . .As a result of these
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developments. the lambda calculus has grown into a theory worth studying

for its own sake. People interested in applications may also find the pure λ-
calculus useful, since these applications are usually heuristic rather than

direct. . . . ”
Types arise in various applications, for instance they are a common feature

of many programming languages, in logic they can be identified with formulae,
in (cartesian closed) categories they correspond to objects. As shown in [Sco80],
“nothing is lost in considering type free theories just as special parts of typed
theories”. For this reason, we give more emphasis to the typed λ-calculus (and
more generally typed languages), as it provides a more flexible and structured
basis for applications than the pure λ-calculus.

Call-by-value, call-by-name and the λ-calculus

In [Plo75] call-by-value and call-by-name are studied in the setting of the lambda
calculus: this study exemplifies very clearly the mismatch between the pure λ-
calculus and (some) programming languages.

From an operational point of view, a programming language is completely
specified by giving the set Prog of programs and the evaluation mechanism

Eval: Prog ⇀ Prog, i.e. a partial function mapping every program to its resulting
value (if any).

In the setting of the lambda calculus, programs are identified with the
(closed) λ-terms (possibly with extra constants, corresponding to some
features of the programming language). The evaluation mechanism in-
duces a congruence relation � on λ-terms, called operational equiv-

alence, and a calculus is said to be correct w.r.t. � when M = N
(derivable in the calculus) implies M � N .

Plotkin’s intention is to study programming languages, therefore he accepts the
evaluation mechanism and looks for the corresponding calculus.

The λ-calculus is not correct w.r.t. call-by-value operational equivalence, there-
fore it cannot be used to prove equivalence of programs. Starting from this ob-
servation, Plotkin introduces the λv-calculus and shows that it is correct w.r.t.
call-by-value operational equivalence. However, to prove the Church-Rosser and
Standardisation theorems Plotkin proceeds by analogy and re-uses some tech-
niques already applied to the λ-calculus. In the case of call-by-name the situation
is much simpler, since only the η axiom is not correct w.r.t. call-by-name opera-
tional equivalence.

The idea of starting from operational considerations, and then develop a cal-
culus has been followed by several people to take account of mor complex features
of programming languages like non-determinism, side-effects, control-mechanisms
(see [Sha84, FFKD86, MT89]).

13



The partial λ-calculus

The λp-calculus is a formal system presented in [Mog86] and (with minor differ-
ences) in Chapter 4 of [Ros86], which is sound and complete w.r.t. interpretation
in partial cartesian closed categories.

While the λv-calculus is discovered by operational considerations, and his only
criterion for judging a calculus is its correctness w.r.t. the operational semantics
(but in general there are plenty of correct calculi), the λp-calculus is discovered
by model-theoretic considerations, namely as the unique calculus which is sound
and complete w.r.t. a certain class of models.

The terms of the λp-calculus are typed λ-terms, and the formal system is for de-
riving one-sided sequents x1: τ1, . . . , xm: τm.A1, . . . , An =� A0, where x1: τ1, . . . , xm: τm
is a type environment and the Ai are either existence statements (E(t)) or equiv-
alences (t1 � t2). The (type free) λp-calculus proves more equivalences than the
λv-calculus (e.g. (λx.x)(yz) � yz), nevertheless it is still correct w.r.t. call-by-value
operational equivalence.

In [Mog88] various modifications of the λp-calculus are considered that are
sound and complete w.r.t. other classes of models, e.g. classical type structures of
(monotonic) partial functionals.

Logics for computable functions and domain theory

The use of logics for proving correctness of programs was pioneered in [Flo67,
Hoa69]. The programming languages considered in these early approaches are
very simple (while programs) and the formal languages of expressing properties of
programs are a mixture of programming language and predicate calculus (Hoare’s
triples). The main feature of these logics, e.g. Hoare’s logic, is that they are
programming language dependent and support a structured methodology

for proving correctness, i.e. properties are proved by induction on the structure of
programs.

We are interested in a different kind of approach, based on logics for reasoning
about mathematical structures that provide models for (functional) programming
languages. Such a logic is programming language independent, but poten-
tially it can be used to prove properties of programs (like equivalence or correct-
ness). To exploit this potentiality the logic has to be flexible, so that one can
describe how a particular programming language is interpreted in a certain math-
ematical structure. More precisely, its language should be extendible (to include
the features of a programming language), it should be possible to add (non-logical)
axioms (to axiomatise the properties of these features) and the logic itself should
be uncommitted (so that any programming language can be axiomatised).

The need for a mathematical semantics of programming languages led to the
Scott-Strachey approach to denotational semantics and the development of do-

main theory (see [Sco70, SS71, Sco76, Plo81]). Denotational semantics takes an
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abstract view of computations, based on continuous functions between certain
spaces of partial elements (cpos), rather than partial recursive functions (on the
natural numbers).

A first attempt at a logic for reasoning about cpos and continuous functions was
the logic for computable functions (see [Sco69]), which was subsequently ex-
tended to the polymorphic predicate λ-calculus PPλ (see [GMW79, Pau85]).
The idea is first to consider an extension of the typed λ-calculus suitable for the
(cartesian closed) category of cpos and continuous functions (the intended model),
by adding constants for fixed-point operators and least elements, and then to ax-
iomatise some properties of the intended model, like fixed point induction, in a
(classical) first order logic, whose formulae are built up from inequations between
λ-terms (M � N).

In PPλ programs are identified by λ-terms and properties (of a programs)
are ordinary first order formulae. As pointed out at Page 9 of [Sco69], PPλ
(as well as the logic of partial elements) is a theory of partial functions based
on total functions: “. . . classical type theory supposes total (everywhere defined)
functions, while algorithms in general produce partial functions. We do not wish
to reject a program if the function defined is partial – because as everyone knows
it is not possible to predict which programs will loop and which will define total
functions. The solution to this problem of total vs. partial functions is to make
a mathematical model for the theory of partial functions using ordinary total
functions.” More precisely, divergence is represented by the least element ( � )
of a cpo and a partial (recursive) function f :N ⇀ N becomes a strict function
f⊥:N⊥ Ü N⊥.

There are various criticisms that can be made to PPλ (and domain theory),
more or less related to the way partial functions are represented:Ë

while programs (and similar programming languages) have a simple set-
theoretic semantics as partial functions from stores to stores, but their deno-
tational semantics (based on cpos and continuous functions) is comparatively
clumsy .Ë
the way of expressing termination (existence) of a program (partial element)
t is indirect “t �= � ” and intuitionistically incorrect, according to [Sco79].Ë
the (choice and) interpretation of type constructors is based on the typed λ-
calculus (i.e. a theory of total functions), rather than considerations about
(real) programming languages. For instance, in a lazy programming lan-
guage the values of type τ1 ø τ2 are pairs of unevaluated expressions and
[[τ1 ø τ2]] should be the lifted product ([[τ1]] ø [[τ2]])⊥, while in a eager pro-
gramming language the values of type τ1 ø τ2 are pairs of values and [[τ1 ø τ2]]
should be the smash product [[τ1]] � [[τ2]].

These considerations on domain theory and PPλ (among others) led Gordon
Plotkin to take a different approach to denotational semantics, based on con-
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tinuous partial functions, and to reformulate PPλ using intuitionistic logic
of partial elements on top of a suitable term language, called metalanguage (see
[Plo85]).

The metalanguage is a typed functional language with a rich collection of
types (products, coproducts, partial function spaces and recursive types), it has
an operational semantics, based on eager evaluation, and a denotational seman-
tics, according to which types denote cpos (possibly without a least element)
and terms denote continuous partial functions. The two semantics are related by
a correspondence theorem between (operational) termination and (denotational)
existence, inspired by a similar result due to Martin-Löf (see [ML83] and Chapter
6 of [Abr87]).

The choice of eager evaluation makes it easier to translate programming lan-
guages into the metalanguage correctly , i.e. so that the operational and denota-
tional semantics obtained via the translation are the intended ones. In fact, it
is straightforward to translate lazy programming languages into typed eager pro-
gramming languages, while the reverse translation is in general impossible (or at
least very clumsy).

Since many programming languages can be correctly translated into the meta-
language, it is not necessary to extend the metalanguage for accommodating them,
and a logic for reasoning about them can be derived from that for the metalan-
guage, while in PPλ it has to be axiomatised , by creating a new theory. For the
same reason, the correspondence theorem between operational and denotational
semantics, unlike similar results for the λ-calculus (e.g. [Wad76]), has direct ap-
plication to programming languages.

�aÍ#Ý �õ×�Ó.àW×��±æ ×_âïã+×�� �¬å*Ó�Ò)Ó�àX×�� Ò_æ�� ×��cÒ�±æ
It is important to clarify what is the intuitive meaning assigned to “notions of
computation”, since the word computation is rather overloaded. We consider a
computation as the denotation of a program, while a more fine grained (oper-
ational approach) considers a computation as a possible execution sequence

for a program. In the latter case the attribute “possible” is necessary to account
for non-deterministic or probabilistic programs.

We give a categorical semantics of computations, but also this claim requires
some explanation, since a categorical semantics can be given at different levels of
abstractions:

1. execution sequences can be viewed as (enriched) categories, where objects
are events and morphisms are relations between them, (like causality or a
delay, (see V. Pratt).

2. programs can be viewed as categories (with an initial state), where objects
are states (or histories) and morphisms are transitions (or pieces of execution
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sequences). This approach corresponds to transition systems.

3. programs or execution sequences can be viewed as objects of a category,
whose morphisms can be, for instance, mappings from the events of an ex-
ecution sequence s1 to events in another execution sequence s2 satisfying
certain properties. This approach has been applied to define categorically,
e.g. as products or coproducts, some operations on programs or execution
sequences (see V. Pratt, J. Meseguer, . . . ).

4. finally programs can be viewed as morphisms of a category, whose objects
are types. This is the view taken by Denotational Semantics.

We take the denotational view, and consider programs as morphisms in a category.
To be precise a complete program should be identified with an element, i.e. a
morphism with domain the terminal object, while a program in an environment
corresponds to a morphism.

By “notion of computation” we mean a qualitative description of the deno-
tations of programs in a certain programming language, rather than the interpre-
tation function itself. Examples of notions of computations are:

1. computations with side effects, where a program denotes a map from a store
to a pair, value and modified store.

2. computations with exceptions, where a program denotes either a value or an
exception.

3. partial computations, where a program denotes either a value or diverges.

4. nondeterministic computations, where a program denotes a set of possible
values.

� �"!#�%$ & ')(+*),.-0/+1324,5-7698;:<6>=@?A6>8B2DCE*
In order to justify the use of monads for modelling notions of computations we
adopt the following intuitive understanding of programs: a program is a func-

tion from values to computations.

1. First we take a category ÷ as a model for functions and develop on top
a general understanding of values and computations. More precisely we
introduce a unary operation T on the objects of ÷ , which map an object A,
viewed as the set of values of type τ , to an object TA corresponding to the
set of computations of type τ .

2. Then a program from A to B, i.e. which takes as input a value of type A
and after performing a certain computation will return a value of type B,
can be identified with a morphism from A to TB in ÷ .
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3. Finally, we identify a minimum set of requirements on values and computa-
tions so that programs are the morphisms of a suitable category.

These three steps lead to Kleisli triples for modelling notions of computation and
Kleisli categories for modelling categories of programs.

Definition 3.2.1 A Kleisli triple over ÷ is a triple (T, η, ∗), where T : Obj( ÷ ) Ü
Obj( ÷ ), ηA:A Ü TA, f ∗:TA Ü TB for f :A Ü TB and the following equations
hold:Ë

η∗
A

= idTAË
ηA; f ∗ = fË
f ∗; g∗ = (f ; g∗)∗

Remark 3.2.2 Intuitively ηA is the inclusion of values into computations and
f ∗ is the extension of a function f from values to computations to a function
from computations to computations, which first evaluates a computation and then
applies f to the resulting value. Although it seems natural to require that ηA is a
mono, we will not do so, since it causes several technical problems.

The axioms for Kleisli triples amounts exactly to say that programs form a
category, the Kleisli category ÷ T , where the set ÷ T (A,B) of morphisms from A
to B is ÷ (A,TB), the identity over A is ηA and composition of f followed by g
is f ; g∗. Intuitively f ; g∗ takes a value a and applies f to produce a computation
fa, then it executes/evaluates the computation fa to get a value b, and finally it
applies g to b to produce a computation.

Exercise 3.2.2.1 Define suitable Kleisli triples (over the category of sets) to
model the following notions of computations:Ë

total computations: TA = AË
partial computations: TA = A⊥Ë
non-deterministic computations: TA = F (A)Ë
computations with side-effects: TA = (A ø S)S, where S is a set of states/storesË
computations with exceptions: TA = A+ E, where E is a set of exceptionsË
computations with continuations: TA = RRA

, where R is a set of possible
results
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Ë
computations for communicating processes:

TA = µP.A+ 1 + (Act ø P ) + (P ø P )

where Act is a set of actions (with an involution operation ᾱ and a silent ac-
tion τ , to model communication). Intuitively an element of P , called process,
can be either a value (in CCS there are no values), or Nil (which represent
deadlock), or an action followed by a process, or a non-deterministic choice
between two processesË
computations with complexity: TA = (A ø N), i.e. a program is interpreted
by the a pair giving the final result and the time required to compute it

What kind of Kleisli triples would you use to model partial computations with
side-effects or computations with side-effects and exceptions? Try also other com-
binations.

For adjunctions we saw that there are several equivalent definitions, but only
one of them is phrased in such that can be easily generalised to arbitrary 2-
categories. For this reason we introduce monads (called also triples), which are
equivalent to Kleisli triples but are defined only in terms of functors and natural
transformations.

Definition 3.2.3 A monad over ÷ is a triple (T, η, µ) s.t.

÷ ÷
idC

���ú ηÜ ���ú T T ;T

���ú µÜ ���ú T÷ ÷
(T ;µ) ý µ = (µ;T ) ý µ and (T ; η) ý µ = idT = (η;T ) ý µ.
Proposition 3.2.4 There is a one-one correspondence between Kleisli triples and
monads.

Proof Given a Kleisli triple (T, η, ∗), the corresponding monad is (T, η, µ), where
T is the extension of the function T to an endofunctor by taking T (f :A Ü B) =
(f ; ηB)∗ and µA = id∗

TA
.

Conversely, given a monad (T, η, µ), the corresponding Kleisli triple is (T, η, ∗),
where T is the restriction of the functor T to objects and (f :A Ü TB)∗ = Tf ;µB.

A general theorem about monads says that they are all induced by adjunctions,
namely a monad over ÷ is always of the form (F ;G, η, F ; ε;G), where (F,G, η, ε)
is an adjunction from ÷ to some other category G . Actually there are two general
constructions, that given a monad over ÷ return an adjunction inducing that
monad. We will use only the construction due to Kleisli; however, the Eilenberg-
Moore construction as well as additional information on monads can be found in
most textbooks on Category Theory (see [Mac71, BW85]).
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Proposition 3.2.5 Given a monad (T, η, µ) over ÷ , or equivalently a Kleisli
triple, the quadruple (FT , GT , η, ε), defined below, is an adjunction from ÷ to the
Kleisli category ÷ T which induces the monad (T, η, µ):Ë

FT : ÷¼Üõ÷ T is the functor mapping A to A and f :A Ü B to f ; ηBË
GT : ÷ T Ü¿÷ is the functor mapping A to TA and f �c÷ T (A,B), i.e. f :A Ü
TB in ÷ , to f ∗Ë
η: IdC

.Ü FT ;GT is η of the Kleisli triple, since T = FT ;GTË
ε:GT ;FT

.Ü IdCT
is the natural transformation s.t. εA = idTA �c÷ T (TA,A)

� �"!#�H! & *5-%?JIBK7LM?ALN,.2OK0298EP9( 29POL
One may consider formal systems (for reasoning about computations) motivated
by two different objectives: reasoning about programming languages and reasoning
about programs (in a fixed programming language).

When reasoning about programming languages one has different monads over
the same category ÷ (for simplicity), one for each programming language, and
the main aim is to study how they relate to each other. So it is natural to base
a formal system on a metalanguage for ÷ , where monads are treated as unary
type-constructors.

When reasoning about programs one has only one monad T , because the pro-
gramming language is fixed, and the main aim is to prove properties of programs.
In this case the obvious choice for the term language (of a formal system) is the
programming language itself, i.e. a language for ÷ T . However, the expressiveness
of the programming language is adequate, only if the monad T satisfies the mono
requirement, because then it is possible to express equality of values in terms of
equality of computations and an unary predicate over computations (similar to
the existence predicate in the logic of partial elements), whose extension is the set
of values.

In this section we take the first approach, while [Mog89b] takes the second
one. We introduce a metalanguage, whose terms denote morphisms in a category÷ . The aim of this section is to focus only on the crucial ideas of the interpretation,
and the language has been oversimplified (for instance terms have exactly one free
variable and the only assertions are equations) in order to define its interpretation
in any category with a monad (T, η, µ).

The metalanguage is parametric in a signature (i.e. a set of base types and
unary function symbols), therefore its interpretation in a category with a monad
is parametric in an interpretation of the symbols in the signature.Ë

Given an interpretation [[A]] for any base type A, i.e. an object of ÷ , then
the interpretation of a type τ : : = A � Tτ is an object [[τ ]] of ÷ defined in
the obvious way, namely [[Tτ ]] = T [[τ ]].
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Ë
Given an interpretation [[f]] for any unary function f of arity τ1 Ü τ2, i.e.
a morphism from [[τ1]] to [[τ2]] in ÷ , then the interpretation of a well-formed
term x: τ Q e: τ ′ is a morphism [[x: τ Q e: τ ′]] from [[τ ]] to [[τ ′]] in ÷ defined by
induction on the derivation of x: τ Q e: τ ′ (see Table 3.1).Ë
On top of the term language we consider equations, whose interpretation is
as usual (see Table 3.2).

Remark 3.2.6 The let-constructor is very important semantically, since it corre-
sponds to composition in the Kleisli category ÷ T . Moreover, (letT x=e in e′) cannot
be reduced to the more basic substitution (i.e. e′[x: = e]), which corresponds to
composition in ÷ , without collapsing ÷ T to ÷ .

In the λ-calculus the let-constructor is usually treated as syntactic sugar for
(λx.e′)e, and this can be done also in the λc-calculus, but it relies on function
spaces, that are not more primitive than a notion of computation.

� �"!#�R� SUTV,.LN8EC -%8 PW,.XBLY?ALN,Z2OK02O8 P9( 29POL
The metalanguage introduced in the previous section is far too simple to do any-
thing useful. We discuss the additional structure require on the category ÷ in
order to interpret also algebraic terms. Other extensions of the metalanguage do
not present problems, e.g. it is straightforward to incorporate functional types,
sums and products. The next critical extension is the introduction of dependent
types (that we will not discuss).

The standard requirement on a category ÷ for interpreting algebraic terms is
that it must have finite products, so that the interpretation of a function symbol of
arity τ Ü τ is a morphism from [[ ø (τ)]] (i.e. [[τ1]] ø . . . ø [[τn]]) to [[τ ]] and similarly the
interpretation of a well-formed term x1: τ1, . . . , xn: τn Q e: τ is a morphism from
[[ ø (τ)]] to [[τ ]]. However, products are not enough, to interpret (letT x=e in e′),
when e′ has other free variables beside x (see [Mog89b]). The additional structure
we need is given by a natural transformation which relates products and monad.

Definition 3.2.7 A strong monad over a category ÷ with finite products is
a monad (T, η, µ) together with a natural transformation tA,B from A ø TB to
T (A ø B) s.t.

1 ø TA ù¨ù ù t1,Aùgùþùgùoù ù Ü T (1 ø A)

rTA

@
@

@ [
���ú TrA

TA
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RULE SYNTAX SEMANTICS

var
x: τ Q x: τ = id[[τ ]]

let
x: τ Q e1:Tτ1 = g1

x1: τ1 Q e2:Tτ2 = g2

x: τ Q (letT x1=e1 in e2):Tτ2 = g1; g2
∗

f: τ1 Ü τ2
x: τ Q e1: τ1 = g1

x: τ Q f(e1): τ2 = g1; [[f]]

[ ]T
x: τ Q e: τ ′ = g
x: τ Q [e]T :Tτ ′ = g; η[[τ ′]]

Table 3.1: Terms and their interpretation

RULE SYNTAX SEMANTICS

eq
x: τ1 Q e1: τ2 = g1

x: τ1 Q e2: τ2 = g2

x: τ1 Q e1 = e2: τ2 \ � g1 = g2

Table 3.2: equations and their interpretation
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(A ø B) ø TC ù¨ù�ù�ù�ùsù�ù¨ù�ù�ùsù�ù�ù¨ù�ù tA×B,Cù�ù�ùþù ùsùÿù�ù¨ù�ùsù�ù�ù�ù¨ùsù�ù�ù�ù�ù Ü T ((A ø B) ø C)

αA,B,TC

���ú
���ú TαA,B,C

A ø (B ø TC) ù¨ù ù idA ø tB,Cù ù�ù�ùRùüù ùsù�ù ùoù ù Ü A ø T (B ø C) ùsù ù tA,B×Cù�ù�ùüù�ù�ù�ù ù Ü T (A ø (B ø C))

and which satisfies also the following diagrams:

A ø B ù�ù6ù�ù�ù¨ù�ùsù�ù�ù�ù6ù idA×Bùùùþùùùoùoù¨ùsù�ù�ù�ù�ùsù¨ù6ù Ü A ø B
idA ø ηB

���ú
���ú ηA×B

A ø TB ù�ùgù�ù�ùsù�ù�ù¨ù�ùsù�ùgù tA,Bù¨ùþù ùÿùgùsù�ù�ù�ù¨ùsù�ù�ù�ùXù Ü T (A ø B)

idA ø µB

]
���

]
��� µA×B

A ø T 2B ù�ù ù tA,TBù�ù�ùüù�ù�ùoù ù Ü T (A ø TB) ù�ù ù T tA,BùWù�ùþù�ùWùoù ù Ü T 2(A ø B)

where r and α are the natural isomorphismsË
rA: 1 ø A Ü AË
αA,B,C : (A ø B) ø C Ü A ø (B ø C)

The tensorial strength t induces a natural transformation ψA,B from TA ø TB to
T (A ø B), namely

ψA,B = cTA,TB; tTB,A; (cTB,A; tA,B)
∗

where c is the natural isomorphismË
cA,B:A ø B Ü B ø A

The morphism ψA,B has the correct domain and codomain to interpret the pairing
of a computation of type A with one of type B (obtained by first evaluating
the first argument and then the second). There is also a dual notion of pairing,
ψ̃A,B = cA,B;ψB,A;TcB,A (see [Koc72]), which amounts to first evaluating the
second argument and then the first. With this additional structure available we
can interpret algebraic terms, in particular the let-constructor (see Table 3.3).

At this point it is easy to give a sound and complete formal system for proving
equality of algebraic terms interpreted in a strong monad. The inference rules for
such a formal system can be partitioned in two (see Table 3.4):Ë

general rules of equational logicË
the inference rules for let-constructor and types of computations
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RULE SYNTAX SEMANTICS

let
Γ Q e1:Tτ1 = g1

Γ, x1: τ1 Q e2:Tτ2 = g2

Γ Q (letT x1=e1 in e2):Tτ2 =
�
id[[Γ]], g1 � ; t[[Γ]],[[τ1]]; g

∗

2

Table 3.3: Interpretation of let

We write [x: = e] for the substitution of x with e in and (letT x=e in e) for
(letT x1=e1 in (. . . (letT xn=en in e) . . .)), where n is the lenght of the sequence x
(and e). In particular, (letT ^ = ^ in e) stands for e.

subst
Γ Q e: τ Γ, x: τ Q A

Γ Q A[x: = e]

= is an congruence relation

ass Γ Q (letT x2=(letT x1=e1 in e2) in e) = (letT x1=e1 in (letT x2=e2 in e)):Tτ

provided x1 is not free in e

let.β Γ Q (letT x1=[x2]T in e) = e[x1: = x2]:Tτ

T.η Γ Q (letT x=e in [x]T ) = e:Tτ

Table 3.4: Inference rules

24



´ ½¿¾ÁÀ&¸¬ºlÂ _

` ºl¶Èµ ¸¡¾ð¸¼ÊPµ·¶¿¾Aa b�º�î ¾§¶¹¸¼Ê�É�» ¾§¶ÈÅ
î µ·¶¿¾§ÅÈ»

We have identified a precise abstract concept corresponding to a notion of compu-
tation, now we want to consider possible applications to the Denotational Seman-
tics of programming languages. In the introduction we pointed out that a major
shortcoming of Denotational Semantics is the lack of modularity, which prevent
gluing together semantics for toy languages into a semantics for a complex lan-
guage. Having an abstract notion of computation, rather than a bunch of examples
for it, will provide the key step towards modularity, namely parametrisation w.r.t.
a notion of computation.

To give semantics to a complex language L we propose a stepwise approach,
which starts from a monad (notion of computation) corresponding to a toy sub-
language of L and then at each step applies a monad constructor which add one
feature to the language. To make this approach precise we introduce a category
Mon( ÷ ), whose objects are monads (over a given category ÷ ), and identify monad
constructors with endofunctors over Mon( ÷ ).
Definition 4.0.8 Given two monads (T, ηT , µT ) over ÷ and (S, ηS, µS) over G ,
a monad-morphism from the first to the second monad is a pair (U, σ), where
U : ÷¼ÜcG is a functor and σ:T ;U

.Ü U ;S is a natural transformation s.t. :

UA ù�ù ù UηT

Aù\ù[ù\ùoù ù Ü U(TA) Û ù ù UµT

Aùyùþù.ùoù ù�ù U(T 2A)

ηS

UA

@
@

@ [ σA

���ú
���ú σTA

S(UA) S(U(TA))d
µS

UA

@
@

@

���ú SσA

S2(UA)
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Remark 4.0.9 We said that a programming language with (unary) type construc-
tors and polymorphic operations can be viewed as a freely generated 2-category,
and that lax natural transformations are the appropriate morphisms between mod-
els of such a language. If we take the free 2-category L(Mon) with one monad,
then there is a one-one correspondence between monads in Cat and 2-functors
from L(Mon) to Cat, this extend to a one-one correspondence between monad
morphisms and lax natural transformations between the corresponding 2-functors
from L(Mon) to Cat.

This correspondence is very useful as guideline for finding the correct notion
of morphism for monads with additional structure. For instance, when T is the
monad for non-determinism, one can define a natural transformation orA:TA ø
TA Ü TA, corresponding to non-deterministic choice. Then one can define the
language for non-determinism as the free 2-category with one monad and a 2-
morphism or satisfying certain equations.

As pointed out before, this 2-categorical view of programming languages can
model only types and operations that are covariant and natural , so functional
types and evaluation are outside its scope. Furthermore, it is arguable whether
the component of the natural transformation σ should be morphisms in G or some-
thing different, e.g. relations in G . What follows should be treated as a general
methodology for having modularity in Denotational Semantics, with the warning
that some technical details have been simplified, in particular the definition of
monad morphism may not be a satisfactory formalisation of what is a relation
between notions of computation (programming language semantics).

Monad morphisms not only give a functor U from ÷ to G , they also induce a
functor U∗ from ÷ T to G S, which extends U from functions to programs.

Proposition 4.0.10 There is a one-one correspondence between monad mor-
phisms (U, σ) from (T, ηT , µT ) over ÷ to (S, ηS , µS) over G and pairs of functors
(U,U∗) s.t. the following diagram commutes

÷ ù�ù ù Uù ùüù ùÿù ù Ü G
FT

���ú
���ú FS

÷ T
ù�ù ùoù ùüù ù

U∗

ù ù ÜeG S

where FT and FS are the left adjoints given by the Kleisli construction.

Proof We sketch only the correspondence:Ë
given a monad morphism (U, σ), we define U∗: ÷ T Ü G S as the functor
mapping A to UA and f �c÷ T (A,B), i.e. f :A Ü TB in ÷ , to (Uf);σB. We
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claim that the pair (U,U∗) satisfies the diagram, in fact

f :A Ü B ù�ù ù Uù ùþù ùoù ù Ü Uf

FT

���ú
���ú FS

f ; ηT

B
ù¨ù ùÿù ùþù ù

U∗

ù ù Ü U(f ; ηT

B
);σB = (Uf); ηS

UB

where the equation follows from the axiom U(ηT

B
);σB = ηS

UB
for monad

morphisms.Ë
given a pair (U,U∗) satisfies the diagram, we define σ:T ;U

.Ü U ;S as the
natural transformation s.t. σA = U∗(idTA), which is a morphism from U(TA)
to S(UA) in G .

The definition of monad morphism given above is very general. Since we are
interested only in relating monads or strong monads over some fixed category ÷ ,
we simplify the definition by requiring U to be the identity functor on ÷ (as done
in [BW85]).

Definition 4.0.11 Given two strong monads (T, ηT , µT , tT ) and (S, ηS, µS, tS)
over the same category ÷ , a simplified strong monad morphism from the
first to the second monad is a natural transformation σ:T

.Ü S s.t. :

A ù�ù ù ηT

Aù ùüù ùoù ù Ü TA Û ù ù µT

Aùtù[ù ùÿù ùsù T 2A A ø TB ùsù ù tT

A,Bù ùþù¨ù�ù ù Ü T (A ø B)

idA

���ú σA

���ú
���ú (σ;σ)A idA ø σB

���ú
���ú σA×B

A ù�ù ùÿù ùüù ù
ηS

A

ù ù Ü SA Û ù ùoùtù[ùrù
µS

A

ù ùsù S2A A ø SB ùsù ùÿù¨ùþù ù
tS

A,B

ù ù Ü S(A ø B)

f ÍXÌ g�×�� Ô Ô#h±Ò
� �i	XÔÖæ ×�âY� ×�¬Ò�� ã+×��cæ�Ó�Ø.å±ãqÓ�àg×��±æ
In this section we fix a category ÷ with enough datatypes, e.g. the category of
sets or cpos, and consider the category Mon( ÷ ) of (strong) monads over ÷ and
simplified (strong) monad morphisms. We will define several endofunctions F on
Obj(Mon( ÷ )), by abstracting from domain-theoretic constructions for giving se-
mantics to programming languages (see [Sch86, Mos89]) and address the following
questions:Ë

can F be extended to an endofunctor F over Mon( ÷ )?
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Ë
is there a natural transformation from IdMon(C) to F ? Which intuitively
means that every T -computation can be viewed as an F (T )-computation via
a monad morphism from T to F (T ). A monad constructor F is expected to
have such property, when its action on T is to add some features.Ë
If associated to T there are some additional operations, i.e. natural trans-
formations, is there a way of lifting them to F (T )?

Remark 4.1.1 The first two questions come together, since if we were not inter-
ested in establishing relations between monads, but only in constructing them,
then endofunctions would be completely satisfactory. On the other hand, to es-
tablish relations among monads it is important to have canonical ways of lifting
a relation between T and S to a relation between F (S) and F (T ).

The last question is of paramount importance for a modular approach to De-
notational Semantics. For instance, if we have the monad T of exceptions with
additional operations for raising and handling exceptions, then when we add side-
effects (by applying a monad constructor F ), we would like to derive in a canonical
way the operations for raising and handling exceptions in F (T ) from those defined
over T , as well as introducing in a canonical way the operations for manipulating
stores. There is a related question that we have not been able to address properly,
yet. If an operation op′ in F (T ) is derived canonically from an operation op in T ,
what axioms can be inferred for op′ given a set of axioms satisfied by op?

We introduce some general terminology for operations associated to a monad,
that will be used to discuss operations associated to the monad constructor for
exceptions as well as lifting of operations from T -computations to T -computations
with additional features.

Notation 4.1.2 We fix a countable set of type variables Γ.Ë
The metavariable τ range over the following sets of type expressions:

τ � Type: : = 1 � A � γ � T (τ) � τA � τ1 ø τ2
where the symbols A are objects of ÷ , γ is a variable in Γ and T is an
uninterpreted type constructor.Ë
Given an interpretation for T , i.e. an endofunctor S over ÷ , the type ex-
pression τ will denote a functor [[τ ]]S from ÷ Γ to ÷ . Moreover, a natural
transformation σ from S to S ′ induces a natural transformation στ from

[[τ ]]S to [[τ ]]S
′

.Ë
An operation op of arity τ1

.Ü τ2 on the endofunctor S is a natural trans-
formation from [[τ1]]

S to [[τ2]]
S.
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Ë
Given an operation op of arity τ1

.Ü τ2 on S and a natural transformation
σ:S

.Ü S ′, we say that an operation op′ of arity τ1
.Ü τ2 on S ′ is a lifting of

op along σ iff the following diagram commutes:

[[τ1]]
S ù�ù ù opù ù[ù ùÿù ù Ü [[τ2]]

S

στ1

���ú
���ú στ2

[[τ1]]
S′ ù�ù ù op′ù ù[ùnùÿù ù Ü [[τ2]]

S′Ë
Given an endofunctor F on Mon( ÷ ) and for every S an operation opS of
arity τ1

.Ü τ2 on F (S), we say that the operation constructor op is natural

iff for every monad morphisms σ:S Ü S ′ the following diagram commutes:

[[τ1]]
F (S) ù�ù ù opSù|ù[ùgùÿù ù Ü [[τ2]]

F (S)

(Fσ)τ1

���ú
���ú (Fσ)τ2

[[τ1]]
F (S′) ù�ù ù opS′ùQù[ù ùoù ù Ü [[τ2]]

F (S′)Ë
Given an endofunctor F on Mon( ÷ ) and a natural transformation ηF : IdMon(C)

.Ü
F , we say that F is a natural lifting of operations of arity τ1

.Ü τ2 along
ηF iff for every monad S and operation op: τ1

.Ü τ2 on S opF is a lifting of
op along ηF

S
and

[[τ1]]
S ù�ù ù opù ùüù ùoù ù Ü [[τ2]]

S [[τ1]]
F (S) ù�ù ù opFù�ùþù�ù�ùpù Ü [[τ2]]

F (S)

στ1

���ú
���ú στ2 implies (Fσ)τ1

���ú
���ú (Fσ)τ2

[[τ1]]
S′ ù�ù ù op′ù ùüù ùoù ù Ü [[τ2]]

S′

[[τ1]]
F (S′) ù�ù ù op′Fù=ùþù=ùoù ù Ü [[τ2]]

F (S′)

We give a very general theorem on the existence of natural liftings for opera-
tions of very simple arities.

Proposition 4.1.3 Let τ0 be a metavariable ranging over the set of type expres-
sions without T , i.e.

τ0 � Type0: := 1 � A � γ � τ0A � τ01 ø τ02

if F is an endofunctor on Mon( ÷ ) and ηF : IdMon(C)
.Ü F is a natural transforma-

tion, then there is a natural lifting of operations of arity τ0
.Ü τ along ηF .
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Proof Given an operation op: τ0
.Ü τ on S, we define its lifting opF along ηF

S
as

the natural transformation opF = op; ηF

S τ
. This is a lifting of op along ηF

S
because

ηF

S τ0
is the identity (as T does not occur in τ0). Moreover, it is natural because

for every monad morphisms σ:S Ü S ′ the following diagram commutes:

[[τ ]]S ù�ù ù ηF

S τù�ùüù�ùoù ù Ü [[τ ]]F (S)

στ

���ú
���ú (Fσ)τ

[[τ ]]S
′ ù�ù ù ηF

S′τùoùüù6ùÿù ù Ü [[τ ]]F (S′)

The above result is rather unsatisfactory, because we want to consider operations
that takes computations as parameters (like handle below). However, it seems
that better results can be achieved only by relying on some special property of the
monad constructor under investigation.

j �k$>�%$ SUTE1NLlIE,5-06D8+*
The monad constructor for exceptions (compare with 9.2 of [Sch86]) is particu-
larly simple and enjoys nice mathematical properties. It is also a strong monad
constructor provided coproducts distribute over products, which is always the case
in a cartesian closed category.

Definition 4.1.4 Given a monad T = (T, ηT , µT ) the monad Texcp of T -computations

with exceptions is defined as follows:Ë
Texcp( ) = T ( +E)Ë
ηTexcp

A
(a) = [inl(a)]T , i.e. ηTexcp

A
= inl; ηT

A+EË
µTexcp

A
(c) = (letT x=c in (case x of c:T (A + E) � c � e:E � [inr(e)]T )), i.e.

µTexcp

A
= ([idT (A+E), inr; ηT

A+E
])∗

A monad morphism σ:S Ü T induces a monad morphism σexcp:Sexcp Ü Texcp,
namely σexcpA

= σA+E

For every monad T there are two monad morphisms ηexcp

T
:T Ü Texcp and

µexcp:Texcpexcp
Ü Texcp which make the monad constructor for exceptions into a

monad over Mon( ÷ )Ë
ηexcp

T
has A-component T (inl):TA Ü T (A+ E)Ë

µexcp

T
has A-component T ([id, inr]):T ((A+E) +E) Ü T (A+E)
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For every monad T there are two operations on Texcp, raise:E
.Ü T (γ) and

handle:E ø T (γ) ø T (γ)
.Ü T (γ), that are natural in T :Ë

raise(e) raises the exception e.Ë
handle(e, c1, c2) evaluates c2 and if this evaluation raises e, then it evaluates
c2. This operation can be defined only if E has a decidable equality, i.e. a
morphism eq:E ø E Ü 1 + 1 s.t. eq(e1, e2) = inl( m ) iff e1 = e2.

Finally we give sufficient conditions on arities for the existence of natural lift-
ings of operations of those arities along ηexcp.

Proposition 4.1.5 If τ1 is an out-type and τ2 is an in-type (see Table 4.1), then
there is a natural lifting of operations of arity τ1

.Ü τ2 along ηexcp.

Proof Let σ: Γ Ü Type be a substitution mapping a type variable γ either to
itself or to γ + E, this induces (in the obvious way) an endofunctor [[σ]] on ÷ Γ.
Let in: Id

.Ü [[σ]] be the natural transformation s.t. inf : fγ
.Ü [[σ]](fγ) is either

inl: fγ Ü fγ +E (when σ(γ) = γ + E) or the identity of fγ (when σ(γ) = γ).
If τ is an out-type, then there is a natural transformation outτ s.t. the following

diagram commutes

[[τ ]]S ù�ù ù (ηF

S
)τù|ù|ùüù|ù|ùoù ù Ü [[τ ]]Sexcp

in; [[τ ]]S
@

@
@ [

���ú outτ
[[τ [σ]]]S

Conversely, If τ is an in-type, then there is a natural transformation inτ in the
opposite direction. Therefore, given an operation op: τ1

.Ü τ2 on S, we can define
opexcp: τ1

.Ü τ2 on Sexcp to be outτ1 ý ([[σ]]; op) ý inτ2 .

Remark 4.1.6 The monad constructor for exceptions is very well-behaved in com-
parison to those for side-effects and continuations. We have chosen to introduce
it first and highlight its properties in order to set an ideal standard.

j �k$>�H! n#-7CBL3opLlqrLN1s,5*
We present a very general monad for side-effects, which will be instanciated to
monads that are more appropriate for giving semantics to programming languages.
This construction depends on a set S. For simplicity we work in the category of
sets.

Definition 4.1.7 Given a monad T = (T, ηT , µT ) the monad Tseff of T -computations

with side-effects is defined as follows:
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PROPERTIES

case τ of E Ü τ̃ τ̃ Ü τE +E τ̃ Ü τE τE Ü τ̃
in ù type out ù type

1 yes yes yes yes
A no yes yes yes

σ(γ) = γ no yes yes yes
σ(γ) = γ +E yes yes no yes

T (τ) yes τ̃ Ü τE +E τ̃ Ü τE +E τE Ü τ̃ t E Ü τ̃

τ1 ø τ2 t iE Ü τ̃i t iτ̃i Ü τi
E + E t iτ̃i Ü τi

E t iτi
E Ü τ̃i

τA E Ü τ̃ τ̃ Ü τE τ̃ Ü τE τE Ü τ̃

We write τ̃ for the functor [[τ [σ]]]T (where τ [σ] is the σ-substitution instance of τ)
and τE for the functor [[τ ]]TE .
To determine whether the type expression τ is an in-type one should look at the
entry in row τ and column in-type, if it is yes or the immediate subexpressions of
τ satisfy the properties specified in the entry, then τ is an in-type, otherwise it
may not be.
The auxiliary properties E Ü τ̃ and τ̃ Ü τE +E are needed to test whether T (τ)
is an in-type or out-type.

Table 4.1: Inductive definition of in-type and out-type
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Ë
Tseff( ) = (T ( ø S))SË
ηTseff

A
(a) = (λs:S.[

�
a, s � ]T )Ë

µTseff

A
(c) = (λs:S.(letT

�
c1, s1 � =cs in c1s1))

A monad morphism σ:S Ü T induces a monad morphism σseff :Sseff Ü Tseff ,

namely σseff A
= σS

A×S

For every monad T there is one monad morphism ηseff

T
:T Ü TseffË

ηseff

T
has A-component (ηseff

T
)A(c) = (λs:S.(letT a=c in [

�
a, s � ]T ))

Remark 4.1.8 There is no simple way to turn the monad constructor for side-
effects into a monad over Mon( ÷ ).

We give sufficient conditions on arities for the existence of natural liftings of
operations of those arities along ηseff .

Proposition 4.1.9 If τ1 is a type expression without nesting of T , i.e.

τ1 � Type1: := 1 � A � γ � T (τ0) � τ1A � τ11 ø τ12

then there is a natural lifting of operations of arity τ1
.Ü T (γ) along ηseff .

Proof Let σ: Γ Ü Type be the substitution mapping a type variable γ to γ ø S,
this induces (in the obvious way) an endofunctor [[σ]] on ÷ Γ. For every τ0 there is
a natural transformation inτ0: τ0 ø S .Ü τ0[σ] (exercise).

Given an operation op: τ1
.Ü T (γ) on S (for simplicity we take τ1 to be τ01 ø

T (τ02) which is paradigmatic) we can define opseff : τ1
.Ü T (γ) on Sseff to be

op
seff

(x, c) = (λs:S.opσ(inτ01
(x, s), T (inτ02

)(fs)))

In order to introduce operations on Tseff natural in T , we have to specialise
the parameter S:Ë

stores S = UL (compare with Table 2.26 of [Mos89]). This monad model
programs using a fixed set L of locations (for simplicity we have not placed
any type restriction on the values storable in a given location, any value
of type U can be stored in any location). Before executing a program
these locations have already a value, either an input data or some garbage.
There are two operations associated with this monad lookup:L Ü TU and
update:L ø U Ü T1
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– lookup(l) return the contents of location l.

– update(l, u) updates the contents of location l with u.Ë
input S = U∗ (compare with Table 2.31 of [Mos89]). This monad model
programs that can input (but not output) data. This semantics is called
batch in [Mos89], because it does not capture the interleaving between inter-
nal computations and input of data. There is one operation associated with
this monad read: 1 Ü TU

– read( m ) read the first character in the input file and removes it from
such file. To define read when the input is empty we can either raise
an exception (if T allows that) or return a default value in U .Ë

output S = U∗ (compare with Table 2.31 of [Mos89]). This monad model
programs that can output (but not input) data. Also this semantics is
called batch, because it does not capture the interleaving between internal
computations and output of data. There is one operation associated with
this monad write:U Ü T1

– write(u) append the character u to the output file.

j �k$>�R� uv6>8w,.-08w(E2D,x-%6D8+*
Continuations are a very general technique used in Denotational Semantics, based
on the idea that if you tell to a piece of program what to do next, then it will tell
you what is the result of the program. This construction takes as parameter a set
R of possible results, or better what can be observed of an entire program, and it
makes sense to take a very small R, e.g. the terminal object 1.

Definition 4.1.10 Given a monad T = (T, ηT , µT ) the monad Tcont of T -computations

with continuations is defined as follows:Ë
Tcont( ) = (TR)(TR)Ë
ηTcont

A
(a) = (λk: (TR)A.ka)Ë

µTcont

A
(c) = (λk: (TR)A.c(λh: (TR)(TR)A

.hk))

Remark 4.1.11 There is no way to make the monad constructor for continuations
into an endofunctor, because Tcont is both covariant and controvariant in T . Be-
cause of this one should apply the monad constructor for continuations with some
constraint. In fact, if S and T are related via a monad morphism, there is no
relation between Scont and Tcont which mirrors the one between S and T .

For every monad T there is one monad morphism ηcont

T
:T Ü Tcont
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Ë
ηcont

T
has A-component (ηcont

T
)A(c) = (λk: (TR)A.(letT a=c in ka))

Remark 4.1.12 It does not make sense to ask whether ηcont is a natural transfor-
mation, because the monad constructor for continuations is not a functor.

We give a simple guideline for using the monad constructor for continuations:Ë
start with a simple monad T , e.g. partial computations or non-determinismË
add continuations, so that we have Tcont and a morphism ηcont

T
from T to

TcontË
add other features modelled by an endofunctor F , so that we can lift ηcont

T

to a morphism from F (T ) to F (Tcont)

We do not address the issue of lifting operations on T along ηcont

T
.

Exercise 4.1.12.1 Prove that any operation of arity τ0 ø (Tγ)A .Ü (Tγ) on T
can be lifted along ηcont

T
.
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The idea of variable set, i.e. an object of a functor category Set

K , has been
proposed by Reynolds, Oles (and others) for capturing the variability of the set of
locations in programming languages like (idealised) ALGOL. However, variables
sets arises in many other situations. For instance, an ML-program, during its
execution, may allocate memory or declare new exceptions. So the set of memory
cells and the set of declared exceptions grow with the number of execution steps.
Similarly, to execute a call/cc or note(c).e (see Talcott) one has to declare a
new name and bind it to the current continuation. A reasonable choice for K
would be the partial order on natural numbers, or natural numbers (viewed as
sets) with injective maps as morphisms. Intuitively, an element of k � K tells us
how many locations there are at that stage. In this section we consider a strong
monad for allocating a new element of a variable set , which can be used as building
block to define more complex monads. This construction depends on the following
parameters:Ë

a category K, an endofunctor F :K Ü K, a natural transformation σ: IdK
.Ü

FË
a variable set L, i.e. a functor L:K Ü Set, a global element new of F ;L,
i.e. a natural transformation new: 1

.Ü F ;L

The objects of K should be thought as stages k, providing some information on the
computation, in particular on the number of locations created so far. Intuitively,
F and σ describe the change caused by the allocation of a new element, namely
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if we start from a stage k allocation causes a transition σk from k to a new stage
Fk. At the level of Set

K the allocation of a new element transforms a variable set
A into the variable set F ;A and the natural transformation (σ;A):A

.Ü F ;A tell
us what are the elements of A after allocation (i.e. F ;A) that were in A before.
Finally, new corresponds to the newly allocated element.

Remark 4.1.13 We have considered the category Set of sets, but what follows
applies to a wide class of categories. An intrinsic limitation of the model above,
suggested by the intuitive explanation, is that the only variability we can capture
is monotonic (a typical feature of Intuitionistic Logic and its Kripke Semantics).

There are some extra requirements on L and new, that seem appropriate if L have
to be understood as a set of names with a decidable equality and new has to be a
really new name:Ë

if f : k Ü k′ in K, then L(f) must be an injective map, so that if two names
are different at stage k they stay different also at later stagesË
the element newk of L(Fk) should not be in the image of L(k) along σ;L,
i.e. newk is different from any element existing before allocation.

These assumptions are not necessary to define the strong monad below, but they
are important to define operations like update or handle.

Definition 4.1.14 The strong monad T = (T, ηT , µT , tT ) for allocation over the
category Set

K is defined as follows:Ë
(TA)(k) = Σn:N.A(F nk)
if f : k Ü k′, then (TA)(f)(

�
n, a � ) =

�
n,A(F nf)a �Ë

ηT

A
(k)(a) =

�
0, a �Ë

µT

A
(k)(

�
m,
�
n, a � A(Fm+nk) ��� ) =

�
m+ n, a �Ë

tT

A,B
(k)(

�
a,
�
n, b � B(F nk) ��� ) =

�
n,
�
(σn;A)k(a), b ���

There is one operation associated with this monad alloc: 1 Ü TLË
alloc(k)( m ) =

�
1, newk( m ) � , intuitively alloc makes one F -step in K, from k

to Fk, and picks up the newly allocated element in L(Fk).

Example 4.1.15 The definition of alloc may look suspicious, because it returns
always the same new element, so one may expect that the denotation of

ei � (letT l1=alloc in (letT l2=alloc in [li]T ))

does not depend on i. However, the tensorial strength tT renames the locations
created before the last allocation (see requirements on L and new stated in Re-
mark refadd-prop). We give a simple example of strong monad for allocation,
where the expression above have different interpretations for different i (exercise):
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Ë
take K to be the category of natural numbers (viewed as sets, i.e. n =�
0, . . . , n ù 1 � ) with injective maps as morphismsË

take F to be the endofunctor s.t. F (n) = n + 1 and given an injection
i:m ↪Ü n, then the injection F (i):m + 1 ↪Ü n + 1 extends i to n + 1 by
mapping m to nË
take σ to be the natural transformation s.t. σn:n ↪Ü n + 1 is the inclusion
of n into n+ 1Ë
take L:K Ü Set to be the inclusion functor of K into Set and newn = n

Prove that in this model L
σ;LÜ F ;L

newÛ 1 is a coproduct diagram (in particlar
newn is not in the image of L(σn)) and that [[ei]]n =

�
2, n+ i � . On the other hand,

if we take K to be the partial order of natural numbers and F (n) = n + 1 (σn

must be the unique morphism from n to n+ 1), then there is no way to choose L
and new so that newn is not in the image of L(σn).

Instead of defining a strong monad we should have defined a strong monad
constructor, which takes a strong monad T over the category ÷ and returns a
strong monad Tallc over ÷ K.

Exercise 4.1.15.1 Let (TallcA)(k) = T (Σn:N.A(F nk)), prove that this can be
extended to a functor from Mon( ÷ ) to Mon( ÷ K). Investigate whether there are
other possibilities for Tallc which can be extended to a functor.

Prove that a monad T over ÷ induces a monad TK over Set
K (hint: define a

2-endofunctor that does the job).
Discuss lifting of operations on T for the monad constructors Talloc and TK.

The monad for allocation is very simple, but if we apply to it the appropriate
monad constructor for stores, namely S = UL (L is the variable set equipped with
the operation alloc), then we can models dynamic memory allocation. Similarly,
to model dynamic declaration of exceptions (as in ML), we have simply to apply
the monad constructor for exceptions (with E = L).

Exercise 4.1.15.2 Reynolds and Oles have been considering functor categories
to model a stack discipline for memory allocation. this means that we are not
allowed dynamic allocation of memory that once created cannot be deallocated.
Consider an operation block:U ø (TA)L .Ü TA. Intuitively block(u, (λl.e)) is a
block, which declares a new variable l initialised with u, computes a value of type
A and at the end deallocate l. Can you define block on the monad of stores over
the functor category Set

K? What kind of assumptions do you need on U and A
for defining such operation? Hint: we consider the strong monad TA = (A ø S)S

with S = UL and require U and A to be constant sets (i.e. U = ŪK for some
set Ū). Note that the endofunctor G = Set

F preserves limits and colimits and
σ;A:A Ü F ;A is a natural transformation from the identity functor on Set

K to
G. Define the following auxiliary operations
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Ë
evalnew:BL Ü GBË
subnew:BL ø B Ü GBË
incl:G(CB) Ü (GC)GB

To define block amounts to give a morphism from UL ø U ø ((A ø UL)
UL

)
L

to
A ø UL, or equivalently to GA ø (GU)L (because A and U are constant), namely:

(subnew ø evalnew);G(eval); (GA ø (incl; (GU)
σ;L

))
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In this section we consider monad constructions that use covariant domain equa-
tions. We remind the universal property characterising the least solution to a
covariant domain equation in a category ÷ .
Definition 4.1.16 If F is an an endofunctor on ÷ , then a least fix point for F is
a morphism α:FA Ü A s.t. for every β:FB Ü B there exists unique f :A Ü B
making the following diagram commutes:

FA ù�ù ù αù ùþù ùÿù ù Ü A

Ff

���ú
���ú f

FB ù�ù ù βù ùþù ùÿù ù Ü B

Because of its universal property α:FA Ü A is actually an isomorphism. It may
well be the case that an endofunctor does not have a least fix point, for instance
the powerset functor does not (because of a cardinality argument), but the finite
powerset functor (where only finite subsets are allowed) does have a least fix
point. A sufficient condition for existence of least fix points is that the category ÷
must have an initial object and colimits of ω-chains, and the endofunctor F must
preserve such ω-colimits.

The general pattern followed so far for defining a (strong) monad constructor
F is to express the (strong) monad F (T ) in the metalanguage for T . To keep
this pattern we add a type constructor for recursive types (see the BNF for type
expressions below) and corresponding term constructors (see Table 4.2):

τ � Type: : = 1 � A � γ � T (τ) � (µγ.τ) � τA � τ1 ø τ2
Remark 4.1.17 Under fairly general assumptions on the category ÷ and the func-
tor T , every type expression τ induces a functor, denoted by τ , from ÷ Γ to ÷ .
Actually, if T is a strong monad, then there is a canonically defined tensorial
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strength tτ

X,Γ
:X ø τ Ü τ [σX ] (where σX is the substitution mapping γ to X ø γ)

for each functor τ . This tensorial strenght is used to interpret the metalanguage
in Table 4.2, and to define a stronger requirement on a least fix point α:FA Ü A
for a strong endofunctor F , namely that for every β:X ø FB Ü B there exists
unique f :X ø A Ü B making the following diagram commutes:

X ø FA ù�ù ù X ø αùQù�ùüùQùQùÿù ù Ü X ø A
�
π1, F [X]f �

���ú
���ú f

X ø FB ù�ù�ù ù βù ùüù ù�ù ù�ù Ü B

where F [X](f :X ø A Ü B) is the morphism tF

X,A
;Ff from X ø FA to FB.

Interactive input and output

In the section on side-effects we introduced two monads for batch input and output,
here we define their interactive counterpart (compare with Table 2.33 of [Mos89]).

Definition 4.1.18 Given a monad T = (T, ηT , µT ) the monads TiI and TiO of
T -computations with interactive input and output are defined as follows:Ë

TiI(A) = µγ.T (A+ (γU))Ë
TiO(A) = µγ.T (A+ (U ø γ))

Intuitively, a computation with interactive input may either compute a value or
wait for some input and then resume the computation, while a computation with
interactive output may either compute a value or output some data and then
continue the computation.

Exercise 4.1.18.1 Complete the definition of TiI and TiO and prove that these
monad constructors are endofunctors. Prove that (TiI)iO(A) and (TiO)iI(A) are
isomorphic.

Define monad morphisms from T to TiI and TiO. What can you say about
lifting of operations for T along these monad morphisms?

There is one operation read: 1 Ü TU associated with the monad TiI and one
operation write:U Ü T1 associated with the monad TiO:Ë

read( m ) = intro([inr(λu:U.[inl(u)]T )]T )Ë
write(u) = intro([inr(

�
u, [inl( m )]T � )]T )

Exercise 4.1.18.2 Define a monad morphism from TiO to the monad for batch
output TbO = (T (A ø O))O, where O is the set U ∗ of finite sequences of elements
in U . How are the two write operations related?
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GEN ù RULE

var Γ Q x: τ

f: τ1 Ü τ2
Γ Q e1: τ1
Γ Q f(e1): τ2

TYPE INTRO ù RULE ELIM ù RULE

T (τ)
Γ Q e: τ ′
Γ Q [e]T :Tτ ′

Γ Q e1:Tτ1
Γ, x1: τ1 Q e2:Tτ2
Γ Q (letT x1=e1 in e2):Tτ2

1 Γ Q�m : 1

τ1 ø τ2 Γ Q e1: τ1
Γ Q e2: τ2
Γ Q � e1, e2 � : τ1 ø τ2

Γ Q e: τ1 ø τ2
Γ Q πi(e): τ1

τA Γ, a:A Q e: τ
Γ Q (λa:A.e): τA

Γ Q ea:A

Γ Q e: τA

Γ Q e(ea): τ

(µγ.τ)
Γ Q e: τ [γ: = (µγ.τ)]
Γ Q intro(e):µγ.τ

Γ, x: τ [γ: = σ] Q e:σ
Γ Q eµ: (µγ.τ)
Γ Q rec(x.e, eµ):σ

Table 4.2: Term expressions
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Interleaving semantics for CCS

In this section we give a monad constructor for CCS with value passing (compare
with 12.4 of [Sch86]). To justify the domain equation used in the definition of Tccs

we recall the syntax for CCS terms with value passing and the intended meaning
of each operation:

p � Process: : = Nil � τ.p � α!u.p � α?x.p(x) � p1 or p2 � p1 � p2 � p � α
where α range over the set Port of port identifiers (unlike the set Act of actions,
there is no involution operation or silent action for Port) and u range over a set
U of transmittable values. Intuitively, a process, can be:Ë

Nil the deadlocked processË
τ.p a process which makes an internal indivisible action and becomes pË
α!u.p a process which output u on the port α and becomes pË
α?x.p(x) a process which wants to input a value from port α and become
p(x). Note that p(x) may contain x free, like α!x.Nil, and that x get bounded
by ?. One may also consider additional operations that use values to define
processes.Ë
p1 or p2 the process which may become either p1 or p2Ë
p1 � p2 the parallel composition of p1 and p2. This involves not only arbitrary
interleaving of actions from p1 with actions from p2, but also communication
of values between the two processes.Ë
p � α the process p with port α hidden, i.e. α can be used only for internal
communications.

The domain equation below consider the first five operations as constructors for
defining processes, while the remaining one have to be defined (by induction on
the structure of Tccs(A)).

Definition 4.1.19 Given a monad T = (T, ηT , µT ) the monads Tccs of T -computations

with CCS is defined as follows:Ë
TccsA = µγ.T (A+ 1 + γ + (Port ø γU) + (Port ø U ø γ) + (γ ø γ))

Exercise 4.1.19.1 Complete the definition of Tccs. Prove that Tccs can be defined
by adding incrementally the following features to T -computations (show also that
the order in which they are added is irrelevant):Ë

deadlock Tnil(A) = T (A+ 1)
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Ë
internal indivisible action Tiia(A) = µγ.T (A+ γ)Ë
interactive input Tin(A) = µγ.T (A+ (Port ø γU))Ë
interactive output Tout(A) = µγ.T (A+ (Port ø U ø γ))Ë
non-deterministic choice Tor(A) = µγ.T (A+ (γ ø γ))

Define monad morphisms from T to each of the monads for the five incremental
steps and discuss lifting of operations for T along these monad morphisms.

To deserve the name Tccs the monad constructor for CCS must make available all
the operations on processes:Ë

Nil: 1
.Ü T (γ) deadlockË

τ :T (γ)
.Ü T (γ) internal indivisible actionË

!:Port ø U ø T (γ)
.Ü T (γ) outputË

?:Port ø (Tγ)U .Ü T (γ) inputË
or:T (γ) ø T (γ)

.Ü T (γ) non-deterministic choiceË
� :T (γ1) ø T (γ2)

.Ü T (γ1 ø γ2) parallel compositionË
� :Port ø T (γ)

.Ü T (γ) hidding of ports

Exercise 4.1.19.2 Give the interpretation for the seven operations on Tccs speci-
fied above. Consider two additional operations on processes seq(p1, p2) and alternate(p1, p2).
Intuitively, seq(p1, p2) is sequential composition, i.e. it executes p1 and then (when
p1 has finished) p2, while alternate(p1, p2) alternates one action of p1 with one of p2

(starting from p1). Give an interpretation for the operations seq:T (γ1) ø T (γ2)
.Ü

T (γ2) and alternate:T (γ1) ø T (γ2)
.Ü T (γ1 ø γ2) on Tccs (hint: seq is an instance

of let. alternate is underspecified, i.e. there are several possible definitions, and it
is already definable on Tiia).
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1. Express ηA, µA and T (f :A Ü B) in the metalanguage with base types A
and B and unary operation f :A Ü B.

Given two monads S and T over the category C, express that σ is a simplified
monad morphism from S to T via a set of equations in the metalanguage
with two unary type constructors S and T , one base type for each object of÷ and one unary function στ :Sτ Ü Tτ for each type expression τ . Try to
make the equations as simple as possible, no more than two let or [ ] in each
equation. Given two strong monads S and T over the category C, What
additional axioms do you need (if any) to express that σ is a strong monad
morphism?

2. Prove that any operation of arity τ0 ø (Tγ)A .Ü (Tγ) on T can be lifted along
ηcont

T
:T Ü Tcont. Discuss possible improvements to lifting of operations along

ηcont and ηseff .

3. Given a category K, and an endofunctor F :K Ü K define two functors from
Mon( ÷ ) to Mon( ÷ K). If T is a monad over ÷ , thenË

TK(A)(k) = T (A(k)) (hint: define a 2-endofunctor on Cat that does
the job for any K).Ë
(TallcA)(k) = T (Σn:N.A(F nk)) (we assume that ÷ has countable co-
products)

complete the definition of TK and Tallc and define a monad morphism from
TK to Tallc.

Investigate whether there are other possibilities for Tallc which take a monad
T in ÷ K instead.

Discuss lifting of operations on T for the monad constructors Talloc and TK

(hint: is there a monad morphism in the generalized sense from T to these
two monads on ÷ K)

4. Reynolds and Oles have been considering functor categories to model a stack
discipline for memory allocation. this means that we are not allowed dynamic
allocation of memory that once created cannot be deallocated. Consider an
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operation block:U ø (TA)L .Ü TA. Intuitively block(u, (λl.e)) is a block,
which declares a new variable l initialized with u, computes a value of type
A and at the end deallocate l. Can you define block on the monad of stores
over the functor category ÷ K by choosing a suitable K and L? What kind
of assumptions do you need on U and A for defining such operation? (hint:
consider the restrictions on a programming language, that make possible a
stack discipline for memory allocation).

5. Complete the definition of the monad constructor for CCS

TcssA = µγ.T (A+ 1 + γ + (Port ø γU
) + (Port ø U ø γ) + (γ ø γ))

Prove that Tccs can be defined by adding incrementally the following features
to T -computations (show also that the order in which they are added is
irrelevant):Ë

deadlock Tnil(A) = T (A+ 1)Ë
internal indivisible action Tiia(A) = µγ.T (A+ γ)Ë
interactive input Tin(A) = µγ.T (A+ (Port ø γU))Ë
interactive output Tout(A) = µγ.T (A+ (Port ø U ø γ))Ë
non-deterministic choice Tor(A) = µγ.T (A+ (γ ø γ))

Define monad morphisms from T to each of the monads for the five in-
cremental steps and discuss lifting of operations for T along these monad
morphisms.

6. Prove that (Tin)out(A) and (Tout)in(A) (see previous esercise) are isomorphic.
Define a simplified version, TbO = (T (A ø O))O, of the monad for batch
output, where O is the set U ∗ of finite sequences of elements in U . Define a
monad morphism from Tout to TbO, then consider how the interpretations of
the operation write:U Ü T1 in the two monad are related.

7. Give the interpretation for the following operations on Tcss:Ë
Nil: 1

.Ü T (γ) deadlockË
τ :T (γ)

.Ü T (γ) internal indivisible actionË
!:Port ø U ø T (γ)

.Ü T (γ) outputË
?:Port ø (Tγ)U .Ü T (γ) inputË
or:T (γ) ø T (γ)

.Ü T (γ) non-deterministic choiceË
� :T (γ1) ø T (γ2)

.Ü T (γ1 ø γ2) parallel compositionË
� :Port ø T (γ)

.Ü T (γ) hidding of ports
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Consider two additional operations on processes seq(p1, p2) and alternate(p1, p2).
Intuitively, seq(p1, p2) is sequential composition, i.e. it executes p1 and then
(when p1 has finished) p2, while alternate(p1, p2) alternates one action of p1

with one of p2 (starting from p1). Give an interpretation for the operations
seq:T (γ1) ø T (γ2)

.Ü T (γ2) and alternate:T (γ1) ø T (γ2)
.Ü T (γ1 ø γ2) on

Tccs (hint: seq is an instance of let. alternate is underspecified, i.e. there are
several possible definitions, and it already definable on Tiia).
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