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Abstract

This paper demonstrates the potential for combining the polytypic and monadic
programming styles, by introducing a new kind of combinator, called a traversal. The
natural setting for defining traversals is the class of shapely data types. This result
reinforces the view that shapely data types form a natural domain for polytypism:
they include most of the data types of interest, while to exceed them would sacrifice
a very smooth interaction between polytypic and monadic programming.
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1 Introduction

Monadic programming has proved itself extremely useful as a means of en-
capsulating state and other computational effects in a functional program-
ming setting (see e.g. [12,14]). Recently, interactions between monads and
data structures have been studied as a further way for structuring programs.
Initially focusing on lists, the studies have been extended to the class of reg-
ular datatypes (see e.g. [4,11,1]), with the aim to embody another kind of
polymorphism into programs, that is, having combinators parameterized with
respect to a class of datatypes. Thus generic properties of many of the usual
combinators of the Bird-Meertens formalism, such as mapping, folding and
zipping, can be extended by programming with monads.

The novelty of this work is our categorical characterization of the traversal
constructor, which, among other things, leads us to having such a combinator
defined uniformly for a large class of data types, namely those corresponding
to functors shapely over lists.

1 Research partially supported by MURST progetto cofinanziato “Tecniche formali
per la specifica,. . . di sistemi software”, ESPRIT WG APPSEM.
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Background and related work. Since their expressiveness and ability in
structuring programs, the map and fold combinators have been the ideal can-
didates for studying the interactions between monads and data structures.
Meijer and Jeuring [11] propose monadic folds as a useful pattern for struc-
turing programs, and gives several examples of their use. Fokkinga [4] gives a
definition of monadic fold for regular datatypes via an adjunction between the
category of algebras and another category of algebras built upon the Kleisli
category. This formalization requires an assumption on the monad, that is not
valid for several monads (e.g. the state monad). The type of a monadic fold
for lists is

mfold: (X → Y → TY )→ TY → LX → TY or equivalently

mfold: ((1 + X × Y )→ TY )→ LX → TY

where T can be any monad and L is the list datatype. Another form of inter-
action between the list data type L and a monad T is given by monadic map
(definable in terms of monadic fold, see [11])

mmap: (X → TY )→ LX → T (LY )

In contrast to the usual map, for a monadic map the order in which a list is
traversed matters. In fact, every strategy for traversing a list induces a different
monadic map. A simple application of monadic map is for labeling the elements
of a list (xi|i: n) with their position, to produce the list (〈i, xi〉|i: n). The idea
is to use the state monad TX = N → (X ×N), whose state is a counter, and
apply monadic map to the function f : X → T (N×X), where the effect of f(x)
is to increment the counter and then return the pair consisting of the value of
the counter and x. There is also another combinator that we call traversal

traverse: L(TX)→ T (LX)

obtained by supplying the identity function to the monadic map. Although
monadic map and monadic folds are more useful in programming, traversals
are more convenient for theoretical studies (e.g. for investigating naturality
properties). It is clear that a traversal is a mechanism for commuting of func-
tors, and such mechanisms have been studied elsewhere:

– Beck distributive laws S(TX)→ T (SX) between monads S and T (see [2])
endow the composite functor TS with a canonical monad structure.

– Arbib & Manes have considered distributive laws F (TX) → T (FX) be-
tween a functor F and a monad T (see [13]), and shown that they are in
bijective correspondence with extensions of F to the Kleisli category for T .

– Hoogendijk & Backhouse (see [6,5]) have investigated (generalized) zips
F (GX) ; G(FX) between relators F and G in a relational setting.
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Functors shapely over lists. Functors shapely over lists [7] correspond
to those datatype constructors that can be split into the shape and data.
Intuitively a shape can be thought of as a structure with a finite number of
holes into which data elements, represented by a list, can be inserted. Formally,
the characterization of a shapely type constructor F uses pullback diagrams
such as

FX
data- LX

F1

shape

?
- L1

?

Regular data types are shapely. Of course, not all type constructors are shapely;
function types, for example, are not shapely, and neither are types of sets,
since the cardinality of a set depends on knowing which elements are equal,
i.e. depends on the data.

Results. From a programming language viewpoint, the main result of this
paper is that traversals can be defined uniformly for a large class of data
types, namely those corresponding to functors shapely over lists. This result
is summarized by the existence of a polytypic combinator

traverse :∀m:N.∀F :ShFunctor(m).∀T :Monad.∀Xi:m:Type.

F (TXi)i:m → T (F (Xi)i:m)

where m is an arity, F is a functor of arity m shapely over lists, T is a
monad, and the Xi are types. Furthermore, one can recover the more interest-
ing polytypic monadic map and monadic fold from (the polytypic versions of
map and fold and) a polytypic traversal. This suggests the introduction (in
Haskell) of constructor classes for functors shapely over lists. The power of
traversals is exemplified by implementing a generic alpha-conversion function
for an extensible type of lambda-terms. However, the mathematical contents
of the paper is not adequately summarized by the above result. In fact, we
address the following issues also:

– What makes a natural transformation F (GX) → G(FX) a traversal? We
identify a key shape-preservation property: the shape of an F -data structure
is not changed by a traversal. The simplest way of formalizing this property
it to say that for each F -shape s: F1 one has a map Fs(GX) → G(FsX),
where Fs(X) is the set of F -data structures with shape s and data in X.
Given such a family of maps one recovers a map F (GX)→ G(FX).
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– What properties should a polytypic traversal F (TX) → T (FX) have? We
identify several higher-order naturality properties. They exploit the fact
that F is a functor shapely over lists and T is a strong monad.

– Can we extend the polytypic traversal beyond functors shapely over lists
and strong monads? Strong monads can be replaced by monoidal functors,
which are more general. It seems unlikely that one can go beyond functors
shapely over lists (but we have only a conjecture).

– What distinguishes traversals from zips and distributive laws a la Arbib and
Manes? We formalize in a functional setting a shape-preservation property
of zips, which is derivable from the definition of zip given in [6]: a zip of
F by G is given by a family of natural isos Fs(GtX)→̃Gt(FsX), where
s: F1 and t: G1. Given such a family one recovers a span (often a relation)
F (GX) ; G(FX), which is defined on arguments where all G-shapes within
the F -shape are the same. This common value is the outer shape of the
result. By contrast, a traversal only considers the shape of F .

Contents. The structure of the paper is as follows. Section 2 reviews the
categorical concepts of functor, monad and functor shapely over lists in the
category Set of sets. Section 3 explores the implications of a polytypic traversal
in a programming language. Section 4 provides a categorical semantics for
traversals and Section 5 for zips in the simplified setting of Set. Section 6
outlines the definition of traversal and zip in a locos.

2 Preliminaries

This section reviews functors, monads and functors shapely over lists. For
simplicity we will work in the category Set of (small) sets and functions.
However, definitions (suitably adapted) and results can be extended to the
more general setting of a locos (see [3]).

Notation. A sequence X0, X1, . . . , Xm−1 of m types, may be written as Xi:m

or even X when m is either clear from the context, or irrelevant. Similar
notation will be used for other sequences below, of functors, terms, etc.

Types for combinators of the form X0 → X1 → . . . → Xm−1 → Y may be
written as sequences X0, X1, . . . , Xm−1 → Y or Xi:m → Y .
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2.1 Functors

We write Functor(m) for the (large) category Setm → Set of m-ary functors
F :Setm → Set and natural transformations. Functors support the polytypic
combinator of mapping

map : ∀m:N.∀F :Functor(m).∀Xi:m, Yi:m:Type.

(Xi → Yi)i:m, F (X)→ F (Y )

and are closed under composition Compm,n:Functor(m),Functor(n)m →
Functor(n). However, general set-theoretic functors are not closed under for-
mation of initial algebra functors, therefore they are not suitable for modeling
“inductive datatypes”.

An alternative to overcome this deficiency is the category wFunctor(m) of ω-
colimit preserving m-ary functors and natural transformations. wFunctor(m)
is a full sub-category of Functor(m), which is closed not only under composi-
tion, but also under formation of initial algebra functors. This means that we
have functors µm:wFunctor(m + 1) → wFunctor(m) and polytypic combi-
nators capturing the initial algebra structures

intro : ∀m:N.∀F :wFunctor(m + 1).∀Xi:m:Type.

F (X, µmF (X))→ µmF (X)

fold : ∀m:N.∀F :wFunctor(m + 1).∀Xi:m, Y :Type.

(F (X, Y )→ Y ), µmF (X)→ Y

Another alternative is provided by the category RegFunctor(m) of regular m-
ary functors and natural transformations. Regular functors are functors which
are isomorphic to those built from constant functors, projection functors, sum
and product functors, by closing under composition and the formation of initial
algebra functors (see [4,10]). A formal grammar for the m-ary regular functors
F :RegFunctor(m), or simply F (m), is:

F (m) : : = 0 | 1 (only if m = 0) constant functors

| Π
(m)
i m-ary extraction, i = 0, . . . , n− 1

| + | × (only if m = 2) binary sum and product functor

| F (k)〈F
(m)
0 , . . . , F

(m)
k−1〉 functor composition

| µF (m+1) the initial algebra functor induced by F

Regular functors support the same combinators (map, intro and fold) as ω-
colimit functors, as they are closed under formation of initial algebra functors.
In the sequel we will show that functors shapely over lists provide an even
better alternative.
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2.2 Monads

The versatility and usefulness of monadic programming has been demon-
strated by several researchers, and this has led the Haskell language designers
to support this programming style by introducing suitable qualified kinds (see
[8]). It is important to keep a clear distinction between computational mon-
ads and datatypes. Computational monads are mainly for structuring control,
while the main purpose of datatypes is for structuring data. We write Monad
for the category of monads T on Set and monad morphisms. There are two
equivalent definitions of monad:

(i) the first defines a monad as a 1-ary functor T equipped with two nat-
ural transformations ηT : X → TX and µT : T 2X → TX satisfying three
equational laws;

(ii) the other defines a monad (more precisely a Kleisli’s triple) as an action
on objects T equipped with two polymorphic operations ηT : X → TX
and −∗

T : (X → TY )→ TX → TY satisfying three equational laws.

Both definitions are easy to formalize in a calculus.

(i) The first definition inherits the map combinator for Functor(1) and adds
the combinators

sng : ∀T :Monad.∀X:Type.X → TX

flat : ∀T :Monad.∀X:Type.T (TX)→ TX

satisfying the equational laws (the last two express naturality)

flatT (sngT u)= u

flatT (mapT sngT u)= u

flatT (mapT flatT u)= flatT (flatT u)

mapT f (sngT x) = sngT (f x)

flatT (mapT (mapT f) u)= mapT f (flatT u)

Here and in the sequel, when instantiating a polytypic combinator, we
make explicit the arity and functor parameters (while type parameters
are left implicit).

(ii) The second definition is more direct and simply adds the combinators

val : ∀T :Monad.∀X:Type.X → TX

let : ∀T :Monad.∀X, Y :Type.(X → TY ), TX → TY

satisfying the equational laws

letT valT = id
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letT f (valT x) = f x

(letT g) ◦ (letT f)= letT ((letT g) ◦ f)

We take the Kleisli’s triple definition as primitive, and adopt the syntax of
[12], namely

[x]T
∆
= valT x letT x⇐e1 in e2

∆
= letT (λx.e2) e1

Moreover, we write letT xi:n⇐ei:n in e as shorthand for

letT x0⇐e0 in (. . . (letT xn−1⇐en−1 in e)).

In this setting a monad morphism σ: S → T is simply a family of functions
〈σX : SX → TX|X ∈ Set〉 satisfying two equational laws

σX [x]S = [x]T σX (letS x⇐e1 in e2) = letT x⇐(σX e1) in (σX e2)

The combinators map, sng and flat can be defined using val and let as follows

mapT f t
∆
= letT x⇐t in [f x]T

sngT t
∆
= [t]T

flatT t
∆
= letT x⇐t in x

2.3 Functors shapely over lists

The notion of functor shapely over lists makes sense in any locos (see [7]), but
for simplicity we consider it only in Set. The paradigmatic example of functor
shapely over lists is the list functor LX =

∐
n:N Xn itself.

Definition 2.1 A natural transformation δ: F → G:C1 → C2 is cartesian
iff the naturality following squares are pullbacks

FY
δY - GY

FX

Ff

6

δX

- GX

Gf

6

The functor Lm:Setm → Set is defined as Lm(X) = L(
∐

i:m Xi). An m-
ary functor shapely over list is a pair (F, δ) s.t. F :Setm → Set and
δ: F → Lm is a cartesian natural transformation. A shapely morphism
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τ : (F, δ)→ (F ′, δ′) between functors shapely over lists is a (cartesian) natural
transformation τ : F → F ′ s.t. δ′ ◦ τ = δ (which implies cartesianity of τ).

ShFunctor(m) is the category of m-ary functors shapely over lists and shapely
morphisms.

Remark 2.2 In [7] there are two definitions of m-ary functor shapely over
lists. One requires a cartesian natural transformation δ: F → Lm as above, the
other requires a cartesian natural transformation δ ′: F → Lm, where Lm(X) =∏

i:m L(Xi). The existence of cartesian natural transformations

∏

i:m

L(Xi)
in- L(

∐

i:m

Xi)
out-

∏

i:m

L(Xi)

rendered the two definitions interchangeable for the purposes of that paper.
However, the existence of such transformations is not enough to establish
an equivalence between categories, since the definition of morphism between
functors shapely over lists is fairly restrictive. For our purposes the definition
in terms of L(

∐
i:m Xi) is preferable, because it provides a global ordering for

traversing the data in F (X).

The functors shapely over lists enjoy many desirable closure properties, like
those we have stated for ω- and regular functors, suitably extended to handle
the cartesian natural transformation δ (see [7]). Therefore, functors shapely
over lists are good candidates for modeling datatype constructors. Section 4.1
further reinforces this claim, by showing that they support interesting poly-
typic combinators (which are unlikely to be available for wider classes of func-
tors). Moreover, there are functors shapely over lists which are not regular,
particularly those representing array types, such as matrices. This is because
the regular functors have a very close relationship to context-free languages
that is not shared by the array functors. Let us elaborate.

Definition 2.3 Given (F, δ) functor shapely over list of arity n, the language
LF over the finite alphabet n (i.e. the set of predecessors of n) is the image of
#F = δ1: F (1)→ L(n). We say that (F, δ) has context-free size iff LF is a
context-free language.

Proposition 2.4 Functors having context-free size are closed under composi-
tion and formation of initial algebras. Regular functors have context-free size.

Proof Let G and each Fi be such functors. Each of the grammars for the
corresponding context-free languages can be chosen so that their sets of non-
terminal symbols are pairwise disjoint. The grammar for G〈F 〉 is obtained by
taking the union of all their productions, with the modification that whenever
the terminal symbol i appears in a production of G then it is replaced by the
start symbol of Fi. Let F have context-free size and arity n+1. The grammar
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for LµF is obtained from that of LF by replacing all occurrences of the symbol
n in productions by the start symbol. The rest is trivial. 2

Corollary 2.5 The square matrix functor given by M(A) =
∐

n:N An∗n is
shapely over lists but not regular.

Proof Clearly M is shapely over lists. The language LM is isomorphic to the
set of squares {n2|n ≥ 0} which is not context-free by a classical application of
the pumping lemma. Hence, M does not have context-free size and so cannot
be a regular functor (in the case of a unary functor F any choice of cartesian
natural transformation δ: F → L induces the same LF ). 2

A functor shapely over lists (F, δ) is determined up to iso by the object of
shapes F (1) and the map δ1: F (1) → Lm(1), where Lm(1) is just L(m) by
definition of Lm. This observation is technically very useful, since one can
work with the simpler category SetL(m) (or Set/L(m)), which is equivalent to
that of m-ary functors shapely over lists, and transfer (categorical) properties
of the first to the latter. For instance, we can say that ShFunctor(m) is
locally small (i.e. the hom-sets are small), because SetL(m) is locally small.

Proposition 2.6 The category SetL(m) is equivalent to ShFunctor(m), and
the equivalence functor from the first to the latter is defined as follows

– a family 〈Cl|l: L(m)〉 = 〈C〈n,i〉|〈n, i〉:
∐

n:N mn〉 of sets is mapped to the func-
tor (F, δ) shapely over Lm, which we call in canonical form.

F :Setm → Set is given by:
· on objects Xi for i: m

F (X) =
∐

n:N,i:mn

(Cn,i ×
∏

j:n

Xi(j))

· on morphisms fi: Xi → Yi for i: m

F f 〈n:N, i: mn, c: Cn,i, x:
∏

j:n

Xi(j)〉 = 〈n, i, c, (λj: n.fi(j) xj)〉

δ: F → Lm is given by:

δX 〈n:N, i: mn, c: Cn,i, x:
∏

j:n

Xi(j)〉 = 〈n, (λj: n.ini(j) xj)〉

– a family 〈h〈n,i〉: C〈n,i〉 → D〈n,i〉|〈n, i〉: L(m)〉 of functions is mapped to the
shapely morphism τ : F → G given by

τX 〈n:N, i: mn, c: Cn,i, x:
∏

j:n

Xi(j)〉 = 〈n, i, (hn,i c), x〉

where F and G are the functors corresponding to 〈C〈n,i〉|〈n, i〉: L(m)〉 and
〈D〈n,i〉|〈n, i〉: L(m)〉.
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The result generalizes to a locos C, provided one takes C/L(m) as the equiv-
alent category.

The list functor preserves all ω-colimits. In Set such colimits are preserved
by pulling back, so that all functors shapely over list have this property, too.
That these functors form a proper subclass of the ω-colimit preserving functors
is illustrated by the finite powers set functor, Pf , whose object of shapes
Pf (1) = 2 is too small to represent all possible shapes of finite sets.

3 Polytypic traversal in programming

Suppose we have a language supporting a polytypic programming style with
the usual polytypic combinators map and fold, i.e.

map : ∀m:N.∀F :Datatype(m).∀Xi:m, Yi:m:Type.

(Xi → Yi)i:m, F (X)→ F (Y )

fold : ∀m:N.∀F :Datatype(m + 1).∀Xi:m, Y :Type.

(F (X, Y )→ Y ), µmF (X)→ Y

For the developments in this section, it is irrelevant what class of functors cor-
responds to the qualified kinds Datatype(m), provided it is closed under the
formation of initial algebra functors. We assume that the language supports
also monadic programming, in particular it has a qualified kind Monad (no
relation is assumed between Datatype(1) and Monad) and combinators

val : ∀T :Monad.∀X:Type.X → TX

let : ∀T :Monad.∀X, Y :Type.(X → TY ), TX → TY.

We outline the advantages of having also a polytypic traversal:

traverse :∀m:N.∀F :Datatype(m).∀T :Monad.∀Xi:m:Type.

F (TXi)i:m → T (F (X))

We illustrate the expressiveness of this polytypic combinator by deriving poly-
typic combinators for monadic fold (e.g. [11]) and monadic map. More surpris-
ingly, the existence of traverse implies that every F :Datatype(m) is equipped
with operations capable of extracting data, and to combine data and shape
into values, frequently those of a functor shapely over lists (see Section 4). Fi-
nally, we consider a simple programming exercise exemplifying the usefulness
of monadic map.

Example 3.1 The types of the polytypic combinators for monadic map and
monadic fold are:
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mmap :∀m:N.∀F :Datatype(m).∀T :Monad.∀Xi:m, Yi:m:Type.

(Xi → TYi)i:m, F (X)→ T (F (Y ))

mfold :∀m:N.∀F :Datatype(m + 1).∀T :Monad.∀Xi:m, Y :Type.

(F (X, Y )→ TY ), µmF (X)→ TY

We show that both of them are definable using traverse (and the polytypic
combinators map and fold). Again, when instantiating a polytypic combina-
tor, we make explicit the arity and functor parameters (while type parameters
are left implicit).

mmapF,T f t = traverseF,T (mapF f t)

mfoldF,T f = foldF f ′ where f ′: F (X, TY )→ TY is given by

f u= letT v⇐(mmapF,T (λx: Xi.[x]T )i:m id u) in fv

Notice that the definition of mmapF,T does not exploit the monad structure of
T , while the definition of mfoldF,T makes essential used of it. Furthermore the
definition of mmapF,T depends only on the instance traverseF,T of the polytypic
traversal, and similarly mfoldF,T depends only on traverseF,T . Finally, one can
recover traverseF,T from mmapF,T (because map preserves identities)

traverseF,T =mmapF,T (λu: TXi.u).

Example 3.2 We show how the existence of traversals allows us to define the
decomposition of a data structure into the list of data, δX : FX → LX, and
the shape, #X : FX → F1 (we consider for simplicity the unary case). This
decomposition is at the basis of the definition of functors shapely over lists
(see section 2.3 and [7]).

Let’s consider the following monad TY = M × Y , where M is the monoid
(LX, @, []), with @ the concatenation of lists and [] the empty list. Note that
the choice of T varies with each choice of datatype X.

The data-shape decomposition for FX is given by:

〈δX , #X〉 = mmapF,T f : FX → LX × F1

where f : X → LX × 1 is defined as f x = 〈[x], ∗〉

Assuming the naturality of traverse w.r.t. the monad parameter (see Sec-
tion 4.1 and Theorem 4.8), we can deduce the naturality of the transformation
δ from F to L. Naturality is one of the properties, beside cartesianity, required
by the definition of functors shapely over lists.

Example 3.3 We can define also the partial inverse to the shape-data decom-
position. Let’s consider the following monad TY = M → (M × Y ) + 1, where
M is the monoid (LX, @, []). Given a shape and a list of data the function
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insert: F1 → LX → FX + 1 fills the shape with the data, failing if either
there is not enough data or there is any data left.

insert = h ◦ (mmapF,T g): F1→ LX → FX + 1

where

mmapF,T : (1→ (LX → LX ×X + 1))→ F1→ LX → LX × FX + 1

and g: 1→ LX → LX ×X + 1 is defined as





g u nil = in1 u

g u (x: : xs) = in0 〈xs, x〉
, i.e.

g is the iso which attempts to decompose a list into its head and tail.

So mmapF,T g: F1 → LX → LX × FX + 1 takes a shape and a list and
returns, if there is enough data to fill the shape, a pair consisting of the rest
of the data and a datatype corresponding to the shape. If there is any data
left over in the list then insert fails, so we represent this by another function
h: LX × FX + 1→ FX + 1.

3.1 An alpha-conversion algorithm for a generic λ-calculus

Alpha-conversion takes a lambda abstraction λx.t and renames the bound
variable to a variable which is not free in t. Generally speaking, α-conversion
denotes the contextual and transitive closure of the relation defined above.

We define a function that renames all the bound variables in a term with
fresh variables (chosen in a suitable way). This guarantees that there will
be no conflict when the term is β-reduced. The function is described using a
pseudo-language which supports traversal and polytypic definitions. Polytypic
definitions allows us to define a function that works not only for terms of a
particular lambda calculus but for a class of extensions of the basic calculus.

The syntax of terms follows the Combinatory Reduction Systems notation (see
[9]), so a term is either a variable, or an abstraction, or a n-ary function symbol
applied to n terms. Thus we define the following type that is parameterized
over a type constructor F , which takes into account the function symbols:

Term = var N | bind N Term | other (F (Term))

where variables are represented by natural numbers. Examples of F include
F (X) = lam X| app X X, for the basic lambda calculus.

In order to define the function that renames all the bound variables, we need
to supply a source of new variable names and a storage for keeping the in-
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formation about the names that have to rename variable occurrences. This is
obtained using the following monad:

S(X) = N × R→ Maybe(X ×N)

where Maybe(X) = X +1 is the error monad, and R = N → Maybe(N) is the
type of a “renaming” function. We can see the monad S as the combination
of a side-effect monad S1(X) = N → (X × N) and a state-reading monad
S2(X) = R → Maybe(X). The side-effect monad supplies the source of new
variable names and the state-reading monad keeps the information about the
names that have to “rename” variable occurrences.

The functions valS and letS associated to the monad S are defined as follows:

[x]S 〈m, r〉= [〈x, m〉]Maybe

(letS x⇐u in f) 〈m, r〉= letMaybe 〈y, n〉⇐u〈m, r〉 in (λx.f) y 〈n, r〉.

The function

aconv: ∀F :Functor(1). T erm→ S(Term)

takes a term and renames each free variable according to the “renaming”
function in the state and each bound variable with a fresh variable according
to the state in the side-effect monad. It distinguishes three cases: if the term is a
variable then it applies the “renaming” function; if the term is an abstraction
then it renames the bound variable with a new fresh variable; otherwise it
traverses the term computing the α-conversion of the sub-terms.

The source of errors comes from the initial state given in input to the aconv
function. The initial state should be the pair 〈m + 1, idm〉: N ×R, where m is
the maximum variable in the term and idm i = if i ≤ m then [i]Maybe else fail.
This means that an error arises when, visiting the term, we find a variable
greater than the maximum fixed in the initial state.

The definition is as follows:

aconv (var i) = λ〈n, r〉.mapMaybe (λj.(var j, n)) (r i)

aconv (bind i t) = λ〈n, r〉.mapMaybe (λ(u, m).(bind n u, m))

(aconv t (n + 1, update i n r))

aconv (other u) = mapS other (mmap aconv u)

where update: N → N → R→ R is

update i j r x = if i == x then [j]Maybe else (r x)

i.e. it updates a “renaming” function r with j for i.
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4 Traversals

This section investigates the semantics of traversals in Set. For the sake of
simplicity, we consider only unary functors (endofunctors), but definitions and
results extend to functors of any arity. Furthermore, the following definitions
and results can be recast in greater generality (see Section 6).

The paradigmatic example of traversal is the traversal (from left to right) of the
list functor L by a monad T . This is the family of maps ζ: L(TX)→ T (LX)
mapping the list (ui: TX|i: n) to letT xi:n⇐ui:n in [(xi: X|i: n)]T .

This traversal suggests several properties that a traversal of a functor F by a
monad T (or by another functor G) ought to satisfy. In particular, the length-
preservation property can be recast as a shape-preservation property. More
precisely, we expect that a traversal ζ: F (GX)→ G(FX) of a functor F by a
functor G should satisfy the property “the F -shape in the result is the same
as that of the argument”. The simplest way of formalizing this property is to
introduce notation for F -data structures with a given shape.

Notation 4.1 Given an endofunctor F :Set→ Set and an F -shape s: F1, the
endofunctor Fs:Set → Set and the natural transformation ins: Fs → F are
defined as follows:

– FsX is the subset {u: FX|F !u = s} of the elements of FX with shape s,
– insX is its inclusion into FX, and
– Fsf is the restriction of Ff to elements of shape s.

Furthermore, a natural transformation τ : F → H and an F -shape s: F1 induce
a natural transformation τs: Fs → Hτ(s) obtained by restricting τX : FX → HX
to FsX. More abstractly, we define Fs, ins and τs as follows

FX
F ! - F1

FsX

ins

∪

6

- 1

s

∪

6
FX

τ - HX

FsX

ins

∪

6

τs

- Hτ(s)X

inτ(s)

∪

6

is immediate to see that [insX |s: F1]:
∐

s:F1 FsX → FX is an iso natural in X.

Definition 4.2 (Traversal) Given endofunctors F and G, a traversal of F
by G is a natural transformation ζX : F (GX) → G(FX) induced by a family
ζsX : Fs(GX) → G(FsX) of natural transformations indexed by s: F1, i.e. for
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every s: F1

F (GX)
ζ- G(FX)

Fs(GX)

ins

∪

6

ζs

- G(FsX)

G(ins)

6

The natural transformation ζ is uniquely determined by the family ζs:F1, but
the converse does not hold in general (namely when G does not preserve monos
like ins), hence it is mathematically more convenient to work with the family
ζs:F1. In the sequel we use traversal to refer (ambiguously) to both ζ and ζs:F1.

Note that in Set almost all monos split, and the functors that do not preserve

monos are quite odd, e.g. GX =





A if X = ∅

1 otherwise

Example 4.3 We reconsider in the light of the above definition the paradig-
matic traversal of the list functor L by a monad T . The set of L-shapes is
L1 = N , whereas the functor Lm is LmX = Xm. Therefore a traversal of L
by T is given by a family ζmX : (TX)m → T (Xm) of natural transformations.
In particular, the family inducing the traversal from left to right is

ui:m

ζmX- letT xi:m⇐ui:m in [xi:m]T

Actually what is used for defining ζm is not the monad structure on T , but the
induced monoidal functor structure, i.e. the natural transformations φ: 1→ T1
and φ: TX × TY → T (X × Y ). Other traversals of L by T can be obtained
by choosing a permutation on m for each m:N, in particular the traversal
defined above corresponds to taking the identity permutation for each m.

4.1 Traversal of functors shapely over lists by monads

In Section 3 we have shown the usefulness of the polytypic combinator

traverse :∀m:N.∀F :Datatype(m).∀T :Monad.∀Xi:m:Type.

F (TXi)i:m → T (F (X)).

In this section we show that such a combinator has a semantic counterpart
when Datatype(m) is the class ShFunctor(m) of functors shapely over lists.
The definition is a simple generalization of the paradigmatic example of traver-
sal from left to right of the list functor by a monad (see Example 4.3). This is
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done by exploiting the equivalence between ShFunctor(m) and SetL(m) (thus
considering only functors shapely over lists in canonical form).

Definition 4.4 Given a functor F shapely over lists (in canonical form) and
a monad T , the traversal ζF,T X

: F (TX) → T (FX) from left to right of F
by T is the natural transformation induced by the family 〈ζF,T,sX

: Fs(TX) →
T (FsX)|s: F1〉 of natural transformations s.t.

ui:m: F〈m,c〉(TX)
ζF,T,〈m,c〉X- letT xi:m⇐ui:m in [xi:m]T

where F corresponds to the family of sets 〈Cm|m ∈ N〉, i.e. FX =
∐

m:N Cm×
Xm, therefore a shape s: F1 is a pair 〈m:N, c: Cm〉 and F〈m,c〉(X) = Xm.

Remark 4.5 Let δ: F → L be a cartesian natural transformation over Set and
ζ the corresponding family of traversals, then the data-shape decomposition
induced by ζ as described in Example 3.2 is 〈δ, F !〉, i.e. one recovers δ from ζ.

The properties of the family 〈ζF,T |F :ShFunctor(1), T :Monad〉 of traversals
given above are summarized by the following theorems. We consider both
higher-order naturality properties, relating traversals for different F s and T s,
and equational properties relating ζF,T to the monad structure on T .

Theorem 4.6 (Local properties) The traversal ζF,T X
: F (TX) → T (FX)

satisfies the properties:

– preservation of values, i.e.

FX

	�
�

�
�

�
F (valT )

F (TX)
ζF,T

- T (FX)

valT

?

– preservation of Kleisli compositions, i.e.

F (T 2X)
ζF,T- T (F (TX))

T (ζF,T )- T 2(FX)

	�
�

�
�

�

flatT

F (TX)

F (flatT )

?

ζF,T

- T (FX)

provided the monad T is commutative, i.e.
letT x1, x2⇐e1, e2 in e = letT x2, x1⇐e2, e1 in e.

Remark 4.7 The above result says that when T is commutative, the traversal
ζF,T X

: F (TX)→ T (FX) is a distributive law in the sense of Arbib and Manes,
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and therefore F extends to a functor on the Kleisli category SetT for T , as
done in [4] (without commutativity we can define an action on morphisms
of SetT , but it fails to preserve composition). Many interesting monads (e.g.
side-effects and exceptions) are not commutative, therefore traversals represent
a useful generalization. For some applications (e.g. parallel programming or
databases) it is quite convenient to restrict to commutative monads, since one
may rearrange the order of evaluation without affecting the final result. On
one hand this leaves greater opportunities for optimization, on the other it
allows to extend traversals beyond functors shapely over lists (e.g. bags).

Theorem 4.8 (Global properties) The family ζF,T X
: F (TX) → T (FX)

satisfies the properties:

– naturality in F , i.e. for any shapely morphism τ : F → G

F (TX)
ζF,T- T (FX)

G(TX)

τ

?

ζG,T

- T (GX)

T (τ)

?

– naturality in T , i.e. for any monad morphism σ: S → T

F (SX)
ζF,S- S(FX)

F (TX)

F (σ)

?

ζF,T

- T (FX)

σ

?

Remark 4.9 In the definition of the category ShFunctor(m) we have taken
as objects pairs (F, δ) consisting of a functor and a cartesian natural trans-
formation. For instance, (L, id) and (L, rev), where rev: LX → LX is the
map reversing a list, are two different objects of ShFunctor(1). Also the no-
tion of shapely morphism should not be overlooked, it is far more restrictive
than a natural transformation, e.g. rev: L→ L is the only shapely morphism
from(L, id) to (L, rev) (in fact these objects are terminal in ShFunctor(1)).
On the other hand, there are infinitely many (cartesian) natural transforma-
tion τ : L→ L.

One may ask whether the family ζF,T satisfies a stronger form of naturality
in F , allowing any natural transformation τ : F → G. The following counter-
example shows that such a requirement is incompatible with many monads.
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Let FX = Xn, GX = 1, and !: FX → 1 be the unique natural transformation.
The stronger naturality property would imply that

(T1)n
ζF,T - T1

1

!

? valT - T1

T !

wwwwwwwwwwwww

i.e. executing n computations has no effect.

The properties we have established for the family of traversals ζF,T do not
characterize it uniquely. However, the way the list functor is traversed by a
monad T , fully determines the traversal of other functors shapely over lists.

Proposition 4.10 If 〈ζ ′
F,sX

: Fs(GX) → G(FsX)|F :ShFunctor(1), s: F1〉 is
a family of traversals by an endofunctor G which is natural in F (in the sense
of Theorem 4.8), then ζ ′

L uniquely determines ζ ′
F .

Proof Let δ: F → L be the cartesian natural transformation which makes
F shapely over lists, i.e. δ: (F, δ) → (L, id) is a morphism in the category
ShFunctor(1). Since ζ ′ is natural in F :ShFunctor(1), we have that

Fs(GX)
ζ ′
F,G,s - G(FsX)

Lδ(s)(GX)

δs

?

ζ ′
L,G,δ(s)

- G(Lδ(s)X)

G(δs)

?

Moreover δs: Fs → Lδ(s) is a natural iso, because δ is cartesian. Therefore ζ ′
F,G,s

is uniquely determined by ζ ′
L,G,δ(s). 2

5 Zips revised

In the introduction we mentioned zips as examples of distributive laws, whose
purpose is to commute the order of two data structures. A well-known example
of zip is the function mapping two lists [ai|i: m] and [bi|i: m] of the same
length to the list of pairs [(ai, bi)|i: m], this is a zip of the product functor
(of arity 2) by the list functor (of arity 1). A polytypic notion of zip has
been investigated in a relational setting by [5,6]. Roughly speaking, a zip
between two relators (i.e. endofunctors in the category of relations) F by G is
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a natural transformation ξX : F (GX) ; G(FX), satisfying certain additional
properties. The paradigmatic example of zip is given by the zip of the list
functor/relator L by itself. This is the family of relations ξX : L(LX) ; L(LX)
relating the list of lists ((xi,j|j: n)|i: m) to ((xi,j|i: m)|j: n). If we fix the lengths
m and n this amounts to transposition of m× n matrices.

As prerequisite for comparing the notion of zip and traversal, we recast the
definition of zip in a functional setting. By analogy with our definition of
traversal, we take as fundamental a shape-preservation property.

Definition 5.1 (Zip) A zip of F by G is a family ξX : F (GX) ; G(FX) of
spans induced by a family ξs,tX

: Fs(GtX)→̃Gt(FsX) of natural isos indexed by
s: F1 and t: G1, i.e. the span F (GX)←

∐
s,t Fs(GtX)→ G(FX) s.t. for each

s: F1 and t: G1

F (GX) �F (int)
F (GtX) �ins

Fs(GtX) ===
ξs,t

Gt(FsX)
int- G(FsX)

G(ins)- G(FX)

The span ξX : F (GX) ; G(FX) is uniquely determined by the family ξs:F1,t:G1,
but the converse does not hold in general, hence it is mathematically more
convenient to work directly with the family ξs:F1,t:G1 of natural isos. In the
sequel we use zip to refer (ambiguously) to both ξ and ξs:F1,t:G1.

Remark 5.2 We have defined zip differently from [5,6] (and in a simpler
setting), nevertheless we have captured the shape preservation property (see
Section 5.3.2 in [6]) and the symmetry between F and G (which explains why
we require the ξs,t to be isos). The other properties of zip given in [6] involve
a class of relators, and therefore cannot be captured in our definition. Once
the definition of zip has been recast in terms of a family of natural isos ξs,t,
it is immediate to see the difference with the definition of traversal. Zips are
inherently symmetric, a zip ξs,t of F by G induces a zip ξ−1

s,t of G by F . When
there is only one G-shape, i.e. G1 = 1, then a zip of F by G is also a traversal
of F by G (but the converse fails).

Example 5.3 We reconsider in the light of the above definition the paradig-
matic zip of the list functor L by itself. Such a zip is induced by the family
of the natural isos ξm,nX

: (Xn)m→̃(Xm)n given by transposition of m×n ma-
trices. Other zips of L by L can be obtained by choosing a permutation on
m× n for each m, n:N.

It is immediate to generalize the paradigmatic example of zip to functors
shapely over lists.

Definition 5.4 Given two endofunctors F and G shapely over lists (and in
canonical form), the zip ξF,GX

: F (GX) ; G(FX) of F by G is the family
of relations induced by the family 〈ξF,G,s,tX

: Fs(GtX)→̃Gt(FsX)|s: F1, t: G1〉
of natural isos given by transposition (Xn)m→̃(Xm)n, where F〈m,c〉(X) = Xm
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and G〈n,d〉(X) = Xn.

Remark 5.5 We now compare the family of zips ξF,G,s,t defined above with
the family of traversals ζF,T,s given in Definition 4.4. Firstly, the family ξF,G,s,t

of zips satisfies a stronger naturality property in F (and G), namely for any
natural transformation τ : F → H between functors shapely over lists

Fs(GtX) ==========
ξF,G,s,t

Gt(FsX)

Hτ(s)(GtX)

τs

?
========
ξH,G,τ(s),t

Gt(Hτ(s)X)

Gt(τs)

?

On the other hand, the family ζF,T,s of traversals is natural in F only w.r.t.
shapely morphisms τ : F → H. Secondly, it is quite easy to extend ξF,G,s,t

beyond functors shapely over lists, e.g. by considering functors of the form
FX =

∐
s:S XEs where E: S → Set is any family of sets, while it seems

unlikely that ζF,T,s can be extended. Finally, when GX = TX = Xn, and so
there is only one G-shape, we have that ξF,G,s,∗ = ζF,T,s.

6 Traversals and Zips in a Locos

In this section we outline how to extend the notion of traversal and zip to a
locos (see [3]). Conceptually there are no difficulties to extend the results from
Set to any locos, once the right definitions are in place.

Functors shapely over lists make sense in a locos, but the notion of traversal
can be defined in the more general setting of a lex-category C (i.e. a category
with finite limits). When Set is replaced by C, a traversal ζ of F by G will
be determined by a family ζs of natural transformations indexed by an object
of C. Therefore, we need to think in terms of fibrations over C.

Definition 6.1 Given a lex-category C, we write Fib(C) for the 2-category
of fibrations over C.

Given an object S ∈ C, we write S for the 2-functor on Fib(C) mapping a
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fibration p:E→ C to the fibration pS:ES → C given by

ES - E

C

pS

?

S ×
- C

p

?

(therefore the fiber ES
I is ES×I), and similarly for C-fibered functors and nat-

ural transformations.

For every C-fibration E there is a C-fibered functor ∆S:E → ES s.t. ∆S,I
∆
=

π∗
1:EI → ES×I.

By abuse of language, we write C for “C fibered over itself”, i.e. the C-
fibration cod:C→ → C.

Remark 6.2 There is an equivalence between endofunctors on Set and Set-
fibered endofunctors on Set fibered over itself, and so one may safely confuse
functors and natural transformations with their Set-fibered counterparts. For
this reason we have decided to confine ourselves to Set in the first part of the
exposition.

Proposition 6.3 The C-fibered functor ∆S:C → CS has a C-fibered left
adjoint ΣS:CS → C. Every C-fibered endofunctor F :C→ C can be described

as a composite C
F̂ - CSF

ΣSF - C, where SF
∆
= F1(1) is the object

of F -shapes and F̂ preserves the unit objects in the fibers.

Proof The C-fibered functor ΣS:CS → C is given by composition, namely

it maps the object X
x - S × I in the fiber CS

I = CS×I to the object

X
x - S × I

π1 - I in CI .

There is only one way to define F̂ to ensure the required properties, since F̂I

must map the morphism

X
! - I

@
@

@
@

@
x

R

I

wwwwwwwwwwwww
in the fiber CI to

FI(X)
FI(!)- FI(1)

@
@

@
@

@
F̂I(x)

R

SF × I

wwwwwwwwwwwww

in the fiber CSF

I = CSF×I. 2

Remark 6.4 Informally speaking, the objects of the C-fibration ES are S-
indexed families of objects in E. Therefore, the C-fibered functor F̂ maps
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objects in C to SF -indexed families of objects. When C is Set, to give a functor
F̂ :Set→ SetF1 is the same as to give a family of functors Fs:F1:Set→ Set.
These considerations suggest that one should recast the set-theoretic definition
of traversal and zip in terms of F̂ .

Definition 6.5 (Traversal) Given C-fibered endofunctors F and G on C, a
traversal of F by G is a C-fibered natural transformation

C
F̂ - CSF

ζ̂
⇒

C

G

?

F̂
- CSF

GSF

?

where SF is the object of F -shapes.

Definition 6.6 (Zip) Given C-fibered endofunctors F and G on C, a zip of
F by G is a C-fibered natural iso

C
F̂ - CSF

ξ̂
⇒

C

Ĝ

?

F̂ SG

- CSF×SG

ĜSF

?

where SF is the object of F -shapes and SG is the object of G-shapes.
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