
Representing Program Logics in Evaluation Logic

Eugenio Moggi∗

DISI, Univ. of Genova, v.le Benedetto XV 3, 16132 Genova, ITALY
moggi@disi.unige.it

Abstract

We consider the representation of three program logics in ELT (Evaluation Logic): V TLoE

(Variable Typed Logic of Effects), modal µ-calculus, Hoare’s Logic. The most interesting result
is the definitional extension of ELT with logical operators inspired by V TLoE. Unlike their
original counterparts, these logical operators make sense for a wide range of programming
languages. In fact, they are defined independently from the interpretation of computational
types, and their logical properties are derivable from the axioms of ELT . Also for the modal
µ-calculus it is possible to give a treatment in terms of ELT far more general than that in
terms of Labelled Transition Systems. We have considered also a representation of Hoare logic
into ELT , but we have not achieved results at the same level of generality reached for V TLoE.

Introduction

Most program logics are tied up to specific programming languages, look rather ad hoc, and
standard logical axioms may be unsound. This state of affairs is not very satisfactory, since it
is time-consuming (even for logicians) to get acquainted with new logics and develop good proof
strategies. On the other hand, Evaluation Logic ELT (see [Mog94b, Mog94a]) is a straightforward
extension of Higher Order Logic HOL, where the dependencies from a programming language are
confined to computational types and auxiliary operations on them. In the same way as one need
Peano’s axioms to prove properties of the natural numbers in HOL, one must first axiomatize
the properties of program constructs (i.e. the auxiliary operations) in ELT , before one can prove
interesting properties of programs written in a given programming language. One may expect that
ELT , because of its generality, is unlikely to express interesting properties of programs (or it may
do so in a clumsy way, as it happens in LCF for non-functional languages).

Our results show that this is not so. Indeed, we consider two paradigmatic program logics,
Variable Typed Logic of Effects V TLoE (see [HMSTar]) and the modal µ-calculus (see [Eme90]),
and define two simple translations of these program logics into ELT . Moreover, we show that the
logical axioms for these program logics can be validated in ELT from almost no assumptions. This
is in sharp contrast with the usual way they are validated, i.e. by appealing to a satisfaction relation
defined in terms of an operational semantics (for an ML-like language in the case of V TLoE, and
for a CCS-like language in the case of the modal µ-calculus).

The most interesting result is the definitional extension of ELT with logical operators inspired
by V TLoE. Unlike their original counterparts, these logical operators make sense for a wide range
of programming languages. In fact, they are defined independently from the interpretation of
computational types, and their logical properties are derivable from the axioms of ELT . Also for
the modal µ-calculus it is possible to give a treatment in terms of ELT far more general than that
in terms of Labelled Transition Systems. We have considered also a representation of Hoare logic
into ELT , but we have not achieved results at the same level of generality reached for V TLoE.

∗This work is supported by ESPRIT BRA 6811 (Categorical Logic In Computer Science II), EC SCIENCE
twinning ERBSC1*CT920795 (Progr. Lang. Semantics and Program Logics) and HCM Scientific Cooperation
Network CHRX-CT93-0046 (Lambda Calcul Typé)

1

In summary, ELT seems quite good for expressing modalities present in various program logics
(with the exception of temporal logics), and even at validating their logical properties. Of course,
one cannot expect to validate in pure ELT properties that are programming language dependent.
In this case one can only hope to validate them in some suitable ELT -theory, which axiomatize
the relevant assumptions about the programming language (e.g. see the section on Hoare logic).

The paper is organized as follows. Section 1 reviews the syntax and axioms of ELT . Section 2
recall the original semantics of V TLoE, introduces the representation of V TLoE into ELT , and
investigates its main properties. Section 3 investigates briefly the representations of Minimal
Modal Logic and Hoare Logic into ELT . For each of the representations considered in the paper,
we discuss at the end of the relevant section what are the main open issues.

1 Syntax and axioms of ELT

Evaluation logicELT is a conservative extension of (dependently) typed predicate calculus obtained
by adding computational types. Its equational calculus is the metalanguage for computational
monads MLT . We adopt the setting of [Mog94a], where the evaluation modalities of [Pit91] turn
out to be definable. The syntactic categories of ELT are (dependent) types, terms and formulas.

• Γ ` τ type means “τ is a type in context Γ”. Types are closed under the rule

(T)
Γ ` τ type

Γ ` Tτ type

Tτ is called a computational type, and terms of type Tτ should be thought of as programs
which return values of type τ . Contexts are built from the empty context ∅ using the rule

(add)
Γ ` τ type

Γ, x: τ `
x 6∈ DV(Γ) where DV(Γ) is the set of variables declared in Γ.

• Γ ` e: τ means “e is a term of type τ in context Γ”. Terms are closed under the rules

(lift)
Γ ` e: τ

Γ ` [e]:Tτ
(let)

Γ ` e1:Tτ1 Γ, x: τ1 ` e2:Tτ2

Γ ` (let x⇐e1 in e2):Tτ2
x 6∈ FV(τ2)

Intuitively the program [e] simply returns the value e, while (let x⇐e1 in e2) first evaluates
e1 and binds the result to x, then evaluates e2.

• Γ ` φ prop means “φ is a formula in context Γ”. Formulas are closed under the rules

(necessity)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` [x⇐e]φ prop

(possibility)
Γ ` e:Tτ Γ, x: τ ` φ prop

Γ ` 〈x⇐e〉φ prop

(evaluation)
Γ ` e:Tτ Γ ` v: τ

Γ ` e⇓v prop

Intuitively the formula [x⇐e]φ means that every possible result of program e satisfies φ,
〈x⇐e〉φ means that some possible result of program e satisfies φ, and e⇓v means that v is
one possible result of program e.

• Γ ` Φ =⇒ φ means “Φ entails φ”, where Φ is a finite set of formulas.

Notation 1.1 We may use the following derived notation:

• “let x⇐e in e” for “let x1⇐e1 in (. . . (let xn⇐en in e) . . .)”

• “〈x⇐ e, e〉” for “let x⇐e in (let x⇐e in [〈x, x〉])”

• “e1; e2” for “let x⇐e1 in e2”, where x 6∈ FV(e2).

A model of ELT consists of a quasi-topos C, e.g. the category Set of sets, with a fibered monad T
over cod: C→ → C. However, models play only a marginal role for the purposes of the paper.

2

Valid rules. In these models the logical rules for extensional Intuitionistic HOL and the equa-
tional rules below are sound, where [e/x] is substitution of e for x in (with suitable renaming
of bound variables in):

• (let.ξ)
Γ, x: τ1 ` e1 =Tτ2

e2

Γ, c:Tτ1 ` (let x⇐c in e1) =Tτ2
(let x⇐c in e2)

x 6∈ FV(τ2)

• (ass) Γ ` let x2⇐(let x1⇐e1 in e2) in e3 =Tτ3
let x1⇐c1 in (let x2⇐e2 in e3) x2 6∈ FV(e3)

• (T.β) Γ ` let x⇐[e1] in e2 =Tτ2
[e1/x]e2

• (T.η) Γ ` let x⇐e in [x] =Tτ e

Definability results and derived rules. Modalities and evaluation predicate are definable
using subset types and higher order quantifiers:

• Γ, c:Tτ ` ([x⇐c]φ)
∆
≡ ∃c′:T ({x: τ |φ}).c =Tτ let x′⇐c′ in [i(x′)]

where Γ, x′: {x: τ |φ} ` i(x′): τ is the inclusion of {x: τ |φ} into τ

• Γ, c:Tτ, x: τ ` (c⇓x)
∆
≡ ∀X : Ωτ .([x⇐c]X(x)) ⊃ X(x)

where Ω is the type of truth values

• Γ, c:Tτ ` (〈x⇐c〉φ)
∆
≡ ∀w: Ω.([x⇐c](φ ⊃ w)) ⊃ w.

The following rules for necessity are derivables from the equational rules for computational types
(in extensional Intuitionistic HOL with subset types):

• (2->*) Γ, c:Tτ ` [x⇐c]>

• (2-=⇒)
Γ, x: τ ` Φ, φ =⇒ ψ

Γ, c:Tτ ` Φ, [x⇐c]φ =⇒ [x⇐c]ψ
x 6∈ FV(Φ)

• (2-T)
Γ, x: τ1 ` e: τ2 Γ, y: τ2 ` φ prop

Γ, c:Tτ1 ` [x⇐c]([e/y]φ) =⇒ [y⇐(let x⇐c in [e])]φ

• (2-=) Γ, c:Tτ1 ` [x⇐c](e1 =τ2
e2) =⇒ (let x⇐c in [e1]) =Tτ2

(let x⇐c in [e2]) x 6∈ FV(τ2)

• (2-η) Γ, x: τ ` φ =⇒ [x⇐[x]]φ

Additional rules. In some cases one wants to consider additional axioms for necessity, which
hold only under further assumptions about T (see [Mog94b]). Here is a sample of these axioms:

• if T preserves subobjects, then

(2-µ) Γ, c:T 2τ ` [y⇐c]([x⇐y]φ) =⇒ [x⇐(let y⇐c in y)]φ

• if T preserves finite intersections (of subobjects), then

(2-∧*) Γ, c:Tτ ` [x⇐c](φ1 ∧ φ2) ⇐⇒ ([x⇐c]φ1) ∧ ([x⇐c]φ2)

• (2-⊃*) Γ, c:Tτ ` [x⇐c](φ1 ⊃ φ2) ⇐⇒ φ1 ⊃ ([x⇐c]φ2) x 6∈ FV(φ1)

• if T preserves inverse images (of subobjects), then

(2-T*)
Γ, x: τ1 ` e: τ2 Γ, y: τ2 ` φ prop

Γ, c:Tτ1 ` [x⇐c]([e/y]φ) ⇐⇒ [y⇐(let x⇐c in [e])]φ

• if the unit η of T is monic, then

(2-η*) Γ, x: τ ` φ ⇐⇒ [x⇐[x]]φ

When we need to assume some of these additional axioms, it will be explicitly said.

3

2 Representing V TLoE into ELT

2.1 A brief summary of V TLoE

We recall the features of V TLoE relevant for the purposes of this paper, a complete account can
be found in [MT92, HMSTar] (we have not considered V TLoE classes). Talcott and Mason (see
[Tal93]) are currently investigating localized semantics of V TLoE, which differ in the interpretation
of universal quantification. Our translation of V TLoE in ELT can validate axioms that are not
true in the original semantics of V TLoE, but are valid in the localized semantics.

2.1.1 Syntax and operational semantics of λmk

λmk is an untyped variant of Standard ML with references. To keep the presentation as simple as
possible, we consider a variant of λmk without atoms and pairs.

x ∈ X : = . . . variables
fn ∈ Fn : = . . . n-ary primitive operations
v ∈ V : = x | λx.e values
e ∈ E : = v | e0e1 | fn(e1, . . . , en) expressions

The primitive memory operations are: cell creation and initialization mk(x), dereferencing get(x)
and assignment set(x, y) (written also x: = y). One may consider other primitive operations such
as: test whether a value is a cell cell(x) and test equality of cells eq(x, y). In the sequel we need only
the primitive memory operations. Moreover, we may use some standard notation from call-by-value
λ-calculus, e.g. we write “let{x = e1}e2” for “(λx.e2)e1”.

Notation 2.1 For defining the operational semantics and the satisfaction relation [HMSTar] in-
troduces memory contexts µ ∈ M, which provide a syntactic representation for states, and value
substitutions σ ∈ S, which correspond to environments.

• A value substitution σ ∈ S is a function from a finite subset of X to V.

We write DV(σ) for the domain of σ (the declared variables) and FV(σ) for the set of
variables free in some element of the codomain of σ. We write [v/x]e for the expression
obtained by substituting x with v in e, and eσ for the expression obtained by applying the
value substitution σ in parallel.

• A memory context µ ∈ M is a sequence {x1: = v1, . . . , xn: = vn} s.t. the variables xi are
distinct and FV(vi) ⊆ {x1, . . . , xn} for each i ≤ n.

We write DV(µ) for {x1, . . . , xn} and µ(xi) for vi. Intuitively, each x ∈ DV(µ) corresponds
to a location, whose stored value is µ(x). When FV(v) ⊆ DV(µ), we write µ{x: = v} for the
memory context µ′ s.t. µ′(x) = v and µ′(x′) ' µ(x′) (' is Kleene’s equality) for any x′ 6= x.

• A description is a pair µ; e, where µ ∈ M and e ∈ E s.t. FV(e) ⊆ DV(µ). A value
description µ; v is a description in which v is a value.

We give a big step operational semantics ⇒ for λmk, i.e. a (functional) relation between descriptions
and value descriptions, which is equivalent to the small step operational semantics 7→ in [HMSTar].

Definition 2.2 (Operational semantics) ⇒ is the smallest relation closed under the rules:
(val) µ0; v⇒µ0; v

(app)
µ0; e0⇒µ1; (λx.e) µ1; e1⇒µ2; v1 µ2; [v1/x]e⇒µ3; v

µ2; (e0e1)⇒µ3; v

(mk)
µ0; e⇒µ1; v

µ0;mk(e)⇒µ1{x: = v};x
x 6∈ DV(µ)

(get)
µ0; e⇒µ1;x

µ0; get(e)⇒µ1;µ1(x)

4

(set)
µ0; e0⇒µ1;x µ1; e1⇒µ2; v

µ0; set(e0, e1)⇒µ2{x: = v}; v
We write µ; e ⇓, when µ; e⇒µ′; v for some value description µ′; v. Operational equivalence is

the congruence ∼= over E s.t. e0 ∼= e1
∆

⇐⇒ ∅;C[e0] ⇓ iff ∅;C[e1] ⇓ for every closing context C[].

2.1.2 Syntax and satisfaction relation of V TLoE

V TLoE is basically First Order Logic on top of λmk extended with a modality similar to the
necessity modality of Dynamic Logic.

φ ∈ W : = e1 ∼= e2 | {x⇐ e}φ | φ1 ⊃ φ2 | ∀x.φ contextual assertions

Remark 2.3 The original definition of contextual assertion uses allows formulas of the form U [[φ]],
where U is a univalent context. However, one may restrict without loosing expressiveness to
univalent contexts of the form let{x = e} , in this case we write “{x⇐ e}φ” for “U [[φ]]”.

Other logical connectives and quantifies are defined as in classical logic using ⊃, ∀ and ⊥, where
⊥ is some unsatisfiable assertion, e.g. (λx, y.x) ∼= (λx, y.y).

V TLoE differs from Dynamic Logic for two aspects: the underlying programming language is
λmk (instead of a simple while-language), it is based on predicate (rather than propositional) logic.

Satisfaction |= is a relation on the set of triples (µ, σ, φ) s.t. FV(σ) ⊆ DV(µ) and FV(φ) ⊆ DV(σ).
We write µ |= φ[σ] for (µ, σ, φ) ∈|=.

Definition 2.4 (Satisfaction relation) µ |= φ[σ] is defined (using the operational semantics)
by structural induction on φ:

• µ |= (e1 ∼= e2)[σ]
∆

⇐⇒ µ; v(eσ
0 ⇓) iff µ; v(eσ

1 ⇓) for every v ∈ V s.t. FV(v) ⊆ DV(µ)

• µ |= ({x⇐ e}φ)[σ]
∆

⇐⇒ µ; e⇒µ′; v and µ′ |= φ[σ{v/x}] for some µ′ ∈ M and v ∈ V

• µ |= (φ1 ⊃ φ2)[σ]
∆

⇐⇒ µ |= φ1[σ] implies µ |= φ2[σ]

• µ |= (∀x.φ)[σ]
∆

⇐⇒ µ |= φ[σ{v/x}] for every v ∈ V s.t. FV(v) ⊆ DV(µ)

We say that φ is valid (|= φ)
∆

⇐⇒ µ |= φ[σ] for every µ ∈ M and σ ∈ S s.t. FV(σ) ⊆ DV(µ) and
FV(φ) ⊆ DV(σ).

Remark 2.5 The definition of the satisfaction relation differs from [HMSTar] only in irrelevant
details, due to the use of a big step operational semantics. [HMSTar] proves a basic (but not
trivial) consistency result between validity and operational equivalent, i.e. |= e0

∼= e1 iff e0 ∼= e1

The logical rules validated by the above semantics are:

• (R) ` e0 ∼= e1 =⇒ R[e0] ∼= R[e1] R reduction context

in first approximation a reduction context is a context of the form let{x = }e

• (ucx.eq) ` e0 ∼= e1, {x = e0}φ =⇒ {x = e1}φ

this axiom is valid only in the localized semantics of [Tal93]

• (ca.i)
` φ

` U [[φ]]
U univalent context

univalent contexts could be identified with contexts of the form let{x = e}

• (ca.ii) ` U [[e0 ∼= e1]] =⇒ U [e0] ∼= U [e1]

• (ca.iii) ` U0[[U1[[φ]]]] =⇒ U0[U1][[φ]]

• (con.triv) ` U [[⊥]] =⇒ U [[φ]]

5

• (con.not) ` U [[¬φ]] ⇐⇒ (U [[⊥]] ∨ ¬U [[φ]])

• (con.imp) ` U [[φ1 ⊃ φ2]] ⇐⇒ (U [[φ1]] ⊃ U [[φ2]])

• (con.∀) ` U [[∀x.φ]] =⇒ ∀x.U [[φ]] x 6∈ FV(U)

• (=⇒.∀)
` Φ =⇒ φ

` Φ =⇒ ∀x.φ
x 6∈ FV(Φ)

• (=⇒.{ })
` Φ =⇒ {x = e}φ0 ` φ0 =⇒ φ1

` Φ =⇒ {x = e}φ1

2.2 Translation of λmk in MLT (Σ)

According to the monadic approach (see [Mog91]) the semantics of a programming language should
factor through the metalanguage MLT (Σ) for computational monads over a suitable signature. In
the case of λmk we use the following signature Σ (used also for translating V TLoE into ELT (Σ)):

• primitive types

L locations, V values

• primitive functions

ref :V → TL cell creation and initialization,
lkp:L→ TV dereferencing,
upd:L, V → T1 assignment,
in: (L+ (TV)V) → V , out:V → (L+ (TV)V)
describing the isomorphism V ∼= L+ (TV)V ;

auxiliary constant

⊥V :TV diverging computation.

We define a translation ()∗ mapping an expression e of λmk with n free variables into a term e∗

of MLT (Σ) with the same free variables and type TV (when the free variables have type V).

Definition 2.6 (Translation) The term e∗ is defined by structural induction on e:

x∗
∆
= [x]

(λx.e)∗
∆
= [in2(λx:V.e

∗)]

(e0e1)
∗ ∆

= let x0, x1⇐e∗0, e
∗
1 in case out(x0) of

in1(l) ⇒ ⊥V | in2(f) ⇒ fx1

mk(e)∗
∆
= let x⇐e∗ in let l⇐ref(x) in [in1(l)]

get(e)∗
∆
= let x⇐e∗ in case out(x) of

in1(l) ⇒ lkp(l) | in2(f) ⇒ ⊥V

set(e0, e1)
∗ ∆

= let x0, x1⇐e∗0, e
∗

1 in case out(x0) of
in1(l) ⇒ upd(l, x1); [x1] | in2(f) ⇒ ⊥V

where in1:L→ V and in2: (TV)V → V are the restrictions of in to each of the two components of
L+ (TV)V . ⊥V is used to indicate non-termination because of type error.

Proposition 2.7 (Computational Adequacy) There is a model of MLT (Σ), which gives a
computationally adequate model of λmk via ()∗.

Proof The simplest way to give a denotational model of λmk and prove computational adequacy
for it is by translating λmk into FPC1 (see [FP93]), and by showing that the operational semantics

1FPC is basically the pure functional part of Standard ML.

6

of λmk can be reduced to that of FPC. Therefore, any computational adequate model of FPC,
e.g. the interpretation in the category of cpos will induce (via the translation) a computationally
adequate model of λmk. For instance, in the induced model in the category of cpos the interpre-
tation of primitive types (L and V) and computational types TX is given by the least solution to
the following domain equations:

L =N ∼= 1 +N the set of natural numbers
V =L+ (V → TV)
S =Σm:N.V m ∼= 1 + (S×V)
TX=S → (X×S)⊥

The interpretation of ref :V → TL is given by ref(v)
∆
= λ〈m, s〉:S.〈m, 〈m + 1, s[m: = v]〉〉, while

that of lkp:L→ TV and upd:L, V → T1 is a variation of that for the monad of side-effects.

2.3 Translation of V TLoE in ELT (Σ)

The translation ()∗ establishes a correspondence between expression of λmk with n free variables
and function from V n to TV in MLT (Σ). This correspondence can be extended to other syntactic
categories of V TLoE as follows:

• a memory context µ creating m locations is mapped to a computation µ∗ of type T (Lm)

• a value substitution σ associating n variables to value expressions involving m locations is
mapped to a function σ∗ from Lm to V n

• a contextual assertion φ with n free variables is mapped to a predicate φ∗ over T (V n).

In this way the operationally defined satisfaction relation µ |= φ[σ] can be expressed in ELT (Σ)
by the closed formula φ∗(let l̄⇐µ∗ in [σ∗(l̄)]). The above correspondence suggests a definitional
extension of ELT , which introduces the logical operators of V TLoE.

Definition 2.8 We define the following (derived) predicate constructors:

• ∼= : (TY)X , (TY)X → ΩTX

(∼=)
x:X ` ei:TY (i = 1, 2)

c:TX ` (x:X.e1 ∼= e2)(c)
∆

⇐⇒ 〈x ⇐ c, e1〉 =T (X×Y) 〈x ⇐ c, e2〉

where 〈x ⇐ c, e〉 stands for let x⇐c in (let y⇐e in [〈x, y〉])

• { } : (TY)X ,ΩT (X×Y) → ΩTX

({ })
x:X ` e:TY c′:T (X×Y) ` φ(c′)

c:TX ` ({x:X.e}φ)(c)
∆

⇐⇒ φ(〈x ⇐ c, e〉)

• �∗ : ΩTX ,ΩTX → ΩTX , where � is a binary logical connective

(�∗)
c:TX ` φi(c) (i = 1, 2)

c:TX ` (φ1 �∗ φ2)(c)
∆

⇐⇒ φ1(c) � φ2(c)

• ∀∗Y : ΩT (X×Y) → ΩTX

(∀∗Y)
c′:T (X×Y) ` φ(c′)

c:TX ` (∀∗Y φ)(c)
∆

⇐⇒ (∀c′:T (X×Y).(let x, y⇐c′ in [x]) =TX c ⊃ φ(c′))

We extend the translation ()∗ of λmk to the contextual assertions of V TLoE.

7

Definition 2.9 (Translation) The predicate φ∗

x̄, where x̄ is a list of variables including those in
FV(φ), is defined (via the derived operators) by induction on the structure of φ:

(e1 ∼= e2)
∗

x̄

∆
= (x̄:V.e∗1

∼= e∗2)

({x⇐ e}φ)∗x̄
∆
= {λx̄:V.e∗}φ∗x̄,x

(φ ⊃ ψ)∗x̄
∆
= (φ∗x̄) ⊃∗ (ψ∗

x̄)

(∀x.φ)∗x̄
∆
= ∀∗V (φ∗x̄,x)

Remark 2.10 In V TLoE falsity is defined in terms of ∼=. In ELT one could proceed similarly

by defining ⊥∗(c)
∆

⇐⇒ (x:X.e0 ∼= e1)(c) for suitable expressions ei, but there are other plausible
definitions: [x⇐c]⊥ and ⊥. These formulas are related by the following entailments:

c:TX ` ⊥ =⇒ [x⇐c]⊥ =⇒ (x:X.e1 ∼= e2)(c)

⊥∗(c)
∆

⇐⇒ ⊥ is the most natural choice, and it is consistent with the definition of �∗. In V TLoE
other useful logical operators, e.g. the S4-like modality · , are definable from those above. Similarly,

in ELT ·
∗
: ΩTX → ΩTX can be defined as (·

∗
φ)(c)

∆
⇐⇒ ∀f : (T1)X .φ(〈x ⇐ c, f(x)〉).

Remark 2.11 The correspondence between memory contexts µ creating m locations and closed
terms c of type T (Lm) is a bit loose, i.e. there are terms which do not correspond to a memory
context. For instance, c may return an m-uple of locations with repetitions, or it may diverge.
On this basis, it seems more accurate to map contextual assertions into formulas over a subset of
TX , by relativizing the translation w.r.t. a predicate goodX : ΩTX s.t. goodV n(let l̄⇐µ∗ in [σ∗(l̄)])
for every µ ∈ M and σ ∈ S with FV(σ) ⊆ DV(µ), e.g.

c: {c:TX |goodX(c)} ` ({x:X.e}φ)(c)
∆

⇐⇒ goodX×Y (〈x ⇐ c, e〉) ⊃ φ(〈x ⇐ c, e〉)

For deterministic languages, a plausible choice for good(c) is 〈x⇐c〉>, i.e. “c terminates”.

It seems difficult to relate the operationally defined validity to provability in ELT (Σ). However,
one can show that φ∗ derivable implies |= φ, when φ is of the form (e1 ∼= e2). This follows from an
internal consistency property for ∼= and the existence of computationally adequate models.

Proposition 2.12 (Internal Consistency) The following birule is derivable

(=-∼=)
x:X ` e1 =TY e2

c:TX ` (x:X.e1 ∼= e2)(c)

Proposition 2.13 (Computational Adequacy) There is a model of ELT (Σ), which gives a
computationally adequate model of λmk via ()∗.

Proof The model of MLT (Σ) given by Proposition 2.7 cannot be extended to ELT , as the category
of cpos is not a quasi-topos. But we can take a quasi-topos C which contains the category cpos
as a full sub-biCCC, keep the interpretation of Σ as in cpos, and extend the interpretation of
computational types using the fibered monad TX = S → (X×S)⊥. A possible choice for C is
the quasi-topos of ω-sets (see [Mog94a]), since the category of effectively given Scott domains and
computable maps is a full sub-biCCC of it.

Proposition 2.14 Given a model M of ELT (Σ), which gives a computationally adequate model
of λmk via ()∗, then (x̄:V.e∗1

∼= e∗2) true in M implies |= e1 ∼= e2 (in V TLoE).

Proof We have the following sequence of entailments:

• c:T (V n) ` (x̄:V.e∗1
∼= e∗2)(c) valid in M implies, by Proposition 2.12

• x̄:V ` e∗1 = e∗2 valid in M implies, by M computationally adequate

• e1 and e2 operationally equivalent implies, by a result in [HMSTar]

• |= e1 ∼= e2 in V TLoE.

8

2.4 Provable properties of V TLoE logical operators

In this section we give the most interesting properties of V TLoE logical operators, which are
provable in ELT , and discuss possible mismatches between truth in the proposed semantics of
V TLoE and provability in ELT . For each logical rule of V TLoE, we say whether its translation
is derivable in ELT , and give a corresponding derivable rule in ELT .

Notation 2.15 We use the following shorthand for ELT sequents: when φi (i = 1, . . . , n) and φ are
closed terms of type ΩTX , then we write ` φ1, . . . , φn =⇒ φ for c:TX ` φ1(c), . . . , φn(c) =⇒ φ(c).

• (R)
x:X ` ei:TY x:X, y:Y ` e:TZ

` (x:X.e0 ∼= e1) =⇒ (x:X.(let y⇐e0 in e) ∼= (let y⇐e1 in e))

• (ucx.eq)
x:X ` ei:TY

` (x:X.e0 ∼= e1), ({x:X.e0}φ) =⇒ ({x:X.e1}φ)
φ: ΩT (X×Y)

• (ca.i)
x:X ` e:TY ` ∅ =⇒ φ

` ∅ =⇒ {x:X.e}φ
φ: ΩT (X×Y)

• (ca.ii)
x:X ` e:TY x:X, y:Y ` ei:TZ

` {x:X.e}(x, y:X×Y.e0 ∼= e1) =⇒ (x:X.(let y⇐e in e0) ∼= (let y⇐e in e1))

• (ca.iii)
x:X ` e0:TY x:X, y:Y ` e1:TZ

` {x:X.e0}{x, y:X×Y.e1}φ =⇒ {x:X.〈y ⇐ e0, e1〉}φ
φ: ΩT (X×Y×Z)

• (con.triv)
x:X ` e:TY

` {x:X.e}⊥∗ =⇒ {x:X.e}φ
φ: ΩT (X×Y)

the rule (triv) is derivable when ⊥∗(c) = ⊥, but it is not derivable for the other definitions
of ⊥∗ considered in Remark 2.10, unless the translation is relativized using a predicate good
s.t. c:TX ` good(c),⊥∗(c) =⇒ ⊥

• (con.not)
x:X ` e:TY

` {x:X.e}(¬∗φ) ⇐⇒ ({x:X.e}⊥∗) ∨∗ ({x:X.e}φ)
φ: ΩT (X×Y)

(con.not) is not derivable in ELT , since it relies on classical logic

• (con.imp)
x:X ` e:TY

` {x:X.e}(φ1 ⊃∗ φ2) ⇐⇒ ({x:X.e}φ1) ⊃∗ ({x:X.e}φ2)
φ1, φ2: Ω

T (X×Y)

• (con.∀)
x:X ` e:TY

` {x:X.e}(∀∗Zφ) =⇒ ∀∗Z({x, z:X×Z.e}φ)
φ: ΩT (X×Z×Y)

• (=⇒.∀)
` (c′:T (X×Y).Φ(let x, y⇐c′ in [x])) =⇒ φ

` Φ =⇒ ∀∗Y φ
Φ: ΩTX , φ: ΩT (X×Y)

this is the translation of the V TLoE rule (=⇒.∀)
` Φ =⇒ φ

` Φ =⇒ ∀x.φ
x 6∈ FV(Φ)

• (=⇒.{ })
x:X ` e:TY ` Φ =⇒ {x:X.e}φ0 ` φ0 =⇒ φ1

` Φ =⇒ {x:X.e}φ1

Φ: ΩTX , φi: Ω
T (X×Y)

The rules above (unless stated otherwise) are derivable using only the three equational rules of
ELT and standard reasoning in first order logic. We give in details the more interesting derivations.

Proposition 2.16 The rules (R) and (ucx.eq) are derivable in ELT .

9

Proof For (R) we must derive 〈x ⇐ c, (let y⇐e0 in e)〉 = 〈x ⇐ c, (let y⇐e1 in e)〉 from 〈x ⇐ c, e0〉 =
〈x ⇐ c, e1〉. This is immediate by 〈x ⇐ c, (let y⇐ei in e)〉 = let x, y⇐〈x⇐ c, ei〉 in let z⇐e in [〈x, z〉],
which follows from the equational rules of ELT .

For (ucx.eq) we must derive φ(〈x ⇐ c, e1〉) from 〈x ⇐ c, e0〉 = 〈x ⇐ c, e1〉 and φ(〈x ⇐ c, e0〉).
This is immediate by congruence.

Also the rules (ca) are easy consequences of the equational rules of ELT .

Proposition 2.17 The rules (con.∀) and (=⇒.∀) are derivable in ELT .

Proof For (con.∀) we must derive ∀c1:T (X×Z).(let x, z⇐c1 in [x]) = c ⊃ φ(〈x, z ⇐ c1, e〉) from
∀c2:T (X×Z×Y).(let x, z, y⇐c2 in [〈x, y〉]) = 〈x ⇐ c, e〉 ⊃ φ(c2). Take any c1:T (X×Z) s.t.

(let x, z⇐c1 in [x]) = c, and let c2
∆
= 〈x, z ⇐ c1, e〉:T (X×Z×Y), then we must derive φ(c2).

For this it suffices to show that (let x, z, y⇐c2 in [〈x, y〉]) = 〈x ⇐ c, e〉:

• let x, z, y⇐c2 in [〈x, y〉] = by definition of c2

• let x, z, y⇐〈x, z ⇐ c1, e〉 in [〈x, y〉] = by definition of 〈x ⇐ , 〉

• let x, z, y⇐(let x, z⇐c1 in let y⇐e in [〈x, z, y〉]) in [〈x, y〉] = by the equational rules of ELT

• let x, z⇐c1 in let y⇐e in [〈x, y〉] = by the equational rules of ELT , since z 6∈ FV(e)

• let x⇐(let x, z⇐c1 in [x]) in let y⇐e in [〈x, y〉] = by the assumption on c1

• let x⇐c in let y⇐e in [〈x, y〉] = by definition of 〈x⇐ , 〉

• 〈x⇐ c, e〉.

For (=⇒.∀) we must derive ∀c′:T (X×Y).(let x, y⇐c′ in [x]) = c ⊃ φ(c′) from Φ(c) for any c:TX ,
under the assumption that c′:T (X×Y) ` Φ(let x, y⇐c′ in [x]) =⇒ φ(c′). Take any c′:T (X×Y) s.t.
(let x, y⇐c′ in [x]) = c, then we must derive φ(c′).

• Φ(let x, y⇐c′ in [x]) by assumption on c′ and the hypothesis Φ(c)

• φ(c′) by cut with the assumption c′:T (X×Y) ` Φ(let x, y⇐c′ in [x]) =⇒ φ(c′).

2.5 Open issues

The problem regarding V TLoE is how to construct good models, i.e. models capable of validating
(most of) the non-logical axioms. We have not been able to adapt models based on functor
categories for Algol-like languages (see[Ole85, OT92, OT93]) or for dynamic creation of names (see
[Mog89, PS93]). What follows briefly explains the source of the difficulties.

A suitable functor category for modeling Algol-like languages and languages with dynamic cre-
ation of names is CpoI , where I the the category of finite cardinals and injective maps, while Cpo
is the category of posets with sups of ω-chains and monotonic maps preserving these sups. CpoI

shares with Cpo all categorical properties which makes it suitable for denotational semantics: lim-
its, colimits, exponentials, Cpo-enrichment, lifting. Moreover, in CpoI one can interpret the type
L of locations as the inclusion functor of I into Cpo (which represents a substantial improvement
over the simple-minded interpretation of L as the natural number object N). Given an O-monad
T over Cpo (i.e. a monad in the enriched sense) and an object V ∈ Cpo (of storable values) one
can define an O-monad TV (over CpoI) for computations with local variables of type V :

• TVXm
∆
= V m⇒T (Xm×V m)

• TVX(f :m ↪→ m + n)(c:TV Xm)([sm, sn]:V m+n)
∆
= letT 〈x, s′m〉⇐c(sm) in [〈Xfx, [s′m, sn]〉]T ,

where [sm, sn]:V m+n is obtained by merging sm:V m and sn:V n. For simplicity, we have
taken f to be the inclusion of m into m+ n.

10

Given an object V ∈ CpoI one could define, by analogy with the above definition, a more complex
O-monad T ′

V for computations which dynamically create variables of type V .
Therefore, to model λmk one would like to find a V ∈ CpoI s.t. V ∼= V⇒T ′

V V , i.e. one would
like to define V and T ′

V by mutal recursion. However, this cannot be done by the standard technique
of embedding-projection, because U embedded in V does not imply that T ′

UX is embedded in T ′

VX .
The problem shows up already for the simpler monad TV . In fact, an embedding e:U → V in Cpo
induces an obvious embedding eX,m:TUXm → TV Xm (in Cpo), but eX,m is not natural in m
(though the corresponding projection eR

X,m is).

3 Representing other program logics

3.1 The modal µ-calculus

The modal µ-calculus and Minimal Modal Logic MML (see [Stiar]) are representative of various
modal logics of interest for expressing and proving properties of dynamic systems. For simplicity,
we consider only MML, since the modal µ-calculus extends MML with logical operators definable
in HOL (and therefore in ELT). MML is an endogenous logic (unlike V TLoE), therefore the
syntax of assertions does not refer to a programming language. However, the general pattern of
translation into ELT is similar to that used for V TLoE, i.e. assertions are mapped into predicates
over computational types.

In MML assertions are built from a set of primitive assertions P using modalities depending
on a fixed set A of actions.

φ ∈ W : = P | φ0 ∧ φ1 | ¬φ | [a]φ assertions

The interpretation of assertions depends on a labeled transition system (S,→) s.t. →⊆ S×A×S.

Definition 3.1 (Standard Interpretation) Given a LTS (S,→) (and an interpretation of prim-
itive assertions), assertions are interpreted by subsets of S, according to the following inductive
definition:

[[φ0 ∧ φ1]]
∆
= [[φ0]] ∩ [[φ1]]

[[¬φ]]
∆
= {s:S|s 6∈ [[φ]]}

[[[a]φ]]
∆
= {s:S|∀s′:S.s

a
→ s′ ⊃ s′ ∈ [[φ]]}

The logical rules validated by the above interpretations are (besides the usual propositional rules):

• (2.>) ` [a]>

(2.∧) ` [a](φ0 ∧ φ1) ⇐⇒ ([a]φ0) ∧ ([e]φ1)

• (2. =⇒)
` φ0 =⇒ φ1

` [a]φ0 =⇒ [a]φ1

3.1.1 Translation of MML in ELT (Σ)

By analogy with V TLoE, we translate assertions of MML into predicates over a computational
type, e.g. T0. However, in this case the signature Σ for ELT is not suggested by a programming
language, because MML is endogenous:

• primitive types

A actions

• primitive logical operators

2X : ΩX ,ΩA×TX → ΩTX box.

11

Definition 3.2 (Translation) The translation φ∗ is defined by structural induction:

(φ0 ∧ φ1)
∗(c)

∆
= φ∗0(c) ∧ φ

∗

1(c)

(¬φ)∗(c)
∆
= ¬φ∗(c)

([a]φ)∗(c)
∆
= 20(>, λa′:A, c′:T0.a = a′ ⊃ φ∗(c′))(c)

The set-theoretic model corresponding to the standard interpretation is given by taking the monad
TX = νX ′.Pfin(X + (A×X ′)), so T0 is the set of finitely branching synchronization trees (up to
strong bisimulation), while 2X(φ, ψ)(c) is ∀u:X + (A×TX).u ∈ c ⊃ case u of φ | ψ. Given a
finitely branching LTS (S,→), it is easy to show that for any state s ∈ S and assertion φ of MML
one has s ∈ [[φ]] iff the synchronization tree t(s) ∈ T0, obtained by unfolding the LTS starting
from s, satisfies φ∗. In fact, the set-theoretic model is an instance of a general model construction.
Given a monad T (s.t. any functor T (X + (A×)) has a final co-algebra):

• take the monad T ′ = FT , where F is the monad transformer FTX = νX ′.T (X + (A×X ′)),

• then (using necessity for T) define 2 for T ′ as 2X(φ, ψ)(c)
∆

⇐⇒ [u⇐c]T case u of φ | ψ.

In this model based on T ′ all rules of MML are valid, provided necessity for T satisfies (2-∧*).

Remark 3.3 LTSs are not so adequate to model concurrent languages like CCS with value passing
or the π-calculus. On the other hand, the translation of MML into ELT can be easily modified
to cope with modal logics suitable for these languages. In particular, the general construction of
a model of ELT (Σ) can be easily adapted, by replacing the monad transformer F with one of the
form FHTX = νX ′.T (X +HX ′) (for some suitable H). For instance, in the case of value passing
one should take HY = (A×V×Y) + (A×Y V), where A is the set of channels and V is the set of
values transmitted along channels.

3.1.2 Open issues

Another important class of program logics, related to modal logics, is the family of temporal logics
(see [Stiar]). systems. The main difference between temporal and modal logics is that in the
formers an assertion is interpreted by a set of runs (i.e. complete paths in the LTS), while in the
latters it is interpreted by a set of states. We have not been able to represent temporal logics into
ELT , since the notion of run does not have any obvious counterpart.

3.2 Hoare logic

Hoare logic HL (for while-languages) is the best known and one of the simplest exogenous program
logics. However, when one tries to extend HL to more complex programming languages, its
semantics and its rules may become rather subtle. Since we want to investigate the general pattern
of the translation(s) from HL into ELT , we consider a simplified version without while.

In HL there are two syntactic categories, programs e and assertions φ:

φ ∈ W : = P | ¬φ | φ1 ∧ φ2 assertions
e ∈ E : = α | e0; e1 | if(φ, e0, e1) programs

and on top of them one has entailments φ0 =⇒ φ1 and Hoare triples {φ0}e{φ1}.

Definition 3.4 (Standard Interpretation) Given a set S of states (and an interpretation of
primitive programs α and assertions P), a program e is interpreted by a binary relation [[e]] on S
and an assertion φ is interpreted by a (decidable) subset [[φ]] of S:

[[φ0 ∧ φ1]]
∆
= [[φ0]] ∩ [[φ1]]

[[¬φ]]
∆
= {s:S|s 6∈ [[φ]]}

[[e0; e1]]
∆
= [[e0]]; [[e1]] relational composition

[[if(φ, e0, e1)]]
∆
= ([[φ]]×S) ∩ [[e0]]) ∪ ([[¬φ]]×S) ∩ [[e1]])

12

while the top level judgements are interpreted by truth values:

φ0 =⇒ φ1
∆

⇐⇒ [[φ0]] ⊆ [[φ1]]

{φ0}e{φ1}
∆

⇐⇒ ∀s0, s1:S.(s0 ∈ [[φ0]] ∧ s0[[e]]s1) ⊃ s1 ∈ [[φ1]]

The above interpretation validates the following logical rules:

• (=⇒)
` φ′0 =⇒ φ0 ` {φ0}e{φ1} ` φ1 =⇒ φ′1

` {φ′0}e{φ
′

1}

• (∧)
` {φ0}e{φ1} ` {φ0}e{φ2}

` {φ0}(e){φ1 ∧ φ2}

• (;)
` {φ0}e0{φ1} ` {φ1}e1{φ2}

` {φ0}(e0; e1){φ2}

• (if)
` {φ0 ∧ φ}e0{φ1} ` {φ0 ∧ ¬φ}e1{φ1}

` {φ0}if(φ, e0, e1){φ1}

3.2.1 Translation of HL in ELT (Σ)

We introduce a suitable signature Σ for ELT , so that the above interpretation of HL factors
through a translation ()∗ into ELT (Σ). Moreover, the above rules for HL can be derived from
simple axioms for the operations in Σ, which may hold in models different from the intended one.

• primitive types

S states

• primitive functions

lkp:TS lookup,
upd:S → T1 update

• axioms

(upd.1) s:S ` upd(s); lkp = upd(s); [s]:TS

(upd.2) s, s′:S ` upd(s);upd(s′) = upd(s′):TS

(lkp.1) ` let s⇐lkp inupd(s) = [∗]:T1

(lkp.2) Γ ` lkp; e = e:Tτ

The model corresponding to the standard interpretation uses the monad TX = S → P((X×S))
in Set. Also in this case, one can define a general model construction. Given a monad T :

• take the monad T ′ = FT , where F is the monad transformer FTX = T (X×S)S ,

• then (using let and lift for T) define lkp
∆
= λs:S.[〈s, s〉]T and upd(s)

∆
= λs′:S.[〈∗, s〉]T .

In this model based on T ′ the equational axioms for lkp and upd are easily shown to be valid.

Definition 3.5 (Translation) The translation ()∗ from HL to ELT (Σ) maps (in the obvious
way) assertions into decidable formulas over S, i.e. φ∗(s): 2 = 1 + 1 ⊆ Ω, programs into terms
of type T1 and the rest into judgements:

(e0; e1)
∗ ∆

= e∗0; e
∗

1

if(φ, e0, e1)
∗ ∆

= let s⇐lkp in (case φ∗(s) of e∗0 | e∗1)

(φ1 =⇒ φ2)
∗ ∆

= s:S ` φ∗1(s) =⇒ φ∗2(s)

({φ1}e{φ2})∗
∆
= s:S ` φ∗1(s) =⇒ [s′⇐upd(s); e; lkp]φ∗2(s

′)

13

Remark 3.6 Usually one associate to a primitive program α a function α′:S → S. In this case,
the translation α∗ is given by (let s⇐lkp inupd(α′s)).

Proposition 3.7 The (translation of) HL rules are derivable in ELT from the axioms for Σ.

Proof For each rule we say which axioms for Σ (and additional properties of necessity) are needed:

• (=⇒)

• (∧) from (2-∧*)

• (;) from (2-µ) and (lkp.1)

• (if) from (upd.1)

3.2.2 Other translations of HL in ELT (Σ)

The above translation is the one which mimics more directly the standard interpretation of Hoare
triples. However, one could think of other translations, for instance inspired by the one given for
V TLoE. Here is a sample of possible ways of representing an Hoare triple {φ1}e{φ2} as a formula
of ELT (Σ), where φi are predicates over S and e is a term of type T1:

1 ∀s:S.φ1(s) ⊃ [s′⇐upd(s); e; lkp]φ2(s
′)

1’ ∀s:S.[s′⇐upd(s); e; lkp](φ1(s) ⊃ φ2(s
′))

2 ∀c:T1.([s⇐c; lkp]φ1(s)) ⊃ [s′⇐c; e; lkp]φ2(s
′)

2’ ∀c:T1.[s, s′⇐(c; lkp), (e; lkp)](φ1(s) ⊃ φ2(s
′))

The above translations agree, when T is a simple state monad, e.g. TX = (X × S)S
⊥

. In general,
the following implications hold (provided certain additional axioms for ELT are satisfied):

• 1 =⇒ 1′ provided (2-⊃*)

• 1′ =⇒ 1 provided (2-∧*)

• 1 =⇒ 2 provided (lkp.1) and (2-µ)

• 2 =⇒ 1 provided (upd.1)

• 1′ =⇒ 2′ provided (lkp.1) and (2-µ)

• 2′ =⇒ 1′ provided (upd.1)

• 2′ =⇒ 2 provided (2-∧*)

3.2.3 Open issues

It is not clear which of the above representations for Hoare triples scales up best w.r.t. changes
to T . In any case, when necessity fails to satisfy the additional axioms, some of the rules for HL
cannot be validate in ELT (Σ), no matter which of the translations one uses.

14

References

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science. North Holland, 1990.

[FP93] M.P. Fiore and G.D. Plotkin. An axiomatisation of computationally adequate domain
theoretic models of FPC. Draft, November, 1993.

[HMSTar] F. Honsell, I.A. Mason, S.F. Smith, and C. Talcott. A variable typed logic of effects.
Information and Computation, to appear.

[Mog89] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-
90-113, Edinburgh Univ., Dept. of Comp. Sci., 1989. Lecture Notes for course CS 359,
Stanford Univ.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation, 93(1),
1991.

[Mog94a] E. Moggi. A general semantics for evaluation logic. In 9th LICS Conf. IEEE, 1994.

[Mog94b] E. Moggi. A semantics for evaluation logic. Fundamenta Informaticae, 22(1/2), 1994.

[MT92] I. Mason and C. Talcott. References, local variables and operational reasoning. In 7th
LICS Conf. IEEE, 1992.

[Ole85] F.J. Oles. Type algebras, functor categories and block structure. In M. Nivat and J.C.
Reynolds, editors, Algebraic Methods in Semantics, 1985.

[OT92] P.W. O’Hearn and R.D. Tennent. Semantics of local variables. In Applications of
Categories in Computer Science, number 177 in L.M.S. Lecture Notes Series. Cambridge
University Press, 1992.

[OT93] P.W. O’Hearn and R.D. Tennent. Relational parametricity and local variables. In 20th
POPL. ACM, 1993.

[Pit91] A.M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher Order Workshop,
Banff 1990, volume 283 of Workshops in Computing. Springer Verlag, 1991.

[PS93] A.M. Pitts and I.D.B. Stark. On the observable properties of higher order functions
that dynamically create local names (preliminary report). In Workshop on State in
Programming Languages, Copenhagen, 1993. Yale Univ., Comp. Sci. Tech. Report.

[Stiar] C. Stirling. Modal and temporal logics. In Samson Abramsky, Dov M. Gabbay, and Tom
S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume III, chapter
3.10. Oxford University Press, to appear.

[Tal93] C. Talcott. Localized semantics for VTLoE. Working Notes, 21 October, 1993.

15

