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Abstract. MetaML is a multi-stage functional programming language
featuring three constructs that can be viewed as statically-typed refine-
ments of the back-quote, comma, and eval of Scheme. Thus it provides
special support for writing code generators and serves as a semantically-
sound basis for systems involving multiple interdependent computational
stages. In previous work, we reported on an implementation of MetaML,
and on a small-step semantics and type-system for MetaML. In this pa-
per, we present An Idealized MetaML (AIM) that is the result of our
study of a categorical model for MetaML. An important outstanding
problem is finding a type system that provides the user with a means
for manipulating both open and closed code. This problem has eluded
efforts by us and other researchers for over three years. AIM solves the
issue by providing two type constructors, one classifies closed code and
the other open code, and describing how they interact.

1 Introduction

“If thought corrupts language, language can also corrupt thought”1. Staging com-
putation into multiple steps is a well-known optimization technique used in many
important algorithms, such as high-level program generation, compiled program
execution, and partial evaluation. Yet few typed programming languages allow
us to express staging in a natural and concise manner. MetaML was designed to
fill this gap. Intuitively, MetaML has a special type for code that combines some
features of both open code, that is, code that can contain free variables, and
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closed code, that is, code that contains no free variables. In a statically typed
setting, open code and closed code have different properties, which we explain
in the following section.

Open and Closed Code A number of typed languages for manipulating code
fragments have been proposed in the literature. Some have types for open code
[9, 6, 3, 12], and others have types for closed code [4, 13]. On one hand, languages
with open code types play an important role in the study of partial evaluation.
Typically, they provide two constructs, one for building a code fragment with free
variables, and one for combining such fragments. Being able to construct open
fragments allows the user to force computations “under a lambda”. Generally, it
has been hard for such languages to include constructs for executing such code
fragments, because they can contain “not-yet-bound identifiers”. On the other
hand, languages with closed code types play an important role in the study
of run-time (machine) code generation. Typically, they include constructs for
building closed code, and for executing them. Generally, in such languages there
is no mechanism for forcing computations “under a lambda”.

The importance of having a way to execute code within a language is best illus-
trated by considering the eval of Scheme. In particular, Efficient implementations
of Domain-Specific or “little” languages can be developed as follows: First, build
a translator from the source language to Scheme, and then use eval to execute
the generated Scheme code. For many languages, such an implementation would
be almost as simple as an interpreter implementation (especially if back-quote
and comma are utilized), but would incur almost non of the overhead associated
with an interpretive implementation.

MetaML [12, 11] provides constructs for manipulating open code and executing
it, but does not distinguish between open and closed code types. But open code
cannot be executed because it may contain free variables that have not been
bound yet. This means that in MetaML type information is not enough to decide
whether or not we can safely execute a code fragment. In what follows, we
introduce MetaML, explain what it allows us to express, and where it falls short.

MetaML MetaML has three staging annotations: Brackets 〈 〉, Escape ˜

and Run run . An expression 〈e〉 defers the computation of e; ˜ e splices the
deferred expression obtained by evaluating e into the body of a surrounding
Bracketed expression; and run e evaluates e to obtain a deferred expression, and
then evaluates it. Note that ˜e is only legal within lexically enclosing Brackets.
Finally, Brackets in types such as <int> are read “Code of int”. To illustrate,
consider the following interactive session:

-| val rec exp = fn n => fn x =>

if n=0 then <1> else < ~x * ~(exp (n-1) x) >;

val exp = fn : int -> <int> -> <int>



-| val exponent = fn n =>

<fn a => ~(exp n <a>)>;

val exponent = fn : int -> <int -> int>

-| val cube = exponent 3;

val cube = <fn a => a * (a * (a * 1))> : <int -> int>

-| val program = <~cube 2>

val program = <(fn a => a * (a * (a * 1))) 2> : <int>

-| run program;

val it = 8 : int

The function exp returns a code fragment representing an exponent, given an in-
teger power n and a code fragment representing a base x. The function exponent

is very similar, but takes only a power and returns a code fragment representing
a function that takes a base and returns the exponent. The code fragment cube
is the specialization of exponent to the power 3. Next, we construct the code
fragment program which is an application of the code of cube to the base 2.
Finally, the last declaration executes this code fragment.

Unfortunately, there is a problem with the above example. In particular, the
very last declaration is not typable with the basic type system of MetaML [11].
Intuitively, the type system for MetaML must keep track of free variables in a
code fragment, so as to ensure that programs don’t get stuck. But there is no
way for the type system to know that program is closed, hence, a conservative
approximation is made, and the term is rejected by the type system.

Contribution and Organization of this Paper In previous work [12], we
reported on the implementation and applications of MetaML, and later [11]
presented an axiomatic semantics and a type system for MetaML and proved
type-safety. However, there were still a number of drawbacks:

1. As discussed above, there is a typing problem with executing a separately-
declared code fragment. While this problem is addressed in the implementation
using a sound rule for top-level declarations, this solution is ad hoc.

2. Only a call-by-value semantics could be defined for MetaML, because substi-
tution was a partial function, only defined when variables are substituted with
values.

3. The type judgment used two indices. Moreover, it has been criticized for not
being based on a standard logical system [13].

This paper describes the type system and operational semantics of An Idealized
MetaML (AIM), whose design is inspired by a categorical model for MetaML
(such a model will be the subject of another paper). AIM is strictly more ex-
pressive than any known typed multi-level language, and features:



1. An open code type 〈t〉, which corresponds to ©t of λ© [3] and 〈t〉 of MetaML;
2. A closed code type [t], which corresponds to �t of λ� [4];
3. Cross-stage persistence of MetaML;
4. A Run-with construct, generalizing Run of MetaML.

This work is the first to achieve a semantically sound integration of Davies and
Pfenning’s λ� [4] and Davies’ λ© [3], and to identify useful interactions between
them. Moreover, we present important simplifications over MetaML [11], which
overcome the problems mentioned above:

1. The type system uses only one level annotation, like the λ©type system [3];
2. The level Promotion and level Demotion lemmas, and the Substitution lemma,

are proven in full generality and not just for the cases restricted to values. This
development is crucial for a call-by-name semantics. Such a semantics seems
to play an important role in the formal theory of Normalization by Evaluation
[1] and Type Directed Partial Evaluation [2];

3. The big-step semantics is defined in the style in which λ©was defined [3], and
does not make explicit use of a stateful renaming function;

4. Terms have no explicit level annotations.

Finally, it is straight forward to extend AIM with new base types and constants,
therefore it provides a general setting for investigating staging combinators.

In the rest of the paper, we present the type system and establish several syn-
tactic properties. We give a big-step semantics of AIM, including a call-by-name
variant, and prove type-safety. We present embeddings of λ©, MetaML and λ�

into AIM. Finally, we discuss related works.

2 AIM: An Idealized MetaML

The definition of AIM’s types t ∈ T and terms e ∈ E is parameterized with
respect to a signature consisting of a set of base types b and constants c:

t ∈ T : : = b | t1 → t2 | 〈t〉 | [t]

e ∈ E: : = c | x | e1 e2 | λx.e | 〈e〉 | ˜e | run e with {xi = ei|i ∈ m} |

box e with {xi = ei|i ∈ m} | unbox e

Where m is a natural number, and it is identified with the set of its predecessors.

The first four constructs are the standard ones in a call-by-value λ-calculus with
constants. Bracket and Escape are the same as in MetaML [12, 11]. Run-With
generalizes Run of MetaML, in that allows the use of additional variables xi in
the body of e if they satisfy certain typing requirements that are made explicit
in the next section. Box-With and unbox are not in MetaML, but are motivated
by λ�of Davies and Pfenning [4]. We use some abbreviated forms:

run e for run e with ∅
box e for box e with ∅

run e with xi = ei for run e with {xi = ei|i ∈ m}
box e with xi = ei for box e with {xi = ei|i ∈ m}



Γ ` c: tn

c Γ ` x: tn if Γ x = tm and m ≤ n
Γ, x: tn

1 ` e: tn

2

Γ ` λx.e: (t1 → t2)
n

Γ ` e1: (t1 → t2)
n Γ ` e2: t

n

1

Γ ` e1 e2: t
n

2

Γ ` e: tn+1

Γ ` 〈e〉: 〈t〉n

Γ ` e: 〈t〉n

Γ ` ˜e: tn+1

Γ ` ei: [ti]
n

Γ+1, {xi: [ti]
n|i ∈ m} ` e: 〈t〉n

Γ ` run e with xi = ei: t
n

Γ ` ei: [ti]
n {xi: [ti]

0|i ∈ m} ` e: t0

Γ ` box e with xi = ei: [t]
n

Γ ` e: [t]n

Γ ` unbox e: tn

Fig. 1. Typing Rules

2.1 Type System

An AIM typing judgment has the form Γ ` e: tn, where t ∈ T , n ∈ N and Γ is
a type assignment, that is, a finite set {xi: t

ni

i |i ∈ m} with the xi distinct. The
reading of Γ ` e: tn is “term e has type t at level n in the type assignment Γ”.
We say that Γ x = tn if x: tn is in Γ . Furthermore, we write Γ +r for the type
assignment obtained by incrementing the level annotations in Γ by r, that is,
Γ+r x = tn+r if and only if Γ x = tn. Figure 1 gives the typing rules for AIM.
The Constant rule says that a constant c of type tc, which has to be given in the
signature, can be used at any level n. The Variable rule incorporates cross-stage
persistence, therefore if x is introduced at level m it can be used later, that
is, at level n ≥ m, but not before. The Abstraction and Application rules are
standard. The Bracket and Escape rules establish an isomorphism between tn+1

and 〈t〉n. Typing Run in MetaML [11] introduces an extra index-annotation on
types for counting the number of Runs surrounding an expression (see Figure 3).
We avoid this extra annotation by incrementing the level of all variables in Γ .
In particular, the Run rule of MetaML becomes

Γ+1 ` e: 〈t〉n

Γ ` run e: tn

The Box rule ensures that there are no “late” free variables in the term being
Boxed. This ensures that when a Boxed term is evaluated in a type-safe context,
the resulting value is a closed term. The Box rule ensures that only the variables
explicitly bound in the Box statement can occur free in the term e. At the same
time, it ensures that no “late” free variable can infiltrate the body of a Box using
one of these variables. This is accomplished by forcing the With-bound variables
themselves to have a Boxed type. Note that in run e with xi = ei the term e may
contain other free variables besides the xi.



2.2 Properties of the Type System

The following level Promotion, level Demotion and Substitution lemmas are
needed for proving Type Preservation.

Lemma 1 (Promotion). If Γ1, Γ2 ` e: tn then Γ1, Γ
+1

2 ` e: tn+1.

Meaning that if we increment the level of a well-formed term e it remains well-
formed. Furthermore, we can simultaneously increment the level of an arbitrary
subset of the variables in the environment.

Demotion on e at n, written e↓n, lowers the level of e from level n + 1 down to
level n, and is well-defined on all terms, unlike demotion for MetaML [11].

Definition 1 (Demotion). e↓n is defined by induction on e:

c↓n=c

x↓n=x

(e1 e2)↓n=e1 ↓n e2 ↓n

(λx.e)↓n=λx.e↓n

〈e〉↓n=〈e↓n+1〉

˜e↓0=run e

(˜e)↓n+1=˜(e↓n)

(run e with xi = ei)↓n=run e↓n with xi = ei ↓n

(box e with xi = ei)↓n=box e with xi = ei ↓n

(unbox e)↓n=unbox e↓n

The key for making demotion total on all terms is handling the case for Escape
˜e↓0: Escape is simply replaced by Run. It should also be noted that demotion
does not go into the body of Box.

Lemma 2 (Demotion). If Γ +1 ` e: tn+1 then Γ ` e↓n: tn.

Meaning that demotion of a well-formed term e is well-formed, provided the level
of all free variables is decremented.

In this paper, proofs are omitted for brevity (Please see technical report for proof
details [8]).

Lemma 3 (Weakening). If Γ1, Γ2 ` e2: t
n
2 and x is fresh, then Γ1, x: tn

′

1 , Γ2 `
e2: t

n
2 .

Lemma 4 (Substitution). If Γ1 ` e1: t
n′

1 and Γ1, x: tn
′

1 , Γ2 ` e2: t
n
2 then Γ1, Γ2 `

e2[x: = e1]: t
n
2 .

This is the expected substitution property, that is, a variable x can be replaced
by a term e1, provided e1 meets the type requirements on x.



Evaluation.

e1

0
↪→ λx.e e2

0
↪→ v1 e[x: = v1]

0
↪→ v2

e1 e2

0
↪→ v2

λx.e
0

↪→ λx.e

ei

0
↪→ vi e[xi: = vi]

0
↪→ 〈v′〉 v′ ↓0

0
↪→ v

run e with xi = ei

0
↪→ v

e
0

↪→ 〈v〉

˜e
1

↪→ v

ei

0
↪→ vi

box e with xi = ei

0
↪→ box e[xi: = vi]

e
0

↪→ box e′ e′
0

↪→ v

unbox e
0

↪→ v

Building.

e
n+1
↪→ v

unbox e
n+1
↪→ unbox v

e
n+1
↪→ v

λx.e
n+1
↪→ λx.v

x
n+1
↪→ x

e
n+1
↪→ v ei

n+1
↪→ vi

run e with xi = ei

n+1
↪→ run v with xi = vi

e
n+1
↪→ v

˜e
n+2
↪→ ˜v

e
n+1
↪→ v

〈e〉
n

↪→ 〈v〉

ei

n+1
↪→ vi

box e with xi = ei

n+1
↪→ box e with xi = vi

e1

n+1
↪→ v1 e2

n+1
↪→ v2

e1 e2

n+1
↪→ v1 v2

c
n+1
↪→ c

Stuck.

e
0

↪→ v 6≡ box e′

unbox e
0

↪→ err

e1

0
↪→ v 6≡ λx.e

e1e2

0
↪→ err

x
0

↪→ err

ei

0
↪→ vi e[xi: = vi]

0
↪→ v 6≡ 〈e′〉

run e with xi = ei

0
↪→ err

e
0

↪→ v 6≡ 〈e′〉

˜e
1

↪→ err
˜e

0
↪→ err

Fig. 2. Big-Step Semantics

3 Big-Step Semantics

The big-step semantics for MetaML [12] reflects the existing implementation: it
is complex, and hence not very suitable for formal reasoning. Figure 2 presents
a concise big-step semantics for AIM, which is presented at the same level of
abstraction as that for λ© [3]. We avoid the explicit use of a gensym or newname

for renaming bound variables: this is implicitly done by substitution.



Definition 2 (Values).

v0 ∈ V 0 : : = λx.e | 〈v1〉 | box e

v1 ∈ V 1 : : = c | x | v1 v1 | λx.v1 | 〈v2〉 | run v1 with xi = v1
i |

box e with xi = v1
i | unbox v1

vn+2 ∈ V n+2 : : = c | x | vn+2 vn+2 | λx.vn+2 | 〈vn+3〉 | ˜vn+1 |
run vn+2 with xi = vn+2

i | box e with xi = vn+2

i | unbox vn+2

Values have three important properties: First, a value at level 1 can be a Brack-
eted or a Boxed expression, reflecting the fact that terms representing open and
closed code are both considered acceptable results from a computation. Second,
values at level n + 1 can contain Applications such as 〈(λy.y) (λx.x)〉, reflecting
the fact that Brackets defer computations. Finally, there are no level 1 Escapes
in values, reflecting the fact that having such an Escape in a term would mean
that evaluating the term has not yet been completed. This is true, for example,
in terms like 〈˜(f x)〉.

Lemma 5 (Orthogonality). If v ∈ V 0 and Γ ` v: [t]
0

then ∅ ` v: [t]
0
.

Theorem 1 (Type Preservation). If Γ +1 ` e: tn and e
n
↪→ v then v ∈ V n

and Γ+1 ` v: tn.

Note that in AIM (unlike ordinary programming languages) we cannot restrict
the evaluation rules to closed terms, because at levels above 0 evaluation is
symbolic and can go inside the body of binders. On the other hand, evaluation
of a variable at level 0 is an error! The above theorem strikes the right balance,
namely it allows open terms provided their free variables are at level above 0
(this is reflected by the use of Γ +1 in the typing judgment).

Having no level 1 escapes ensures that demotion is the identity on V n+1 as shown
in following lemma. Thus, we don’t need to perform demotion in the evaluation
rule for Run when evaluating a well-formed term.

Lemma 6 (Value Demotion). If v ∈ V n+1 then v↓n≡ v.

A good property for multi-level languages is the existence of a bijection between
programs ∅ ` e: t0 and program representations ∅ ` 〈v〉: 〈t〉0. This property holds
for AIM, in fact it is a consequence of the following result:

Proposition 1 (Reflection). If Γ ` e: tn, then Γ+1 ` e: tn+1 and e ∈ V n+1.

Conversely, if v ∈ V n+1 and Γ+1 ` v: tn+1, then Γ ` v: tn.

3.1 Call-by-Name

The difference between the call-by-name semantics and the call-by-value seman-
tics for AIM is only in the evaluation rule for Application at level 0. For call-by-
name, this rule becomes

e1

0
↪→ λx.e e[x: = e2]

0
↪→ v

e1 e2

0
↪→ v



The Type Preservation proof must be changed for this case. However, this not
problematic, since the Substitution Lemma for the AIM’s type system has no
value restriction.

Theorem 2 (CBN Type Preservation). If Γ +1 ` e: tn and e
n
↪→ v then

v ∈ V n and Γ+1 ` v: tn.

3.2 Expressiveness

MetaML’s type system has one Code type constructor, which tries to combine
the features of the Box and Circle type constructors of Davies and Pfenning.
However, this combination leads to the typing problem discussed in the intro-
duction. In contrast, AIM’s type system incorporates both Box and Circle type
constructors, thereby providing correct semantics for the following functions:

1. unbox : [t] → t. This function executes closed code. AIM has no function of
type t → [t], thus we avoid the “collapse” of types in the recent work of
Wickline, Lee, and Pfenning [13]. Such a function does not exist in MetaML.

2. up : t → 〈t〉. This function corresponds to cross-stage persistence [12], in fact it
embeds any value into an open fragment, including values of functional type.
Such a function does not exist in λ©. At the same time, AIM has no function
of type 〈t〉 → t, reflecting the fact that open code cannot be executed. up is
expressible as λx.〈x〉.

3. weaken: [t] → 〈t〉. The composite of the two functions above. weaken reflects
the fact that closed code can always be viewed as open code. AIM has no
function of type 〈t〉 → [t].

4. execute: [〈t〉] → t. This function executes closed code, and it can be defined in
AIM as λx.run x with x = x.

5. build: [〈t〉] → [〈t〉] This function forces the building of an open fragment known
to be closed. build is not expressible in the language, but it can be added as a
new combinator with the following semantics:

e
0

↪→ box e′ e′
0

↪→ 〈v〉

build e
0

↪→ box 〈v〉

Type Preservation is still valid with such an extension.

Now, the MetaML example presented in the Introduction can be expressed in
AIM as follows:

-| val rec exp = box (fn n => fn x =>

if n=0 then <1> else < ~x * ~((unbox exp) (n-1) x) >)

with {exp=exp};

val exp = [fn] : [int -> <int> -> <int>]

-| val exponent = box (fn n =>



<fn a => ~((unbox exp) n <a>)>)

with {exp=exp};

val exponent = [fn] : [int -> <int -> int>]

-| val cube = build (box ((unbox exponent) 3)

with {exponent=exponent});

val cube = [<fn a => a * (a * (a * 1))>] : [<int -> int>]

-| val program = build (box <~(unbox cube) 2>

with {cube=cube})

val program = [<(fn a => a * (a * (a * 1))) 2>] : [<int>]

-| execute program;

val it = 8 : int

In AIM, asserting that a code fragment is closed (using Box) has become part of
the responsibilities of the programmer. Furthermore, Build is needed to explicitly
overcome the default lazy behavior of Box. If Build was not used in the above
examples, the (Boxed code) values returned for cube and program would contain
level 0 Escapes. In general, it appears that the lazy behavior of Box is not needed
when our primary concern is high-level program generation.

Unfortunately, the syntax is verbose compared to that of MetaML. In future
work, we hope to improve the syntax based on experience using AIM.

4 Embedding Results

This section shows that other languages for staging computations can be trans-
lated into AIM, and that the embedding respects the typing and evaluation. The
languages we consider are λ© [3], MetaML [11], and λ� [4].

4.1 Embedding of λ
©

The embedding of λ© into AIM is straight forward. In essence, λ© corresponds
to the Open fragment of AIM:

t ∈ TOpen: : = b | t1 → t2 | 〈t〉

e ∈ EOpen: : = c | x | e1 e2 | λx.e | 〈e〉 | ˜e

The translation ( ©) between λ©and AIM is as follows: (©t)© = 〈(t©)〉,
(next e)© = 〈e©〉, and (prev e)© = ˜ (e©). With these identifications the
typing and evaluation rules for λ© are those of AIM restricted to the relevant
fragment. The only exception is the typing rule for variables, which in λ© is
simply Γ ` x: tn if Γ x = tn (this reflects the fact that λ© has no cross-stage
persistence).

We write Γ `© e: t and e
n
↪→© v for the typing and evaluation judgments of λ©,

so that they are not confused with the corresponding judgments of AIM.



Γ ` c: (tc, r)
n Γ ` x: (t, r)n if Γ x = (t, p)m and m + r ≤ n + p

Γ, x: (t1, r)
n ` e: (t2, r)

n

Γ ` λx.e: (t1 → t2, r)
n

Γ ` e1: (t1 → t2, r)
n Γ ` e2: (t1, r)

n

Γ ` e1 e2: (t2, r)
n

Γ ` e: (t, r)n+1

Γ ` 〈e〉: (〈t〉, r)n

Γ ` e: (〈t〉, r)n

Γ ` ˜e: (t, r)n+1

Γ ` e: (〈t〉, r + 1)n

Γ ` run e: (t, r)n

Fig. 3. MetaML Typing rules

Proposition 2 (Temporal Type Embedding). If Γ `© e: tn is derivable in

λ©, then Γ© ` e©: (t©)n is derivable in AIM.

Proposition 3 (Temporal Semantics Embedding). If e
n
↪→© v is derivable

in λ©, then e©
n
↪→ v© is derivable in AIM.

4.2 Embedding of MetaML

The difference between MetaML and AIM is in the type system. We show that
while AIM’s typing judgments are simpler, what is typable in MetaML remains
typable in AIM.

t ∈ TMetaML: : = b | t1 → t2 | 〈t〉

e ∈ EMetaML: : = c | x | e1 e2 | λx.e | 〈e〉 | ˜e | run e

A MetaML’s typing judgment has the form ∆ ` e: (t, r)n, where t ∈ T , n, r ∈ N

and ∆ is a type assignment, that is, a finite set {xi: (ti, ri)
ni |i ∈ m} with the xi

distinct. Figure 3 recalls the MetaML [11].

Definition 3 (Acceptable Judgment). We say that a MetaML typing judg-

ment {xi: (ti, ri)
ni |i ∈ m} ` e: (t, r)n is acceptable if and only if ∀i ∈ m. ri ≤ r.

Remark 1. A careful analysis of MetaML’s typing rules shows that typing judg-
ments occurring in the derivation of a judgment ∅ ` e: (t, r)n are acceptable:
In MetaML typing rules are acceptable whenever its conclusion is acceptable,
simply because the index r never decreases when we go from the conclusion of
a type rule to its premise, thus, we never get an environment binding with an r

higher than that of the judgment.

Proposition 4 (MetaML Type Embedding). If {xi: (ti, ri)
ni |i ∈ m} `

e: (t, r)n is acceptable, then it is derivable in MetaML if and only if {xi: t
ni+r−ri

i |i ∈
m} ` e: tn is derivable in AIM.

4.3 Embedding of λ
�

Figure 4 summarizes the language λ� [4]. We translate λ� into the Closed



Syntax

Types t ∈ T � : : = b | t1 → t2 |
�

t

Expressions e ∈ E � : : = x | λx.e | e1 e2 | box e | let box x = e1 in e2

Type assignments Γ, ∆: : = {xi: ti|i ∈ m}

Type System

∆; Γ ` � x: t if ∆x = t ∆; Γ ` � x: t if Γx = t

∆; (Γ, x: t′) ` � e: t

∆;Γ ` � λx.e: t′ → t

(∆; x: t′), Γ ` � e2: t ∆; Γ ` � e1:
�

t′

∆; Γ ` � let box x = e1 in e2: t

∆; Γ ` � e1: t
′ → t ∆; Γ ` � e2: t

′

∆; Γ ` � e1 e2: t

∆; ∅ ` � e: t

∆; Γ ` � box e:
�

t

Big-Step Semantics

e1 ↪→ � λx.e e2 ↪→ � v′ e[x:= v′] ↪→ � v

e1, e2 ↪→ � v
λx.e ↪→ � λx.e

e1 ↪→ � box e e2[x: = e] ↪→ � v

let box x = e1 in e2 ↪→ � v
box e ↪→ � box e

Fig. 4. Description of λ
�

fragment of AIM:

t ∈ TClosed: : = b | t1 → t2 | [t]

e ∈ EClosed: : = c | x | e1 e2 | λx.e | box e with xi = ei | unbox e

Furthermore, we consider only typing judgments of the form {xi: t
0
i |i ∈ m} ` e: t0

and evaluation judgments of the form e
0

↪→ v. These restrictions are possible for
two reasons. If the conclusion of a typing rule is of the form {xi: t

0
i |i ∈ m} ` e: t0

with types and terms in the Closed fragment, then also the premises of the typing
rule enjoy such properties. When e is a closed term in the Closed fragment, the

only judgments e′
n
↪→ v′ that can occur in the derivation of e

0
↪→ v are such that

n = 0 and e′ and v′ are closed terms in the Closed fragment.

Definition 4 (Modal Type Translation). The translation of λ� types is

given by

b� = b (t1 → t2)
� = t�1 → t�2 (�t)� = [t�]



The translation of λ� terms depends on a set X of variables, namely those

declared in the modal context ∆.

x�X = unbox x if x ∈ X

y�X = y if y 6∈ X

(box e)�X = box e�X with {x = x|x ∈ FV(e) ∩ X}

(let box x = e1 in e2)
�X = (λx.e

�X∪{x}
2 ) e�X

1

(λy.e)�X = λy.e�X where y 6∈ X

(e1 e2)
�X = e�X

1 e�X
2

Proposition 5 (Modal Type Embedding). If ∆; Γ `� e: t is derivable in

λ�, then [∆�], Γ � ` e�X : t� is derivable in AIM’s Closed fragment, where X

is the set of variables declared in ∆, {xi: ti|i ∈ m}� is {xi: t
�
i |i ∈ m}, and

[{xi: ti|i ∈ m}] is {xi: [ti]|i ∈ m}.

The translation of λ� into the AIM’s Closed fragment does not preserve eval-
uation on the nose (that is, up to syntactic equality). Therefore, we need to
consider an administrative reduction.

Definition 5 (Box-Reduction). →box reduction is given by the rewrite rules

unbox (box e) → e

box e′ with xi = ei, x = box e, xj = ej → box e′[x: = box e] with xi = ei, xj = ej

where e is a closed term of the Closed fragment.

Lemma 7 (Properties of →box). The →box reduction on the Closed fragment

satisfies the following properties:

– Subject Reduction, that is, Γ ` e: t and e → e′ imply Γ ` e′: t

– Confluence and Strong Normalization

– Compatibility with Evaluation on closed terms, that is, e1 ↪→ v1 and e1

∗

−→box

e2 imply that exists v2 s.t. v1

∗

−→box v2 and e2 ↪→ v2.

Lemma 8 (Substitutivity). Given a closed term e0 ∈ E� the following holds:

– e�X [y: = e�∅
0 ] ≡ (e[y: = e0])

�X , where y 6∈ X

– e�X∪{x}[x: = box e�∅
0 ]

∗

−→box (e[x: = e0])
�X

Proposition 6 (Modal Semantics Embedding). If e ∈ E� is closed and

e ↪→� v is derivable in λ�, then there exists v′ such that e�∅ 0
↪→ v′ and v′

∗

−→box

v�∅.



5 Related Work

Multi-stage programming techniques have been used in a wide variety of settings
[12], including run-time specialization of C programs [10].

Nielson and Nielson present a seminal detailed study into a two-level functional
programming language [9]. This language was developed for studying code gen-
eration. Davies and Pfenning show that a generalization of this language to a
multi-level language called λ� gives rise to a type system related to a modal logic,
and that this type system is equivalent to the binding-time analysis of Nielson
and Nielson [4]. Intuitively, λ� provides a natural framework where Scheme’s
back-quote and eval can be present in a language. The semantics of our Box and
Unbox correspond closely to those of back-quote and eval, respectively.

Gomard and Jones [6] use a statically-typed two-level language for partial evalu-
ation of the untyped λ-calculus. This language is the basis for many binding-time
analyses.

Glück and Jørgensen study partial evaluation in the generalized context where
inputs can arrive at an arbitrary number of times rather than just two (namely,
specialization-time and run-time) [5], and demonstrate that binding-time anal-
ysis in a multi-level setting can be done with efficiency comparable to that of
two-level binding time analysis.

Davies extends the Curry-Howard isomorphism to a relation between temporal
logic and the type system for a multi-level language [3]. Intuitively, λ© provides
a good framework for formalizing the presence of back-quote and comma in a
statically typed language. The semantics of our Bracket and Escape correspond
closely to those of back-quote and comma, respectively.

Moggi [7] advocates a categorical approach to two-level languages based on in-
dexed categories, and stresses formal analogies with a categorical account of
phase distinction and module languages.
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