
Mixin Modules and Computational Effects

D.Ancona, S.Fagorzi, E.Moggi, E.Zucca?

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
email: {davide,fagorzi,moggi,zucca}@disi.unige.it

Abstract. We define a calculus for investigating the interactions between mixin modules
and computational effects, by combining the purely functional mixin calculus CMS with a
monadic metalanguage supporting the two separate notions of simplification (local rewrite
rules) and computation (global evaluation able to modify the store). This distinction is
important for smoothly integrating the CMS rules (which are all local) with the rules dealing
with the imperative features.

In our calculus mixins can contain mutually recursive computational components which are
explicitly computed by means of a new mixin operator whose semantics is defined in terms of
a Haskell-like recursive monadic binding. Since we mainly focus on the operational aspects,
we adopt a simple type system like that for Haskell, that does not detect dynamic errors
related to bad recursive declarations involving effects. The calculus serves as a formal basis
for defining the semantics of imperative programming languages supporting first class mixins
while preserving the CMS equational reasoning.

1 Introduction

Mixin modules (or simply mixins) are modules supporting parameterization, cross-module recur-
sion and overriding with late binding ; these three features altogether make mixin module systems
a valuable tool for promoting software reuse and incremental programming [AZ02]. As a conse-
quence, there have been several proposals for extending existing languages with mixins; however,
even though there already exist some prototype implementations of such extensions (see, e.g.,
[FF98a,FF98b,HL02]), there are still several problems to be solved in order to fully and smoothly
integrate mixins with all the other features of a real language. For instance, in the presence of store
manipulation primitives, expressions inside mixins can have side-effects, but this possibility raises
some semantic issues: (1) because of side-effects, the evaluation order of components inside a mixin
must be deterministic, while still retaining cross-module-recursion; (2) when computations inside
a mixin must be evaluated and how many times?
Unfortunately, all formalizations defined so far [AZ99,AZ02,MT00,WV00] do not consider these
issues, since they only model mixins in purely functional settings.
In this paper we propose a monadic mixin calculus, called CMS do, for studying the interaction
between the notions of mixin and store. More precisely, this calculus should serve as a formal basis
both for defining the semantics of imperative programming languages supporting mixins and for
allowing equational reasoning.
Our approach consists in combining the purely functional mixin calculus CMS [AZ99,AZ02] with a
monadic metalanguage [MF03] equipped with a Haskell-like recursive monadic binding [EL00,EL02]
and supporting the two separate notions of simplification and computation, the former correspond-
ing to local rewriting with no side-effects, the latter to global evaluation steps able to modify
the store. This distinction is important for smoothly integrating the CMS rules (which are all

? Supported by MIUR project NAPOLI, EU project DART IST-2001-33477 and thematic network
APPSEM II IST-2001-38957

local) with the rules dealing with the imperative features; furthermore, since simplification is a
congruence, all CMS equations (except those related to selection) hold in CMS do.
In CMS do a mixin can contain, besides the usual CMS definitions, also computational definitions of
the form x ⇐ e, where e has monadic type. The (simplification) rules for the standard operators on
mixins coincide with those given for CMS. However, before selecting components from a mixin, this
must be transformed into a record. The transformation of a mixin (without deferred components)
into a record is triggered by the doall primitive, and consists in (1) evaluating computational
definitions xi ⇐ ei in the order they are declared; (2) binding the value returned by ei to xi

immediately, to make it available to the subsequent computations ej with j > i.
Mutual recursion has the following informal semantics: if i ≤ j, then ei can depend on the variable
xj , provided that the computation ei can be successfully performed without knowing the value
of ej (which is bound to xj only later). Formally, the semantics of doall is expressed in terms
of a recursive monadic binding, similar to that defined in [EL00,EL02], and a standard recursive
let-binding.
Since the emphasis of the paper is on the operational aspects, we adopt a simple type system like
that for Haskell, that does not detect dynamic errors related to bad recursive declarations; for
instance, doall([; x ⇐ set(y, 1), y ⇐ new(0)]) is a well-typed term which evaluates into a dynamic
error. However, more refined type systems based on dependencies analysis [Bou02,HL02] could be
considered for CMS do in order to avoid this kind of dynamic errors.
The rest of the paper is organized as follows. In Section 2 we illustrate the main features of
the original CMS calculus and introduce the new CMS do calculus through some examples. In
Section 3 we formally define the syntax of the calculus, the type system and the two relations of
simplification and computation. We also prove standard technical results, including a bisimulation
result (simplification does not affect computation steps) and the progress property for the combined
relation. In Section 4 we discuss related work and in Section 5 we summarize the contribution of
the paper and draw some further research directions.

2 An Overview of the Calculus

In this section we give an overview of the CMS do calculus by means of some examples written in
a more user-friendly syntax.
Like in CMS , a CMS do basic mixin module consists of defined and local components, bound to an
expression, and deferred components, declared but not yet defined.

Example 1. For instance,

M1 = mix import N2 as x, (* deferred *)

export N1 = e1[x,y], (* defined *)

local y = e2[x,y] (* local *)

end

denotes a mixin with one deferred, one defined and one local1 component, where e1[x,y] and
e2[x,y] denote two arbitrary expressions possibly containing the two free variables x and y.
Deferred components are associated with both a component name (as N2) and a variable (as x);
component names are used for external referencing of deferred and defined components but they
are not expressions, while variables are used for accessing deferred and local components inside
mixins (for further details on the separation between variables and component names see [Ler94],
[HL94], [AZ02]). Local components are not visible from the outside and can be mutually recursive.

1 Note that deferred, defined and local components can be declared in any order; in particular, definitions
of defined and local components can be interleaved.

2

Besides this construct, CMS do provides four operations on mixins: sum, freeze, delete (inherited
from CMS) and doall .

Example 2. Two mixins can be combined by the sum operation, which performs the union of
the deferred components (in the sense that components with the same name are shared), and
the disjoint union of the defined and local components of the two mixins. However, while defined
components must be disjoint because clashes are not allowed by the type system, the disjoint union
of local components can be always performed by renaming variables.

M2 = mix import N1 as x,

export N2 = e3[x,y],

local y = e4[x,y]

end

M3 = M1 + M2

Module M3 simplifies to

mix import N2 as x1, N1 as x2,

export N1 = e1[x1,y1],

local y1 = e2[x1,y1],

export N2 = e3[x2,y2],

local y2 = e4[x2,y2]

end

The sum operation supports cross-module recursion; in module M3, the definition of N2, which is
needed by M1, is provided by M2, whereas the definition of N1, which is needed by M2, is provided
by M1. However, in CMS do component selection is permitted only if the module has no deferred
components, therefore the defined components of M3 cannot be selected even though the deferred
components of M3 (N1 and N2) are also among the defined ones.

Example 3. The freeze operation connects deferred and defined components having the same name
inside a mixin; in other words, it is used for resolving “external names”, so that a deferred com-
ponent becomes local.
For instance, in (mix import N as x, export N = e1[x,y], local y = e2[x,y]) ! N the deferred
component N has been effectively bound to the corresponding defined component by freezing it,
obtaining the following simplified expression:

mix local x = e1[x,y], export N = x, local y = e2[x,y] end

Example 4. The delete operation is used for hiding defined components:

(mix import N as x, export N = e1[x,y], local y = e2[x,y]) \ N

simplifies to

mix import N as x, local y = e2[x,y] end

So far the calculus is very similar to the pure functional calculus CMS defined in [AZ02]; its
primitive operations can be used for expressing a variety of convenient constructs supporting
cross-module recursion and overriding with late binding.
For instance, M6 = (((M3 \ N2) + mix export N2 = e[] end) ! N1) ! N2 corresponds to declare a
new mixin obtained from M3 by overriding component N2; since N2 in M3 is both deferred and
defined, the definition of component N2 in M6 depends on the new definition of N2 in M6 rather than
on that in M3 (late binding). We refer to [AZ02] for more details on this.
In addition to the CMS operations and constructs presented above, CMS do provides a new kind of
mixin component called computational , a new mixin operation doall to deal with computational
components, the usual primitives on the store, and the monadic constructs mdo (recursive do) and
ret (embedding of values into computations).

3

Example 5. Let us consider the following mixin definition:

CM1 = mix local lc <= new(x-1), x = 1,

export Inc = mdo v <= get(lc) in set(lc,v+1), Val <= get(lc)

end

The local component lc and the defined component Val has been defined via <= (rather than =)
and are called computational.
Evaluation of computational components like lc and Val can be performed only once by means of
the doall operation (see below), provided that there are no deferred components (as in this case);
furthermore, selection of the defined components of CM1 is possible only after lc and Val have been
evaluated.
Note that Inc is not computational, even though its associated expression contains effects, therefore
the doall operation does not compute Inc (see below).
The computation new(x-1) returns a fresh location containing the expression x-1, get(lc) returns
the expression stored at the location l denoted by lc and set(lc,v+1) updates the store by
assigning v+1 to l and returns l. Note that new(e) and set(lc,e) are “lazy”, in the sense that
they do not evaluate the expression e.
Let us now consider the expression doall(CM1); its evaluation returns a record containing only
the defined components Inc and Val. As already explained, Inc is not evaluated, whereas Val is
computed as follows. Since we require the evaluation of computational components to respect the
declaration order, the expression associated with lc is computed before that defining Val; once
the value of variable lc is computed it is made immediately available to the next computational
component Val.
On the other hand, the component Inc (defined via =) is not computed, but its associated computa-
tion is treated as a value of monadic type that can be evaluated with the mdo construct. Therefore,
if l is the location generated by the evaluation of component lc, then doall(CM1) evaluates to
the record r={Inc=mdo v<=get(l) in set(l,v+1), Val=0}, where component Inc can be reeval-
uated several times, for instance, in the expression mdo lc<=r.Inc in get(lc) which increments
the contents of l and evaluates to 1. Finally, note that the order of computational components
matters, while that of non-computational components, like x and Inc in CM1, does not.

Example 6. Computational components can be mutually recursive like in the following mixin.

CM2 = mix export Loc1=l1, Loc2=l2,

local l1<=new(l2), l2<=new(l1)

end

The expression doall(CM2) evaluates to the record {Loc1=l1, Loc2=l2} where l1 and l2 are two
locations pointing two each other. This is possible because new(e) does not need to evaluate e.
On the other hand, evaluation of doall(mix local x<=set(y,1), y<=new(0) end) causes an
error because of bad recursive declarations. In this case the error could be avoided by swapping x
and y, but reordering computational components changes the semantics.

3 CMS do: a monadic mixin language

Before defining CMS do, we introduce some notations and conventions.

– If s1 and s2 are two finite sequences, then s1, s2 denotes their concatenation.
– f :A

fin→ B means that f is a partial function from A to B with a finite domain, written dom(f).
We write {ai: bi|i ∈ I} for the partial function mapping for all i ∈ I ai to bi (where the ai must
be different, i.e. ai = aj implies i = j). We use the following operations on partial functions:

4

• ∅ is the everywhere undefined partial function;
• f and g are compatible when f(x) = g(x) when x ∈ dom(f) ∩ dom(g).
• f1, f2 denotes the union of two compatible partial functions;
• f{a: b} denotes the update of f in a;

• f \ a is the partial function g such that g(x) ∆=
{

f(x) if x 6= a
undefined otherwise

–
∗
> denotes the reflexive and transitive closure of a binary relation > .

– If E is a set of terms, then FV(e) is the set of free variables of e; E0 is the set of e ∈ E s.t.
FV(e) = ∅; e{ρ}, with ρ a finite partial function from a set of variables Var to E, denotes the
parallel substitution of all variables x ∈ dom(ρ) with ρ(x) in e (modulo α-conversion).

The syntax of CMS do definition is parametric in an infinite set Name of component names X (for
records and mixins), an infinite set Var of variables x, and an infinite set L of locations l.
Terms e, recursive monadic bindings Θ and mixin bindings ∆ are given by

e ∈ E: : = x | {o} | e.X | let(ρ; e) | ret(e) | mdo (Θ; e) | doall(e)
| l | new(e) | get(e) | set(e1, e2) | e1 + e2 | e!X | e \X
| [ι; ∆] with ι injective and dom(ι) ∩ DV(∆) = ∅

Θ: : = ∅ | Θ, x ⇐ e with x 6∈ DV(Θ)

∆: : = ∅ | ∆, D with DV(∆) ∩ DV(D) = DN(∆) ∩ DN(D) = ∅
D: : = X C e | x C e with C either = or ⇐

where o:Name
fin→ E, ρ:Var

fin→ E and ι:Var
fin→ Name. Some productions have side-conditions,

the auxiliary functions DV and DN return the set of variables and component names defined in a
sequence ∆ of definitions, respectively. For lack of space, the straightforward definitions of DV, DN
and FV have been omitted (see the long version of this paper2). The terms include:

– records {o}, where o is a partial function (since the order of record components is irrelevant),
and selection e.X of a record component;

– recursive bindings let(ρ; e) and recursive monadic bindings mdo (Θ; e) of [EL00];
– the operations on references for allocation new(e), dereferencing get(e) and assignment set(e1, e2);
– basic mixins [ι; ∆] with deferred components ι, and the operations of sum e1 +e2, freezing e!X

and deletion e \X of a component (see [AZ02]).

The basic difference between a record {o} and a mixin [∅; ∆] without deferred components is that ∆
may have local (recursive) definitions and computational components. The operation doall([∅; ∆])
denotes a computation which forces evaluation of all computational components in ∆ (eliminates
local definitions), and returns a record. Since computations may have side-effects, the order of the
bindings in ∆ (and Θ) matters.

Types are defined by τ ∈ T: : = . . . | Mτ | refτ | {Π} | [Π; Π ′] where Π:Name
fin→ T. The set

of types includes computational types Mτ , reference types, record types {Π} and mixin types
[Π; Π ′]. Table 1 gives the typing rules for deriving judgments of the form Γ `Σ e: τ , which mean

“e is a well-typed term of type τ in Γ and Σ”, where Γ :Var
fin→ T is a type assignment, and

Σ: L
fin→ T is a signature for locations. The type system enjoys the usual properties of weakening

(w.r.t. Γ and Σ) and substitution.

2 http://www.disi.unige.it/person/AnconaD/Conferences

5

(var)
Γ `Σ x: τ

Γ (x) = τ (ret)
Γ `Σ e: τ

Γ `Σ ret(e): Mτ

(mdo)

{Γ, ΓΘ `Σ e: Mτ | (x ⇐ e) ∈ Θ ∧ τ = ΓΘ(x)}
Γ, ΓΘ `Σ e′: Mτ ′

Γ `Σ mdo (Θ; e′) : Mτ ′ dom(ΓΘ) = DV(Θ)

(let)

{Γ, Γρ `Σ e: τ | e = ρ(x) ∧ τ = Γρ(x)}
Γ, Γρ `Σ e′: τ

Γ `Σ let(ρ; e′): τ
dom(Γρ) = dom(ρ)

(l)
Γ `Σ l: refτ

Σ(l) = τ (new)
Γ `Σ e: τ

Γ `Σ new(e): M(refτ)

(get)
Γ `Σ e: refτ

Γ `Σ get(e): Mτ
(set)

Γ `Σ e2: τ Γ `Σ e1: refτ

Γ `Σ set(e1, e2): M(refτ)

(record)
{Γ `Σ e: τ | e = o(X) ∧ τ = Π(X)}

Γ `Σ {o}: {Π}
dom(Π) = dom(o)

(select)
Γ `Σ e: {Π}
Γ `Σ e.X: τ

τ = Π(X) (doall)
Γ `Σ e: [∅; Π]

Γ `Σ doall(e): M{Π}

(mixin)

{Γ, Γ1, Γ2 `Σ e: τ | (X = e) ∈ ∆ ∧ τ = Π ′(X)}
{Γ, Γ1, Γ2 `Σ e: Mτ | (X ⇐ e) ∈ ∆ ∧ τ = Π ′(X)}
{Γ, Γ1, Γ2 `Σ e: τ | (x = e) ∈ ∆ ∧ τ = Γ2(x)}
{Γ, Γ1, Γ2 `Σ e: Mτ | (x ⇐ e) ∈ ∆ ∧ τ = Γ2(x)}

Γ `Σ [ι; ∆]: [Π; Π ′]

img(ι) = dom(Π)

Γ1
∆
= Π ◦ ι

DN(∆) = dom(Π ′)
DV(∆) = dom(Γ2)

(sum)
Γ `Σ e1: [Π1; Π ′

1] Γ `Σ e2: [Π2; Π ′
2]

Γ `Σ e1 + e2: [Π1, Π2; Π ′
1, Π

′
2]

Π1 compatible with Π2

dom(Π ′
1) ∩ dom(Π ′

2) = ∅

(freeze)
Γ `Σ e: [Π; Π ′]

Γ `Σ e!X: [Π \X; Π ′]
Π(X) = Π ′(X)

(delete)
Γ `Σ e: [Π; Π ′]

Γ `Σ e \X: [Π; Π ′ \X]
X ∈ dom(Π ′)

Table 1. Type system

6

3.1 Simplification

We define a confluent relation on terms (and other syntactic categories), called simplification, which
induces a congruence on terms. There is no need to define a deterministic simplification strategy,
since computational effects (in our case they amount to store changes) are insensitive to further
simplification (see Theorem 1). Simplification e1 > e2 is the compatible relation on E induced
by the rewrite rules in Table 2.

(R) {o}.X > e provided e = o(X)
(L) let(ρ; e) > e{x: let(ρ; ρ(x))|x ∈ dom(ρ)}
(S) [ι1; ∆1] + [ι2; ∆2] > [ι1, ι2; ∆1, ∆2] provided [ι1, ι2; ∆1, ∆2] is well-formed, i.e.

• DN(∆1) ∩ DN(∆2) = DV(∆1) ∩ DV(∆2) = dom(ι1, ι2) ∩ DV(∆1, ∆2) = ∅
• ι1, ι2 is an injection (therefore ι1 is compatible with ι2)

• FV(∆1) ∩ (dom(ι2) ∪ DV(∆2)) = FV(∆2) ∩ (dom(ι1) ∪ DV(∆1)) = ∅
(F) [ι, x: X; ∆, X C e, ∆′]!X > [ι; ∆, x C e, X = x, ∆′]
(D) [ι; ∆, X C e, ∆′] \X > [ι; ∆, ∆′]
(A) doall([∅; ∆]) > mdo (|∆|; ret{o1, o2}){x: let(ρ; x)|x ∈ dom(ρ)} where

• ρ = {x: e|(x = e) ∈ ∆}
• o1 = {X: e|(X = e) ∈ ∆}, o2 = {X: xX |X ⇐ e ∈ ∆} with xX freshly chosen
• |∆| is defined by induction on ∆ as follows:

∗ |∅| = ∅
∗ |(∆, X = e)| = |(∆, x = e)| = |∆|
∗ |(∆, X ⇐ e)| = |∆|, xX ⇐ e
∗ |(∆, x ⇐ e)| = |∆|, x ⇐ e

Table 2. Simplification rules

In mixin sum (S), deferred components can be shared whereas for the other components disjoint
union is performed (recall example 2 in Section 2). Note that, except for DN(∆1) ∩ DN(∆2), all
other conditions can be satisfied by an appropriate α-conversion. The last condition avoids capture
of free variables.
In (F), like in example 3, the deferred component X can be frozen only if X is also defined; then,
the deferred component x:X is deleted and the local component x C e is inserted, which means
either x ⇐ e if X is defined by X ⇐ e, or x = e if X is defined by X = e. Furthermore X C e is
transformed into X = x since if X is computational, then e must be evaluated only once3.
In (D), the defined component is simply removed, as in example 4.
Rule (A) expresses doall in terms of mdo: first, all computational components are evaluated accord-
ing to the order given in the mixin (recall example 5), then a record value is returned containing
both the non computational (o1) and the computational defined components (o2) of the mixin;
substitution of the non computational local components (ρ) is needed in order to avoid variables to
escape from their scope (the let construct is used because local variables can be mutually recursive).
Finally, note that each computational defined component X ⇐ e is transformed into X = xX , with
xX freshly chosen variable, because e must be evaluated only once.
Simplification enjoys the Church Rosser and Subject Reduction properties.

Proposition 1 (CR for >). The relation > is confluent.

3 For simplicity, this transformation is always applied, even though is really needed only when X is
computational.

7

Proof. The simplification rules are left-linear and non-overlapping. ut

Proposition 2 (SR for >). If Γ `Σ e: τ and e > e′, then Γ `Σ e′: τ .

Proof. By case analysis on the simplification rules. ut

3.2 Computation

We now define configurations Id ∈ Conf, that represent snapshots of the execution of a program,
and the computation relation > (see Table 3), that describes how program execution evolves.
Over these configurations we give an operational semantics that ensures the correct sequencing of
computational effects, by adopting some well-established technique for specifying the operational
semantics of programming languages (see [WF94]).

– Stores µ ∈ S
∆= L

fin→ E map locations to their content.

– Evaluation Contexts E ∈ EC: : = � | E[mdo (x ⇐ �, Θ; e)] for terms of computational type.

– A configuration (µ, e, E) ∈ Conf
∆= S× E× EC is a snapshot of the execution of a program:

µ is the current store, e is the program fragment under consideration and E is the evaluation
context for e.

– Bad terms b are terms that are stuck because they depend on a variable

b ∈ BE: : = x | b.X | b + e | e + b | b!X | b \X | doall(b) | get(b) | set(b, e)

– Computational Redexes r are terms that enable computation (with no need for simplification);
when r is a bad term, we raise a run-time error.

r ∈ R: : = mdo (Θ; e) | ret(e) | new(e) | get(l) | set(l, e) | b

Definition 1. The sets CV(E) and FV(E) of captured and free variables are

– CV(�) ∆= FV(�) ∆= ∅
– CV(E[mdo (x ⇐ �, Θ; e)]) ∆= CV(E) ∪ {x} ∪ DV(Θ) and

FV(E[mdo (x ⇐ �, Θ; e)]) ∆= FV(E) ∪ (FV(Θ, e) \ CV(E[mdo (x ⇐ �, Θ; e)]))

Rules for monadic binding deserve some explanations. Rule (M.0) deals with the special case
of empty binding; rule (M.1) starts the computation when the binding is not empty: the first
expression of the binding is evaluated and renaming is needed in order to avoid clashes due to
nested monadic bindings; rule (M.2) completes the computation of the binding variables: when the
last variable has been computed, it can be substituted with its “value” (the let construct is used
because of mutual recursion) in both the store and the body of mdo which now can be evaluated;
finally, (M.3) is used for continuing the computation by considering the next binding variable and
is similar to (M.2).
The confluent simplification relation > on terms extends in the obvious way to a confluent
relation (still denoted >) on stores, evaluation contexts, computational redexes and configu-
rations.
A complete program corresponds to a closed term e ∈ E0 (with no occurrences of locations l), and
its evaluation starts from the initial configuration (∅, e, �). The following properties ensure that
only closed configurations are reachable (by > and > steps) from the initial one.

8

Completion step

(done) (µ, ret(e), �) > done

Recursive monadic binding steps

(M.0) (µ, mdo (∅; e) , E) > (µ, e, E)
(M.1) (µ, mdo (x1 ⇐ e1, Θ; e) , E) > (µ, e1, E[mdo (x1 ⇐ �, Θ; e)])

with the variables in DV(x1 ⇐ e1, Θ) renamed to avoid clashes with CV(E)

(M.2) (µ, ret(e1), E[mdo (x1 ⇐ �; e)]) > (µ{ρ}, e{ρ}, E) where ρ
∆
= {x1: let(x1: e1; x1)}

(M.3) (µ, ret(e1), E[mdo (x1 ⇐ �, x2 ⇐ e2, Θ; e)]) >

(µ{ρ}, e2{ρ}, E[mdo (x2 ⇐ �, Θ; e){ρ}]) where ρ
∆
= {x1: let(x1: e1; x1)}

Imperative steps

(I.1) (µ, new(e), E) > (µ{l: e}, ret(l), E) where l 6∈ dom(µ)
(I.2) (µ, get(l), E) > (µ, ret(e), E) provided e = µ(l)
(I.3) (µ, set(l, e), E) > (µ{l: e}, ret(l), E) provided l ∈ dom(µ)

Error step caused by a bad term

(err) (µ, b, E) > err

Table 3. Computation Relation

Lemma 1.

1. If (µ, e, E) > (µ′, e′, E′), then dom(µ) = dom(µ′), CV(E) = CV(E′),
FV(µ′) ⊆ FV(µ), FV(e′) ⊆ FV(e) and FV(E′) ⊆ FV(E).

2. If (µ, e, E) > (µ′, e′, E′) and FV(e, µ) ⊆ CV(E) and FV(E) = ∅, then
FV(e′, µ′) ⊆ CV(E′), FV(E′) = ∅ and dom(µ) ⊆ dom(µ′).

Bad terms and computational redexes are closed w.r.t. simplification.

Lemma 2. If b > e, then e ∈ BE. If r > e, then e ∈ R.

When the program fragment under consideration is a computational redex, it is irrelevant whether
simplification is done before or after a step of computation.

Theorem 1 (Bisimulation). If (µ1, r1, E1)
∗
> (µ2, r2, E2), then

1. (µ1, r1, E1) > Id1 implies ∃Id2 s.t. (µ2, r2, E2) > Id2 and Id1
∗
> Id2

2. (µ2, r2, E2) > Id2 implies ∃Id1 s.t. (µ1, r1, E1) > Id1 and Id1
∗
> Id2

where Id1 and Id2 range over Conf ∪ {done, err}.

Proof. See [MF03]. ut

3.3 Type safety

We go through the proof of type safety for CMS do. The result is standard, but we make some
adjustments to the Subject Reduction and Progress properties for ===⇒ ∆= > ∪ > , in
order to stress the different role of simplification > and computation > . First of all, we
define well-formedness for evaluation contexts Γ,�:Mτ `Σ E:Mτ ′ (in Table 4) and configurations
Γ `Σ (µ, e, E).

9

(�)
∅, �: Mτ `Σ �: Mτ

(mdo)

{Γ, x1: τ1, ΓΘ `Σ e′: Mτ ′ | (x′ ⇐ e′) ∈ Θ ∧ τ ′ = ΓΘ(x′)}
Γ, x1: τ1, ΓΘ `Σ e: Mτ2

Γ, �: Mτ2 `Σ E: Mτ

Γ, x1: τ1, ΓΘ, �: Mτ1 `Σ E[mdo (x1 ⇐ �, Θ; e)]: Mτ
dom(ΓΘ) = DV(Θ)

Table 4. Well-formed evaluation contexts

Definition 2 (Well-formed configurations). Γ `Σ (µ, e, E) ∆⇐⇒

– dom(Σ) = dom(µ) and dom(Γ) = CV(E);
– µ(l) = el and Σ(l) = τl imply Γ `Σ el: τl;
– exists τ such that Γ `Σ e:Mτ derivable;
– exists τ ′ such that Γ,�:Mτ `Σ E:Mτ ′ derivable (see Table 4).

The formation rules of Table 4 for deriving Γ, �:Mτ `Σ E:Mτ ′ ensure that

– Γ assigns a type to all captured variables of E, indeed dom(Γ) = CV(E);
– E has no free variables and cannot capture a variable x twice.

Proposition 3 (SR).

1. If Γ `Σ (µ, e, E) and (µ, e, E) > (µ′, e′, E′), then Γ `Σ (µ′, e′, E′).
2. If Γ `Σ (µ, e, E) and (µ, e, E) > (µ′, e′, E′), then

there exist Σ′ ⊇ Σ and Γ ′ compatible with Γ such that Γ ′ `Σ′ (µ′, e′, E′).

Theorem 2 (Progress). If Γ `Σ (µ, e, E), then one of the following cases holds

1. e ∈ R and (µ, e, E) > , or
2. e 6∈ R and e >

Proof. See the long version of this paper available on the web. ut

4 Related Work

The notion of mixin module was firstly introduced in Bracha’s PhD thesis [Bra92] as a generaliza-
tion of the notion of mixin class (see for instance [BC90]). The semantics of the mixin language in
[Bra92] is based on the early work on denotational semantics of inheritance [Coo89,Red88] and is
defined by a translation into an untyped λ-calculus equipped with a fixpoint operator and a rather
rich set of record operators. Furthermore, imperative features are only marginally considered by
implicitly using the technique developed in [Hen93] for extending the semantics of inheritance given
in [Coo89,Red88] to object-oriented languages with state.
After this pioneer work, some proposals for extending existing languages with a system of mixin
modules were considered: [DS96] and [FF98a,FF98b] go in this direction; however, imperative
features are not considered and recursion problems are solved by separating initialization from
component definition.
The first calculi based on the notion of mixin modules appeared in [AZ99,AZ02] and then in
[WV00,MT00], but all of them are defined in a purely functional setting. More recently, [HL02]
has considered a CMS-like calculus, called CMS v, with a refined type system in order to avoid

10

bad recursion in a call-by-value setting. A separate compilation schema for CMS v has been also
investigated by means of a translation down to a call-by-value λ-calculus λB extended with a
non-standard let rec construct, inspired by the calculus defined in [Bou02].
Like CMS do, both λB and the calculus of Boudol serve as semantic basis for programming lan-
guages supporting mixins and introduce non-standard constructs for recursion which can produce
terms having an undefined semantics. However, λB does not have imperative features, whereas
the calculus in [Bou02] does not allow recursion in the presence of side-effects. For instance, in
CMS do the term mdo (x ⇐ new(x); ret(x)) has a well-defined semantics, whereas the corresponding
translated term let rec x = ref x in x in Boudol’s calculus is not well-typed; indeed, the evaluation
of this term gets stuck. Another advantage of our approach is that the separation of concerns made
possible by the monadic metalanguage allows us to retain the equational reasoning of CMS.
On the other hand, the more refined type systems adopted in [HL02,Bou02] are able to statically
detect all bad recursive declarations.
As already mentioned, the definition of the mdo construct in CMS do is inspired by the work on the
semantics of recursive monadic bindings in Haskell [EL00,ELM01,ELM02,EL02]. Our semantics
is partly related to that in [ELM01], however the notion of heap in our calculus has been made
implicit (thanks to the let rec construct), since we are interested in a more abstract approach;
and furthermore, the recursive do in [EL02] does not perform an incremental binding as happens
in our semantics, but rather all values are bound to the corresponding variables only after all
computations in the recursive monadic binding have been evaluated.

5 Conclusion and Future Work

We have defined CMS do, a monadic mixin calculus in which mixin modules can contain components
of three kinds: defined (bound to an expression), deferred (declared but not yet defined) and
computational (bound to a computation which must be performed before actually using the module
for component selection). Mixin modules can be combined by the sum, freeze and restrict operators
of CMS; moreover, a doall operator triggers all the computations in a mixin module.
We have provided a simple type system for the language, a simplification relation defined by local
rewrite rules with no side-effects (satisfying the CR and SR properties), and a computation relation
which models global evaluation able to modify the store (satisfying the SR property). Moreover,
we have stated a bisimulation result (simplification does not affect computation steps) and the
progress property for the combined relation; however, errors due to bad recursive declarations are
only dynamically detected, since here we have preferred to keep a simple type system.
We envisage at least two possibilities which deserve investigation in the direction of defining more
refined type systems. First, the dynamic errors due to bad recursive declarations mentioned above
could be detected by introducing a type system similar to that in [HL02,Bou02] keeping explicit
trace of dependencies between the evaluation of two computational components. On a different side,
a type system distinguishing between modules possibly containing some computational components
(or variables) and those with no computational components (and variables), would allow selection
on CMS mixins, so that CMS could be more directly embedded into CMS do.
For what concerns applications, CMS do can be considered a powerful kernel calculus allowing to
express, on one side, a variety of different operators for combination of software modules (in-
cluding linking, parameterized modules as ML functors, overriding in the sense of object-oriented
languages, see [AZ02] for details), on the other side different choices in the evaluation of compu-
tations. In particular, we mention at least two relevant scenarios of application: the modeling of
object-oriented features, including the difference between computations which must be performed
before instantiating a class, as field initializers, and computations which are evaluated each time

11

they are selected, as methods; and the possibility of expressing different policies for dynamic linking
and verification.

References

[AZ99] D. Ancona and E. Zucca. A primitive calculus for module systems. In G. Nadathur, editor,
Principles and Practice of Declarative Programming, 1999, number 1702 in Lecture Notes in
Computer Science, pages 62–79. Springer Verlag, 1999.

[AZ02] D. Ancona and E. Zucca. A calculus of module systems. Journal of Functional Programming,
12(2):91–132, March 2002.

[BC90] G. Bracha and W. Cook. Mixin-based inheritance. In Proc. of the Joint ACM Conf. on Object-
Oriented Programming, Systems, Languages and Applications and the European Conference on
Object-Oriented Programming, October 1990.

[Bou02] G. Boudol. The recursive record semantics of objects revisited. To appear in Journal of Functional
Programming, 2002.

[Bra92] G. Bracha. The Programming Language JIGSAW: Mixins, Modularity and Multiple Inheritance.
PhD thesis, Department of Comp. Sci., Univ. of Utah, 1992.

[Coo89] W.R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Dept. of Computer Science,
Brown University, 1989.

[DS96] D. Duggan and C. Sourelis. Mixin modules. In Intl. Conf. on Functional Programming, Philadel-
phia, May 1996. ACM Press.

[EL00] L. Erkök and J. Launchbury. Recursive monadic bindings. In Intl. Conf. on Functional Program-
ming 2000, pages 174–185, 2000.

[EL02] L. Erkök and J. Launchbury. A recursive do for Haskell. In Haskell Workshop’02, pages 29–37,
2002.

[ELM01] L. Erkök, J. Launchbury, and A. Moran. Semantics of fixIO. In FICS’01, 2001.
[ELM02] L. Erkök, J. Launchbury, and A. Moran. Semantics of value recursion for monadic input/output.

Journal of Theoretical Informatics and Applications, 36(2):155–180, 2002.
[FF98a] R.B. Findler and M. Flatt. Modular object-oriented programming with units and mixins. In Intl.

Conf. on Functional Programming 1998, September 1998.
[FF98b] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In PLDI’98 - ACM Conf.

on Programming Language Design and Implementation, pages 236–248, 1998.
[Hen93] A. V. Hense. Denotational semantics of an object-oriented programming language with explicit

wrappers. Formal Aspects of Computing, 5(3):181–207, 1993.
[HL94] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with sharing.

In Conference record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 123–137, 1994.

[HL02] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In D. Le Métayer, editor,
ESOP 2002 - Programming Languages and Systems, number 2305 in Lecture Notes in Computer
Science, pages 6–20. Springer Verlag, 2002.

[Ler94] X. Leroy. Manifest types, modules and separate compilation. In Proc. 21st ACM Symp. on
Principles of Programming Languages, pages 109–122. ACM Press, 1994.

[MF03] E. Moggi and S. Fagorzi. A Monadic Multi-stage Metalanguage. In A.D. Gordon, editor, Founda-
tions of Software Science and Computational Structures - FOSSACS 2003, volume 2620 of LNCS,
pages 358–374. Springer Verlag, 2003.

[MT00] E. Machkasova and F.A. Turbak. A calculus for link-time compilation. In G. Smolka, editor,
ESOP 2000 - Programming Languages and Systems, number 1782 in Lecture Notes in Computer
Science, pages 260–274, Berlin, 2000. Springer Verlag.

[Red88] U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In Proc. ACM
Conf. on Lisp and Functional Programming, pages 289–297, 1988.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994.

[WV00] J.B. Wells and R. Vestergaard. Equational reasoning for linking with first-class primitive modules.
In G. Smolka, editor, ESOP 2000 - Programming Languages and Systems, number 1782 in Lecture
Notes in Computer Science, pages 412–428, Berlin, 2000. Springer Verlag.

12

