
Logical Modalities and Multi-Stage Programming

Zine El-Abidine Benaissa∗(1), Eugenio Moggi†(2), Walid Taha∗ (1), Tim Sheard∗ (1)
(1) Oregon Graduate Inst., Portland, OR, USA (2) DISI, Univ. di Genova, Genova, Italy

Abstract. Multi-stage programming is a method
for improving the performance of programs through
the introduction of controlled program specialization.
This paper makes a case for multi-stage programming
with open code and closed values. We argue that a
simple language exploiting interactions between two
logical modalities is well suited for multi-stage pro-
gramming, and report the results from our study of
categorical models for multi-stage languages.

Keywords: Multi-stage programming, categorical
models, semantics, type systems (multi-level typed cal-
culi), combination of logics (modal and temporal).

1 Introduction

Multi-stage programming is a method for improving
the performance of programs through the introduction
of controlled program specialization [15, 13]. MetaML
was the first language designed specifically to support
this method. It provides a type constructor for “code”
and staging annotations for building, combining, and
executing code, thus allowing the programmer to have
finer control of the evaluation order.

Unfortunately, the single type constructor 〈 〉 that
MetaML provides for code does not allow for a natu-
ral way of executing code. This means that “generated
code” cannot be easily integrated with the rest of the
run-time system. Previously published attempts to
provide a consistent type system for MetaML where
code can be executed have had limited expressivity
[14].

In this paper we propose a refined method based on a
study of

∗Research supported by the NSF Grant IRI-9625462, The

Department of Defense, USAF Air Materiel Command contract

F19628-93-C-0069, and The NSF Grant CDA-9703218.
†Research partially supported by MURST progetto cofi-

nanziato “Tecniche formali per la specifica, l’analisi, la verifica,

la sintesi e la trasformazione di sistemi software”, ESPRIT WG

APPSEM.

1. The operational semantics and pragmatics of staged
computation [15, 14, 11, 13],

2. Previous work on the applications of logical modal-
ities to staged computation [5, 4],

3. Categorical models for multi-stage languages [9, 1].

Our study has been consolidated into a new language
for multi-stage programming called λBN.

1.1 Multi-Stage Programming

The main steps of multi-stage programming are:

1. Write the conventional program

program: tS → tD → t

where tS is the type of the “static” or “known” pa-
rameters, tD is the type of the “dynamic”, or “un-
known” parameters, and t is the type of the result
of the program.

2. Add staging annotations to the program to derive

annotated program: tS → 〈tD〉 → 〈t〉

In partial evaluation, this step is performed auto-
matically, and is known as Binding-Time Analysis.
However, there are reasons for carrying it out inter-
actively (see [15]).

3. Compose the annotated program with an unfolding
combinator back: (〈A〉 → 〈B〉)→ 〈A→ B〉

code generator: tS → 〈tD → t〉

4. Construct or read the static inputs:

s: tS

5. Apply the code generator to the static inputs to get

specialized code: 〈tD → t〉

6. Run the specialized code to re-introduce the gen-
erated function as a first-class value in the current
environment:

specialized program: tD → t

1

Problem and Solution In MetaML the last step is
generally carried out in ad hoc ways [16]. The prob-
lem is that there is no general way for going from
MetaML’s code type 〈A〉 to a MetaML value of type
A. We have not been able to find reasonable mod-
els where a function unsafe run: 〈A〉 → A exists. Op-
erationally, a code fragment of type 〈A〉 can contain
“free dynamic variables”. Because the code type of
MetaML does not provide us with any information as
to whether or not there are “free dynamic variables”
in the fragment, there is no way of ensuring that this
code fragment can be safely executed.

At the level of language constructs, MetaML provides
a construct Run. Run allows the execution of a code
fragment. For example, run 〈3 + 4〉 is well-typed and
evaluates to 7, but this construct has limited expres-
sivity, e.g. the lambda abstraction λx.run x is not
typable. Without such a function code fragments de-
clared at top-level can never be executed using well-
typed terms. At the same time, we don’t want a func-
tion like unsafe run: 〈A〉 → A, since it would break type
safety for MetaML [14].

The crucial advance presented in this paper is
that there are useful models where a function
safe run: [〈A〉] → [A] exists. Safe-Run has the same
operational behavior that unsafe run was intended to
achieve, namely running code. The difference is only
in the typing of this function. In a nutshell, safe run

allows the programmer to exploit the fact that closed
code can be safely executed.

1.2 The Refined Method

We propose a refinement of multi-stage programming
with explicit assertions about closedness, and where
these assertions are checked by the type system:

1. Write the conventional program

program: tS → tD → t

Exactly the same as before.

2. Add staging annotations to the program to achieve

closed annotated program: [tS → 〈tD〉 → 〈t〉]

Almost the same as before. The difference is that
the programmer must use the Closed type construc-
tor [] to demonstrate to the type system that the
annotated program does not introduce any “free dy-
namic variables”. This means that in constructing
the annotated program, the programmer will only
be allowed to use Closed values.

3. Compose the annotated program with an unfolding
combinator to get

closed code generator: [tS → 〈tD → t〉]

Now back must itself be closed if we are to use it in-
side a closed value, that is, we use a slightly different
combinator closed back: [(〈A〉 → 〈B〉)→ 〈A→ B〉]

4. Turn the closed code-generator into

generator of closed code: [tS]→ [〈tD → t〉]

This is done by applying a combinator
closed apply: [A→ B]→ [A]→ [B].

5. Construct or read the static inputs as closed values:

cs: [tS]

This is similar to multi-stage programming with ex-
plicit annotations. However, requiring the value to
be closed is much more specific than in the original
method. This means that we have to make sure that
all combinators used in constructing this value are
themselves closed.

6. Apply the code generator to the static inputs to get

closed specialized code: [〈tD → t〉]

7. Run the above result to get:

closed specialized program: [tD → t]

This step exploits an interaction between the closed
and code types, and it is performed by applying a
function safe run: [〈A〉]→ [A].

8. Forget that the specialized program is closed:

specialized program: tD → t

The step is performed by applying a function
open:[A]→ A.

Various examples from [15, 11] can be fully developed
in λBN (the language proposed in this paper), but not
in the core type system for MetaML [14].

1.3 Overview

The paper is organized as follows: To begin, we in-
troduce multi-stage languages, and review the connec-
tions that have been established between code types
and logical modalities.

2

Next, we analyze, from a categorical point of view, the
logical modalities and how they interact. Borrowing
ideas from the work by Benton and others on categor-
ical models for linear logic (and more specifically the
adjoint calculus [2, 3]), we give a definition of what
constitutes a categorical model for three simply typed
multi-stage languages, namely λ2, λ©, and λBN, and
consider some examples.

Then, we investigate the interaction between modali-
ties and computational monads, since computational
effects are a pervasive feature of programming lan-
guages. In particular, we refine the interpretation of
λBN in the presence of computational effects.

Notation 1.1 We introduce notation and terminology
used throughout the paper.

C,D Categories
|C| Objects of the category
A,B Objects (in some category)
C(A,B) The set of maps from A to B
F,G Functors (between categories)
GF G ◦ F
GFA G(FA)
Fn n times composition of functor F

⊂ - Full and faithful functor
F a G An adjunction. F and G are

the left- and right-adjoints
(xn|n ∈ N) Infinite sequence
(xi|i ∈ m) Finite sequence of length m

xi Short for (xi|i ∈ m)
when m is clear from context

x: : s The sequence obtained by
adding x in front of s

n+, n+ + n+ 1, n+ 2
do{xi ← ei; e}, ret e let xi ⇐ ei in e and [e] of [8]

op:
∏

i MAi →MB op(ui)
∆
= do{xi ← ui; op(xi)},

i.e., the monadic extension
of op:

∏
iAi →MB

2 Multi-Stage Languages

Multi-stage languages provide generic constructs
building, combining and executing code fragments.
The three languages we have studied have the follow-
ing main features:

• λ2 [5], provides constructs for building and then ex-
ecuting closed code. Such a language is useful in
machine-code generation.

• λ© [4], provides constructs for building and combin-
ing open code fragments. Such a language is useful

in high-level program generation and in-lining.

• MetaML [15, 14], extends λ© by providing an addi-
tional construct for the execution of code fragments,
and cross-stage persistence. Cross-stage persistence
is the ability to bind a variable at “stage” n and use
it at “stage” n+ 1. Both features are important for
pragmatic reasons.

λ2 and λ© have clean, logical foundations [5, 4, 7, 6]:
there is a Curry-Howard isomorphism between λ© and
linear time temporal logic, and between λ2 and modal
logic S4. MetaML emphasizes the pragmatic impor-
tance of being able to combine cross-stage persistence,
“evaluation under lambda” (or “symbolic computa-
tion”), and being able to execute code. The combi-
nation of these three goals is not achieved by either
λ2 or λ© separately (See [15]). At the same time,
MetaML had no logical foundations, nor the formal hy-
giene that such foundations often promote. For exam-
ple, MetaML could only avoid the expressivity prob-
lem of Run through ad hoc extensions (see [16]), which
demanded deeper investigation and possibly simplifi-
cation.

2.1 λ
BN Types, Syntax, and Semantics

λBN has the following types:

t ∈ T : : = b | t1 → t2 | 〈t〉 | [t]

i.e. base types, functions, (open) code fragments, and
closed values. The syntax of λBN is as follows:

e ∈ E: : = c | x | λx.e | e1e2 | 〈e〉 | ˜e | up e |
close e with {xi = ei|i ∈ m} | open e |
safe run e

The first four constructs are the standard ones in a
λ-calculus with constants. Bracket and Escape al-
low building and combining open code. Brackets con-
struct code, and Escape splices a code fragment into
the context of a bigger code fragment. A term such as
(fn x => <(~x,~x)>) <5> yields <(5,5)>when eval-
uated. Up allows us to use any boxed expression at a
higher level, thus providing cross-stage persistence for
boxed-values. The Close-With construct asserts that e
is closed except for a set of variables xi, each of which
is bound to a closed term ei. Open forgets the closed-
ness assertion on e. Finally Safe-Run executes a closed
code fragment and returns a closed value.

The type system of λBN is given in Figure 1. Typ-
ing judgments have the form Γ ` e: tn, where Γ ≡
{xi: t

ni

i |i ∈ m} and n is a natural called the level of

3

Γ ` c: tnc Γ ` x: tn if tn = Γ(x)

Γ, x: tn1 ` e: t
n
2

Γ ` λx.e: (t1 → t2)
n

Γ ` e1: (t1 → t2)
n Γ ` e2: tn1

Γ ` e1 e2: tn2

Γ ` e: tn+

Γ ` 〈e〉: 〈t〉n
Γ ` e: 〈t〉n

Γ ` ˜e: tn+

Γ ` e: [t]n

Γ ` up e: [t]
n+

Γ ` ei: [ti]
n {xi: [ti]

0|i ∈ m} ` e: t0

Γ ` close e with xi = ei: [t]
n

Γ ` e: [t]n

Γ ` open e: tn
Γ ` e: [〈t〉]n

Γ ` safe run e: [t]
n

Figure 1: λBN Type System

the term. The level of a program fragment (i.e. a sub-
term of a closed term) is determined by the context,
namely it is the number of surrounding Brackets less
the number of surrounding Escapes and Ups. The big-
step operational semantics of λBN is given in Figure 2.

The set of values for λBN is defined as follows:

v0 ∈ V 0 : : = λx.e | 〈v1〉 | close v0

v1 ∈ V 1 : : = c | x | v1 v1 | λx.v1 | 〈v2〉 |
close e with xi = v1

i | open v1 |
safe run v1

vn+2 ∈ V n+2 : : = c | x | vn+2 vn+2 | λx.vn+2 |
〈vn+3〉 | ˜vn+1 | up vn+1 |
close e with xi = vn+2

i |
open vn+2 | safe run vn+2

3 Categorical Models

In this section we define what is a model of λBN (see
Definition 3.9). We ignore computational effects, and
focus instead on the logical modalities underpinning
this multi-stage language.

Notation 3.1 We use the FP- prefix to indicate any
2-categorical notion (e.g. category, functor, monad,
adjunction) specialized to the 2-category of categories
with finite products and functors preserving them.
Similarly we use the CCC- prefix to indicate any
2-categorical notion specialized to the 2-category of

cartesian closed categories and functors preserving the
CCC structure.

Remark 3.2 An FP-adjunction F a G is simply
an adjunction such that the left adjoint F is an FP-
functor.

Definitions 3.3 and 3.5 recast in categorical terms the
correspondence established by Davies and Pfenning
between λ© (Figure 6) and linear time temporal logic,
and between λ2 (Figure 5) and S4 modal logic.

Definition 3.3 A λ©-model is given by a CCC D and
a full and faithful CCC-functor

D ⊂
N - D

Remark 3.4 The pattern for interpreting λ© is to
interpret a type t by an object [[t]] of D, namely

[[〈t〉]] = N[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

and a term {xi: t
ni

i |i ∈ m} `© e: tn by a map in

D(
∏

i∈m

Nni [[ti]],N
n[[t]]).

The properties of N ensure that one may safely confuse
Nn[[t1 → t2]] with (Nn[[t2]])

N
n[[t1]]. This iso formalizes

the property of © in linear time temporal logic, and
was also observed in [15].

Definition 3.5 A λ2-model is given by an FP-
category C, a CCC D and an FP-adjunction

D

G -
>�
F

C

Remark 3.6 The definition of λ2-model is consistent
with the topos-theoretic approach to modalities of [12].
The FP-adjunction induces an FP-comonad B = FG on
D. B is all that is needed for interpreting λ2. In fact,
a type t is interpreted by an object [[t]] of D, namely

[[[t]]] = B[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

and a term {xi: ti|i ∈ m}; {xj : tj |j ∈ n} `2 e: t is inter-
preted by a map in D(B(

∏
i∈m[[ti]])× (

∏
j∈n[[tj]]), [[t]]).

The separation of typing contexts in two parts is not
essential. In fact, there is a bijection (modulo semantic
equality) between terms of the form ∆, x: t; Γ `2 e1: t

′

and those of the form ∆;x: [t],Γ `2 e2: t
′ given by

e1 7→ let box x = x in e1 e2 7→ e2[x: = box x]

By analogy with the adjoint calculus [2, 3]), one may
consider a variant of λ2 in which the category C and
context separation have a more prominent role.

4

e1
0
↪→ λx.e e2

0
↪→ v1 e[x: = v1]

0
↪→ v2

e1 e2
0
↪→ v2

λx.e
0
↪→ λx.e

e
0
↪→ 〈v〉

˜e
1
↪→ v

e
0
↪→ close v′

up e
1
↪→ close v′

ei

0
↪→ vi e[xi: = vi]

0
↪→ v

close e with xi = ei

0
↪→ close v

e
0
↪→ close v

open e
0
↪→ v

e
0
↪→ close 〈v′〉 v′

0
↪→ v

safe run e
0
↪→ close v

e
n+
↪→ v

〈e〉
n
↪→ 〈v〉

x
n+
↪→ x c

n+
↪→ c

e1
n+
↪→ v1 e2

n+
↪→ v2

e1 e2
n+
↪→ v1 v2

e
n+
↪→ v

λx.e
n+
↪→ λx.v

e
n+
↪→ v

˜e
n++
↪→ ˜v

e
n+
↪→ v′

up e
n++
↪→ up v′

ei

n+
↪→ vi

close e with xi = ei

n+
↪→ close e with xi = vi

e
n+
↪→ v

open e
n+
↪→ open v

e
n+
↪→ v

safe run e
n+
↪→ safe run v

Figure 2: Big-Step Operational Semantics of λBN

In λBN the closed types and open code types coexist,
so the key point is to clarify how the modalities of λ2

and λ© interact. The basic idea is that a λBN-model is
a λ2-model where the category D has the structure of
a λ©-model parameterized w.r.t. C. To formalize this
notion of parameterization, we introduce the following
auxiliary definition:

Definition 3.7 Given an FP-functor F : C → D the
simple C-indexed FP-category DF : Cop → Cat is de-
fined as follows

• |DF
X |

∆
= |D| and DF

X (A,B)
∆
= D(FX ×A,B).

• composition of g ∈ DF
X(A,B) and h ∈ DF

X(B,C) is

FX ×A
〈π1, g〉- FX ×B

h- C ∈ DF
X(A,C), while

the identity for A in DF
X is the second projection

π2:FX ×A→ A.

• substitution functor f∗:DF
X → DF

Y along f ∈

C(Y,X) is given by f∗(A)
∆
= A and f∗(g)

∆
= g ◦

(Ff × id).

DF is called simple because the action on objects of
the substitution functor f∗ is the identity.

Proposition 3.8 The simple indexed category DF of
Definition 3.7 has:

• finite products, i.e.
∏

i∈m

DF
X(A,Bi) ∼= D

F
X (A,

∏

i∈m

Bi)

• exponentials, i.e. DF
X(C×A,B) ∼= DF

X (C,BA), pro-
vided D is CCC

• simple comprehension, i.e. DF
X(1, A) ∼= C(X,GA),

provided F a G is an FP-adjunction (c.f. [9]).

Definition 3.9 A λBN-model is given by an FP-
category C, a CCC D, an FP-adjunction

D

G -
>�
F

C

and a C-indexed full and faithful CCC-functor

DF ⊂
N - DF

Intuitively, the category C is the closed universe, where
actual evaluation takes place, while D is the open uni-
verse, where one can define symbolic evaluation. The
functor F: C → D says how the closed universe embeds
into the open one, and is the key data for defining the
parameterization of D by C.

Remark 3.10 We work mainly in D, therefore we
write N for functor on D corresponding to N1 via the
isomorphism of categories D ∼= DF

1 . Furthermore, we
write NA for NXA when A ∈ |DF

X | = |D|, since the
action on objects (but not on maps) of the functors
NX is independent of X .

The pattern for interpreting λBN is like that for λ©

(λBN has no splitting of contexts like in λ2), i.e. a
type t is interpreted by an object [[t]] of D, namely

[[[t]]] = B[[t]] , [[〈t〉]] = N[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

where B is the FP-comonad induced by the FP-
adjunction F a G, and a term {xi: t

ni

i |i ∈ m} ` e: t
n is

interpreted by a map in D(
∏

i∈m

Nni [[ti]],N
n[[t]]).

Any λBN-model supports both cross-stage persistence
for a restricted class of types (including the closed
types), and the possibility of executing closed code.

5

Proposition 3.11 (Cross-stage persistence) In a
λBN-model there is a canonical map up: FX → NFX in
D.

Proof: We have the natural isomorphisms (note that
the adjunction F a G is not used)

D(FX,FY) by definition of DF

X

∼= DF

X (1,FY) because NX is full and faithful

∼= DF

X (N1,NFY) because NX is a CCC-functor
∼= DF

X (1,NFY) by definition of DF

X

∼= D(FX,NFY)

We define up: FX → NFX as the map corresponding
to the identity over FX when Y = X (in general up is
not an iso).

Proposition 3.12 (Compile) In a λBN-model there
is a canonical iso compile: GNA→ GA in C.

Proof: We have the natural isomorphisms

C(X,GA) by F a G

∼= D(FX,A) by definition of DF

X

∼= DF

X(1, A) because NX is full and faithful
∼= DF

X(N1,NA) because NX is a CCC-functor
∼= DF

X(1,NA) by definition of DF

X

∼= D(FX,NA) by F a G

∼= C(X,GNA)

We define compile: GNA → GA as the map corre-
sponding to the identity over GNA when X = GNA,
while the inverse of compile is the map corresponding
to the identity over GA when X = GA.

3.1 Examples

We give examples of λBN-models parameterized w.r.t.
a category A, making explicit what additional struc-
ture or properties are needed on A in each instance.
For each example we define the categories C and D,
and the action on objects of the functors N, F and G.

Example 3.13 Let N be the set of naturals. Given a
CCC A with N -indexed products, take

• C
∆
= A and D

∆
= AN , hence an object A ∈ |D| is a

sequence (An ∈ |A||n ∈ N) and a map f ∈ D(A,B)
is a sequence (fn ∈ A(An, Bn)|n ∈ N).

• NA
∆
= 1: :A, where 1 is the terminal object of A

• FX
∆
= (X |n ∈ N), i.e. the sequence which is con-

stantly X , while GA
∆
=

∏

n∈N

An.

Exponentials in D are defined pointwise in terms of
exponentials in A, i.e. (BA)n = BAn

n .

Example 3.14 Let ωop be the category of natural
numbers with the reverse order, i.e.

0 � 1 . . . n � n+ . . .

Given a CCC A with finite and ωop-limits, take

• C
∆
= A and D

∆
= Aωop

, hence a map f ∈ D(A,B)
amounts to a commuting diagram

A0
� a0

A1 . . . An
� an

An+ . . .

.

B0

f0

?
�

b0
B1

f1

?
. . . Bn

fn

?
�

bn
Bn+

fn+

?
. . .

while an object of D is a sequence of maps in A.

• NA
∆
=!A0

: :A, where !A0
is the map 1← A0 in A

• FX
∆
= (id:X ← X |n ∈ N), i.e. the sequence which

is constantly idX , while GA
∆
= lim

n∈ωop
An.

Exponentials in D are not defined pointwise, but exis-
tence of exponentials and finite limits in A ensures that
D has exponentials (and finite limits). In this model
we have a natural transformation up:A→ NA, namely

up0
∆
=!:A0 → 1 and upn+

∆
= an:An+ → An, which

provides cross-stage persistence for arbitrary types.

Finally we give an example which is both a λ2- and
λ©-model, but fails to be a λBN-model. More precisely,
it has the structure of a λBN-model, but the C-indexed
functor N fails to be full and faithful, so we do not
have the iso compile: GNA→ GA of Proposition 3.12.

Example 3.15 Given a CCC A with finite limits, take

• C
∆
= Aωop

and D
∆
= AN

• NA
∆
= 1: :A, where 1 is the terminal object of A

• (FX)n
∆
= Xn, i.e. forget the maps xn:Xn+ → Xn,

while (GA)n
∆
=

∏

i≤n

Ai with the obvious projection

π: (GA)n+ → (GA)n.

6

[[Γ ` c: tnc]]
∆
= [[c]]n◦!:C → Nn[[tc]] [[Γ ` x: tn]]

∆
= πx:C → NnA if tn = Γ(x)

[[Γ ` e: [t]n]] = f :C → Nn(BA)

[[Γ ` up e: [t]
n+

]]
∆
= upn ◦ f :C → Nn(NBA)

[[Γ ` e: [〈t〉]n]] = f :C → Nn(BNA)

[[Γ ` safe run e: [t]
n
]]

∆
= runn ◦ f :C → Nn(BA)

[[Γ, x: tn ` e: t′n]] = f :C × NnA→ NnB

[[Γ ` λx.e: t→ t′n]]
∆
= λn ◦ (Λf):C → Nn(BA)

[[Γ ` e: [t]n]] = f :C → Nn(BA)

[[Γ ` open e: tn]]
∆
= openn ◦ f :C → NnA

[[Γ ` e: tn+]] = f :C → Nn+A

[[Γ ` 〈e〉: 〈t〉n]]
∆
= f :C → Nn(NA)

[[Γ ` e: 〈t〉n]] = f :C → Nn(NA)

[[Γ ` ˜e: tn+]]
∆
= f :C → Nn+A

[[Γ ` e1: t→ t′n]] = f1:C → Nn(BA) [[Γ ` e2: tn]] = f2:C → NnA

[[Γ ` e1 e2: t′n]]
∆
= @n ◦ 〈f1, f2〉:C → NnB

[[Γ ` ei: [ti]
n
]] = fi:C → Nn(BAi) [[{xi: [ti]

0|i} ` e: t0]] = f :
∏

i BAi → A

[[Γ ` close e with xi = ei: [t]
n
]]

∆
= closen(f) ◦ 〈fi|i〉:C → Nn(BA)

where C
∆
= [[Γ]], A

∆
= [[t]], B

∆
= [[t′]] and Ai

∆
= [[ti]].

Figure 3: Pure Interpretation in λBN-Models

The action of NX on maps of DF

X sends f ∈ DF

X(A,B)
to g ∈ DF

X (NA,NB), where g0 =!:X0 × 1→ 1 and

gn+ = Xn+ ×An

xn × id- Xn ×An

fn - Bn

It is easy to see that NX is a CCC-functor on DF

X ,
but it fails to be full and faithful unless all xn are isos
(or equivalently both epis and split monos). In fact, if
xn is not epi, then exist C ∈ |A| and h, h′:Xn → C

such that h 6= h′ but h ◦ xn = h′ ◦ xn. One can show
that NX is not faithful, i.e. f 6= f ′ but NXf = NXf

′,
by taking fm = f ′

m =!:Xm × 1 → 1 for m 6= n and
fn = h, f ′

m = h′:Xm × 1 → C. On the other hand, if
xn is not a split mono, then one can show that NX is
not full by taking gm+:Xm+ × 1 → 1 for m 6= n and
gn+ = π1:Xn+ × 1→ Xn+.

3.2 Interpretation of terms

We have already given the interpretation of types in a
λBN-model without computational effects, namely

[[[t]]] = B[[t]] , [[〈t〉]] = N[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

This section gives the corresponding interpretation of
terms. Before doing that, we introduce some auxil-
iary maps in D, which simplify the definition of the
interpretation, and clarify the similarities with the in-
terpretation of the simply typed λ-calculus in a CCC.

Given op:
∏

iAi → A we define

opn
∆
= Nnop:

∏

i

NnAi → NnA

where we exploit that N preserves finite products.

• λn: (NnB)N
nA → NnBA. Since N preserves the CCC

structure, λn is the iso (NnB)N
nA → NnBA.

• @n
∆
= evaln: NnBA × NnA → NnB. Since N pre-

serves the CCC structure, @n is (up to iso) an in-
stance of evaluation eval: (NnB)N

nA×NnA→ NnB.

• openn
∆
= εn: NnBA → NnA, where ε: BA→ A is the

co-unit of the co-monad B.

• closen(f)
∆
= (Bf ◦ δ)n:

∏
i NnBAi → NnBC, where

f :
∏

i BAi → C and δ: BA → B2A is the co-
multiplication of B, and we exploit that N and B

preserve finite products.

• upn: NnBA → Nn+BA, where up: BA→ NBA is the
map of Proposition 3.11.

• runn
∆
= (F compile)n: NnBNA → NnBA, where

compile: GNA→ GA is the iso of Proposition 3.12.

Figure 3 defines the interpretation of a well-formed
term Γ ` e: tn by induction on the typing derivation
in the type system of Figure 1.

7

4 Modalities and monads

We have given a simplified interpretation of λBN (and
its multi-stage sub-languages) in the absence of com-
putational effects. This interpretation is the analog of
the interpretation of the simply typed λ-calculus in a
CCC. However, we are interested in multi-stage pro-
gramming languages, like Mini-ML2 [5], Mini-ML©

[4], and MetaML [15], where logical modalities coexist
with computational effects. In this section we define
monadic λBN-models and give a monadic CBV inter-
pretation of λBN in such models, extending the inter-
pretation sketched in [8].

Definition 4.1 A monadic λBN-model consists of a
λBN-model equipped with

• a strong monad M over D such that the canonical
map MNBA → (MNB)NA is an iso, and we call
λ∗: (MNB)NA →MNBA its inverse

• a strong natural transformation σ: BMA → MBA

respecting the structure of the strong monad M and
the FP-comonad B, i.e.

MA BM2A
σ- MBMA

Mσ- M2BA

I@@
Mε

@@

@@
Bµ

@@R
BMA

ε

6

σ- MBA BMA σ - MBA

µ

?

@@
Mδ

@@R

I@
@

@
@

@

Bη

B2MA

δ

?

Bσ
- BMBA

σ
- MB2A BA

η

6

Remark 4.2 The intuition here is that the strong
monad M models conventional computations, i.e.
those at level 0. Staged computations are achieved
by an alternation of M and N, namely we define the
type MnA of n-staged computations of type A as
(MN)nMA. In general, Mn is not a monad, how-
ever the natural transformations η and µ for M in-
duce natural transformations ηn: NnA → MnA and
µn: (M2N)nM2A→MnA.

The iso λ∗: (MNB)NA → MNBA refines the iso
(NB)NA → NBA corresponding to preservation of ex-
ponentials by N. λ∗ is essential to define the inter-
pretation of λ-abstraction at level n > 0, and also to
define the analog of let: (MB)A×MA→MB for Mn,
namely letn: (MnB)N

nA ×MnA→MnB.

The natural transformation σ: BMA → MBA and its
properties can be intuitively justified as follows. Think
of BA as the subset of values of type A without “free
dynamic variables”, so σ is saying that a computation
without “free dynamic variables” is guaranteed to re-
turn a value without “free dynamic variables”. σ is
essential for interpreting Safe-Run and Close-With.

Example 3.13 fails to extend to a monadic λBN-model
for monads as simple as lifting, because σ does not
exists. However, we can extend the λBN-model of Ex-
ample 3.14:

Example 4.3 Given a strong monad M over A such
that

• M preserves pullbacks, and the commuting square

M(BA)
e- (MB)A

(M∗)

M1

M !

?

k
- (M1)A

(M !)A

?

is a pullback, where k(u)
∆
= λx:A.u and e(u)

∆
=

λx:A.do{f ← u; ret (fx)}

• M preserves ωop-limits

the induced strong monad M over Aωop

, i.e.

MA
∆
= MA0

�Ma0
MA1 . . . MAn

�Man
MAn+ . . .

satisfies the additional requirements for having a
monadic λBN-model, namely

• the first property of M over A ensures the existence
of the iso λ∗: (MNB)NA →MNBA (exponentials in
Aωop

are computed using exponentials and pullbacks
in A);

• the second property of M over A allows us to define
the natural transformation σ: BMA→MBA as the
iso corresponding to preservation of ωop-limits by
M .

Remark 4.4 Many monads over the category of cpos
(e.g. lifting) satisfy the additional properties required
in Example 4.3, moreover several monad transformers
(e.g. for adding a global state or exceptions) preserve
such properties. However, there are monads which
fail to satisfy the additional properties, notably power-
domains and continuations.

8

Interpretation of types. A type t is interpreted
(as usual) by an object [[t]] of D, namely:

[[[t]]] = B[[t]], [[〈t〉]] = NM [[t]], [[t1 → t2]] = (M [[t2]])
[[t1]]

In a monadic λBN-model a term {xi: t
ni

i |i ∈ m} ` e: t
n

is interpreted by a map in D(
∏

i∈m

Nni [[ti]],Mn[[t]]).

Remark 4.5 This interpretation is a refinement of the
interpretation given in Section 3.2, which is recovered
by replacing M with the identity monad, and it ex-
tends the monadic CBV interpretation of the simply
typed λ-calculus (in a CCC with a strong monad).

Auxiliary maps. We introduce some auxiliary
maps in D (see also Notation 1.1), similar to those
given in Section 3.2. Given op:

∏
i Ai → MB we de-

fine opn:
∏

i MnAi →MnB by induction on n:

0)
∏

i

MAi

op- MB

n+)

∏

i

Mn+Ai

ψ- MN
∏

i

MnAi

@
@
MNopn

R
Mn+B

where ψ:
∏

iMAi → M(
∏

iAi) is given by ψ(ui|i)
∆
=

do{xi ← ui; ret (xi|i)}, and we exploit that N preserves
finite products.

• ηn: NnA→MnA is given by induction:

0) A
η - MA

n+) Nn+A
η- MNn+A

MNηn- Mn+A

where η:A→MA is the unit of the monad M .

• λn: (MnB)N
nA →Mn(MB)A is given by induction:

0) (MB)A η- M(MB)A

n+) (Mn+B)N
n+A λ∗- MN(MnB)N

nA

@
@
MNλn

R
Mn+(MB)A

• @n
∆
= evaln:Mn(MB)A × MnA → MnB, where

eval: (MB)A ×A→MB is evaluation.

• openn
∆
= Mnε:MnBA → MnA, where ε: BA → A is

the co-unit for B.

• closen(f)
∆
= (σ ◦ (Bf) ◦ δ)n:

∏
iMnBAi → MnBC,

where f :
∏

i BAi →MC and δ: BA→ B2A is the co-
multiplication for B, and we exploit that B preserves
finite products.

• upn
∆
= (η ◦ up)n:MnBA → Mn+BA, where

up: BA→ NBA is the map of Proposition 3.11.

• runn
∆
= (σ ◦ F compile)n:MnBNMA → MnBA,

where compile: GNA → GA is the iso of Proposi-
tion 3.12.

The interpretation of terms. Figure 4 defines the
interpretation of a well-formed term Γ ` e: tn by in-
duction on the typing derivation in the type system of
Figure 1.

5 Discussion

Searching for a categorical semantics of MetaML has
benefited us in a number of ways:

• It has suggested simplifications and extensions. We
have simplified the type system of MetaML and pro-
posed an extension with closed code types called AIM
(see [11]). λBN is the result of further simplification
of AIM and the associated model.

• Explaining multi-stage languages in terms of more
primitive concepts, namely logical modalities (in the
sense that the modalities are characterized by uni-
versal properties) and computational monads. We
have shown that a simple interaction between the
two modalities in our models accounts for execution
of closed code. Finally, we have pointed out what
kinds of computational effects should be expected to
integrate easily with multi-stage languages.

5.1 λ
BN Compared to AIM

Recently, we presented AIM (An Idealized MetaML)
[11], which extends MetaML with an analog of the
Box type of λ2 yielding a more expressive language,
yet has a simpler typing judgment than MetaML. We
have shown that we can embed all three languages into
AIM. λBN can be viewed as a cut-down version of AIM
which we believe is sufficiently expressive for the pur-
poses of multi-stage programming.

The Closed type constructor of λBN is essentially a
strict version of the Box type constructor of AIM. In
AIM, the Box construct delayed its argument. To the
programmer, this meant that there were two “code”

9

[[Γ ` c: tnc]]
∆
= [[c]]n◦!:C →Mn[[tc]] [[Γ ` x: tn]]

∆
= ηn ◦ πx:C →MnA if tn = Γ(x)

[[Γ ` e: [t]n]] = f :C →Mn(BA)

[[Γ ` up e: [t]
n+

]]
∆
= upn ◦ f :C →Mn+(BA)

[[Γ ` e: [〈t〉]n]] = f :C →Mn(BNMA)

[[Γ ` safe run e: [t]
n
]]

∆
= runn ◦ f :C →Mn(BA)

[[Γ, x: tn ` e: t′n]] = f :C × NnA→MnB

[[Γ ` λx.e: t→ t′n]]
∆
= λn ◦ (Λf):C →Mn(MB)A

[[Γ ` e: [t]n]] = f :C →Mn(BA)

[[Γ ` open e: tn]]
∆
= openn ◦ f :C →MnA

[[Γ ` e: tn+]] = f :C →Mn+A

[[Γ ` 〈e〉: 〈t〉n]]
∆
= f :C →Mn(NMA)

[[Γ ` e: 〈t〉n]] = f :C →Mn(NMA)

[[Γ ` ˜e: tn+]]
∆
= f :C →Mn+A

[[Γ ` e1: t→ t′n]] = f1:C →Mn(MB)A [[Γ ` e2: tn]] = f2:C →MnA

[[Γ ` e1 e2: t′n]]
∆
= @n ◦ 〈f1, f2〉:C →MnB

[[Γ ` ei: [ti]
n
]] = fi:C →Mn(BAi) [[{xi: [ti]

0|i} ` e: t0]] = f :
∏

i BAi →MA

[[Γ ` close e with xi = ei: [t]
n
]]

∆
= closen(f) ◦ 〈fi|i〉:C →Mn(BA)

where C
∆
= [[Γ]], A

∆
= [[t]], B

∆
= [[t′]] and Ai

∆
= [[ti]].

Figure 4: Monadic Interpretation in λBN-Models

types. This causes some confusion from the point of
view of multi-stage programming, because manipulat-
ing values of type [〈A〉] would be read as “closed code
of open code of A”. Not only is this a cumbersome
reading, it makes it harder for the programmer to
reason about when computations are performed. In
λBN, we have made the pragmatic decision that Closed
should not delay its argument, and so, types such as
[〈A〉] can be read as simply “closed code of A”. In
other words, we propose to use the Necessity modal-
ity only for asserting closedness, and not for delaying
evaluation.

Another difference is that AIM was a “superset” of
the three languages that we had studied (i.e. λ©, λ2,
and MetaML), while λBN is not. We have shown that
λ© can be embedded into the open fragment of AIM,
and λ2 into the closed fragment. This establishes a
strong relation between the closed code and open code
types of AIM and the Necessity and Next modalities
of modal and temporal logic. The embedding of λ©

and λ2 in AIM can be turned into an embedding in
λBN (the embedding of λ2 needs to be modified to take
into account the fact that Closed in λBN is strict, i.e. it
does not delay the evaluation of its argument). On the
other hand, the embedding of MetaML in AIM cannot
be adapted for the following two reasons:

1. λBN does not have full cross-stage persistence. Not
having cross-stage persistence simplifies the model.
At the same time, from the pragmatic point of view,

cross-stage persistence for closed types is sufficient,

2. λBN does not have Run. We were not able to find a
general categorical interpretation for this construct,
though [1] shows how to interpret Run in Aωop

. At
the same time, the pragmatic need for Run disap-
pears in the presence of safe run.

Acknowledgment. We would to thank PacSoft
members for their comments on the different drafts
of this paper. We would also like to thank the referees
for their suggestions and corrections.

References

[1] Z. Benaissa, E. Moggi, W. Taha, and T. Sheard.
A categorical analysis of multi-level languages
(extended abstract). Technical Report CSE-98-
018, Oregon Graduate Institute, December 1998.
ftp://cse.ogi.edu/pub/tech-reports/.

[2] N. Benton. A mixed linear and non-linear logic:
Proofs, terms and models. LNCS, 933, 1995.

[3] N. Benton and P. Wadler. Linear logic, mon-
ads and the lambda calculus. In 11th LICS, New
Brunswick, New Jersey, 27–30 July 1996. IEEE
Computer Society Press.

10

[4] R. Davies. A temporal-logic approach to binding-
time analysis. In 11th LICS, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

[5] R. Davies and F. Pfenning. A modal anal-
ysis of staged computation. In 23rd POPL,
St.Petersburg Beach, Florida, January 1996.

[6] S. Martini and A. Masini. A computational inter-
pretation of modal proofs. In H. Wansing, editor,
Proof Theory of Modal Logic. Kluwer, 1996.

[7] A. Masini. 2-Sequent calculus: Intuitionism and
natural deduction. Journal of Logic and Compu-
tation, 3(5), 1993.

[8] E. Moggi. Notions of computation and monads.
Information and Computation, 93(1), 1991.

[9] E. Moggi. A categorical account of two-level lan-
guages. In MFPS 1997, 1997.

[10] E. Moggi, W. Taha, Z. Benaissa, and T. Sheard.
An idealized MetaML: Simpler, and more expres-
sive (includes proofs). Technical Report CSE-98-
017, Oregon Graduate Institute, October 1998.
ftp://cse.ogi.edu/pub/tech-reports/.

[11] E. Moggi, W. Taha, Z. Benaissa, and T. Sheard.
An idealized MetaML: Simpler, and more expres-
sive (includes proofs). In European Symposium
on Programming (ESOP), volume 1576 of LNCS.
Springer-Verlag, 1999.

[12] G.E. Reyes and H. Zolfaghari. Topos-theoretic ap-
proaches to modalities. In A. Carboni, C. Pedic-
chio, and G. Rosolini, editors, Conference on Cat-
egory Theory ’90, volume 1488 of LNM. Springer-
Verlag, 1991.

[13] W. Taha. Multi-Stage Programming: Its Theory
and Applications. PhD thesis, Oregon Graduate
Institute of Science and Technology, June 1999.
To appear.

[14] W. Taha, Z. Benaissa, and T. Sheard. Multi-stage
programming: Axiomatization and type-safety.
In 25th ICALP, Aalborg, Denmark, 1998.

[15] W. Taha and T. Sheard. Multi-stage program-
ming with explicit annotations. In PEPM. ACM,
1997.

[16] W. Taha and
T. Sheard. MetaML and multi-stage program-
ming with explicit annotations. Technical Report
CSE-99-007, Oregon Graduate Institute, January
1999. ftp://cse.ogi.edu/pub/tech-reports/.

∆; Γ ` c: tc ∆; Γ ` x: t if t = ∆(x) or Γ(x)

∆; Γ, x: t1 ` e: t2

∆; Γ ` λx.e: t1 → t2

∆; ∅ ` e: t

∆; Γ ` box e: [t]

∆; Γ ` e1: t1 → t2 ∆; Γ ` e2: t1

∆; Γ ` e1e2: t2

∆; Γ ` e1: [t1] ∆, x: t1; Γ ` e2: t2

∆; Γ ` let box x = e1 in e2: t2

Figure 5: λ2 Type System

Γ ` c: tnc Γ ` x: tn if tn = Γ(x)

Γ, x: tn1 ` e: t
n
2

Γ ` λx.e: (t1 → t2)
n

Γ ` e1: (t1 → t2)
n Γ ` e2: tn1

Γ ` e1 e2: tn2

Γ ` e: tn+

Γ ` 〈e〉: 〈t〉n
Γ ` e: 〈t〉n

Γ ` ˜e: tn+

Figure 6: λ© Type System

Γ ` x: tn if tm = Γ(x) and m ≤ n

Γ+ ` e: 〈t〉n

Γ ` run e: tn

Figure 7: MetaML Type System (+ Figure 6)

Γ ` x: tn if tm = Γ(x) and m ≤ n

Γ ` ei: [ti]
n

Γ+, {xi: [ti]
n|i ∈ m} ` e: 〈t〉n

Γ ` run e with xi = ei: t
n

Γ ` ei: [ti]
n {xi: [ti]

0|i ∈ m} ` e: t0

Γ ` box e with xi = ei: [t]
n

Γ ` e: [t]n

Γ ` unbox e: tn

Figure 8: AIM Type System (+ Figure 6)

11

e1
0
↪→ λx.e e2

0
↪→ v1 e[x: = v1]

0
↪→ v2

e1 e2
0
↪→ v2

λx.e
0
↪→ λx.e

e
0
↪→ 〈v〉

˜e
1
↪→ v

ei

0
↪→ vi

box e with xi = ei

0
↪→ box e[xi: = vi]

e
0
↪→ box e′ e′

0
↪→ v

unbox e
0
↪→ v

ei

0
↪→ vi e[xi: = vi]

0
↪→ 〈v′〉 v′0

0
↪→ v

run e with xi = ei

0
↪→ v

e
n+
↪→ v

〈e〉
n
↪→ 〈v〉

x
n+
↪→ x c

n+
↪→ c

e1
n+
↪→ v1 e2

n+
↪→ v2

e1 e2
n+
↪→ v1 v2

ei

n+
↪→ vi

box e with xi = ei

n+
↪→ box e with xi = vi

e
n+
↪→ v

λx.e
n+
↪→ λx.v

e
n+
↪→ v

˜e
n++
↪→ ˜v

e
n+
↪→ v

unbox e
n+
↪→ unbox v

ei

n+
↪→ vi e

n+
↪→ v

run e with xi = ei

n+
↪→ run v with xi = vi

Figure 9: Big-Step Operational Semantics for AIM (including λ© and MetaML)

A Multi-Stage Languages

For completeness, this appendix reproduces the syntax
and type system of the multi-stage languages λ2, λ©,
MetaML and AIM (see [11, 10] for details).

We adopt the following unified notation for types:

t ∈ T : : = b | t1 → t2 | 〈t〉 | [t]

i.e. base types, functions, open code fragments, and
closed code fragments.

λ2 of [5] features function and closed code types.
Typing judgments have the form ∆; Γ ` e: t, where
∆,Γ ≡ {xi: ti|i ∈ m}. The syntax for λ2 is as follows:

e ∈ E: : = c | x | λx.e | e1e2 | box e | let box x = e1 in e2

The type system of λ2 is given in Figure 5.

λ©, MetaML and AIM feature function and open code
types. Typing judgments have the form Γ ` e: tn,
where Γ ≡ {xi: t

ni

i |i ∈ m} and n is a natural called the
level of the term. The syntax for λ© is as follows:

e ∈ E: : = c | x | λx.e | e1e2 | 〈e〉 | ˜e

MetaML [15, 14] uses a more relaxed type rule for vari-
ables than λ©, in that variables can be bound at a
level lower than the level where they are used. This is
called cross-stage persistence. Furthermore, MetaML
extends the syntax of λ© to

e ∈ E: : = c | x | λx.e | e1e2 | 〈e〉 | ˜e | run e

AIM [11] extends MetaML with an analog of the Box
type of λ2 yielding a more expressive language, and
yet has a simpler typing judgment than MetaML. The

syntax of AIM extends that of MetaML as follows:

e ∈ E: : = c | x | λx.e | e1e2 | 〈e〉 | ˜e |
run e with {xi = ei|i ∈ m} |
box e with {xi = ei|i ∈ m} | unbox e

Run-With generalizes Run of MetaML, in that it al-
lows the use of additional variables xi in the body of
e if they satisfy certain typing requirements.

The type systems of λ©, MetaML and AIM are given
in Figure 6, 7 and 8, while the big-step operational
semantics of AIM and its sub-languages is in Figure 9.

B Technical Lemmas

We state some technical lemmas for λBN, which are
adaptations of those established for AIM in [10]. They
are needed to establish Subject Reduction.

First, the properties of the type system:

Lemma B.1 (Weakening) If Γ1,Γ2 ` e2: tn2 and x

is fresh, then Γ1, x: t
n′

1 ,Γ2 ` e2: tn2 .

Proposition B.2 (Substitution) If Γ1 ` e′: tm1 and
Γ1, x: t

m
1 ,Γ2 ` e: tn2 then Γ1,Γ2 ` e[x: = e′]: tn2 .

Proof: By induction over the derivation of the judg-
ment Γ1, x: t

m
1 ,Γ2 ` e: tn2 .

Second, the properties of the operational semantics:

Lemma B.3 (Values)

1. If v ∈ V n then v
n
↪→ v

2. If e
n
↪→ e′ then e′ ∈ V n

12

Proof: The first is by induction over the derivation of
v ∈ V n. The second is by induction over the derivation

of e
n
↪→ e′.

In λBN one cannot define demotion (as in AIM). This
is not a problem, since the Demotion Lemma was used
only in the case run e with xi = ei of Subject Reduc-
tion for AIM.

Proposition B.4 (Reflection)

1. If v ∈ V n+ and Γ+ ` v: tn+, then Γ ` v: tn.

2. If Γ ` e: tn then Γ+ ` e: tn+ and e ∈ V n+.

Proof: The first is by induction on the derivation of
Γ+ ` v: tn+, and case analysis on v ∈ V n+. The second
is by induction on the derivation of Γ ` e: tn.

Lemma B.5 (Orthogonality) If v ∈ V 0 and Γ `

v: [t]
0

then ∅ ` v: [t]0.

Proof: Trivial from the definition of values.

Theorem B.6 (Type Preservation) If Γ+ ` e: tn

and e
n
↪→ v then Γ+ ` v: tn.

Proof: Induction on the derivation of e
n
↪→ v. The

case for application uses Substitution. The case for
Up involves Orthogonality, Reflection, Weakening, in
addition to applying the induction hypothesis. The
case for Safe-Run involves Reflection.

C An example

In this section, we illustrate the multi-stage program-
ming approach as presented in the introduction, sub-
section 1.1. We apply the approach to the power func-
tion defined recursively as follows:

(* int -> real -> real *)

fun exp n x =

if n=0 then 1.0

else if even(n) then sqr (exp (n div 2) x)

else x * (exp (n-1) x);

(* real -> real *)

fun sqr x = x * x

First we develop the example in MetaML, and show
the limitations of its type system when building and
executing code are combined in one function. Then
we develop the same example in λBN, showing how the
problems are overcome. The examples are written in
SML syntax extended with multi-stage annotations.

C.1 In MetaML

1. Annotating the function exp with staging annota-
tions requires analysis of the program with respect
to static and dynamic computations. The anno-
tations distinguish computations that can be per-
formed using only the static argument (static com-
putations) and computations that need to be de-
layed to the next stage (dynamic computations).
Some or all of the program might be reformulated
to improve the quality of the generated program.
For instance, the function sqr has been rewritten in
order to avoid code duplication.

(* int -> <real> -> <real> *)

fun exp1 n x =

if n = 0 then <1.0>

else if even(n) then sqr1(exp1 (n div 2) x)

else <~x * ~(exp1 (n-1) x)>

(* <real> -> <real> *)

fun sqr1 x = <let val y = ~x in y * y end>

2. The third step consists only of the composition of
the functions back and sqr1. The function back is
polymorphic in the MetaML system, which has been
extended to support Hindley-Milner polymorphism.
This extension is beyond of the scope of this paper.

(* (<’a> -> <’b>) -> <’a -> ’b> *)

fun back f = <fn x => ~(f <x>)>

(* int -> <real -> real> *)

fun exp2 = back o exp1

3. Now, we specialize the function exp2 to a specific
exponent (in our case 5). The generated code is
pretty printed by MetaML system.

(* <real -> real>

val code_of_power5 = exp2 5

val it = <fn x =>

let val a =

let val b = x * x

in b * b end

in x * a end>

4. Unfortunately, power5 as defined below cannot be
typed in the core MetaML type system 1 because
the Run construct disallows the use of free variables
such as exp2.

1The MetaML system can type power5 using an ad hoc ex-

tension of the type system specially designed for top-level let-

bindings

13

(* real -> real *)

val power5 = run(exp2 5)

A cut-and-paste of the generated code allows us to
run it. We obtain the function power5 of type real

-> real.

(* real -> real *)

val power5 = run <fn x =>

let val a =

let val b = x * x

in b * b end

in x * a end>

(* int -> real -> real *)

fun power n = run (exp2 n)

The function power above cannot be expressed in
the MetaML system because of the free variable n

and exp2. power composes the specialization of the
program on the first argument and the execution of
the specialized code on the second argument. How-
ever, MetaML fails to provide such desirable func-
tions in a multi-stage programming language.

C.2 In λ
BN

1. Annotating the function exp in λBN is similar to
MetaML but a bit more tedious than MetaML. We
need to tell the type system that the functions sqr1
and exp1 are closed. Note that exp1 uses the func-
tion even which also needs to be of closed type in
order to be used within a closed expression.

(* [int -> <real> -> <real>] *)

val exp1’ =

close let val even = open(even’)

fun sqr1 x =

<let val y = ~x in y * y end>

fun exp1 n x =

if n=0 then <1.0>

else if even(n)

then sqr1(exp1 (n div 2) x)

else <~x * ~(exp1 (n-1) x)>

in exp1 end

with even’ = even’

2. This step is also similar to MetaML. In λBN, we need
to compose two closed functions. We use for the
combinators closed compose of type [’a -> ’b]

-> [’b -> ’c] -> [’a -> ’c] for composition.

(* [int -> <real -> real>] *)

val exp2’ = closed_compose closed_back exp1’

fun closed_compose f’ g’ =

close let val f = open f’

val g = open g’

in fn x => f(g(x)) end

with f’ = f’, g’ = g’

3. The next step consists of the distribution of close
type in order to extract the static argument.

(* [int] -> [<real -> real>] *)

val exp3’ = closed_apply(exp2’)

(* [’a -> ’b] -> [’a] -> [’b] *)

fun closed_apply f = fn x =>

close let val f = open f’

val x = open x’

in (f x) with x’ = x’, f’ = f’

4. Now we apply the static argument, which is [5].
The specialized code is the result of this application.

(* [<real -> real>] *)

val code_of_power5 = exp3’ [5]

val it = [<fn x =>

let val a =

let val b = x * x

in b * b end

in x * a end>]

5. We execute the code using the safe run construct.
The result of this execution is a function of type
[real -> real].

(* [real -> real] *)

val closed_power5 = safe_run(exp3’ [5])

6. Finally, we forget that closed power5 is closed us-
ing the open construct.

(* real -> real *)

val power5 = open closed_power5

(* [int] -> real -> real *)

val power n = open(safe_run (exp3’ n))

In contrast to MetaML, power can be expressed in
λBN. It first specializes the program on the exponent
then executes the specialized program on the second
argument.

14

To conclude, the combination of the construction
and execution of code within one function is the ma-
jor contribution of λBN over MetaML. The price of
achieving this combination is a bit more cumber-
some syntactic sugar.

Contents

1 Introduction 1

1.1 Multi-Stage Programming 1

1.2 The Refined Method 2

1.3 Overview 2

2 Multi-Stage Languages 3

2.1 λBN Types, Syntax, and Semantics . . . 3

3 Categorical Models 4

3.1 Examples 6

3.2 Interpretation of terms 7

4 Modalities and monads 8

5 Discussion 9

5.1 λBN Compared to AIM 9

A Multi-Stage Languages 12

B Technical Lemmas 12

C An example 13

C.1 In MetaML 13

C.2 In λBN 14

15

