
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

AN ABSTRACT MONADIC SEMANTICS FOR
VALUE RECURSION ∗, ∗∗

Eugenio Moggi1 and Amr Sabry2

Abstract. This paper proposes an operational semantics for value re-
cursion in the context of monadic metalanguages. Our technique for
combining value recursion with computational effects works uniformly
for all monads. The operational nature of our approach is related to
the implementation of recursion in Scheme and its monadic version
proposed by Friedman and Sabry, but it defines a different semantics
and does not rely on assignments. When contrasted to the axiomatic
approach proposed by Erkök and Launchbury, our semantics for the
continuation monad invalidates one of the axioms, adding to the evi-
dence that this axiom is problematic in the presence of continuations.

1991 Mathematics Subject Classification. 68N18, 68Q55 .

Introduction

How should recursive definitions interact with computational effects like assign-
ments and jumps? Consider a term fix x.e where fix is some fixed point operator
and e is an expression whose evaluation has side-effects. There are at least two
natural meanings for the term:

(1) the term is equivalent to the unfolding e{x = fix x.e}, and the side-effects
are duplicated by the unfolding;

(2) the side-effects are performed the first time e is evaluated to a value v and
then the term becomes equivalent to the unfolding v{x = fix x.v}.

The first meaning corresponds to the standard mathematical view [7]. The second
meaning corresponds to the standard operational view defined since the SECD ma-
chine [12, 32] and as implemented in Scheme for example [31]. The two meanings

∗ Supported by EU project DART IST-2001-33477 and APPSEM-II IST-2001-38957.
∗∗ Supported by the NSF under Grants No. CCR 0196063 and CCR 0204389.

1 DISI, Univ. di Genova, email: moggi@disi.unige.it
2 Dept. of Computer Science, Indiana Univ., email: sabry@indiana.edu

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

are observationally equivalent in a pure functional language but not in the pres-
ence of effects. When the computational effects are expressed using monads, Erkök
and Launchbury [19–21] introduced the phrase value recursion in monadic com-
putations for the second meaning and the name mfix for the corresponding fixed
point operator. Since we also work in the context of monadic metalanguages, we
adopt the same terminology but use the capitalized name Mfix to distinguish our
approach.

Value recursion has applications in modeling stream-oriented computations like
hardware circuits [33] and in modeling objects [10] and module systems [18, 26].
We give a simple example here and refer to Section 6 for more details. In the
following code fragment, f is a recursive procedure representing an object whose
local state is represented by the location r:

Mfix f.do r ← new 0; ret (λx. . . . f . . . r . . .)

Clearly the creation of a new location r is not intended to be unfolded and repeated
every time f is called. Instead the creation and initialization of the location r
should happen the first time the body of Mfix is evaluated; when this evaluation
produces the value ret (λx. . . . f . . . r . . .), the recursive variable f is bound to it;
subsequent calls and recursive calls to f do not re-create the location.

The example outlines a simple uniform operational technique for combining
monadic effects with value recursion. Computing the result of Mfix x.e requires
three rules:

(1) A rule to initiate the computation of e. Since this computation happens
under a binder, care must be taken to rename any other bound instance
of x that we might later encounter.

(2) If the computation of e returns a value v (in a monadic metalanguage a
value is simply a term of the form ret e′) then all free occurrences of x
are replaced by fix x.v (where fix is the standard mathematical fixed point
operator). Naturally the computation of e may perform computational
effects but it cannot use x.

(3) If the computation of e attempts to use x, we signal an error.

In the second rule, the notion that “e returns a value v” is quite informal at
this point. Indeed depending on the computational effects in question, e might
terminate without returning a proper value (in the case of exceptions), or it might
return more than one value (in the case of non-determinism), or it might return
more than once (in the case of continuations). One of the main benefits of our
abstract approach is that it provides a formal semantics for value recursion in all
these situations. Indeed we show that the rules above are robust in the sense
that they can be uniformly applied to a wide range of monads giving a semantics
for value recursion in every case: we give examples for the monads of state, non-
determinism, exceptions, parallelism, and continuations.

Our semantics is operational in nature but unlike the SECD and Scheme se-
mantics, it doesn’t rely on assignments to realize the second rule. The presence of

TITLE WILL BE SET BY THE PUBLISHER 3

assignments in the other operational approaches yields a different semantics, com-
plicates reasoning, and invalidates some equational axioms. Section 5 includes a
discussion of this point. We point however that the question of which transforma-
tions are invalidated depends on the details of the implementation: for example, a
more careful implementation of the Scheme semantics does not invalidate as many
transformations as the straightforward implementation [39].

In contrast, the work by Erkök and Launchbury [19,20] advocates an axiomatic
approach to defining value recursion by proposing several desirable axioms. In their
approach one has to find for each given monad over some category (or defined in
Haskell [29]) a fixed point operator that satisfies the axioms (up to observational
equivalence). The endeavor has to be repeated for each monad individually. For
the continuation monad there are no known fixed point operators that satisfy all
the desired axioms.
Summary. Sections 1 and 2 illustrate the technique by taking an existing monadic
metalanguage MMLS with ML-style references [35, Sec.3] and extending it with
value recursion. Section 3 explains our technique in general terms and illustrates
its robustness via three additional short examples: non-determinism, exceptions,
and parallelism. Section 4 discusses in detail the important case of the contin-
uation monad: it explains the full subtleties of value recursion in the presence
of continuations and state and gives a proof of type safety for the resulting lan-
guage. Section 5 recalls the equational axioms for value recursion in [19], and
discusses them in our context, providing a counterexample to the left-shrinking
axiom. Finally Section 6 concludes and discusses related work.

1. A Monadic Metalanguage with References

We introduce a monadic metalanguage MMLS for imperative computations,
namely a subset of Haskell with the IO-monad. Its operational semantics is given
according to the general pattern proposed in [35], i.e., we specify a confluent sim-
plification relation > (defined as the compatible closure of a set of rewrite
rules), and a computation relation > describing how the configurations of
the (closed) system may evolve. This is possible because in a monadic metalan-
guage there is a clear distinction between term-constructors for building terms of
computational types, and the other term-constructors that are computationally ir-
relevant (i.e., have no effects). For computationally irrelevant term-constructors it
suffices to give local simplification rules, that can be applied non-deterministically
(because they are semantic preserving). In contrast, computationally relevant
term-constructors must be evaluated in the order specified by the monadic com-
binators. For such terms, we adopt well-established techniques for specifying the
operational semantics of programming languages using evaluation contexts and
abstract machine transitions (see [40]).

The syntax of MMLS is abstracted over basic types b, variables x ∈ X, and
locations l ∈ L.

• Types τ ∈ T : := b | τ1 → τ2 | Mτ | Rτ

4 TITLE WILL BE SET BY THE PUBLISHER

var
Γ(x) = τ

Γ `Σ x: τ
abs

Γ, x: τ1 `Σ e: τ2

Γ `Σ λx.e: τ1 → τ2

app

Γ `Σ e1: τ1 → τ2

Γ `Σ e2: τ1

Γ `Σ e1e2: τ2

ret
Γ `Σ e: τ

Γ `Σ ret e:Mτ
do

Γ `Σ e1:Mτ1 Γ, x: τ1 `Σ e2:Mτ2

Γ `Σ do x← e1; e2:Mτ2

loc
Σ(l) = Rτ

Γ `Σ l:Rτ
new

Γ `Σ e: τ
Γ `Σ new e:M(Rτ)

get
Γ `Σ e:Rτ

Γ `Σ get e:Mτ

set
Γ `Σ e1:Rτ Γ `Σ e2: τ
Γ `Σ set e1 e2:M(Rτ)

Table 1. Type System for MMLS

• Terms e ∈ E : := x | λx.e | e1e2 | ret e | do x← e1; e2 |
l | new e | get e | set e1 e2

In addition to the basic types, we have function types τ1 → τ2, reference types Rτ
for locations containing values of type τ , and computational types Mτ for (effect-
full) programs computing values of type τ . The terms do x← e1; e2 and ret e
are used to sequence and terminate computations, the other monadic operations
are: new e which creates a new reference with contents e, get e which returns the
contents of the reference e, and set e1 e2 which updates the contents of reference
e1 to be e2. In order to specify the semantics of the language, the set of terms also
includes locations l.

Table 1 gives the typing rules for deriving judgments of the form Γ `Σ e: τ ,
where Γ:X

fin→ T is a type assignment for variables x: τ and Σ: L
fin→ T is a signature

for locations l:Rτ .
The operational semantics is given by two relations (as outlined above): a

simplification relation for pure evaluation and a computation relation for monadic
evaluation. Simplification > is given by β-reduction, i.e., the compatible
closure of (λx.e2)e1 > e2{x: = e1}.

The computation relation Id > Id ′ | done (see Table 2) is defined using the
additional notions of evaluation contexts, stores and configurations Id ∈ Conf:

• Evaluation contexts E ∈ EC : := � | E[do x← �; e]

• Stores µ ∈ S
∆= L

fin→ E map locations to their contents which are expres-
sions (not necessarily “values”).
• Configurations (µ, e, E) ∈ Conf

∆= S×E×EC consist of the current store µ,
the program fragment e under consideration, and its evaluation context E.

The first three rules are administrative: (A.1) finds the first simple command to
execute recording the rest of the computation in the context; the context is popped
by (A.2) when the current command returns; but if the context is empty, (A.0)

TITLE WILL BE SET BY THE PUBLISHER 5

Administrative steps
(A.0) (µ, ret e,�) > done
(A.1) (µ,do x← e1; e2, E) > (µ, e1, E[do x← �; e2])
(A.2) (µ, ret e1, E[do x← �; e2]) > (µ, e2{x: = e1}, E)

Imperative steps
(new) (µ,new e,E) > (µ{l: e}, ret l, E) where l /∈ dom(µ)
(get) (µ, get l, E) > (µ, ret e,E) with e = µ(l)
(set) (µ, set l e, E) > (µ{l = e}, ret l, E) with l ∈ dom(µ)

Table 2. Computation Relation for MMLS

terminates the execution. The next three rules formalize the semantics of the state-
specific operations. When modifying the store, we write µ{l: e} for initializing a
new location l with e and µ{l = e} for updating an existing location l with e.

The simplification relation > on terms extends in the obvious way to a
relation (denoted >) on stores, evaluation contexts and configurations.

There are alternative ways to give semantics to a programming language, but
all of them should agree on basic observations of program behavior. Termination
is among the most basic observations, and for MMLS it can be defined as follows.

Definition 1.1 (Termination). Given a well-typed program e, i.e., ∅ `∅ e:Mτ , we

say that e terminates ∆⇐⇒ (∅, e, �) ===
∗
⇒ done, where ===⇒ = > ∪ > .

In other words, e terminates, if there is a sequence of simplification and com-
putation steps starting from the initial configuration (∅, e, �) and leading to done.
Once the meaning of basic observations has been given, one can introduce a Mor-
ris’s style contextual equivalence [36].

Definition 1.2 (Observational Equivalence). We say that e1 is observationally
equivalent to e2, written e1 ≈ e2, if for all contexts C such that C[e1] and C[e2] are
well-typed programs, we have that C[e1] terminates if and only if C[e2] terminates.

2. Extension with Value Recursion

We now describe the monadic metalanguage MMLS
fix obtained by extending

MMLS with two fixed point constructs: fix x.e for ordinary recursion, and Mfix x.e
for value recursion. The expression fix x.e simplifies to its unfolding. For comput-
ing the value of Mfix x.e, the subexpression e is first evaluated to a monadic value
ret e′. This evaluation might perform computational effects but cannot use x.
Then all occurrences of x in e′ are bound to the monadic value itself using fix so
that any unfolding will not redo the computational effects.

The extension MMLS
fix is an instance of a general pattern (only the extension

of the computation relation is non-trivial), that will become clearer in the next
section.

6 TITLE WILL BE SET BY THE PUBLISHER

• Terms e ∈ E += fix x.e | Mfix x.e

• Evaluation contexts E ∈ EC += E[Mfix x.�]

• Configurations (X|µ, e, E) ∈ Conf
∆= Pfin(X)×S×E×EC . The additional

component X is a set which records the recursive variables generated so
far, thus X grows as the computation progresses.

Despite their different semantics, the two fixed points have similar typing rules:
Γ, x:Mτ `Σ e:Mτ

Γ `Σ fix x.e:Mτ

Γ, x:Mτ `Σ e:Mτ

Γ `Σ Mfix x.e:Mτ

The simplification relation is extended with the rule fix x.e > e{x: = fix x.e}
for fix-unfolding.

The computation relation Id > Id ′ | done | err may now raise an error and is
defined by the rules in Table 2, modified to propagate the set X unchanged, and
the following new rules for recursive monadic bindings:
(M.1) (X|µ,Mfix x.e, E) > (X, x|µ, e, E[Mfix x.�]) with x renamed to avoid

clashes with X
(M.2) (X|µ, ret e,E[Mfix x.�]) > (X|µ, ret e,E) where

• stands for •{x: = fix x.ret e}
(err) (X|µ, x, E) > err where x ∈ X (attempt to use an unresolved variable)

In the context Mfix x.� the hole is within the scope of a binder, thus it requires
evaluation of open terms:

• The rule (M.1) ensures freshness of x. As the computation progresses x
may leak anywhere in the configuration (depending on the computational
effects available in the language).
• The rule (M.2) does the reverse, it replaces all free occurrences of x in the

configuration with the term fix x.ret e, in which x is not free. This rule is
quite subtle, because the definition of substitution on evaluation contexts
must take the captured variables into account (see Definition 4.6).

Definition 1.1 of termination (and consequently of observational equivalence)
extends straightforwardly to MMLS

fix.

Definition 2.1 (Termination). Given a well-typed program e, we say that e ter-

minates ∆⇐⇒ (∅|∅, e,�) ===
∗
⇒ done.

2.1. Discussion

Divergence. In the proposed extension we have added fix-unfolding to simplifica-
tion, thus we have endorsed the view that divergence (and general recursion) is not
a computational effect. However, a purist approach should consider fix-unfolding
a computation rule:
(M.0) (X|µ,fix x.e, E) > (X|µ, e{x: = fix x.e}, E)

TITLE WILL BE SET BY THE PUBLISHER 7

Types. In [19] the fixed point constructs have a slightly different typing:

• For mfix the bound variable is of type τ not Mτ :
Γ, x: τ `Σ e:Mτ

Γ `Σ mfix x.e:Mτ

This rule allows the use of x at type τ before the recursion is resolved,
as in (mfix x.set x 0):M(R int). In [19] this premature attempt to use x
is identified with divergence, while we consider it a monadic error (which
could be prevented by more refined type systems [10,18]). The difference of
typing reflects this desire and is not an intrinsic limitation of our approach.

• Similarly for fix the bound variable is of type τ not Mτ :
Γ, x: τ `Σ e: τ
Γ `Σ fix x.e: τ

This typing requires recursive definitions at all types; we only require them
at computational types.

Encoding fix. Is it necessary to have two recursive constructs fix x.e and Mfix x.e?
No, we show that Mfix subsumes fix. First, we reformulate the computation
rule (M.2), so that the operational semantics of Mfix is given independently from
fix (see the purity axiom in Section 5):
(M.2)′ (X|µ, ret e,E[Mfix x.�]) > (X|µ, ret e,E) where

• stands for •{x: = Mfix x.ret e}
Then, we define fix in terms of Mfix

fix x.e ≡ force (Mfix x′.ret e{x: = force x′}) where force e ≡ do x← e;x

The definition uses Mfix at type M2τ to define fix at type Mτ . Since the body of
the Mfix definition has no effects (it is of the form ret . . .), the Mfix computation
returns immediately computing an x′ of type M2τ . After the recursion is resolved,
the final result and all uses of x′ are forced to remove the outer (trivial) computa-
tion layer. Indeed, one can show that the definition of fix using Mfix is well-typed
and that the computation rule (M.0) for fix-unfolding is derivable. But despite the
above definability result, fix has a simpler semantics, given by the simplification
rule for fix-unfolding, thus it is more natural to use fix whenever possible.

Recursion Variables. In the specific case of MMLS
fix we can simplify the opera-

tional semantics, by exploiting the following invariant (where FV and CV are sets
of variables formally defined in Definition 4.6).

Lemma 2.2. If (X|µ, e, E) > (X ′|µ′, e′, E′), FV(µ, e) ⊆ CV(E) ⊆ X and
FV(E) = ∅, then FV(µ′, e′) ⊆ CV(E′) ⊆ X ′ and FV(E′) = ∅.

In other words, since the initial configuration (∅|∅, e, �) has an evaluation con-
text with no free variables, then in all reachable configurations we have that
FV(E) = ∅ and there is no need to consider substitution instances of E. Further-
more, the only free variables in the configuration are those currently “captured”
by the evaluation context and recorded in X. Thus, when an evaluation context
Mfix x.� is popped, we can remove the corresponding x from the set X, effectively

8 TITLE WILL BE SET BY THE PUBLISHER

treating X as a stack (one can go further, see [2], and identify X with CV(E)).
Summing up, in the case of MMLS

fix, we can simplify (M.2) to:

(M.2)S (X|µ, ret e,E[Mfix x.�]) > (X\x|µ, ret e,E) where
• stands for •{x: = fix x.ret e}

However, our aim is an operational semantics that works with arbitrary compu-
tational effects, and an invariant like the one above does not hold in the case of
continuations (Section 4).

3. General Construction with Examples

We now outline a general methodology for adding value recursion to a monadic
metalanguage MML. The methodology is not a formal construction. One of the
main difficulties in formalizing it is that the shape of configurations may differ
greatly depending on the computational effects. In the following, the shape of
configurations is general enough to handle the monads of state, non-determinism,
exceptions, parallelism, and continuations.

We denote with X, E, EC and Conf the syntactic categories for variables, terms,
evaluation contexts and configurations of MML, but there could be other syntac-
tic categories. For each syntactic category C of MML, there is a corresponding
syntactic category Cfix of MMLfix, defined as follows:

• e ∈ Efix : := fix x.e | Mfix x.e | and the productions of E

• E ∈ ECfix : := E[Mfix x.�] | and the productions of EC

• Cfix : := same productions of C for other syntactic categories
• (X|Id) ∈ Conffix : := (X| . . .) where X ⊆fin X and . . . production for Conf

We write Id [−] for a configuration with one hole for a thread, where a thread
is represented by a pair (e,E), and Id [(e,E)] for the configuration obtained by
placing a thread (e,E) in the hole.

The simplification relation
fix

> for MMLfix is the compatible closure of the

simplification rules for MML and fix-unfolding fix x.e > e{x: = fix x.e}.
For the computation relation (X|Id)

fix
> (X ′|Id ′) | done | err of MMLfix, the

extension is more involved:
• the old rules Id > Id ′ | done of MML are adapted to propagate the

additional components.
(old.0) (X|Id)

fix
> done if Id > done is a computation rule of MML and

similarly for other answers like done in the range of the computation
relation.

(old.1) (X|Id)
fix

> (X|Id ′) if Id > Id ′ is a computation rule of MML

• The introduction of a new clause for evaluation contexts for Mfix requires
our three rules for pushing and returning from the new context:

(M.1) (X|Id [(Mfix x.e, E)])
fix
> (X, x|Id [(e,E[Mfix x.�])]) with x renamed

to avoid clashes with X

TITLE WILL BE SET BY THE PUBLISHER 9

(M.2) (X|Id [(ret e,E[Mfix x.�])])
fix

> (X|Id [(ret e,E)]) where

• stands for •{x: = fix x.ret e}
(err) (X|Id [(x, E)])

fix
> err where x ∈ X

• The introduction of the new clause of evaluation contexts may require
additional rules depending on the effects. For example, in the case of
exceptions below, the interaction between the effect of raising an exception
and the new evaluation context requires an additional rule.

3.1. Non-determinism

We consider the extension of MMLS (and MMLS
fix) with non-deterministic choice

(e1 or e2), whose typing rule is:

Γ `Σ e1:Mτ Γ `Σ e2:Mτ

Γ `Σ e1 or e2:Mτ

The configurations for MMLS and MMLS
fix are unchanged. The computation

relations are modified to become non-deterministic, namely:

• for MMLS , we add the rules (µ, e1 or e2, E) > (µ, ei, E);
• for MMLS

fix, we add the rules (X|µ, e1 or e2, E) > (X|µ, ei, E).

The list monad in Haskell can be related to the non-determinism semantics
given above using the following intuition: the list (of configurations) represents
the frontier of an expanding tree of reachable configurations. Therefore, instead
of having two rules for the choice operator, a small-step semantics would describe
how to advance the frontier

L1@[(X|µ, e1 or e2, E)]@L2 > L1@[(X|µ, e1, E), (X|µ, e2, E)]@L2

This implies that each configuration in the list maintains its own store and set
of recursion variables: further choices or modifications to the store done in one
branch will not affect the other branches.

To help illustrate this point, consider the following term in an extension of the
monadic metalanguage with constants and recursive data:

data τ = Rec(Int ,Mτ)
p = Mfix x.(ret Rec(1, x)) or (ret Rec(2, x))

According to the computation rules, we push the evaluation context Mfix x.� and
then make a non-deterministic choice. The evaluation thus proceeds according to
one of the following sequences:

. . . > (X, x|µ, ret Rec(1, x), Mfix x.�) > (X, x|µ, ret Rec(1, fix x.ret Rec(1, x)), �)

. . . > (X, x|µ, ret Rec(2, x), Mfix x.�) > (X, x|µ, ret Rec(2, fix x.ret Rec(2, x)), �)

10 TITLE WILL BE SET BY THE PUBLISHER

where it is clear that the recursion is resolved independently for each possible choice
(this separation is not apparent when one maintains all possible configurations in
a list).

3.2. Exceptions

We consider the extension of MMLS (and MMLS
fix) with the ability to raise an

exception fail, and a construct handle e1 e2 for handling an exception raised during
the evaluation of e1. The typing rules for these two constructs are:

Γ `Σ fail:Mτ

Γ `Σ e1:Mτ Γ `Σ e2:Mτ

Γ `Σ handle e1 e2:Mτ

The addition of exceptions introduces a new form of termination Id > fail for
the computation relation, due to an uncaught exception. The configurations for
MMLS and MMLS

fix are unchanged, but the BNF for evaluation contexts has an

extra clause E ∈ EC += E[handle � e] , which delimits the scope of the exception

handler e. The computation relation for MMLS is extended with the following
rules:

(F.0) (µ, fail,�) > fail, i.e., computation terminates due to an uncaught
exception

(F.do) (µ, fail, E[do x← �; e2]) > (µ, fail, E), i.e., an exception is propagated
until it is caught by an handler

(H.1) (µ,handle e1 e2, E) > (µ, e1, E[handle � e2]), i.e., the handler e2 is
pushed on E

(H.2) (µ, ret e1, E[handle � e2]) > (µ, ret e1, E), i.e., the handler e2 is ignored
(H.3) (µ, fail, E[handle � e2]) > (µ, e2, E), i.e., the handler e2 is executed

With exceptions the computation relation
fix

> for MMLS
fix is given according

to the general methodology which adapts the old rules and adds the three rules
for value recursion. We also have two additional rules to deal with the additional
form of termination and the interaction between fail and Mfix-contexts:

(old.F) (X|Id)
fix

> fail if Id > fail is a computation rule of MML

(F.Mfix) (X|Id [(fail, E[Mfix x.�])])
fix

> (X|Id [(fail, E)]), i.e., we propagate the

exception as in (F.do).

As a simple example, consider the following term Mfix x.fail which consists
of a recursive computation that does not return a proper value. The evaluation
proceeds as follows:

(X|µ,Mfix x.fail,�) > (X, x|µ, fail,Mfix x.�) > (X, x|µ, fail,�) > fail

This semantics is consistent with the axiomatization of Erkök and Launchbury [19]
which implies mfix x.e = e, when x does not occur free in e.

TITLE WILL BE SET BY THE PUBLISHER 11

3.3. Parallelism

We consider the extension of MMLS (and MMLS
fix) with a construct spawn e1 e2

to spawn a thread executing e1 in parallel with the current thread which continues
with the execution of e2. The typing rule for spawn is:

Γ `Σ e1:Mτ1 Γ `Σ e2:Mτ2

Γ `Σ spawn e1 e2:Mτ2

The configurations for MMLS become 〈µ,N〉 ∈ Conf
∆= S×Mfin(E× EC), i.e.,

instead of one thread (e,E) we have a finite multi-set N of threads sharing the
store µ, and the computation relation Id > Id ′ | done is defined by the rules:

• Administrative steps: threads act independently
(done) 〈µ, ∅〉 > done termination occurs when all threads have completed
(A.0) 〈µ, (ret e,�)]N〉 > 〈µ,N〉
(A.1) 〈µ, (do x← e1; e2, E)]N〉 > 〈µ, (e1, E[do x← �; e2])]N〉
(A.2) 〈µ, (ret e1, E[do x← �; e2])]N〉 > 〈µ, (e2{x: = e1}, E)]N〉
• Imperative steps: each thread can operate on the shared store
(new) 〈µ, (new e,E)]N〉 > 〈µ{l: e}, (ret l, E)]N〉 where l /∈ dom(µ)
(get) 〈µ, (get l, E)]N〉 > 〈µ, (ret e,E)]N〉 with e = µ(l)
(set) 〈µ, (set l e, E)]N〉 > 〈µ{l = e}, (ret l, E)]N〉 with l ∈ dom(µ)
• Step for spawning a new thread

(spawn) 〈µ, (spawn e1 e2, E)]N〉 > 〈µ, (e1,�)] (e2, E)]N〉

Configurations for MMLS
fix become 〈X|µ,N〉 ∈ Conf

∆= Pfin(X) × S ×Mfin(E ×
EC), i.e., the threads in the multi-set share also the set X of recursive variables
generated so far. The computation relation Id > Id ′ | done | err is defined by
the rules above (modified to propagate X unchanged) and the following rules for
Mfix x.e:
(M.1) 〈X|µ, (Mfix x.e, E)] N〉 > 〈X, x|µ, (e,E[Mfix x.�])] N〉 with x re-

named to avoid clashes with X
(M.2) 〈X|µ, (ret e,E[Mfix x.�])]N〉 > 〈X|µ, (ret e,E)]N〉 where

• stands for •{x: = fix x.ret e}
(err) 〈X|µ, (x,E)]N〉 > err where x ∈ X

When a recursive variable x is resolved (M.2), its value is propagated to all threads.
When an error occurs in a thread (err), the whole computation crashes.

4. References and Continuations

In this section we consider in full detail the monadic metalanguage MMLSK
fix ,

obtained from MMLS
fix by adding continuations (to make the technical exposition

self-contained we define MMLSK
fix from scratch). This special case is very appro-

priate to expose the subtleties of value recursion. In particular, we outline a proof
of type safety (see Section 4.2), by identifying the key technical lemmas. The
type system we use is rather weak, since it cannot statically detect attempts to

12 TITLE WILL BE SET BY THE PUBLISHER

var
Γ(x) = τ

Γ `Σ x: τ
abs

Γ, x: τ1 `Σ e: τ2

Γ `Σ λx.e: τ1 → τ2

app

Γ `Σ e1: τ1 → τ2

Γ `Σ e2: τ1

Γ `Σ e1e2: τ2

ret
Γ `Σ e: τ

Γ `Σ ret e:Mτ
do

Γ `Σ e1:Mτ1 Γ, x: τ1 `Σ e2:Mτ2

Γ `Σ do x← e1; e2:Mτ2

fix
Γ, x:Mτ `Σ e:Mτ

Γ `Σ fix x.e:Mτ
Mfix

Γ, x:Mτ `Σ e:Mτ

Γ `Σ Mfix x.e:Mτ

loc
Σ(l) = Rτ

Γ `Σ l:Rτ
new

Γ `Σ e: τ
Γ `Σ new e:M(Rτ)

get
Γ `Σ e:Rτ

Γ `Σ get e:Mτ

set
Γ `Σ e1:Rτ Γ `Σ e2: τ
Γ `Σ set e1 e2:M(Rτ)

cont
Σ(k) = Kτ

Γ `Σ k:Kτ
callcc

Γ, x:Kτ `Σ e:Mτ

Γ `Σ callcc x.e:Mτ

throw
Γ `Σ e1:Kτ Γ `Σ e2:Mτ

Γ `Σ throw e1 e2:Mτ ′

Table 3. Type System for MMLSK
fix

use a recursive variable before it is resolved. However, the main purpose of this
section is to serve as a template to establish similar (type safety) results for other
monadic metalanguages with value recursion, and to provide the formal definitions
and technical properties that have been avoided so far.

4.1. Syntax, Types, and Semantics

The syntax of MMLSK
fix is abstracted over basic types b, variables x ∈ X, locations

l ∈ L and continuations k ∈ K:
• Types τ ∈ T : := b | τ1 → τ2 | Mτ | Rτ | Kτ

• Terms e ∈ E : := x | λx.e | e1e2 | fix x.e |
ret e | do x← e1; e2 | Mfix x.e |
l | new e | get e | set e1 e2 |
k | callcc x.e | throw e1e2

The type Kτ is the type of continuations which can be invoked on arguments of
type Mτ (invoking the continuation aborts the current context). The expression
callcc x.e binds the current continuation to x and continues with the execution
of e; the execution of the expression throw e1e2 ignores the current continuation
and executes e2 in the context of the continuation e1 instead. This effectively
“jumps” to the point where the continuation e1 was captured by callcc with e2

TITLE WILL BE SET BY THE PUBLISHER 13

as the result of the callcc expression. By jumping to the same continuation more
than once, it is thus possible for the associated callcc expression to return more
than once with a different value each time.

Table 3 gives the typing rules for deriving judgments of the form Γ `Σ e: τ ,
where Γ: X

fin→ T is a type assignment for variables x: τ and Σ: L ∪ K
fin→ T is a

signature for locations l:Rτ and continuations k:Kτ .
The simplification relation > on terms is given by the compatible closure

of the following rewrite rules:
β: (λx.e2)e1 > e2{x: = e1}
fix: fix x.e > e{x: = fix x.e}

Definition 4.1. The compatible closure R> of a binary relation R on terms
(s.t. e R e′ implies FV(e′) ⊆ FV(e)) is given by:
e1 R> e2

∆⇐⇒ e1 ≡ C[e] and e2 ≡ C[e′] with e R e′ and C context with one hole.

We write = for the reflexive, symmetric and transitive closure of > . The
following are desirable properties of simplification (identified in [35]), among them
only Proposition 4.4 is relevant to the proof of type safety.

Proposition 4.2 (Congr). The equivalence = induced by > is a congruence.

Proof. Clearly = is an equivalence, it is a congruence, i.e.,
e1 = e2

C[e1] = C[e2]
,

because > is the compatible closure of a relation. �

Proposition 4.3 (CR). The simplification relation > is confluent.

Proof. The rewriting rules defining > are left-linear and non-overlapping,
thus > is confluent by a general result on combinatory reduction systems.
The proof uses an auxiliary relation

1
� , called 1-step parallel reduction, s.t.

> ⊆
1
� ⊆ ∗

> and satisfying the diamond property. �

Proposition 4.4 (SR). If Γ `Σ e: τ and e > e′, then Γ `Σ e′: τ .

Proof. The proof relies on two properties of the type system: substitution and

replacement. subst
Γ `Σ e1: τ1 Γ, x: τ1 `Σ e2: τ2

Γ `Σ e2{x: = e1}: τ2

allows to prove SR for the

two rewriting rules defining > . While the replacement property
If Γ `Σ C[e]: τ , then exists Γ′ and τ ′ s.t.
Γ′ `Σ e: τ ′ and Γ `Σ C[e′]: τ whenever Γ′ `Σ e′: τ ′

allows to derive SR for the compatible closure R> from SR for R. �

To define the computation relation Id > Id ′ | done | err (see Table 4), we need
the auxiliary notions of evaluation contexts, stores, continuation environments and
configurations Id ∈ Conf (while computational redexes are used only in technical
statements):

• Evaluation contexts E ∈ EC : := � | E[do x← �; e] | E[Mfix x.�]

14 TITLE WILL BE SET BY THE PUBLISHER

• Stores µ ∈ S
∆= L

fin→ E and continuation environments ρ ∈ KE
∆= K

fin→ EC

• Configurations (X|µ, ρ, e, E) ∈ Conf
∆= Pfin(X)×S×KE×E×EC consist of

the current store µ and continuation environment ρ, the program fragment
e under consideration and its evaluation context E. The set X records the
recursive variables generated so far, thus X grows as the computation
progresses.
• Computational redexes

r ∈ R : := ret e | do x← e1; e2 | x | Mfix x.e |
new e | get l | set l e |
callcc x.e | throw k e

Remark 4.5. In the absence of Mfix x.e, the hole � of an evaluation context E
is never within the scope of a binder. Therefore one can represent E as a λ-
abstraction λx.E[x], where x /∈ FV(E). This is how continuations are modeled in
the λ-calculus, in particular the operation E[e] of replacing the hole in E with a
term e becomes simplification of the β-redex (λx.E[x]) e. This representation of
continuations is adopted also in the reduction semantics of functional languages
with control operators [40]. In such reduction semantics there is no need to keep a
continuation environment ρ, because a continuation k with ρ(k) = E is represented
by the λ-abstraction λx.E[x]. In the presence of Mfix x.e (or when modeling par-
tial evaluation, multi-stage programming, and call-by-need [5, 6, 34]), evaluation
may take place within the scope of a binder, and one can no longer represent an
evaluation context with a λ-abstraction, because the operation E[e] may capture
free variables in e. In this case, continuation environments are very convenient,
since the subtle issues regarding variable capture are confined to the level of con-
figurations, and do not percolate in terms and other syntactic categories.

In an evaluation context the hole � can be within the scope of a binder, thus an
evaluation context E has not only a set of free variables, but also a set of captured
variables. Moreover, the definition of E{x′: = e′} differs from the capture-avoiding
substitution e{x′: = e′} for terms, because captured variables cannot be renamed.

Definition 4.6. The sets CV(E) and FV(E) of captured and free variables and
the substitution E{x′: = e′} are defined by induction on E:

• CV(�) ∆= FV(�) ∆= ∅ and �{x′: = e′} ∆= �

• CV(E[do x← �; e]) ∆= CV(E),
FV(E[do x← �; e]) ∆= FV(E) ∪ (FV(e)\(CV(E) ∪ x)) and

(E[do x← �; e]){x′: = e′} ∆=
{

E′[do x← �; e] x′ ∈ CV(E)
E′[do x← �; e{x′: = e′}] otherwise

with E′ ≡ E{x′: = e′} (the bound variable x can be renamed to be different
from x′ and from any of the free variables of e′).

• CV(E[Mfix x.�]) ∆= CV(E) ∪ x, FV(E[Mfix x.�]) ∆= FV(E) and
(E[Mfix x.�]){x′: = e′} ∆= E′[Mfix x.�] with E′ ≡ E{x′: = e′}

TITLE WILL BE SET BY THE PUBLISHER 15

Administrative steps
(A.0) (X|µ, ρ, ret e,�) > done
(A.1) (X|µ, ρ,do x← e1; e2, E) > (X|µ, ρ, e1, E[do x← �; e2])
(A.2) (X|µ, ρ, ret e1, E[do x← �; e2]) > (X|µ, ρ, e2{x: = e1}, E)

Steps for recursive monadic binding
(M.1) (X|µ, ρ,Mfix x.e, E) > (X, x|µ, ρ, e, E[Mfix x.�]) with x renamed to

avoid clashes with X
(M.2) (X|µ, ρ, ret e,E[Mfix x.�]) > (X|µ, ρ, ret e,E) where

• stands for •{x: = fix x.ret e} (the free occurrences of variable x are
replaced anywhere in the configuration)

(err) (X|µ, ρ, x,E) > err where x ∈ X (attempt to use unresolved variable)
Imperative steps

(new) (X|µ, ρ,new e,E) > (X|µ{l: e}, ρ, ret l, E) where l /∈ dom(µ)
(get) (X|µ, ρ, get l, E) > (X|µ, ρ, ret e,E) with e = µ(l)
(set) (X|µ, ρ, set l e, E) > (X|µ{l = e}, ρ, ret l, E) with l ∈ dom(µ)

Control steps
(callcc) (X|µ, ρ, callcc x.e, E) > (X|µ, ρ{k:E}, e{x: = k}, E) where k /∈ dom(ρ)
(throw) (X|µ, ρ, throw k e,E) > (X|µ, ρ, e, Ek) with Ek = ρ(k)

Table 4. Computation Relation for MMLSK
fix

The confluent simplification relation > on terms extends in the obvious way
to a confluent relation (denoted >) on stores, evaluation contexts and con-
figurations. The following lemma establishes a useful invariant on configurations
independent from typing, namely every configuration (X|µ, ρ, e, E) reachable from
an initial one (∅|∅, ∅, e0,�) satisfies the property FV(µ, ρ, e, E) ∪ CV(ρ,E) ⊆ X.
Since the property is trivially satisfied on initial configurations with all the sets
empty, it suffices to show that it is preserved by simplification and computation
steps.

Lemma 4.7. If (X|µ, ρ, e, E) > (X ′|µ′, ρ′, e′, E′), then
X = X ′, dom(µ′) = dom(µ), dom(ρ′) = dom(ρ) and

• FV(e′) ⊆ FV(e), CV(E′) = CV(E) and FV(E′) ⊆ FV(E)
• FV(e′l) ⊆ FV(el) for el = µ(l) and e′l = µ′(l)
• CV(E′

k) = CV(Ek) and FV(E′
k) ⊆ FV(Ek) for Ek = ρ(k) and E′

k = ρ′(k)
If (X|µ, ρ, e, E) > (X ′|µ′, ρ′, e′, E′) and FV(µ, ρ, e, E) ∪ CV(ρ,E) ⊆ X, then
X ⊆ X ′, dom(µ) ⊆ dom(µ′), dom(ρ) ⊆ dom(ρ′) and
FV(µ′, ρ′, e′, E′) ∪ CV(ρ′, E′) ⊆ X ′.

Proof. The property of simplification follows from FV(e′) ⊆ FV(e) whenever
e > e′, and the fact that simplification cannot modify the shape of a store,
evaluation context or continuation environment. The property of computation
is proved by considering each computation rule separately, and exploiting basic
properties of substitution {x: = e}. We consider two cases:

16 TITLE WILL BE SET BY THE PUBLISHER

(A.2) (X|µ, ρ, ret e1, E[do x← �; e2]) > (X|µ, ρ, e2{x: = e1}, E). Since X, µ
and ρ do not change, it suffices to derive FV(e2{x: = e1}, E)∪CV(E) ⊆ X
from FV(e1, E[do x← �; e2]) ∪ CV(E[do x← �; e2]) ⊆ X.

CV(E) ⊆ X because CV(E) = CV(E[do x← �; e2]).
FV(E) ⊆ X because FV(E) ⊆ FV(E[do x← �; e2]).
FV(e2{x: = e1}) ⊆ (FV(e2)\x)∪FV(e1) ⊆ X because FV(e1) ⊆ X and

FV(e2) ⊆ FV(E[do x← �; e2]) ∪ CV(E) ∪ x ⊆ X ∪ x.
(M.2) (X|µ, ρ, ret e,E[Mfix x.�]) > (X|µ, ρ, ret e,E) where • stands for

•{x: = fix x.ret e}. We have to derive FV(µ, ρ, e, E) ∪ CV(ρ,E) ⊆ X
from FV(µ, ρ, e, E) ∪ CV(E) ∪ x ⊆ X. We focus on e and E, since the
reasoning for µ and ρ is similar.

FV(e,E) ⊆ X because FV(e,E) ⊆ X and FV(fix x.ret e) ⊂ X.
CV(E) ⊆ X because CV(E) = CV(E).

�

The following property is not relevant for type safety, but establishes a key
property of simplification, namely if a computation rule is enabled in a configura-
tion, it is still enabled if the configuration is simplified. Moreover, if the program
fragment under consideration is a computational redex, further simplification does
not enable more computational rules.

Theorem 4.8 (Bisim). If Id ≡ (X|µ, ρ, e, E) with e ∈ R and Id
∗
> Id ′, then

(1) Id > D implies ∃D′ s.t. Id ′ > D′ and D
∗
> D′

(2) Id ′ > D′ implies ∃D s.t. Id > D and D
∗
> D′

where D and D′ range over Conf ∪ {done, err}.

Proof. An equivalent statement, but easier to prove, is obtained by replacing
∗
>

with 1-step parallel reduction
1
� . A key observation for proving the bisim-

ulation result is that simplification applied to a computational redex r and an
evaluation context E does not change the relevant structure (of r and E) for
determining the computation step among those in Table 4. �

4.2. Type Safety

We prove that in MMLSK
fix execution of a well-typed program ∅ `∅ e0:Mτ

does not get stuck, i.e., every configuration Id reachable from the initial one
(∅|∅, ∅, e0,�) can progress Id ====⇒ by a simplification or computation step.
Thus execution of e0 stops either because of termination (done) or because of an
attempt to use an unresolved variable (err). Following [40] we prove type safety
by establishing Subject Reduction and Progress for well-formed configurations.

The definitions of well-formed configurations ∆ `Σ Id : τ ′ and evaluation con-
texts ∆,�:Mτ `Σ E:Mτ ′ must take into account the set X. Thus we need a type
assignment ∆ mapping x ∈ X to computational types Mτ .

TITLE WILL BE SET BY THE PUBLISHER 17

�
∆,�:Mτ `Σ �:Mτ

E-do
∆,�:Mτ2 `Σ E:Mτ ′ ∆, x: τ1 `Σ e:Mτ2

∆,�:Mτ1 `Σ E[do x← �; e]:Mτ ′

E-Mfix
∆,�:Mτ `Σ E:Mτ ′

∆,�:Mτ `Σ E[Mfix x.�]:Mτ ′
∆(x) = Mτ

Table 5. Well-formed Evaluation Contexts for MMLSK
fix

Definition 4.9. ∆ `Σ (X|µ, ρ, e, E): τ ′ ∆⇐⇒ dom(Σ) = dom(µ)] dom(ρ),
dom(∆) = X and

• ∆ `Σ e:Mτ and ∆,�:Mτ `Σ E:Mτ ′ are derivable (see Table 5) for some
type τ

• ∆ `Σ el: τl is derivable when el = µ(l) and Rτl = Σ(l)
• ∆,�:Mτk `Σ Ek:Mτ ′ is derivable when Ek = ρ(k) and Kτk = Σ(k)

The formation rules of Table 5 for deriving ∆,�:Mτ `Σ E:Mτ ′ ensure that ∆
assigns a computational type to all captured variables of E. Moreover, we have
the following substitution lemma for evaluation contexts.

Lemma 4.10. The following rule is admissible

E-subst
∆ `Σ e0:Mτ0 ∆, x0:Mτ0,�:Mτ `Σ E:Mτ ′

∆, x0:Mτ0,�:Mτ `Σ E{x0: = e0}:Mτ ′

Proof. By induction on the derivation of ∆, x0:Mτ0,�:Mτ `Σ E:Mτ ′.
We write • for •{x0: = e0}. The only interesting case is the (E-do) rule,

when we have to derive ∆, x0:Mτ0,�:Mτ1 `Σ E[do x← �; e]:Mτ ′ from both
∆, x0:Mτ0,�:Mτ2 `Σ E:Mτ ′ and ∆, x0:Mτ0, x: τ1 `Σ e:Mτ2.

By IH we have ∆, x0:Mτ0,�:Mτ2 `Σ E:Mτ ′. If x0 ∈ CV(E), then we have that
E[do x← �; e] ≡ E[do x← �; e], and the conclusion is immediate. Otherwise
E[do x← �; e] ≡ E[do x← �; e], thus we need ∆, x0:Mτ0, x: τ1 `Σ e:Mτ2, which
follows from substitution and weakening for the type system. �

We can now formulate the SR and progress properties for MMLSK
fix .

Theorem 4.11 (SR).
(1) If ∆ `Σ Id1: τ ′ and Id1 > Id2, then ∆ `Σ Id2: τ ′

(2) If ∆1 `Σ1 Id1: τ ′ and Id1 > Id2, then exists Σ2 ⊇ Σ1 and ∆2 ⊇ ∆1 s.t.
∆2 `Σ2 Id2: τ ′.

Proof. The first claim is an easy consequence of Proposition 4.4. The second is
proved by case-analysis on the computation rules of Table 4. The most interesting
case is (M.2). We know ∆ `Σ (X|µ, ρ, ret e,E[Mfix x.�]): τ ′ and we want to derive
∆ `Σ (X|µ, ρ, ret e,E): τ ′ where • stands for •{x: = fix x.ret e}.

18 TITLE WILL BE SET BY THE PUBLISHER

Let τ be s.t. ∆ `Σ ret e:Mτ and ∆,�:Mτ `Σ E[Mfix x.�]:Mτ ′, thus we must
have ∆(x) = Mτ and ∆,�:Mτ `Σ E:Mτ ′. By (fix) and weakening we derive
∆ `Σ fix x.ret e:Mτ . We can now prove ∆ `Σ (X|µ, ρ, ret e,E): τ ′.

• ∆ `Σ ret e:Mτ by substitution and weakening
• ∆,�:Mτ `Σ E:Mτ ′ by Lemma 4.10

the properties of µ and ρ (in Definition 4.9) are proved by similar arguments. �

Lemma 4.12. If ∆ `Σ e: τ ′ and e is a > -normal form, then
• τ ′ ≡ Mτ implies e is a computational redex
• τ ′ ≡ (τ1 → τ2) implies e is a λ-abstraction
• τ ′ ≡ Rτ implies e is a location l
• τ ′ ≡ Kτ implies e is a continuation k

Proof. By induction on e. The only cases that use the IH are: e1e2, get e, set e1 e2

and throw e1 e2.
e1e2: if ∆ `Σ e1e2: τ2 and in normal form, the we must have (for some τ1)

∆ `Σ e1: τ1 → τ2 and in normal form. Thus e1 must be a λ-abstraction
(by IH for e1), and e1e2 is a β-redex. This contradict the assumption that
e1e2 is in normal form.

get e: if ∆ `Σ get e: τ ′ and in normal form, then we must have (for some τ)
τ ′ = Mτ and ∆ `Σ e:Rτ and in normal form. Thus e must be a location
l (by IH for e), and get e is a computational redex.

The cases set e1 e2 and throw e1 e2 are similar to get e. �

In a well-typed configuration there must be a way to make progress either
by making a simplification step or a computational step. In the latter case the
computational step might lead to another configuration, to done indicating proper
termination, or to err indicating an attempt to use an unresolved recursion variable.

Theorem 4.13 (Progress). If ∆ `Σ (X|µ, ρ, e, E): τ ′, then
(1) e ∈ R and (X|µ, ρ, e, E) > , or
(2) e /∈ R and e > .

Proof. We have (for some τ) that ∆ `Σ e:Mτ . When e ∈ R we show that
(X|µ, ρ, e, E) > by case analysis on the structure of computational redexes.

ret e: rules (A.0), (A.2) or (M.2) are applicable, depending on E
do x← e1; e2: rule (A.1) is applicable
x: rule (err) is applicable, because x ∈ dom(∆) = X by well-formedness of

the configuration
get l: rule (get) is applicable, because l ∈ dom(Σ) = dom(µ) by the well-

formedness of the configuration
The other cases are similar to either do x← e1; e2 or get l. When e /∈ R, then e
cannot be a > -normal form, because of Lemma 4.12. �

Given subject reduction and progress, we thus have type safety for the monadic
metalanguage with continuations and state.

TITLE WILL BE SET BY THE PUBLISHER 19

Corollary 4.14. If ∅ `∅ e0:Mτ and (∅|∅, ∅, e0,�) ===
∗
⇒ Id, then Id ===⇒ .

Continuations and state are so expressive that they can define or simulate many
other monads [22]. But the type safety result does not immediately carry over to
other monads. For example, in situations involving communication and paral-
lelism, type safety need to be formulated differently, since a well-typed program
may deadlock.

5. Axioms for Value Recursion

We discuss two of the main axioms for defining value recursion in [19], claming
validity for one of them and providing a counterexample for the other.

5.1. Purity

The purity axiom:
mfix x.ret e = ret (fix x.e)

is the property which ensures that mfix coincides with fix for pure computations.
In our case, because of the differences in typing between mfix and Mfix, this
corresponding axiom would be that Mfix x.ret e = fix x.ret e.

In an operational setting the way to validate an equational axiom e1 = e2 is
to prove that it is observationally valid, i.e., e1 ≈ e2. A standard strategy for
proving e1 ≈ e2 is the bisimulation proof technique. In our setting it amounts to
find a binary relation R on Conf with the following properties:

(1) (∅|∅, ∅, C[e1],�)R(∅|∅, ∅, C[e2],�) for any program (closing) context C

(2) Id1RId2 and Id1 ===⇒ D1 imply Id2 ===
∗
⇒ D2 and D1R̃D2 for some D2

(3) Id1RId2 and Id2 ===⇒ D2 imply Id1 ===
∗
⇒ D1 and D1R̃D2 for some D1

where ===⇒ = > ∪ > and R̃ extends R to Conf | done | err, namely
R̃ = R ∪ {(done, done), (err, err)}.

For instance, to prove that e1 ≈ e2 when e1 > e2 one could use the following
relation Id1RId2

∆⇐⇒ Id1
∗
> Id2. To check that R has the required properties

we have to exploit Theorems 4.3 and 4.8.
Indeed it is possible to prove the purity axiom using our semantics.

Proposition 5.1 (Purity). Mfix x.ret e ≈ fix x.ret e

5.2. Left-Shrinking

The left-shrinking axiom:

mfix x.(do x1 ← e1; e2) = do x1 ← e1;mfix x.e2 when x /∈ FV(e1)

states that computations which do not refer to the recursive variable can be moved
outside the recursive definition.

20 TITLE WILL BE SET BY THE PUBLISHER

The axiom is known to be satisfied in many monads [19]. However a related
equivalence is known to be incorrect in Scheme due to the presence of callcc [8].
It was argued [19] that the failure of left-shrinking is due to the idiosyncrasies of
Scheme. In fact left-shrinking is invalidated by our semantics and in other known
combinations of value recursion and continuations [14,23]. We provide a complete
counterexample to this axiom to illustrate the extreme subtlety and complications
of using value recursion with general effects which include continuations, and to
suggest that it is unlikely that value recursion can satisfy a large class of “inter-
esting” axioms in the general case.

The example (inspired by examples by Bawden [8] and Carlsson [14]) is written
in a Haskell-like extension of MMLSK

fix with booleans, pairs, etc. (but Mfix is not a
legal Haskell identifier, as it starts with an uppercase letter). We will arrange for
the final result of our example to be a recursive pair whose first component is an
Int and whose second component is a computation producing another recursive
pair as formalized by the type RP m below (and where m is the monadic type
constructor). The basic idea in the counterexample is to use continuations to
execute the same computation more than once returning a different value each
time. This requires a recursive type like V m below (where again m is the monadic
type constructor):

data RP m = RP (m (Int , RP m))
data V m = Ret (K (RP m)) | Jump (K (V m))

Values of type V m are continuations which either accept the final value or which
jump back and restart the computation again with a new continuation.

The following two terms should be equal by left-shrinking:

lhs : : Monad m ⇒ m (Int , RP m)
lhs = Mfix (\ x →

do p ← callcc (\ k → return (Jump k))
case p of
Jump k → do v ← callcc (\ c → throw k (return (Ret c)))

return (1, v)
Ret c → throw c (return (RP x)))

rhs : : Monad m ⇒ m (Int , RP m)
rhs = do p ← callcc (\ k → return (Jump k))

Mfix (\ x →
case p of
Jump k → do v ← callcc (\ c → throw k (return (Ret c)))

return (1, v)
Ret c → throw c (return (RP x)))

In our semantics (extended with simplification rules for booleans, pairs, etc) the
two terms evaluate differently. In the lhs, the evaluation enters the Mfix expression

TITLE WILL BE SET BY THE PUBLISHER 21

and then continuations are captured and invoked within the body of the Mfix
expression. Eventually the body of Mfix evaluates to (return (1, RP x)) where x
is the recursive variable, and the whole expression produces the well-defined value
(1, RP (fix x . return (1, RP x))).

In more detail, the evaluation of the lhs consists of the following macro steps:

• x : recursive variable x is created.
• k : continuation k is bound to the evaluation context

Ek = Mfix (\ x → do p ← �; e) where

e = case p of
Jump k → do v ← callcc (\ c → throw k (return (Ret c)))

return (1, v)
Ret c → throw c (return (RP x))

• c: branch Jump k is selected, and continuation c is bound to
Ec = Mfix (\ x → do v ← �; return (1, v))
• throw k : return (Ret c) is thrown to Ek , thus branch Ret c is selected.
• throw c: return (RP x) is thrown to Ec which produces

Mfix (\ x → do v ← return (RP x) ; return (1, v))
• mfix: the evaluation of the body of Mfix returns

Mfix (\ x → return (1, (RP x)))
• resolve x : the final answer is return (1, (RP fix x . (1, (RP x))))

In the case of the rhs, a continuation is captured before we ever start evaluating
the Mfix expression. Then p gets bound to the value (Jump k) and the Mfix ex-
pression is entered a first time with recursive variable x . This however immediately
jumps back and rebinds p to a new value (Ret c) where c is a continuation which
refers to the captured recursive variable x . But jumping back and rebinding p
to (Ret c) starts a new evaluation of the Mfix expression with recursive variable
x ′ this time. This evaluation invokes c with the value (RP x ′) which results in
the body of the original evaluation of Mfix (with recursive variable x) to produce
(return (1, RP x ′)). Thus the rhs produces the value (1, RP x ′) which has a free
unresolved recursive variable.

In more detail the evaluation consists of the following steps:

• k : continuation k is bound the evaluation context
E ′

k = do p ← �; Mfix (\ x → e) where e is the term in macro step k
in the evaluation of the lhs.
• x : recursive variable x is created.
• c: branch Jump k is selected, and continuation c is bound to the evaluation

context Ec introduced in macro step c in the evaluation of the lhs.
• throw k : return (Ret c) is thrown to E ′

k , which binds p to Ret c.
• x ′: recursive variable x ′, different from x , is created.
• throw c: branch Ret c is selected, and return (RP x ′) is thrown to Ec

which produces
Mfix (\ x → do v ← return (RP x ′) ; return (1, v))

22 TITLE WILL BE SET BY THE PUBLISHER

• mfix: the evaluation of the body of Mfix returns
Mfix (\ x → return (1, RP x ′))
• resolve x : the final answer is return (1, RP x ′), with x ′ unresolved.

5.3. Scheme semantics

Our semantics also differs from the Scheme semantics. The semantics of a
letrec expression in Scheme is given as follows [31]:

(letrec ((x e)) e ′) = (let ((x (void)))
(let ((v e))

(begin (set! x v) e ′)))

To understand the definition, one should note the nature of variables in Scheme:
a variable declaration implicitly allocates a location and a variable use implicitly
reads the corresponding location. This is unlike our presentation so far in which
variables always refer to values and locations are explicitly created and read with
new and get. Given this understanding, the meaning of a letrec expression is as
follows:

• Allocate a location and initialize it to an unusable value.
• Evaluate the right hand side e; this evaluation cannot read the contents

of the location, i.e., it cannot use x in an evaluation context position.
• Update the location with the resulting value and evaluate the body.

The differences between our approach and the Scheme semantics become more
evident if we attempt to define a fixed point operator that captures the Scheme
semantics: one might be tempted to use the following definition:

(schemeFix f) = (letrec ((x (f x))) x)

but unfortunately the application (f x) attempts to prematurely read the location
associated with x .

Indeed the presence of locations and assignments cannot be encapsulated in the
definition of letrec: a judicious use of callcc exposes them and can be used to
define first-class reference cells [8, 23].

6. Conclusion and Related Work

Recursion is a pervasive feature in many general purpose programming lan-
guages. Cook [15] has demonstrated its importance in clarifying the semantics
of object-oriented languages. Bracha [13] has abstracted from the object-oriented
paradigm and proposed mixins and related operations as a way for supporting
modularity in a variety of programming languages. Ancona and Zucca [1, 4] have
proposed CMS as a foundational calculus for mixins more suitable for theoret-
ical studies, although able to express (in term of few primitives) the variety of
operations identified by Bracha. All these works show that recursion, and more

TITLE WILL BE SET BY THE PUBLISHER 23

specifically the management of mutually recursive definitions, is important also
for programming in the large.

This paper investigates the interaction of recursion with computational effects.
We have worked in the setting monadic metalanguages, since they provide a general
framework for computational effects, and have proposed a uniform way of adding
value recursion to a monadic metalanguage equipped with an abstract operational
semantics described by a simplification and computation relation.

Other researchers have looked (or are looking) at value recursion at a different
level of abstraction or with a different focus. We attempt a classification of research
topics that are related to value recursion, and mention some of the most significant
contributions (without any attempt to be exhaustive).

• Value Recursion and Monads [19, 20]. While using Haskell for modeling
hardware circuits and stream-oriented computations, Launchbury, Lewis,
and Cook realized that the monadic infrastructure could not be used in
describing recursive circuits [33]. This observation led Erkök and Launch-
bury to abstract from the specific application domain, investigate the se-
mantics of value recursion, and implement it as an extension to Haskell.
Their work is also prominent for taking an axiomatic approach and pro-
viding equational reasoning principles for value recursion. Paterson [37]
provides similar results in the more general framework of arrows [28].
• Axiomatic/Categorical Treatments of Recursion. The semantics of value

recursion has been considered also in a categorical setting, in particular [9]
has adapted the notion of trace to premonoidal categories [38], which
include the Kleisli category for a strong monad.
• Implementations of Value Recursion. For specific constrained notions of

computations, for example for state, I/O, and several other monads, it
is possible to implement value recursion in terms of the usual fixed point
construct. For example, given a simple state monad defined by the con-
structor: Ma = Int → (a, Int), one can define:

Mfix x.e = λs.(fix p.(λx.e) (ret (fst p)) s)

which is how current Haskell implementations [24, 30] deal with value re-
cursion for the state and IO monads (replacing our Mfix with mfix). In
the general setting where the notion of computation is not restricted, all
known implementations of value recursion rely on a variant of the SECD
update-in-place trick [17, 31, 32]. This implementation strategy can often
be optimized, but sometimes with some imposed restrictions [12,18,27,39].
• Value Recursion and Objects. The semantics of objects proposed by

Cook [16] identifies a class c with a function f :R → R (from records
to records); a new object o of class c is (the record) obtained by taking
the fixed point of f . When objects have a state, some computations (ini-
tialization) have to be done once, at object-creation time. If computations
during initialization are heavily constrained, one could model a class as

24 TITLE WILL BE SET BY THE PUBLISHER

a computation of a function f ′:M(R → R), but in general a more subtle
form of recursion is needed [10], namely value recursion.
• Value Recursion and Modules [2, 4, 18, 25, 26]. The importance of sup-

porting recursion at the module level has been observed by Bracha, who
proposed the notion of mixin. Even for rich module languages, like ML-
modules, there is a need for extensions supporting inter-module recursion.
One of the stumbling blocks in designing such extensions is the interac-
tion of module-level recursion and core-level computational effects. Value
recursion offers (in combination with standard recursion) an enhanced
control of this interaction.
• Type Systems for Value Recursion [11, 18, 25, 26]. Value recursion intro-

duces a new form of error, caused by an attempt to use a recursive variable
before it is bound to a value (we call such a variable unresolved). It is desir-
able to have type systems (or program analyses) allowing static detection
of such errors.

Acknowledgments

We would like to thank Levent Erkök and Magnus Carlsson for very fruitful
discussions and comments. We would also like to thank Sungwoo Park for pointing
out an error in one of the examples in an earlier version of the paper. Finally the
comments and questions by the referees were quite helpful in improving the paper
and its presentation.

References

[1] Ancona, D. Modular Formal Frameworks for Module Systems. PhD thesis, Univ. di Pisa,

1998.
[2] Ancona, D., Fagorzi, S., Moggi, E., and Zucca, E. Mixin modules and computational

effects. In Proc. 30th Int’l Coll. Automata, Languages, and Programming (2003), vol. 2719

of LNCS, Springer-Verlag.
[3] Ancona, D., and Zucca, E. A primitive calculus for module systems. In Proc. Int’l Conf.

Principles & Practice Declarative Programming (1999), vol. 1702 of LNCS, Springer-Verlag,

pp. 62–79.
[4] Ancona, D., and Zucca, E. A calculus of module systems. J. Funct. Programming 12, 2

(March 2002), 91–132. Extended version of [3].

[5] Ariola, Z. M., and Felleisen, M. The call-by-need lambda calculus. Journal of Functional
Programming 7, 3 (May 1997), 265–301.

[6] Ariola, Z. M., Maraist, J., Odersky, M., Felleisen, M., and Wadler, P. A call-by-

need lambda calculus. In Conference record of POPL ’95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: papers presented at the Symposium:

San Francisco, California, January 22–25, 1995 (New York, NY, USA, 1995), ACM Press,
pp. 233–246.

[7] Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, revised ed. North-

Holland, 1984.
[8] Bawden, A. Letrec and callcc implement references. Message to comp.lang.scheme, 1988.

TITLE WILL BE SET BY THE PUBLISHER 25

[9] Benton, N., and Hyland, M. Traced pre-monoidal categories. In Fixed Points in Computer

Science (July 20–21 2002), Z. Ésik and A. Ingólfsdóttir, Eds., vol. NS-02-2 of BRICS Notes

Series, pp. 12–19.

[10] Boudol, G. The recursive record semantics of objects revisited. Lecture Notes in Computer
Science 2028 (2001), 269–283.

[11] Boudol, G. The recursive record semantics of objects revisited. J. Funct. Programming

(2002). To appear.
[12] Boudol, G., and Zimmer, P. Recursion in the call-by-value λ-calculus. In Fixed Points in

Computer Science, BRICS Notes Series NS-02-2 (2002).
[13] Bracha, G. The Programming Language Jigsaw: Mixins, Modularity, and Multiple Inher-

itance. PhD thesis, Univ. of Utah, Mar. 1992.

[14] Carlsson, M. Value recursion in the continuation monad. Unpublished Note, Jan. 2003.
[15] Cook, W. A Denotational Semantics of Inheritance. PhD thesis, Brown University, 1989.
[16] Cook, W., and Palsberg, J. A denotational semantics of inheritance and its correctness.

In Conf. on Object-Oriented Programming:Systems, Languages and Applications (1989),
ACM.

[17] Cousineau, G., Curien, P. L., and Mauny, M. The categorical abstract machine. In Func-

tional Programming Languages and Computer Architecture (Sept. 1985), J.-P. Jouannaud,
Ed., vol. 201 of Lecture Notes in Computer Science, Springer Verlag, pp. 50–64.

[18] Dreyer, D., Harper, R., and Crary, K. A type system for well-founded recursion. Tech.
Rep. CMU-CS-03-163, Carnegie Mellon University, 2003.

[19] Erkök, L. Value Recursion in Monadic Computations. PhD thesis, OGI School of Science

and Engineering, OHSU, Portland, Oregon, 2002.
[20] Erkök, L., and Launchbury, J. Recursive monadic bindings. In Proceedings of the ACM

Sigplan International Conference on Functional Programming (ICFP-00) (N.Y., Sept. 18–

21 2000), vol. 35.9 of ACM Sigplan Notices, ACM Press, pp. 174–185.

[21] Erkök, L., Launchbury, J., and Moran, A. Semantics of value recursion for monadic
input/output. Journal of Theoretical Informatics and Applications 36, 2 (2002), 155–180.

[22] Filinski, A. Representing monads. In Conf. Record of 21st ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, POPL’94, Portland, OR, USA, 17–21 Jan. 1994.

ACM Press, New York, 1994, pp. 446–457.

[23] Friedman, D. P., and Sabry, A. Recursion is a computational effect. Tech. Rep. 546,
Computer Science Department, Indiana University, Dec. 2000.

[24] GHC Team, T. The glasgow haskell compiler user’s guide, version 4.08. Available online

from http://haskell.org/ghc/. Viewed on 12/28/2000.
[25] Hirschowitz, T. Mixin Modules, Modules and Extended Value Binding in a Call-By-Value

Setting. PhD thesis, Univ. Paris 7, 2003.

[26] Hirschowitz, T., and Leroy, X. Mixin modules in a call-by-value setting. In Programming
Languages & Systems, 11th European Symp. Programming (2002), vol. 2305 of LNCS,

Springer-Verlag, pp. 6–20.

[27] Hirschowitz, T., Leroy, X., and Wells, J. B. Compilation of extended recursion in call-
by-value functional languages. In Proc. 5th Int’l Conf. Principles & Practice Declarative

Programming (2003).

[28] Hughes, J. Generalising monads to arrows. Sci. Comput. Program. 37, 1-3 (2000), 67–111.
[29] Report on the programming language Haskell 98, Feb. 1999.

[30] Jones, M. P., and Peterson, J. C. Hugs 1.4 User Manual. Research Report
YALEU/DCS/RR-1123, Yale University, Department of Computer Science, 1997.

[31] Kelsey, R., Clinger, W., and (Editors), J. R. Revised5 report on the algorithmic lan-

guage Scheme. ACM SIGPLAN Notices 33, 9 (Sept. 1998), 26–76.
[32] Landin, P. J. The mechanical evaluation of expressions. The Computer Journal 6, 4 (Jan.

1964), 308–320.

[33] Launchbury, J., Lewis, J. R., and Cook, B. On embedding a microarchitectural design
language within Haskell. In Proc. 1999 Int’l Conf. Functional Programming (1999), ACM

Press, pp. 60–69.

26 TITLE WILL BE SET BY THE PUBLISHER

[34] Maraist, J., Odersky, M., and Wadler, P. The call-by-need lambda calculus. Journal of

Functional Programming 8, 3 (May 1998), 275–317.

[35] Moggi, E., and Fagorzi, S. A monadic multi-stage metalanguage. In Proc. FoSSaCS ’03
(2003), vol. 2620 of LNCS, Springer-Verlag.

[36] Morris, J. H. Lambda-Calculus Method of Programming Language. PhD thesis, MIT, Dec.
1968.

[37] Paterson, R. A new notation for arrows. In Proceedings of the sixth ACM SIGPLAN

international conference on Functional programming (2001), ACM Press, pp. 229–240.
[38] Power, J., and Robinson, E. Premonoidal categories and notions of computation. Math-

ematical Structures in Computer Science 7, 5 (1997), 453–468.

[39] Waddell, O., Sarkar, D., and Dybvig, R. K. Robust and effective transformation of
letrec. In Scheme Workshop (Oct. 2002).

[40] Wright, A., and Felleisen, M. A syntactic approach to type soundness. Information and

Computation 115, 1 (1994), 38–94.

Communicated by (The editor will be set by the publisher).

(The dates will be set by the publisher).

