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Abstract

We present an extension of the Hindley-Milner type system that supports a generous class
of type constructors called functors, and provide a parametrically polymorphic algorithm
for their mapping, i.e. for applying a function to each datum appearing in a value of con-
structed type. The algorithm comes from shape theory, which provides a uniform method
for locating data within a shape. The resulting system is Church-Rosser and strongly
normalizing, and supports type inference. Several different semantics are possible, which
affects the choice of constants in the language, and are used to illustrate the relationship
to polytypic programming.

Capsule Review

A wide class of type constructors (functions producing types from types) used in func-
tional programming are functorial, in the sense that they can be extended to mappings
from functions to functions satisfying a few simple laws. The ‘map’ functional for lists
is the prototypic example. Moreover, this additional structure for type constructors is
very useful for expressing properties of some recursively defined datatypes and (hence) in
the construction of algorithms expressed in the functional style. The work of the ‘Dutch-
Oxford’ school of functional programming and algorithm design provides ample evidence
of the utility of the functorial approach. So one is naturally led to the idea of ‘functorial’,
rather than merely functional, programming.

Now amongst the many different functorial actions that a particular type constructor
might possess, there is usually a ‘canonical’ one. Rather than have the programmer supply
the definition of the functorial action explicitly (which would rapidly obscure the structure
of one’s functorial program) it would be very nice if one could write ‘functorially polymor-
phic’ programs in which the canonical functorial action is inferred automatically from the
syntax of the type constructor. Since the algorithms for functorial actions differs greatly
from one type constructor to another, such functorial polymorphism is rather subtle com-
pared with the usual form of polymorphism found in most typed functional languages.
This paper presents one way of achieving this new form of functor-based polymorphism.

∗ This research was partially supported by MURST and ESPRIT WG AppSem.
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1 Introduction

The interplay between type theory, programming language semantics and category

theory is now well established. Two of the strongest examples of this interaction

are the representation of function types as exponential objects in a cartesian closed

category (Lambek & Scott, 1986) and the description of polymorphic terms as

natural transformations (e.g. (Bainbridge et al., 1990)). For example, the operation

of appending lists can be represented as a natural transformation L × L ⇒ L

where L : D → D is the list functor on some category D. Of course, these natural

transformations must have associated functors for their domain and codomain.

System F supports a notion of expressible functor, i.e. a type constructor and a

corresponding action on functions (Reynolds & Plotkin, 1990), but such encodings

are rather unsatisfactory (Section 15.1.1). In particular, the action of a functor on

morphisms, its mapping, must be defined anew for each choice of type constructor.

A better approach, primarily advocated by adherents of the Bird-Meertens style

(e.g. (Meijer et al., 1991; Meijer & Hutton, 1995; Jeuring, 1995)), is to give a

combinator for mapping, whose type can be expressed as:

map : ∀F : 1.∀X, Y.(X → Y ) → FX → FY.

That is, for any functor F : 1 (i.e. taking one argument), types X and Y , and any

morphism f : X → Y we have

map F X Y f : FX → FY

whose action is to take each datum of type X in FX and apply f to it. Unfor-

tunately, the existence of this type does not solve the problem of realizing this

high-level algorithm, as there remains the question of how to find the data.

Naturally, one can use the functor to determine the algorithm. There are basically

two ways to do this. One method is to have the user specify the mapping algorithm,

say by instantiating a constructor class (Jones, 1995). In this particular case, the

functor and type arguments are suppressed to obtain map f a, since the choice of

functor can be inferred from the type of a. Unfortunately, it follows that if F and

G are functors such that FX and GY are intended to be the same for some types

X and Y then a dummy constructor must be introduced to distinguish them.

The other method is to generate the mapping algorithm automatically, from the

structure of the functor. This results in a small loss of flexibility, but saves the

user from supplying repetitious algorithms. Charity (Cockett & Fukushima, 1992)

encodes this directly. Jeuring (Jeuring, 1995) uses a pre-processor to determine the

appropriate Haskell code for mapping and other polytypic operations. Intensional

polymorphism (Harper & Morrisett, 1995) is a general technique for describing

type-dependent operations in an extension of ML, designed to obtain more efficient

compilation. Although in the same spirit as the other approaches, the lack of sum

types makes it hard to make direct comparisons.

Perhaps surprisingly, there is a generous class of covariant functors for which

it is possible to describe a mapping algorithm that is independent of the choice of

functor, i.e. which support parametric functorial polymorphism. The first such algo-



Functorial ML 3

rithms for (polymorphic folding) were produced for a small experimental language

P2 (Jay, 1995a). Polymorphic mapping for the covariant type system is developed

in (Jay, 1997). This paper presents an extension of Hindley-Milner called Functorial

ML, or FML, which supports parametric functorial polymorphism.

For example, it supports:

map f (cons h t) →∗ cons (f h) (map f t)

map f (leaf x) →∗ leaf (f x)

where cons is the usual list constructor, and leaf is the leaf constructor for binary

trees with labeled leaves. It is important to note that these evaluations are not

achieved by pattern matching on primitive constants, but that the constructors

cons and leaf have internal structure, which is used in the reduction to find the

data in a uniform way. We can also use mapping within a let-construct:

let g = map f in 〈g (cons h t), g (leaf x)〉

where 〈−,−〉 is the pairing for binary products. The polymorphic mapping allows

us to support polymorphic folding, too, as will be shown in the body of the paper.

Functors of many variables are also catered for. For example, we have

map2 f g (in0 t) → in0 (f t) (1)

map2 f g (pair s t) → pair (f s) (g t). (2)

where in0 is the left inclusion to a binary sum, Thus, map2 f g is equally able to

act on values whose type is a sum or product, etc.

Shape theory (Jay, 1995b) provides the basis for these algorithms. It is a new

approach to data types based on the idea of decomposing values into their shape

(or data structure) and the data which is stored within them. The data structure

corresponds to the type constructor, or functor, whose argument is the type of

the data. Thus shape polymorphism is closely linked to functorial polymorphism,

as distinct from the data polymorphism of operations like append. Thus, the data-

shape decomposition supports uniform mechanisms for storing data within a shape,

which are exploited by our mapping algorithm.

To see how this works, consider the projection functors Πm
i : Dm → D which pick

out the ith argument from m. It is tempting to identify Π2
0(X, X) and Π2

1(X, X)

with X but this would obliterate the shape-data distinction. Rather, these types

are “isomorphic”, a situation captured by terms

tag2,j : Xj → Π2
j (X0, X1)

(for j ∈ 2) and their inverses. Now given x : X we have the reductions:

map2 f0 f1 (tag2,j x) → tag2,j (fj x).

In other words, the isomorphisms are used to determine where to find the data

associated to each argument of the functor. Similarly, we have isomorphisms to

disambiguate composite functors, e.g.

pack1,1 : F (G(X)) → F 〈G〉1(X).
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Its source is the functor F applied to G(X) while its target is the composite functor

F 〈G〉1 applied to X . The corresponding reduction for map is:

map f (pack1,1 t) → pack1,1 (map (map f) t)

whose corresponding diagram is:

F (G(X))
pack1,1

- F 〈G〉1(X)

F (G(Y ))

map (map f)

?

pack1,1

- F 〈G〉1(Y ).

?

map f

These isomorphisms may be viewed as a systematic method for resolving the am-

biguities otherwise addressed by the dummy constructors mentioned above. The

other approaches use implicit substitution to handle functor composition, making

a uniform algorithm impossible.

The significance of these isomorphisms becomes particularly clear in certain ap-

plication contexts. For instance, in distributed or parallel computing the shape-data

distinction can be used to describe data distributions (Jay, 1995c) in which case

the isomorphisms represent redistributions of the data. Also, such isomorphisms

between different composites are central to bicategories (Benabou, 1967).

The polymorphism of the mapping algorithm can be captured in a system that

supports inference of functors as well as types. We work with an extension of the

Hindley-Milner types which supports a syntactic class of functors, as well as those

of types and type schema. Another possibility is to identify types and type schema

(so extending system F with functors). Such a system is used in the proof of strong

normalization. Again, one could identify types with functors of arity 0, at the cost

of introducing another pair of isomorphisms. We emphasize the tri-partite division

for reasons of clarity, and to obtain type inference.

In this paper we will focus on FML with untyped terms, i.e. à la Curry (in the

terminology of (Barendregt, 1992)), to emphasize parametric functorial polymor-

phism. However, FML à la Church is very important, too: it allows a more aggressive

use of type information (as advocated in (Harper & Morrisett, 1995)) and it is more

suitable for a semantic investigation.

The paper is structured as follows. This section, Section 1 introduces the paper.

Then Section 2 introduces the functors, their syntax and semantics. Section 3 intro-

duces the basic term structure and proves elementary properties, relative to a set of

term constants. Section 4 considers a variety of functor-polymorphic constants mo-

tivated by the desired choice of functor semantics. It also introduces some syntactic

sugar for monads. This is used in Section 5 where shape polymorphic programs for

matching and unification are constructed.

Section 6 looks at extensions to the basic type system. As well as considering

quantification by functor arities, it considers recursion over functor construction,

which leads to polytypism. This can be used to define the various constants in-
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troduced earlier, provided that the semantics of functors is suitably constrained.

Section 7 contrasts FML with PolyP, a polytypic language currently under devel-

opment (Jansson & Jeuring, 1997). Section 8 concludes the body of paper.

2 Functors, types and type schema

2.1 Functors

Only elementary concepts of category theory will be required in this paper, as found

in almost any reference work, e.g. (MacLane, 1971; Barr & Wells, 1990). Consider

a fixed category, D. A (covariant) functor is a structure-preserving morphism of

categories, i.e. it maps objects to objects and morphisms to morphisms, so as to

preserve the sources and targets of the morphisms, the composition and identities.

The identity arrow on an object A may be written idA. The symbols m and n will

denote natural numbers throughout this paper. The category Dm has objects given

by m-tuples of objects of D and arrows given m-tuples of arrows of D with the

obvious point-wise composition and identities. A functor F : Dm → D is said to be

a functor on D of arity m which may be written as F : m (as D is understood from

the context). The action of such a functor on a sequence of arrows fi : Xi → Yi for

i ∈ m will be written as

mapm f0 . . . fm−1 : F (X0, . . . , Xm−1) → F (Y0, . . . Ym−1) .

Here are some elementary examples and constructions. The binary functors +,× :

2 represent sums and products, and 1 : 0 is the functor of no arguments that

produces the terminal object, corresponding to the unit type. Let i range over

m = {0, . . . , m − 1}, also written i : m. The ith projection functor of m arguments

is Πm
i : m. A sequence Gi : n of functors may be written as Gi:m or even G when

the choice of m is either clear from the context, or irrelevant. Similar notation will

be used for other sequences below, of types, etc. If F : m then

Dn 〈G〉
- Dm F

- D

written F 〈G〉 is their composite. If F : m + 1 is a functor then µF : m is its initial

algebra functor which represents the functor whose action on the tuple X yields the

initial F (X,−)-algebra with action

wrapm : F (X, µF (X)) → µF (X)

which gives a minimal solution of the domain equation F (X, Y ) ∼= Y .

Functoriality is fundamental to the interpretation of the algebras whose initiality

we are considering. For example, given F : 1 and an algebra f : F (Y ) → Y the
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algebra homomorphism (fold0 f) : µF → Y makes the following square commute:

F (µF )
wrap0- µF

F (Y )

map1 (fold0 f)

?

f
- Y

?

fold0 f

This is the basis for the corresponding term reduction

fold0 f (wrap0 t) > f (map1(fold0 f)t)

which shows that fold0 f acts by recursively mapping itself across all of the sub-

structures of wrap0 t and then applying f to the result.

The usual presentations of fold0 expand this definition for each choice of functor,

typically by a case analysis on the functor constructors.

Now consider initial algebras for F : 2. Each f : X → Y determines an algebra

wrap1 ◦ (map2 f id) : F (X, µF (Y )) → µF (Y )

whose corresponding homomorphism µF (X) → µF (Y ) defines the functoriality of

µF . Thus, the mapping on F : 2 defines the initial algebra structure on µF (X)

which in turn supports the functoriality of µF . Thus, despite the delicate interplay

between mapping and folding, it is clear that mapping, i.e. functoriality, is the the

fundamental concept, and further, that it cannot be captured by the purely type-

based notions of introduction and elimination rules. It also emphasizes the need to

consider all functors together, rather than separating them according into arities, as

occurred in the earlier work of one of us (Jay, 1995a) or in the study of polytypism,

e.g. (Jansson & Jeuring, 1997).

The class of functors obtained by closing up under the constructions above have

been widely studied in the context of initial algebra theory, starting with (Goguen

et al., 1977) and more recently as the regular functors of (Meertens, 1996).

2.2 Syntax

These constructions motivate the choice of functors in the following description of

the raw syntax for functors F , types τ and type schema σ in FML:

F, G ::= X | C | Πm
i | F 〈G〉n | µF

τ ::= X | F (τ ) | τ1 → τ2

σ ::= τ | ∀X : T.σ | ∀X : m.σ.

In addition to the constructions above, functors include variables X and constant

functors C. Types are variables, functor applications, and function types. The ap-

plication of a functor to a tuple τi:m of types represents the action of the categorical

functor on objects. Note that the usual ancillary type constructors, such as prod-

ucts and sums, have been treated as functors. The key exception is the function

type constructor, which is contravariant in its first argument.



Functorial ML 7

Type schema include the types, and are closed under universal quantification

over type variables and over functors of given arity. The former quantification is

familiar from Hindley-Milner and is used to express data polymorphism; the latter

quantification will allow us to express functorial polymorphism.

Notation 2.1 We adopt the following notational conventions throughout the paper.

X and Y range over functor and type variables. C ranges over functor constants, in

particular +,× and 1. The symbols F and G range over functors (though sometimes

are used as functor variables), τ ranges over types, and σ ranges over type schema.

A type τ may be distinguished from functors or type schema by giving it the fixed

arity τ : T. We write τ1 × τ2 for ×(τ1, τ2) and τ1 + τ2 for +〈τ1, τ2〉 and 1 for the

type 1(). Composition binds tighter than the initial algebra constructor µ.

A type context ∆ is a sequence of type variables with assigned arities (either X : n

or X : T) with no repetition of variables. We may identify ∆ with a partial function

from functor and type variables to arities, and write DV(∆) for its domain. Also,

each functor constant C has an associated arity nC fixed upon its introduction.

For each of the syntactic categories above we define corresponding judgments for

asserting well-formedness as follows:

• ∆ ` means that ∆ is a well-formed typed context.

• ∆ ` F : n means that F is a functor of arity n in context ∆.

• ∆ ` τ : T means that τ is a type in context ∆.

• ∆ ` σ means that σ is a type schema in context ∆.

The corresponding inference rules are given in Figure 1 (where the symbol i ranges

over m). The formation rules for functors express the constraints on arities implicit

in the category theory. In general, we may use the symbol J to represent judgments.

The free variables of a functor are defined in the usual way, and the functors

are defined to be equivalence classes of well-formed functor expressions under α-

conversion. Types and schema are defined similarly. The quantification ∀∆.σ of a

type scheme σ by a type context ∆ is defined as follows:

∀. σ = σ

∀(∆′, X : n). σ = ∀∆′.(∀X : n. σ)

∀(∆′, X : T). σ = ∀∆′.(∀X : T. σ)

Lemma 2.2

1. Uniqueness of derivation: each judgment ∆ ` J has at most one derivation

(up to α-conversion).

2. Uniqueness of arity: if ∆ ` F : nj is derivable for j ∈ 2 then n0 = n1.

Proof

For the first, use induction on the size of the derivation of ∆ ` J . For the second,

use induction on the structure of F .
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Contexts

(empty)
∅ `

(functor)
∆ `

∆, X : n `
X 6∈ DV(∆)

(type)
∆ `

∆, X : T `
X 6∈ DV(∆)

Functors

(X)
∆ `

∆ ` X : m
m = ∆(X) (C)

∆ `

∆ ` C : nC

(FPi)
∆ `

∆ ` Πm
i : m

(Fcomp)
∆ ` F : m ∆ ` G0 : n . . . ∆ ` Gm−1 : n

∆ ` F 〈Gi:m〉n : n

(Fmu)
∆ ` F : m + 1

∆ ` µF : m
Types

(X)
∆ `

∆ ` X : T
T = ∆(X) (Fapp)

∆ ` F : m ∆ ` τ0 : T . . . ∆ ` τm−1 : T

∆ ` F (τi:m) : T

(→)
∆ ` τ1 : T ∆ ` τ2 : T

∆ ` τ1 → τ2 : T

Schema

(τ )
∆ ` τ : T

∆ ` τ
(∀m)

∆, Y : m ` σ{Y/X}

∆ ` ∀X : m.σ
Y 6∈ DV(∆)

(∀)
∆, Y : T ` σ{Y/X}

∆ ` ∀X : T.σ
Y 6∈ DV(∆)

Fig. 1. FML types

2.3 Examples

Many of the usual data type constructors can be presented as functors. For example,

consider a datatype definition

Maybed τ = ok τ | fail.

We can regard this as specifying the type τ + 1 or, more formally, +(τ, 1()) i.e. the

plus functor applied to the two types τ and 1(). Note that 1 is a functor of arity 0,

not a type, and so must be applied to 0 arguments to obtain a type. To express this

as a functor of τ requires several abstractions. First, the type τ must be replaced

by Id(τ) where Id is the identity functor Π1
0. Then, to respect arities, the type 1()

must also be presented as a functor of arity 1 that ignores its argument, namely
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1〈〉1(τ). This analysis yields

+(Id(τ), 1〈〉1(τ))

i.e. the functor + applied to two types built from τ . Finally, we can replace this by

a functor of one variable, namely

+〈Id, 1〈〉1〉1(τ)

or

MaybeF = +〈Id, 1〈〉1〉1.

Note that MaybeF (τ) and τ + 1 are not identical types. They are obtained by

applying functors of different arities, namely 1 and 2 respectively. This distinc-

tion is fundamental since the meaning of terms below will typically depend on the

separation of the functor from its arguments.

The list functor shows the use of recursion in functor definition. This functor

corresponds to the datatype definition LdX = nil | cons X × LdX . We must

construct the functor that maps types X and Y to 1 + X × Y . This is

+〈1〈〉2,×〉2

Now the list functor L is obtained by constructing the corresponding initial algebra

functor (which maps X to µY.1 + X × Y )

L = µ + 〈1〈〉2,×〉2

Similarly, the datatype TdX = leaf X | node TdX × TdX of binary trees with

labeled leaves has corresponding functor

T = µ + 〈Π2
0,×〈Π2

1, Π
2
1〉

2〉2

and the datatype RdX = leaf X | node Ld(RdX) of rose trees (having finite lists

of branches) has corresponding functor

R = µ + 〈Π2
0, L〈Π

2
1〉

2〉2

2.4 Substitutions and unification

A substitution is a partial function S from functor and type variables to expressions

for functors and types, respectively. The notation S : ∆1 → ∆2 means that the

∆i are well-formed contexts, DV(∆1) is included in the domain of S and for each

X ∈ DV(∆1) we have

∆2 ` SX : ∆1(X).

The action of such an S extends homomorphically to any expression that is well-

formed in context ∆1 (including those to be defined below). If R : ∆2 → ∆3 is

another substitution then their composite substitution R S has action given by

(R S)X = R(SX).

S is a renaming if it is an injective function from variables to variables. Then for

each type context ∆ we have another such ∆S obtained by applying S homomor-

phically to ∆.
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Lemma 2.3
1. Renaming: if S is a renaming then ∆ ` J implies ∆S ` S(J).
2. Thinning: ∆1, ∆2 ` J implies ∆1, X : a, ∆2 ` J provided X 6∈ DV(∆1, ∆2)

and a is either T or an arity m.
3. Substitution: if S : ∆1 → ∆2 is a substitution then ∆1 ` J implies ∆2 ` S(J).

Proof
Each of the proofs is by induction on the derivation of the premise.

Let ∆ ` Jj : a be well-formed functors or types having the same arity a for j ∈ 2.

A unifier for (∆, J0, J1) is a pair (∆′, S) such that S : ∆ → ∆′ is a substitution and

S(J0) = S(J1). Their most general unifier U(∆, J0, J1) is a unifier (∆′, S) such that

if (∆′′, S′) is any other unifier for them then there is a substitution R : ∆′ → ∆′′

such that S′(X) = R S(X) for all X ∈ DV(∆).

Lemma 2.4
If (∆, J0, J1) has a unifier then it has a most general unifier.

Proof
Standard. Note that the introduction of functors does not require higher order

unification since, for example, Πm
i (X) and Xi do not have a unifier.

2.5 Semantics

A completely general semantic treatment would axiomatize the assumptions made

about the underlying category, starting from, say, a locos (Cockett, 1990) as used

in developing the foundations of shape theory (Jay, 1995b). A successful treat-

ment should allow the results to be extended to various Kleisli categories built over

the base, to represent computational monads (Moggi, 1991; Wadler, 1993). An-

other possibility, not explored here, is to interpret FML-functors as morphisms in

a bicategory (Benabou, 1967). However, one already gains significant insights from

set-theoretic models. We will also introduce domain-theoretic models (i.e. types as

ω-cpos) to address some issues obscured in the set-theoretic treatment.

The simpler interpretations are extensional. The interpretation of functor applica-

tion to types will be by applying (semantic) functors to objects. Thus they identify

Πm
i (X) with Xi and F 〈G〉m(X) with F (G(X)) so that the canonical isomorphisms

become equalities. To interpret the quantification occurring in type schema one

should, say, use a set theory with universes, and interpret types as small sets. How-

ever, we will focus only on the novel part of the semantics, i.e. the interpretation

FML functors, and so may safely ignore size issues.

Other, intensional models are more cumbersome, but able to represent the iso-

morphisms explicitly, so that functor composition is associative only up to isomor-

phism. These intensional interpretations motivate the introduction of FML con-

stants corresponding to mediating isomorphisms.

Having fixed the choice of category, and thus the interpretation of types, the basic

question is then: which functors? It is relatively easy to identify classes of functors

closed under composition, so that the the key semantic point is that they be closed

under the formation of initial algebras. Various alternatives will be given.
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2.5.1 Set-theoretic semantics

Let Set be the category of (small) sets and functions. The obvious interpretation of

an FML functor of arity m is as a functor F : Setm → Set. But the interpretation

of µF is problematic, since there are functors which do not have an initial algebra

for cardinality reasons, e.g. the power set functor P (X) = {X ′|X ′ ⊆ X}. One may

avoid this problem by interpreting FML functors within a suitably restricted class

of functors on Set. We consider three possible choices: ω-colimit preserving functors

(where “ω-colimit” means “colimit of an ω-chain”); functors shapely over lists; and,

regular functors.

ω-colimit preserving functors. In any cartesian closed category D with small co-

products and ω-colimits the class of functors on D preserving ω-colimits enjoys the

following properties:

• closure under composition;

• if F : m+1 preserves ω-colimits, then the the initial algebra functor µF exists

and preserves ω-colimits;

• if Fi : m preserves ω-colimits for each i ∈ I , then their coproducts, given by

the functor F (X) =
∐

i∈I Fi(X) does too;

• constant functors, projection functors Πm
i and the binary product functor ×

preserve ω-colimits.

Thus, the class of ω-colimit preserving functors on Set is suitable for interpreting

FML-functors. An example of ω-colimit preserving functor (not definable in FML)

is the finite power set functor Pf , while non-examples include functors of the form

F (X) = XB where B is infinite.

Functors shapely over lists. A functor shapely over lists is a functor F : Setm → Set

equipped with a cartesian natural transformation

δ
X

: F (Xi)i:m →
∏

i:m

LXi

i.e a natural transformation whose defining commuting squares are all pullbacks.

Such a functor is determined, up to isomorphism, by its object of shapes S = F (1)

and its arity E = δ1 : S → Nm (where N = L1 is the natural numbers object)

which specifies how much data of each type is required for each shape. An alternative

definition of functor shapely over lists requires a cartesian natural transformation

δ
X

: F (Xi)i:m → L(
∐

i:m

Xi)

The two definitions coincide when m = 1, and are interchangable for all purposes.

In the rest of the paper we stick with the first definition.

In any locos, the class of functors shapely over lists is closed under the construc-

tion of initial algebra functors, and so is suitable for interpreting FML-functors

(Jay, 1995b). Furthermore, functors shapely over lists preserve all pullbacks (since



12 C.B. Jay, G. Bellè and E. Moggi

the list functor does), in particular the pullback

A × B - A

B
?

- 1
?

that defines products. Thus one has an isomorphism called zip from the canonical

pullback FA×#FB of the corresponding cospan into F1 to F (A×B). It takes a pair

of values of the same shape and produces a shape filled with pairs. Therefore, this

interpretation is useful to validate the extension of FML with shapely constants.

An example of functor shapely over lists is the matrix functor where Matrix(A)

represents the matrices with entries of type A. Here δ produces a list of the entries,

say, row by row. If we identify Matrix(1) with N×N then the arity function is simply

multiplication. The list functor preserves all ω-colimits. In Set such colimits are

preserved by pulling back, so that all functors shapely over list have this property,

too. That these functors form a proper subclass of the ω-colimit preserving functors

is illustrated by Pf whose object of shapes Pf (1) = 2 is too small to represent all

possible shapes of finite sets.

Inductive functors. The formal grammar for FML functor expressions (without

functor variables) determines a class of functors, which we close under functor

isomorphisms (to avoid making canonical choices) to obtain the inductive functors.

The properties of this class have been studied by various authors interested in initial

algebras, most recently by those investigating polytypism. Meertens (Meertens,

1996) dubbed them the regular functors, though: this name has been used for a

slightly larger class elsewhere in the community (Jeuring & Jansson, 1996); it may

clash with its use in the study of functors on regular categories; and, it contradicts

the convention that trees may be thought of as irregular arrays.

A simple inductive argument shows that all inductive functors are shapely over

lists. The converse fails since there are only countably many inductive functors

(up to isomorphism) whereas the functors shapely over lists are indexed by the

uncountable collection of functions into (powers of) N . For example, the matrix

functor does not appear to be inductive.

Representations of functors shapely over lists. Since coproducts in Set are stable

under pullbacks, functors shapely over lists can be decomposed into dependent sums

of products, with one summand per shape:

F (X) =
∐

s:S

(
∏

i:m

X
E(s,i)
i )

which can be represented by the pair [[F ]] = 〈S : Set, E : S → Nm〉. This explicit

separation of the shape S from the data X provides a more intensional semantics

of FML functors, which we now present in detail.

• [[Πm
i ]]: S = 1 and E(0, j) = (if i = j then 1 else 0)
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• [[F 〈G〉n]]: S =
∐

s:SF

(
∏

i:m

S
EF (s,i)
Gi

) and E (〈s, f〉, j) =
∐

i:m

(
∐

e:EF (s,i)

EGi
(f i e, j))

where [[F ]] = 〈SF , EF 〉 and [[Gi]] = 〈SGi
, EGi

〉

• µF : S = µS.
∐

s:SF

SEF (s,m) and E(〈s, f〉, i) = EF (s, i) +
∐

e:EF (s,m)

E(f e, i)

where [[F ]] = 〈SF , EF 〉. Here S can be viewed as the set of finite trees with

nodes labeled by elements of SF and branching determined by labels, while

E( , i) is a weight function (defined by induction on the structure of finite

trees) such that a node labeled by s contributes EF (s, i) to the weight of the

whole tree.

This interpretation is useful to motivate the introduction of canonical isomorphisms

in FML. In fact, in this interpretation Πm
i (X) 6= Xi and F 〈G〉m(X) 6= F (G(X)),

but they are canonically isomorphic.

There is an alternative representation of functors shapely over lists as formal

power series

F (X) =
∐

n:Nm

C(n) ×
∏

i:m

X
n(i)
i

for some C : Nm → Set that establishes a link to Joyal’s theory of species (Joyal,

1981).

Closed term model. Another intensional semantics is to interpret FML functors in

the algebra of closed functor expressions, which can be seen as syntactic represen-

tations of inductive functors. This algebra is simply the closed term algebra for the

following many-sorted algebraic signature

• Ωm sort, for each m ∈ N

• 1 : Ω0

• ×, + : Ω2

• Πm
i : Ωm, for each m ∈ N and i ∈ m

• ◦m,n : Ωm, Ωm
n → Ωn, for each m, n ∈ N

• µm : Ωm+1 → Ωm, for each m ∈ N .

Here ◦ is used to represent composition. This interpretation can be used to sup-

port case analysis (or primitive recursion) on functor expressions, as discussed in

Section 7 below.

2.5.2 Domain-theoretic semantics

Now let us consider semantics in the category Cpo of ω-cpos and ω-continuous

functions. While many features are shared with the set-theoretic semantics, the

domain-theoretic models expose some issues that are relevant for both the general

semantics, and the implementation of FML. First, terms should be interpreted by

continuous functions. In particular, the interpretation of the mapping combinator

should be continuous. Therefore, the interpretation of an FML functor of arity m

should be a strong functor F : Cpom → Cpo, i.e. the action of F on morphisms

must be internalizable, which in the case of Cpo means ω-continuous. Note that in
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Set every functor is strong, while in Cpo there is at most one way of internalizing

the action of a functor on morphisms (but this is not true in general).

Second, we could require that F preserve decidable objects, i.e. objects equipped

with an equality arrow eq : X×X → 1+1 making the following diagram a pullback:

X × X
〈id, id〉

- X × X

1
?

true
- 1 + 1.

?

eq

In particular, this implies that F (1) is decidable, so that equality of shapes can

be tested. In Set every object has decidable equality, while in Cpo the objects

with decidable equality are exactly the flat cpos (i.e. those cpos where the partial

order coincides with the equality). They form a full reflective sub-category of Cpo

isomorphic to Set.

As above, the interpretation of initial algebras requires consideration of restricted

classes of (strong) functors, to which we now turn.

ω-colimit preserving strong functors. Let F : m be a functor that preserves ω-

colimits. If F is strong (respectively, preserves decidable objects) then so is its initial

algebra functor. Thus, the strong functors, and their sub-class of functors preserving

decidable objects, both form a suitable class for interpreting FML-functors. Among

the strong functors which preserve ω-colimits but not flat cpos there are: the con-

stant functors corresponding to non-flat cpos, and the lifting functor FX = X⊥.

Functors shapely over lists. The functors shapely over lists are always strong, and

so form models as before. Such a functor F preserves decidable objects iff F (1) is

decidable.

Representations of functors shapely over lists. Let F be shapely over lists in Cpo.

Since list objects decompose into countable many disjoint components, one for

each possible length, the same is true for F . It follows that the lifting functor is

not shapely over lists. More generally, F ’s object of shapes S can be decomposed

into a set U of connected components, i.e. represented as the colimit of a diagram

C : U → Cpo. Thus, F can be represented (up to natural isomorphism) by

F (X) =
∐

u:U

C(u) × (
∏

i:m

X
E(u,i)
i )

for some set U , and E : U → Nm. In these terms, preservation of decidable objects

amounts to requiring that each connected component be a singleton, i.e. C(u) =

1 for all u. Therefore, these functors have the same representations adopted for

functors on Set shapely over lists. Then the intensional semantics in Cpo can be

taken verbatim from Set, the only difference being that a pair 〈S, E : S → Nm〉
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now represents a strong functor on Cpo extending the functor on Set with the

same representation.

Inductive functors and closed term models These interpretations follow the same

pattern as in Set.

3 Basic terms

This section introduces the basic term structure of FML, delaying the study of the

combinators until the next section. As it is the novel combinators that give FML its

flavor, this section is rather routine, but this makes the proofs routine, too. Further,

all results are stable under change of the set of constants, both for functors and

terms.

The terms are presented here à la Curry, i.e. with no explicit type or functor infor-

mation. Explicitly typed terms, à la Church, will be considered in Section 6. There

are two ways of assigning types to terms in the Hindley-Milner type system, either

type schema or types (Tofte, 1988). The former has separate rules for abstracting

and instantiating type variables, whereas the latter combines these with the rules

for typing variables, combinators and the let-construct. We will present both ver-

sions, show them equivalent (Lemma 3.5), and then present a modified version of

Milner’s algorithm W for inferring types (see (Milner, 1978; Tofte, 1988)).

3.1 Syntax

The raw syntax for FML terms à la Curry is the same as that for the Hindley-Milner

type system:

t ::= x | c | λx.t | t1 t2 | let x = t1 in t2

Each combinator c has an associated type schema σc which will be define in the

following section.

A term context is a sequence of x : σ with no repetitions of term variables x.

Define DV(Γ) to be the set of free term variables in Γ. A context ∆; Γ consists of a

type context and a term context.

Notation 3.1 The following notational conventions will be maintained through-

out this paper. x and y range over term variables, c ranges over combinators, and

t ranges over terms. Γ ranges over term contexts. The usual conventions of λ-

calculus concerning grouping of declared and bound variables apply (see (Baren-

dregt, 1984)). FV(t) is the set of free variables of t and e′{e/x} is the substitution

of e for x in e′.

The judgment form ∆; Γ ` means that ∆; Γ is a well-formed context. The corre-

sponding inference rules are

(empty)
∆ `

∆; ∅ `
(term)

∆; Γ ` ∆ ` σ

∆; Γ, x : σ `
x 6∈ DV(Γ)
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Lemma 3.2

∆; Γ ` implies ∆ ` Γ(x) for any x ∈ DV(∆).

Proof

By induction on the structure of its premise.

Let ∆j ; Γj be well-formed contexts for j = 1, 2. Define S : ∆1; Γ1 → ∆2; Γ2 to

mean that S : ∆1 → ∆2 is a substitution, and that Γ1(x) = σ implies

∆2; Γ2 ` x : S(σ).

The inference rules for assigning type schema are given in Figure 2.

(x)
∆; Γ `

∆; Γ ` x : σ
σ = Γ(x)

(c)
∆; Γ `

∆; Γ ` c : σc

(app)
∆; Γ ` t : τ1 → τ2 ∆; Γ ` t1 : τ1

∆; Γ ` t t1 : τ2

(λ)
∆; Γ, y : τ1 ` t{y/x} : τ2

∆; Γ ` λx.t : τ1 → τ2

y 6∈ DV(Γ)

(let)
∆; Γ ` t1 : σ1 ∆; Γ, y : σ1 ` t2{y/x} : σ2

∆; Γ ` let x = t1 in t2 : σ2

y 6∈ DV(Γ)

(App)
∆; Γ ` t : ∀X : T.σ ∆ ` τ : T

∆; Γ ` t : σ{τ/X}

(Λ)
∆, Y : T; Γ ` t : σ{Y/X}

∆; Γ ` t : ∀X : T.σ
Y 6∈ DV(∆)

(Appn)
∆; Γ ` t : ∀X : n.σ ∆ ` F : n

∆; Γ ` t : σ{F/X}

(Λn)
∆, Y : n; Γ ` t : σ{Y/X}

∆; Γ ` t : ∀X : n.σ
Y 6∈ DV(∆)

Fig. 2. Assigning schema

Lemma 3.3

The system defined in Figure 2 satisfies the following properties

1. If S : ∆1 → ∆2 is a substitution then ∆1; Γ ` implies ∆2; S(Γ) `.

2. Well-typing: ∆; Γ ` t : σ implies ∆ ` σ.

3. If S is a renaming of ∆ then ∆; Γ ` J implies ∆S ; S(Γ) ` S(J).
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4. Type substitution: if S : ∆1 → ∆2 is a substitution then ∆1; Γ ` t : σ implies

∆2; S(Γ) ` t : S(σ).

5. Thinning: ∆; Γ1, Γ2 ` J implies ∆; Γ1, x : σ, Γ2 ` J for any x 6∈ DV(Γ1, Γ2).

6. Term substitution: if ∆1, ∆; Γ1 ` t : σ then ∆1, ∆2; Γ1, x : σ, Γ2 ` t′ : σ′

implies ∆1, ∆2; Γ1, Γ2 ` t′{t/x} : σ′.

Proof

Each statement is proved by induction on the structure of its premise, in some cases

using earlier statements in the lemma.

The inference rules for assigning types (rather than schema) are given in Figure 3.

(x)
∆; Γ ` S : ∆′ → ∆

∆; Γ ` x : S(τ )
Γ(x) = ∀∆′.τ

(c)
∆; Γ ` S : ∆′ → ∆

∆; Γ ` c : S(τ )
σc = ∀∆′.τ

(λ)
∆; Γ, y : τ1 ` t{y/x} : τ2

∆; Γ ` (λx.t) : τ1 → τ2

y 6∈ DV(Γ)

(app)
∆; Γ ` t : τ1 → τ2 ∆; Γ ` t1 : τ1

∆; Γ ` (t t1) : τ2

(let)
∆, ∆′; Γ ` t1 : τ1 ∆; Γ, y : (∀∆′.τ1) ` t2{y/x} : τ2

∆; Γ ` (let x = t1 in t2) : τ2

y 6∈ DV(Γ)

Fig. 3. Assigning types

When assigning types, the definition of substitutions between contexts must be

modified slightly, as follows. Let ∆j ; Γj be well-formed contexts for j = 1, 2. Define

S : ∆1; Γ1 → ∆2; Γ2 to mean that S : ∆1 → ∆2 is a substitution, and that

∆2, ∆; Γ2 ` x : S(τ)

whenever Γ1(x) = ∀∆.τ . Note that α-conversion is used to ensure that ∆2 and ∆

have no variables in common.

Lemma 3.4

The system of Figure 3 satisfies the following properties.

1. Well-typing: ∆; Γ ` t : τ implies ∆ ` τ : T.

2. If S : ∆1 → ∆2 is a substitution then ∆1; Γ ` implies ∆2; S(Γ) `.

3. Type substitution: if S : ∆1 → ∆2 is a substitution then ∆1; Γ ` t : τ implies

∆2; S(Γ) ` t : S(τ).

4. If S is a renaming of ∆ then ∆; Γ ` J implies ∆S ; S(Γ) ` S(J).

5. Thinning: ∆; Γ1, Γ2 ` J implies ∆; Γ1, x : σ, Γ2 ` J for any x 6∈ DV(Γ1, Γ2).
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6. Term substitution: if ∆1, ∆; Γ1 ` t : τ then ∆1, ∆2; Γ1, x : (∀∆.τ), Γ2 ` t′ : τ ′

implies ∆1, ∆2; Γ1, Γ2 ` t′{t/x} : τ ′.

Proof

Each statement is proved by induction on the structure of its premise, in some cases

using earlier statements in the lemma.

The following lemma compares inference of types with inference of schema. To

distinguish them we use the notation ∆; Γ `τ t : τ for the former and ∆; Γ `σ t : σ

for the latter.

Lemma 3.5

∆; Γ `τ t : τ implies ∆; Γ `σ t : τ . Conversely, ∆; Γ `σ t : ∀∆′.τ implies ∆, ∆′; Γ `τ

t : τ (assuming that α-conversion is used to ensure well-formedness of the latter

context).

Proof

The proof is by straightforward induction on the structure of the proofs of the

judgments.

3.2 Type inference algorithm

Let ∆1 be a type context, Γ be a term context and t be a term. A typing for

(∆1, Γ, t) consists of a triple (∆2, S, τ) such that S : ∆1 → ∆2 is a substitution and

∆2; S(Γ) ` t : τ.

A most general typing for (∆1, Γ, t) is a typing as above such that if (∆′
2, S

′, τ ′) is

any other typing for it then there is a substitution R : ∆2 → ∆′
2 such that R S = S′

on DV(∆1) and R(τ) = τ ′.

Milner’s algorithm W can be modified to produce a most general typing for our

terms, whenever any typing exists. In the description of the algorithm we assume

that bound variables are renamed to avoid clashes, and fresh variables are intro-

duced whenever needed.

Theorem 3.6

Let ∆1; Γ be a well-formed context.

1. Soundness: if W (∆1, Γ, t) = (∆2, S, τ) then S : ∆1 → ∆2 and ∆2; S(Γ) ` t : τ .

2. Completeness: if S′ : ∆1 → ∆3 and ∆3; S
′(Γ) ` t : τ ′, then (W succeeds and)

there exists a substitution R : ∆2 → ∆3 such that S′ = R S on DV(∆1) and

τ ′ = R(τ).

Proof

Both statements are proved by induction on the structure of t (see (Tofte, 1988))

and use type substitution (see Lemma 3.4).
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• W (∆,Γ, x) = (∆ ∆1, id, τ ), where Γ(x) = ∀∆1.τ
• W (∆,Γ, c) = (∆ ∆1, id, τ ), where σc = ∀∆1.τ
• W (∆,Γ, λx.t) = (∆1, S, SX → τ2), where

(∆1, S, τ2) = W (∆ X : T, Γ x : X, t)

• W (∆,Γ, t t1) = (∆3, U R S, UX), where

(∆1, S, τ ) = W (∆,Γ, t)

(∆2, R, τ1) = W (∆1, S(Γ), t1)

(∆3, U) = U(∆2 X : T, R(τ ), τ1 → X)

• W (∆,Γ, let x = t1 in t2) = (∆4, R S, τ2), where

(∆1, S, τ1) = W (∆,Γ, t1)

∆2 = ∆1d(∪{FV(SX)|X ∈ DV(∆)})

∆3 = ∆1 − ∆2

(∆4, R, τ2) = W (∆2, S(Γ) x : ∀∆3.τ1, t2)

By definition ∆2 is the smallest sub-context of ∆1 such that S : ∆ → ∆2,
so that we will obtain R S : ∆ → ∆4 as required.

Fig. 4. Algorithm W

4 Constants and Reductions

FML is a general framework for discussing functor-based polymorphism, whose

detailed structure will be reflected in the choice of constants, or (combinators)

of the language. These constants come in families indexed by functor arities. We

will begin with the constants for mapping, as these are central to the functorial

approach. To this can be added constants that correspond to introduction and

elimination rules for the functor and type constructors of the language, in the

style advocated in Martin-Löf type theory (Nordström et al., 1990). The choice of

constants and their names will be made to reflect this fact. Afterwards, we will

introduce a comprehensive system of syntactic sugar that simplifies the process of

constructing terms. While the fundamentals are unchanged from those of (Bellè

et al., 1996) the surface syntax is changed substantially.

As the FML functors can be interpreted as being shapely over lists, we can

introduce more constants motivated by such an interpretation. For example, we can

introduce constants that allow the extraction of a data list from a value of functor

type. Also, since the FML functors all have decidable objects of shapes, we can

support the zipping of values that have the same shape, e.g. lists having the same

length. Further, in Section 6 we introduce case analysis over functors when defining

polytypic terms, since this is validated by the inductive functor interpretation of

FML functors.

It is convenient to present the reduction rules with the constants. These are used

to generate a rewriting system in the usual way, by applying reductions to arbitrary

sub-terms.
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Beta-reduction. Of course, the basic language has the standard reduction rules of

the λ-calculus with the let construct for local definitions:

(λx.t2) t1 > t2{t1/x}

let x = t1 in t2 > t2{t1/x}

4.1 Basic constants and FMLbasic

In this section we fix a set of basic combinators, and call the resulting calculus

FMLbasic. The key polytypic combinator is mapping.

Mapping. There is one family of constants that express the action of functors on

morphisms of a category, namely

mapm : ∀F : m.∀Xi:m, Yi:m : T.(Xi → Yi)i:m → F (X) → F (Y )

Of course, providing reduction rules for mapm is by no means trivial, as explained

in the introduction. In fact it has no reduction rules of its own, but only interacts

with the functor-based term constructors.

Term constructors For each functor constructor, we give the corresponding term

constructors:

intro1 : 1

intro× : ∀X0, X1 : T. X0 → X1 → X0 × X1

intro+
j : ∀X0, X1 : T. Xj → X0 + X1 for j : 2

introΠ
m,i : ∀Xj:m : T. Xi → Πm

i (X)

intro◦m,n : ∀F : m.∀Gi:m : n.∀Xj:n : T. F (Gi(X)i:m) → F 〈G〉n(X)

introµ
m : ∀F : m + 1.∀Xi:m : T. F (X, µF (X)) → µF (X).

Mapping. Mapping preserves the structure of its data argument, i.e. it commutes

with the functor-based term constructors. The reductions are:

map0 intro1 > intro1

map2 f0 f1 (intro× t0 t1) > intro× (f0 t0) (f1 t1)

map2 f0 f1 (intro+
j t) > intro+

j (fj t)

mapm fk:m (introΠ
m,i t) > introΠ

m,i (fi t)

mapn fk:n (intro◦m,n t) > intro◦m,n (mapm (mapn f)i:m t)

mapm fi:m (introµ
m t) > introµ

m (mapm+1 f (mapm f) t).

The rule for composite functors asserts that mapping over a composite functor, say

F 〈G〉1 is given by mapping with respect to F the result of mapping with respect

to G. Also, in the rule for initial algebra functors, mapm reduces to an expres-

sion involving mapm+1 i.e. depends on the functoriality of the original functor, as

described in Section 2.
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apply f x = f x
id = λx.x

g ◦ f = λx.g (f x)
un = intro1

bang x = un
pair = intro×

〈t0, t1〉 = intro× t0 t1
π0 = elim× (λx, y.x)
π1 = elim× (λx, y.y)
inj = intro+

j

case t of
in0 x ⇒ t0
in1 y ⇒ t1

= elim+ (λx.t0) (λy.t1) t

tagm,i = introΠ
m,i

untagm,i = elimΠ
m,i id

packm,n = intro◦

m,n

unpackm,n = elim◦

m,n id
wrapm = introµ

m

foldm = elimµ
m

unwrapm = foldm (mapm+1 id wrapm)

Fig. 5. Syntactic sugar

Term Destructors. According to type theory, given the constructors for a type,

there is a canonical way to derive its destructors and computational rules:

elim1 : ∀X : T. X → 1 → X

elim× : ∀X0, X1, Y : T. (X0 → X1 → Y ) → X0 × X1 → Y

elim+ : ∀X0, X1, Y : T. (X0 → Y ) → (X1 → Y ) → X0 + X1 → Y

elimΠ
m,i : ∀Xj:m, Y : T. (Xi → Y ) → Πm

i (X) → Y

elim◦
m,n : ∀F : m.∀Gi:m : n.∀Xj:n, Y : T.(F (Gi(X)i:m)→Y ) → F 〈G〉n(X) → Y

elimµ
m : ∀F : m + 1.∀Xi:m, Y : T. (F (X, Y ) → Y ) → µF (X) → Y.

Each canonical destructor has a corresponding reduction rule:

elim1 t intro1 > t

elim× f (intro× t0 t1) > f t0 t1

elim+ f0 f1 (intro+
j t) > fj t

elimΠ
m,i f (introΠ

m,i t) > f t

elim◦
m,n f (intro◦m,n t) > f t

elimµ
m f (introµ

m t) > f (mapm+1 (λx.x)i:m (elimµ
m f) t).

Most of these rules follow the familiar structure, returning a strictly simpler expres-

sion. The last of them is different, as the reduction of a fold introduces a mapping,

as explained in Section 2.

4.2 Syntactic sugar

We introduces more familiar synonyms for some of the constants, and some handier

syntax for some common patterns in Figure 5. The declaration f x = t is syntactic

sugar for the declaration f = λx.t. Multiple argument parameters are handled

similarly. Composition associates to the right.
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4.2.1 Monads

In ML and FML a monad M can be described by given a type expression in one

free variable X : T ` M(X) : T and polymorphic terms of suitable type

val : ∀X : T.X → M(X)

let : ∀X, Y : T.(X → M(Y )) → M(X) → M(Y )

Note the use of slanted font to distinguish let from the let-construct let . . . in . . . of

FML. In general we do not require that M(X) be represented by an FML functor,

since that would not allow the use of function types.

A very simple example is the Maybe monad, which is specified by

Maybe(X) = X + 1

val = λx. in0 x

let = λf, c. elim+ f in1 c

fail = in1 un

where the constant fail represents failure.

Another example is the parsing monad PS(X). This is actually a family of monads

parameterized with respect to a type variable S.

PS(X) = S → (X × S) + 1

val = λx, s. in0 〈x, s〉

let = λf, c, s. elim+ (elim× (λx, s.f x s)) in1 (c s)

fail = λs. in1 un

S should be thought of as a state, which may change during the computation. Note

that PS(X), unlike Maybe, cannot be represented by an FML functor.

We introduce some syntactic sugar for the parsing monads, which will be used

in Section 4.3

[t] = val t

let x⇐t1 in t2 = let (λx.t2) t1

Maybe(X) and P1(X) are isomorphic, so we write inverse mediating isomorphisms

pars2maybe : P1(X) → Maybe(X) and maybe2pars : Maybe(X) → P1(X).

4.2.2 Lists

Now let us consider some syntactic sugar for the list functor, L = µLu where

Lu = +〈1〈〉2,×〉2. For any type X we have the constructors

nil = (wrap1 ◦ pack2,2 ◦ in0 ◦ pack0,2) un

cons x y = (wrap1 ◦ pack2,2 ◦ in1) 〈x, y〉

single x = cons x nil
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append x y = fold1 ((elim+ (λx. id)

(λy, z. cons (π0 y) (π1 y z))) ◦ unpack2,2) x y

flatten x = fold1 (λy, z. append y z) x.

The composite applied to un in defining nil is displayed as the top line of Figure 6.

Let us see how the usual pattern-matching reductions for mapping and folding over

lists can be recovered as composite reductions. Other inductive types are handled

similarly. Let f : X → Y be a morphism. Then map1 f nil reduces to nil by five

map-reductions, as diagrammed in Figure 6, where g = map2 f (map1 f) and

F (X) = 1〈〉2(X, LX) + X × LX . Similarly,

1()
pack0,2

- 1〈〉2(X, LX)
in0

- F (X)
pack2,2

- Lu(X, LX)
wrap1- LX

1()
?

map0

pack0,2
- 1〈〉2(Y, LY )

g

?
in0

- F (Y )

map2 g g

? pack2,2
- Lu(Y, LY )

g

? wrap1- LY

map1 f

?

Fig. 6. map1f nil

map1 f (cons h t) → (wrap1 ◦ pack2,2 ◦ in1) (map2 f (map1 f) 〈h, t〉)

→ cons (f h) (map1 f t).

Now consider folding over a list. Given terms d : D and g : X × D → D their

(ordinary) list fold is given by

f = (elim+ (λx.d) g) ◦ unpack2,2 : Lu(X, D) → D.

Hence, given h : X and t : LX we have:

fold1 f nil → f(map2 id (fold1 f) ((pack2,2 ◦ in0 ◦ pack0,2) un))

→ f(pack2,2(in0(pack0,2 un)))

→ d

fold1 f (cons h t) → f (map2 id (fold1 f) ((pack2,2 ◦ in1 (pair h t))))

→ f ((pack2,2 ◦ in1 (pair h (fold1 f t))))

→ g (pair h (fold1 f t)).

4.3 Shape-based constants and FMLshape

The shape-based combinators are motivated by the interpretation of FML functors

as functors shapely over lists and with a decidable shape. In this case the semantics

is used both to justify the addition of a polytypic combinator, and to decide when we

have introduced enough combinators. We call FMLshape the extension of FMLbasic

with the additional combinators ltraverse and zipop.
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Traversals. The FML functors are all shapely over lists. In particular, the ordering

of the list entries determines an ordering on the data in the structure, which can be

used to define traversals. A full treatment of the semantics and uses of traversals

lies beyond the scope of this paper, but we introduce them now as a convenient

generalization of the data extraction constant which follows.

Traversal is the process of visiting each node in a data structure, and performing

some action. If we do not wish to limit the nature of this action in advance, then

we could represent it using a generic computational monad (Moggi, 1991; Wadler,

1993)

ltraversem : ∀M : Monad.∀F : m.∀Xi:m, Yi:m : T.

(X → MY ) → F (X) → M(F (Y )).

However, this would require an extension of FML with qualified kinds. Instead,

we will parameterize ltraversem with respect to parsing monads PS(X) = S →

(X × S) + 1 and make use of the syntactic sugar introduced in Section 4.2.1. The

constants for left traversal are

ltraversem : ∀S : T.∀F : m.∀Xi:m, Yi:m : T. (X → PS(Y )) → F (X) → PS(F (Y ))

whose evaluation rules are given by

ltraverse0 un > [un]

ltraverse2 f0 f1 〈t0, t1〉 > let y0⇐f0 t0 in

let y1⇐f1 t1 in [〈y0, y1〉]

ltraverse2 f0 f1 (inj t) > let y⇐fj t in [inj y]

ltraversem fi:m (tagm,i t) > let y⇐fi t in [tagm,i y]

ltraversen fi:n (packm,n t) > let y⇐ltraversem (ltraversen f)i:m t in [packm,n y]

ltraversem fi:m (wrapm t) > let y⇐ltraversem+1 f (ltraversem f) t in [wrapm y]

Using the normal presentation of initial algebras (in which the recursion parameter

is never to the left of an ordinary parameter in a product) left traversal corresponds

to top-down traversal of the resulting tree. Then bottom-up traversal is obtained

by performing a right traversal rtraversem which has the same type and reduction

rules as ltraverse except that the rule for pairs has been changed to

rtraverse2 f0 f1 〈t0, t1〉 > let y1⇐f1 t1 in

let y0⇐f0 t0 in [〈y0, y1〉]

so that the recursion parameter is traversed before the others.

A specialization of ltraverse yields the operations for extracting data

extractm,i : ∀F : m.∀Xi:m : T. F (X) → L(Xi)

which is defined using the monad PLXi

extractm,i t = case ltraversemf t nil of

in0 x ⇒ π1 x

in1 x ⇒ nil
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where fj : Xj → PLXi
1 is given by fj x l = [〈un, cons x l〉] when j = i, and

fj x = [un] otherwise.

Zipping. The constants

zipopm : ∀S : T.∀F : m.∀Xi:m, Yi:m, Zi:m : T.

(Xi → Yi → PS(Zi))i:m → F (X) → F (Y ) → PS(F (Z))

are used to represent the zipping of two values having the same shape, and then

applying the given functions to pairs of values. The reduction rules for zipop are

given by

zipop0 un un > [un]

zipop2 f0 f1 〈s0, s1〉 〈t0, t1〉 > let z0⇐f0 s0 t0 in

let z1⇐f1 s1 t1 in [〈z0, z1〉]

zipop2 f0 f1 (inj s) (inj t) > let z⇐fj s t in [inj z]

zipop2 f0 f1 (in0 s) (in1 t) > fail

zipop2 f0 f1 (in1 s) (in0 t) > fail

zipopm fi:m (tagm,i s) (tagm,i t) > let z⇐fi s t in [tagm,i z]

zipopn fi:n (packm,n s) (packm,n t) > let z⇐zipopm (zipopn f)i:m s t in

[packm,n z]

zipopm fi:m (wrapm s) (wrapm t) > let z⇐zipopm+1 f (zipopm f) s t in

[wrapm z]

Note that if we instantiate the parsing monad with 1, we obtain a type constructor

isomorphic to the Maybe monad (see Section 4.2.1). Since it is sometimes useful to

work directly with Maybe, we introduce the function zipop′
m:

zipop′
m : ∀F : m.∀Xi:m, Yi:m, Zi:m : T.

(Xi → Yi → Maybe(Zi))i:m → F (X) → F (Y ) → Maybe(F (Z))

defined as zipop′
m f s t = pars2maybe (zipopm (λx, y.maybe2pars (f x y)) s t).

From zipop′ we can define

zipm = zipop′
m (in0 ◦ pair)i:m

: ∀F : m.∀Xi:m : T.∀Yi:m : T.F (X) → F (Y ) → Maybe(F (X × Y ))

Further, we can define a polymorphic equality. Assume that there is an equality

test eqi : Xi → Xi → 1 + 1 for each Xi then define

eqm x y = let z⇐(zipop′
m eqi:m x y) in in0 un

Setting all Xi to be 1 with the obvious equality, we obtain a test for shape equality

F (1) → F (1) → 1 + 1.

Remark 4.1 We could have parameterized ltraverse and zipop with respect to any

monad (with a fail operation) expressible in FML.
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4.4 Properties of reduction

Let Fβ be the rewriting system generated by the above rules (with, or without

ltraverse or zipop).

Theorem 4.2 (SR)
Let t > t′. If ∆; Γ ` t : σ then ∆; Γ ` t′ : σ.

Proof

Without loss of generality, one can assume that the reduction is basic and perform

the proof by case analysis. In each case one has to analyze only the last rules in the

derivation of the premise, using Lemma 3.4 to handle term substitutions.

Theorem 4.3 (CR)

Fβ on untyped terms is Church-Rosser.

Proof
Standard. The combinator reductions rules for Fβ are left-linear and non overlap-

ping, and one can apply the result in (Aczel, 1978) (see also (Klop, 1980)).

Corollary 4.4 (CR)

Fβ on typable terms is Church-Rosser.

Proof
Immediate from SR and CR on untyped terms.

Theorem 4.5 (SN )

If ∆; Γ ` t : σ, then t is strongly normalizing.

Proof

We prove SN for a system more powerful than FML, functorial F (briefly FF), which

can type every term typable in FML, therefore SN for FF trivially implies SN for

FML. The proof follows (Mendler, 1991) and uses semantic techniques (reducibility

candidates). The details are available in (Bellè et al., 1998).

5 Extended examples

In this section we present some examples to show the expressiveness of FML. FML

has been presented as an extension of ML but it is rather awkward in comparison

with ML because we have to deal explicitly with term constructors and destructors

corresponding to functor constructors and we have to use the constant foldm to

implement primitive recursion. However we could introduce also in FML some of the

nice features of ML, such as datatype definitions and pattern matching definitions,

and take advantage of functors without losing the programmability. In this way we

can point out when FML features, in particular functors, are really necessary.

So we give two versions of the examples. The first one uses ML-like datatype

definitions, pattern matching for function definitions and FML functors only when

strictly needed. The second one uses only “pure FML” and thus shows how to deal

with term constructors and destructors. In each case, programs are constructed

top-down, i.e. giving auxiliary functions after their use. Each function is presented

by giving its type, value and description.
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Syntactic sugar. In addition to the syntactic sugar defined in section 4.2, we use

the following syntax:

• M(X) = Maybe(X) with the usual operations on error monad:

ok x = in0 x, fail = in1 un.

• Bool = M(1) with true = ok un, false = fail,

if b then t0 else t1 = elim+(elim1 t0)(elim
1 t1) b.

• X2 = X × X .

5.1 One-side matching

Consider the constructor of a recursively defined algebra, i.e. of initial algebras for a

functor. Such an algebra of closed terms can then be extended with an anonymous

variable or placeholder called Any to create open terms. Every occurrence of Any

in a term behaves like a fresh variable. The one-sided matching problem is to

determine whether there is a substitution of terms for placeholders which creates a

match between an open term and a closed term. Note that different occurrences of

the placeholder in the same term can match different terms, so there is no need to

consider substitutions.

Fix m, let F be a functor of arity m + 1 and let Xi∈m be m equality types, that

is, for each i ∈ m there exists a function eqi : Xi → Xi → Bool.

5.1.1 One-side matching — ML-like version

Define the algebra of closed terms by

G = Cns of F (X, G).

Then the algebra of open terms with placeholder Any is given by

G′ = Any | Cns′ of F (X, G′).

The functor F can be seen as a constructor for terms. So G is the type of terms con-

structed from F and G′ is the type of terms constructed from F and the placeholder

Any.

The function

match : G′ → G → Bool

match Any (Cns w) = true

match (Cns′ w′) (Cns w) = maybeBang (zipop′
m+1 eqi:m match w′ w)

takes a term of type G′ and a term of type G. If the first term is Any then it

matches any term. Otherwise the function checks if the structures of the two terms

agree. Here

zipop′
m+1 : (Xi → Xi → M(1))i:m → (G′ → G → M(1)) →

F (X, G′) → F (X, G) → M(F (1, 1))

checks for equality of the constructors, and matching of the recursive sub-terms.

Recall that Bool = M(1) and that true is identified with (ok un) and false with
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fail. The sub-term (zipop′
m+1 eqi:m match w′ w) fails as soon as an equality test

eqi or a recursive call to match fails. Otherwise it returns the common shape of w

and w′, of type F (1, 1).

The function

maybeBang : ∀X : T.M(X) → M(1)

maybeBang z = case z of

in0 x ⇒ in0 un

in1 y ⇒ fail

is required to get the right type after applying zipop′
m+1.

Note that in ML, one should write a specialization of zipop′ for each particular

choice of the functor F .

5.1.2 One-side matching — pure FML version

The data types G and G′ defined above can be defined in FML respectively as

µF (X) and µF ′(X) where

F ′ = +〈1〈〉m+1, F 〉m+1 : m + 1.

The functor polymorphic function

match : µF ′(X) → µF (X) → Bool

match = foldm (f ◦ unft)

is defined using induction (foldm) on the first argument.

unft : F ′(X, Y ) → 1 + F (X, Y )

unft z = case unpack2,m+1 z of

in0 x ⇒ unpack0,m+1 x

in1 y ⇒ y

This coerces the type F ′(X, Y ) to the type 1 + F (X, Y ).

f : 1 + F (X, µF (X) → Bool) → µF (X) → Bool

f z w = case z of

in0 x ⇒ true

in1 y ⇒ maybeBang(zipop′
m+1 eqi:m apply y (unwrapm w))

This is the core of the function match.

The function maybeBang is defined as in the ML-like version.

5.2 Unification

In unification literature, a term is usually defined to be either a variable or an

application of a constructor to zero or more terms and possibly to some parameters.

At the level of types, we identify the term constructor with a functor F of arity

m + 1, the variables with a type V and the parameters with some types Xi∈m.

We suppose that all types V, X support equality, that is, there exist a function

eqV : V → V → Bool and for each i ∈ m there is a function eqi : Xi → Xi → Bool.

We now describe a functional unification algorithm that works for all such F, V and

X . A list of the functions used is given in Figure 7.
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5.2.1 Unification — ML-like version

In this section we describe the unification algorithm using ML-like datatypes for

the type of terms and the type of lists:

• LX = Nil | Cons of X ∗ LX
• Term = Var of V | Cns of F (X, Term)

We use the following abbreviations: let Pair = Term
2 and let Pairs = L(Pair).

Moreover let Subst = V → Term be the type of substitutions, that is the func-

tions from variables to terms. Also, idsubst is the identity substitution, defined as

idsubst v = var2term v.

The function

unify : Pairs → M(Subst)

unify 〈t1, t2〉 = unifyl (single〈t1, t2〉) idsubst

takes two terms and gives back the most general unifier if it exists. It is implemented

using:

unifyl : PairsFV, X → M(Subst)

unifyl (Nil) s = ok s

unifyl (Cons y ys) s = let z⇐step〈Cons y ys, s〉 in unifyl (π0 z)(π1 z)

which takes a list of pair of terms and updates the current substitution, given as

an extra argument.

The step function. The core of the unification algorithm is the function step which

is iterated until the list of “pairs of terms” to be unified is empty. The termination of

the algorithm is guaranteed since on each pass either the number of free variables in

the list of pairs decreases, or the number of constructors in the list of pairs decreases

but the number of variables doesn’t increase.

step : Pairs × Subst → M(Pairs × Subst)

step 〈Nil, s〉 = ok 〈Nil, s〉

step 〈Cons y ys, s〉 = Cases y ys s

This function takes a list of pairs of terms and a substitution. If the list is empty

then it does nothing. If the list has a head, then it decomposes the head in such a

way it is possible to distinguish four cases depending on whether or not the terms

are variables.

The function

Cases : Pair → Pairs → Subst → M(Pairs × Subst)

Cases 〈Var v0, Var v1〉 l s = VarVarCase v0 v1 〈l, s〉

Cases 〈Var v0, Cns w1〉 l s = VarCnsCase v0 w1 〈l, s〉

Cases 〈Cns w0, Cns v1〉 l s = VarCnsCase v1 w0 〈l, s〉

Cases 〈Var w0, Cns w1〉 l s = CnsCnsCase w0 w1 〈l, s〉

determines the cases, which are handled below.

VarVarCase : V → V → Pairs × Subst → M(Pairs × Subst)

VarVarCase v0 v1 〈l, s〉 = if eqV v0 v1

then ok 〈l, s〉

else ok (subUpdate v0 (Var v1) l s)
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The function VarVarCase deals with the case in which both components are vari-

ables. If they are equal it does nothing, otherwise it augments the substitution and

applies the new substitution to all the terms in the list.

VarCnsCase : V → F (X, Term) → Pairs × Subst → M(Pairs × Subst)

VarCnsCase v w 〈l, s〉 = if occCheck v (Cns w)

then fail

else ok (subUpdate v (Cns w) l s)
If either component is a variable then VarCnsCase does the usual occurs check,

then it augments the substitution and applies the new substitution to all the terms

in the list.

CnsCnsCase : F (X, Term) → F (X, Term) → Pairs × Subst → M(Pairs × Subst)

CnsCnsCase w0 w1 〈l, s〉 =

let z⇐(zipop′
m+1 eqi:m pair w0 w1) in ok 〈append (extractm+1,m z) l , s〉

Otherwise, by using zipop′
m+1, CnsCnsCase compares the top level of the two

terms and if it succeeds, it extracts the subterm pairs and updates the list.

Auxiliary functions. In this paragraph we define the auxiliary functions used in the

implementation of step.

occCheck : V → Term → Bool

occCheck v t = occCLml v (single t)

This is implemented in terms of occCLml that takes a list of terms instead of a

term.

occCLml : V → L(Term) → Bool

occCLml v Nil = false

occCLml v (Cons (Var v0) ys) = (eqV v v0) or (occCLml v ys)

occCLml v (Cons (Cns w) ys) = occCLml v (append (extractm+1,m w) ys)

This function checks if a variable occurs in a list of terms. If the list of terms is

not empty, it takes the term in the head of the list and if this term is a variable

compare the two variables and continue the check on the rest of the list, otherwise

the list of variables occurring in that term is extracted and added to the list of

terms.

subUpdate : V → Term → Pairs → Subst → Pairs × Subst

subUpdate v t l s = 〈subInst v t l, subComp v t s〉

This function pairs subInst and subComp.

subComp : V → Term → Subst → Subst

subComp v t s w = if eqV w v then t else subst v t (s w)

This function updates a substitution, once it is given a pair variable-term (ele-

mentary substitution).

subInst : V → Term → Pairs → Pairs

subInst v t Nil = Nil

subInst v t (Cons y ys) = Cons 〈subst v t (π0 y), subst v t (π1 y)〉 (subInst v t ys)

This function applies an elementary substitution to a list of pairs of terms.

subst : V → Term → Term → Term
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subst v t (Var v) = if eqV x v then t else Var v

subst v t (Cns w) = Cns (mapm+1idi:m (subst v t w))

This applies an elementary substitution to a term.

5.2.2 Unification — pure FML version

To define the FML-type corresponding to the ML-like datatypes defined in the

previous section we need to define the following functors and types:

• Tu = +〈Πm+2
0 , F 〈Πm+2

1 , . . . , Πm+2
m+1〉

m+2〉m+2 : m+2 is the functor that maps

types V, X and Y to V + F (X, Y ).

• T = µTu : m + 1.

• Term = T(V, X) is the type of terms with variables in V and term construc-

tors given by the functor F .

• Subst = V → Term is the type of substitutions, that is the functions from

variables to terms.

• Pair = Term
2.

• Pairs = L(Pair).

For lists we use the list functor, L in section 4.2.2. Recall that L = µLu where

Lu = +〈1〈〉2,×〉2 and that the usual operations on lists are nil, cons, single, append,

flatten.

The function unify is defined as in the previous ML-like version:

unify : Pair → M(Subst)

unify 〈t1, t2〉 = unifyl (single〈t1, t2〉) idsubst

However, the function unifyl now needs to be redefined, since the ML-like im-

plementation uses a general recursive constructor whereas in FML we have only

primitive recursion.

unifyl : Pairs → Subst → M(Subst)

unifyl l s = let p⇐outIter (varNumL l) 〈l, s〉 in ok (π1 p)

The implementation now requires two loops to be iterated. The outermost is

bounded by the number of variables occurring in the list of pairs (for simplicity

we take the number of occurrences), the innermost by the number of constructors

occurring in the list of pairs. In fact, in order to guarantee that on each outermost

iteration the number of variables decreases, we have only to iterate the basic step

at most a number of times equal to the number of term constructors in the list.

This occurs when the two terms have the same structure.

The function

outIter : L(1) → Pairs × Subst → M(Pairs × Subst)

outIter = fold1(λz. case flatunflist z of

in0 x ⇒ ok

in1 y ⇒ innIter(cnsNumL l))
implements the outer loop, whereas the function

innIter : L(1) → Pairs × Subst → M(Pairs × Subst)
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innIter = fold1(λz. case flatunflist z of

in0 x ⇒ ok

in1 y ⇒ step)
implements the inner loop.

Counting variables and constructors. The natural number type is implemented as

L(1) so iteration can be mimicked by folding on a list.

varNumL : Pairs → L(1)

varNumL = (map1 bang) ◦ extractm+1,0 ◦ pack2,m+1 ◦ pack1,2

The number of variable occurrences in the list of pairs is computed by the function

extractm+1,0 (defined in section 4.3), which extracts the data of type V from the

data structure L〈×〈T, T〉〉(V, X). Note that (pack2,m+1◦pack1,2) coerces L(Term
2)

to L〈×〈T, T〉〉(V, X).

cnsNumL : Pairs → L(1)

cnsNumL = fold1(λz. case flatunflist z of

in0 x ⇒ nil

in1 〈y, ys〉 ⇒

append (append (cnsNum(π0y)) (cnsNum(π1y))) ys)
The number of constructors in the list of pairs is obtained by adding the number

of constructors occurring in each term. This, in turn, is computed recursively adding

the number of constructors of the subterms.

cnsNum : ∀G : m.µG(X) → L(1)

cnsNum = foldm+1(λz.append (single un)(flatten (extractm+1,m z))

This function uses the extractm+1,m function to locate the constructors inside a

term.

The step function. The core of the algorithm is given by the function step which

reduces to cases, as before.

step : Pairs × Subst → M(Pairs × Subst)

step 〈l, s〉 = case unfoldlist l of

in0 x ⇒ ok 〈l, s〉

in1 〈y, ys〉 ⇒ case unfoldterm(π0y) of

in0 v0 ⇒ case unfoldterm(π1y) of

in0 v1 ⇒ VarVarCase v0 v1 〈ys, s〉

in1 w1 ⇒ VarCnsCase v0 w1 〈ys, s〉

in1 w0 ⇒ case unfoldterm(π1y) of

in0 v1 ⇒ VarCnsCase v1 w0 〈ys, s〉

in1 w1 ⇒ CnsCnsCase w0 w1 〈ys, s〉

The following functions deal with the three cases:

VarVarCase : V → V → Pairs × Subst → M(Pairs × Subst)

VarVarCase v0 v1 〈l, s〉 = if eqV v0 v1

then ok 〈l, s〉

else ok (subUpdate v0 (var2term v1) l s)

VarCnsCase : V → F (X, Term) → Pairs × Subst → M(Pairs × Subst)
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VarCnsCase v w 〈l, s〉 = if occCheck v (cns2term w)

then fail

else ok (subUpdate v (cns2term w) l s)

CnsCnsCase : F (X, Term) → F (X, Term) → Pairs × Subst → M(Pairs × Subst)

CnsCnsCase w0 w1 〈l, s〉 =

let z⇐(zipopm+1 eqi:m pair w0 w1) in ok 〈append (extractm+1,m z) l , s〉

Auxiliary functions. In this paragraph we define the auxiliary functions used in the

implementation of step.

occCheck : V → Term → Bool

occCheck v t = occCheckL v (extractm+1,0 t)

This function checks if a variable occurs in a term, by checking if the variable

occurs in the list of the variables extracted from the term.

occCheckL : X → L(X) → Bool

occCheckL a = fold1(λz. case flatunflist z of

in0 x ⇒ false

in1 〈y, ys〉 ⇒ if eqX y x

then true

else y)
This function checks if a value occurs in a list.

subUpdate : V → Term → Pairs → Subst → Pairs × Subst

subUpdate v t l s = 〈subInst v t l, subComp v t s〉

This function pairs the functions subInst and subComp.

subComp : V → Term → Subst → Subst

subComp v t s = λw. if eqV w v

then t

else subst v t (s w)
This function updates a substitution, once it is given a pair variable-term (ele-

mentary substitution).

subInst : V → Term → Pairs → Pairs

subInst v t = fold1(λz. case flatunflist z of

in0 x ⇒ nil

in1 〈y, ys〉 ⇒ cons 〈subst v t (π0 y), subst v t (π1 y)〉 ys)
This function applies an elementary substitution to a list of pairs of terms.

subst : V → Term → Term → Term

subst v t = foldm(λz. case flatunfterm z of

in0 x ⇒ if eqV x v

then t

else var2term x

in1 y ⇒ cns2term y)
This function applies an elementary substitution to a term.

Coercion functions. The following functions operate a coercion between types. They

make large use of the canonical functor constructors and destructors.



34 C.B. Jay, G. Bellè and E. Moggi

var2term : V → Term

var2term = wrapm+1 ◦ pack2,m+2 ◦ in0 ◦ tagm+1,0

This function coerces a variable to a term.

cns2term : F (X, Term) → Term

cns2term = wrapm+1◦pack2,m+2◦in1◦packm+1,m+2◦(mapm+1(tagm+1,i)i:[1..m+1])

This function coerces an applied constructor to a term.

flatunfterm : Tu(V, X, Y ) → V + F (X, Y )

flatunfterm z = case (unpack2,m+2 z) of

in0 x ⇒ in0 (untagm+2,0 x)

in1 y ⇒ unpackm+1,m+2 (mapm+1(untagm+2,i)i:[1..m+1] y)

This function coerces the type Tu(V, X, Y ) to the type V + F (X, Y ).

unfoldterm : Term → V + F (X, Term)

unfoldterm = flatunfterm ◦ unwrapm+1

This function unfolds a term and coerces it to the type V + F (X, Term).

flatunflist : Lu(X, Y ) → 1 + X × Y

flatunflist z = case (unpack2,2 z) of

in0 x ⇒ in0 (unpack0,2 x)

in1 y ⇒ in1 y
This function coerces the type Lu(X, Y ) to the type 1 + X × Y .

unfoldlist : L(X) → 1 + X × L(X)

unfoldlist = flatunflist ◦ unwrap1

This function unfolds a list and coerces it to the type 1 + X × L(X).

6 Variations and extensions to FML

FML provides a general framework for studying a new form of polymorphism cen-

tered around the notion of functor. In fact, the key new feature of FML is the

introduction of functor expressions, rather than the new form of polymorphism.

In designing FML we have intentionally kept the interaction between functors and

types to a minimum, in particular the language of functor expressions is given

independently from that of types and terms. As shown in Section 2.5, functor ex-

pressions can be interpreted in many possible ways, and none of them is a priori

preferable than others. In this section we propose possible variations and extensions

to FML. They can be classified into three groups, according to the source of their

motivation.

• type theory: for instance, choosing between terms à la Curry or à la Church,

identifying types and type schema (as in system F ), or introducing higher

order kinds (as in system Fω).

• semantics: for instance, FMLshape (see Section 4.3).

• programming languages: for instance, various forms of polymorphism, recur-

sive definitions, or polytypic definitions.

First we give a brief overview of generic, type-theoretic variations and extensions,

and then we discuss in greater details two programming language extensions: re-
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In both versions:

• unify : Pair → M(Subst)
• unifyl : Pairs → Subst → M(Subst)
• step : Pairs × Subst → M(Pairs × Subst)
• VarVarCase : V → V → Pairs × Subst → M(Pairs × Subst)
• VarCnsCase : V → F (X, Term) → Pairs × Subst → M(Pairs × Subst)
• CnsCnsCase : F (X, Term) → F (X, Term) → Pairs × Subst → M(Pairs × Subst)
• occCheck : V → Term → Bool
• occCheckL : X → L(X) → Bool

• subUpdate : V → Term → Pairs → Subst → Pairs × Subst

• subComp : V → Term → Subst → Subst

• subInst : V → Term → Pairs → Pairs

• subst : V → Term → Term → Term

In ML-like version:

• Cases : Pair → Pairs → Subst → M(Pairs × Subst)
• occCLml : V → L(Term) → Bool

In pure FML version:

• outIter : L(1) → Pairs × Subst → M(Pairs × Subst)
• innIter : L(1) → Pairs × Subst → M(Pairs × Subst)
• varNumL : Pairs → L(1)
• cnsNumL : Pairs → L(1)
• cnsNum : ∀G : m + 1.µG(X) → L(1)
• var2term : V → Term

• cns2term : F (X, Term) → Term

• flatunfterm : Tu(V, X, Y ) → V + F (X, Y )
• unfoldterm : Term → V + F (X, Term)
• flatunflist : Lu(X, Y ) → 1 + X × Y
• unfoldlist : L(X) → 1 + X × L(X)

Where:

- Subst = V → Term

- Pair = Term
2

- Pairs = L(Pair)

Fig. 7. Types of the functions used in the unification algorithm

cursive definitions of polymorphic expressions, and polytypic definitions. These ex-

tensions will be embodied in FMLpoly in Section 6.3.

Both extensions exploit in an essential way shape polymorphism, i.e. quantifi-

cation over functors, and moreover they require another form of polymorphism,

namely quantification over functor arities m : N . A formal account of quantifica-

tion over functor arities involves some technical subtleties with dependent types

(well-known to people working on logical frameworks based on type theory), which

are beyond the scope of this paper. Instead we give an informal presentation, in

which the finitary nature of syntax and inference rules is lost.
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6.1 Type-theoretic variations and extensions

We consider some simple variations on terms which make sense for other typed

calculi. They are: terms à la Church; some extensions suggested by system F and

Fω as extensions of ML; and an extension of FML with the inductive kind of natural

numbers.

6.1.1 Terms à la Church

The syntax of terms à la Curry is parameterized with respect to constants c

t ::= x | c | λx.t | t1 t2 | let x = t1 in t2

A more general approach is to parameterize terms with respect to binders c

t ::= x | c(f) terms

f ::= [x].t abstractions

Using abstraction and application one could replace binders with higher-order con-

stants, but binders are preferable in the absence of functional types. For instance,

application of the constant mapm for mapping applied to some λx.ti and t is re-

placed by the binder mapm(([x].ti)i:m, t).

Another variation is to use terms à la Church, i.e. with explicit type information

t ::= x | c | λx : τ.t | t1 t2 | ΛX : T.t | t τ | ΛX : m.t | t F | let x : σ = t1 in t2

Terms à la Church are rather cumbersome to write, but the extra information can

be very useful, as advocated by (Harper & Morrisett, 1995; Aditya et al., 1994;

Tolmach, 1994). For instance, terms à la Church are essential to describe the most

general pattern for polytypic definitions, where functor information is used (as in ad

hoc polymorphism) to choose among incompatible alternatives. Terms à la Church

are also useful to ensure decidability of type-checking in some extensions of FML.

6.1.2 F -like extensions

By analogy with system F we could identify types and type schema i.e.

τ ::= X | F (τ ) | τ1 → τ2 | ∀X : T.τ | ∀X : m.τ

(One could also contemplate identifying types with functors of arity 0 but this would

make the languages of functor expressions dependent on that of type expressions.)

A more substantial extension, which could be called FFω, is suggested by system

Fω. In this extension one can make explicit the level of kinds k, which include T

and functor arities m, and add higher order kinds

k ::= T | m | k1 → k2

u ::= X | C | λX : k.u | u1 u2

t ::= x | c | λx : τ.t | t1 t2 | ΛX : k.t | t u
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Here u represents constructors, and t terms. In FFω functor constructors and the

type constructor → can be viewed as constants C of higher order kind, and functors

of kind m coexist with m-ary type constructors of kind Tm → T.

6.1.3 Inductive kinds

A more novel extension is to add polymorphism over functor arities. In FML it

would support a single combinator for mapping

map : ∀m : N.∀F : m.∀Xi:m, Yi:m : T.(Xi → Yi)i:m → F (X) → F (Y )

This requires quantification over arities in type schema

σ ::= . . . | ∀m : N.σm

with the corresponding terms and reductions. A formal presentation of arity quan-

tification would involve rules such as

(∀N )
∆, m : N ` σ

∆ ` ∀m : N.σ
.

However, one would have to spell out what are the expressions of kind N , and how

they could be used in other syntactic categories. This could be done in the setting

of Martin-Löf type theory, by taking N as the inductive kind of natural numbers,

which could then be used to define kinds, constructors and terms by induction. For

instance, in system Fω we could define the family of kinds Tm → T by induction

on m : N .

Here we give an informal description based on the following rule:

(∀N )
∆ ` σm m : N

∆ ` ∀m : N.σm

.

This rule says that given an infinite family of type schema, we can form a type

schema (of infinite size!). Of course, we can arbitrarily restrict the arities to any

particular limit, e.g. 3 to recover finitariness and formality.

The syntax of terms and the typing rules are extended as follows

t ::= . . . | (Λm.tm) | te

where m is a numeric variable, and e is a numeric expression.

(AppN )
∆; Γ ` t : ∀m : N.σm

∆; Γ ` te : σe

(ΛN )
∆; Γ ` tm : σm m : N

∆; Γ ` (Λm.tm) : ∀m : N.σm

The reduction rule for these term-constructors is

(Λm.tm)e > te
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6.1.4 Recursion

There are two ways of adding recursive definitions to ML. The first option, taken

in (lazy) ML, is to introduce a fix-point combinator

fix : ∀X : T.(X → X) → X

with the usual reduction

fix t > t (fix t).

The addition of such combinator does not affect the type-inference algorithm.

The second option, taken in ML+ (see (Kfoury & Tiuryn, 1992)), allows poly-

morphic recursion with the usual unfolding as reduction:

(rec)
∆; Γ, x : σ ` t : σ

∆; Γ ` (µx.t) : σ

(µx.t) > t{(µx.t)/x}.

This second option is strictly more powerful (i.e. more terms are typable), but typa-

bility becomes undecidable. Of course, when types and type schema are identified

(as in system F ), the two extensions are equivalent.

In FML we adopt the second option. To achieve decidable type checking in a

(formal presentation of) this extension, it is better to adopt a formulation of FML

à la Church, i.e. with explicit type and functor information in terms.

6.2 Polytypic definitions

The combinators for mapping, folding, traversing, zipping, etc. capture fundamental

properties common to large classes of functors. It is obviously desirable that pro-

grammers be able to construct these and other examples directly, using recursive

definitions. In ML + fix one can define primitive recursion on inductive datatypes

in terms of pattern matching and general recursion. By analogy, one might expect

that in FML + fix one could define foldm and mapm in terms of pattern matching

for inductive types given by

matchµ
m : ∀F : m + 1.∀Xi:m, Y : T.(F (X, µF (X)) → Y ) → µF (X) → Y

matchµ
m f (introµ

m t) > f t

Indeed, one can define foldm and mapm for any closed functor expression F (by

induction on the structure of F ), but there is no way to define them uniformly

for every functor F . There are two reasons why fix does not suffices for defining a

combinator like mapm. First, we need mutually recursive definitions of families of

combinators cm:N indexed by the natural numbers, since mapm is defined in terms

of mapn. Second, we need induction on the structure of inductive functors, i.e.

polytypic definitions (Sheard, 1993; Hook & Sheard, 1993; Jeuring, 1995; Meertens,

1996; Jansson & Jeuring, 1997).

For the first, we need inductive kinds, so that the type of a polytypic program
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can be presented as ∀m : N.∀F : m.σm(F ). For the second, we require a new term

formation rule poly [−] to perform case analysis on functors. Finally, to unleash the

power of this rule we require the stronger, polymorphic recursion.

The polytypic construction must cover the following four possibilities:

• constant functors C

• projection functors Πm
i

• compositions F 〈G〉m of functors

• initial algebra functors µF .

Here is the corresponding rule.

(poly)

∆; Γ ` tC : σnC
(C) C

∆; Γ ` tΠm,i : σm(Πm
i ) i : m : N

∆, F : n, Gi:n : m; Γ ` t◦n,m : σm(F 〈G〉m) m, n : N

∆, F : m + 1; Γ ` tµm : σm(µF ) m : N

∆; Γ ` poly
[

tC , tΠm,i, t
◦
n,m, tµm

]

: ∀m : N.∀F : m.σm(F )

Note that when applying this rule there must be a separate constant tC for each

constant functor C, and that the other premises represent infinite families.

In the formulation of FML à la Curry, i.e. without explicit type and functor infor-

mation in terms, it is impossible to have reduction rules for poly
[

tC , tΠm,i, t
◦
n,m, tµm

]

,

which satisfy SR (Subject Reduction) and other syntactic properties. For example,

it is easy to construct a combinator isC : ∀m : N.∀F : n.Bool, which tests whether

F is the constant functor C. However, the most natural reductions (isC > true and

isC > false) violate CR (Church-Rosser).

Therefore, we restrict the typing rule (poly) by requiring σm(F ) to be of the

form ∀∆m.F (τ ) → . . ., where ∆ is a sequence of type and functor variables. The

restriction to (poly) means that a polytypic definition must define a function, and

its first argument, whose type is F (τ ), has enough information for selecting the

appropriate branch of the polytypic definition.

With this restriction the following reduction rules are compatible with the typing

(we assume that the constant functors are only 1 : 0, × : 2 and + : 2):

(poly
[

t1, t×, t+, tΠ, t◦, tµ
]

)0 (intro1) > t1 (intro1)

(poly
[

t1, t×, t+, tΠ, t◦, tµ
]

)2 (intro× t0 t1) > t× (intro× t0 t1)

(poly
[

t1, t×, t+, tΠ, t◦, tµ
]

)2 (intro+
j t) > t+ (intro+

j t)

(poly
[

t1, t×, t+, tΠ, t◦, tµ
]

)m (introΠ
m,i t) > tΠm,i (introΠ

m,i t)

(poly
[

t1, t×, t+, tΠ, t◦, tµ
]

)m (intro◦n,m t) > t◦n,m (intro◦n,m t)

(poly
[

t1, t×, t+, tΠ, t◦, tµ
]

)m (introµ
m t) > tµm (introµ

m t)

Remark 6.1 The type-theoretic intuition behind the formation rule (poly) is that

functors form an inductive family of types indexed by natural numbers. Therefore,

one should consider similar formation rules for defining types, functors and type

schema by induction on the structure of functors. For instance, definitions of types

by induction on the structure of functors are needed to define the type construc-
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tor CF corresponding to the functor expression F by unfolding composition, i.e.

CF 〈Gi:m〉n(X) = CF (CGi
(X)i:m).

6.3 Polytypic definitions in FMLpoly

FMLpoly is the extension of FML with the inductive, recursive and polytypic con-

structions of Sections 6.1.3, 6.1.4 and 6.2. In this section we demonstrate its ex-

pressive power by defining the polytypic combinators of FMLshape. For notational

convenience, in the examples we write

let poly

f0 un = t1 |

f2 〈x0, x1〉 = t× |

f2 (in0 x) = t+,0 |

f2 (in1 x) = t+,1 |

fm (introΠ
m,i x) = tΠm,i |

fm (intro◦n,m x) = t◦n,m |

fm (introµ
m x) = tµm |

in t

for

let f = poly



















elim1 t1,

elim× (λx0, x1.t×),

elim+ (λx0.t+,0) (λx1.t+,1),

elimΠ
m,i(λx.tΠm,i) i : m : N,

elim◦
n,m(λx.t◦n,m) m, n : N,

matchµ
m(λx.tµm) m : N



















in t.

Remark 6.2 The above notational convention exactly matches the restriction im-

posed on (poly). There is a minor disuniformity in the definition of the polytypic

let, since in all cases we use a destructor, except for µF , where we use the combina-

tor matchµ
m for pattern matching. The reason is that in all other cases destructors

are only doing pattern matching.

We show that the polytypic combinators mapm, ltraversem and zipopm are de-

finable in FMLpoly. More precisely, for each polytypic combinator we give a closed

term of FMLpoly such that: it has the same type schema as the combinator, and;

the reduction rules for the combinator are derivable.

6.3.1 Definability of mapm

The mapm combinator is defined using an auxiliary combinator, whose only purpose

is to rearrange the arguments to fit the restriction imposed by the typing rule (poly).

pm : ∀m : N.∀F : m.∀Xi:m, Yi:m : T. F (X) → (Xi → Yi)i:m → F (Y )
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µ map. let poly

pm0 un = un |

pm2 〈x0, x1〉 = λf0, f1. 〈f0 x0, f1 x1〉 |

pm2 (in0 x) = λf0, f1. in0 (f0 x) |

pm2 (in1 x) = λf0, f1. in1 (f1 x) |

pmm (introΠ
m,i x) = λfi:m. introΠ

m,i (fi x) |

pmm (intro◦n,m x) = λfi:m. intro◦n,m (mapn (mapm f)j:n x) |

pmm (introµ
m x) = λfi:m. introµ

m (mapm+1 f (mapm f) x) |

in (Λm.λfi:m.λx. pmm x f)

As an example, here is the derivation of the mapping reduction

mapm fi:m (introµ
m t) > introµ

m (mapm+1 f (mapm f) t)

using the reduction rules for recursive and polytypic definitions. In what follows,

we identify map with the term (µ map. . . .), and pm with its polytypic definition

poly pm0 un = un . . ., in which map has been replaced by its recursive definition.

mapm fi:m (introµ
m t) > (µ and let)

(Λm.λfi:m.λx.pmm x f)m f (introµ
m t) > (β)

pmm (introµ
m t) f > (poly and matchµ

m)

(λx.λfi:m.introµ
m (mapm+1 f (mapm f) x)) t f > (β)

introµ
m (mapm+1 f (mapm f) t).

6.3.2 Definability of ltraversem

The ltraversem combinator is defined using an auxiliary combinator

plt : ∀m : N.∀F : m.∀Xi:m, Yi:m, S : T.

F (X) → (Xi → PS(Yi))i:m → PS(F (Y ))

where PS is the parsing monad defined in Section 4.2.1.

µ lt. let poly

plt0 un = [un] |

plt2 〈x0, x1〉 = λf0, f1.let y0⇐f0 x0 in let y1⇐f1 x1 in [〈y0, y1〉] |

plt2 (in0 x) = λf0, f1.let y⇐f0 x in [in0 y] |

plt2 (in1 x) = λf0, f1.let y⇐f1 x in [in1 y] |

pltm (introΠ
m,i x) = λfi:m.let y⇐fi x in [introΠ

m,i y] |

pltm (intro◦n,m x) = λfi:m.let y⇐ltn(ltm f)j:n x in [intro◦n,m y] |

pltm (introµ
m x) = λfi:m.let y⇐ltm+1 f (ltm f) x in [introµ

m y] |

in (Λm.λfi:m.λx.pltm x f)

6.3.3 Definability of zipopm

The zipopm combinator is defined using an auxiliary combinator

pz : ∀m : N.∀F : m.∀Xi:m, Yi:m, Zi:m, S : T.

F (X) → (Xi → Yi → PS(Zi))i:m → F (Y ) → PS(F (Z))
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where PS is the parsing monad defined in Section 4.2.1.

µ zop. let poly

pz0 un = elim1 ([un]) |

pz2 〈x0, x1〉 =
λf0, f1.elim

×(λy0, y1.

let z0⇐f0 x0 y0 in let z1⇐f1 x1 y1 in [〈z0, z1〉])
|

pz2 (in0 x) = λf0, f1.elim
+ (λy.let z⇐f0 x y in [in0 z]) (λy.fail) |

pz2 (in1 x) = λf0, f1.elim
+ (λy.fail) (λy.let z⇐f1 x y in [in1 z]) |

pzm (introΠ
m,i x) = λfi:m.elimΠ

m,i (λy.let z⇐fi x y in [introΠ
m,i z]) |

pzm (intro◦n,m x) =
λfi:m.elim◦

n,m(λy.

let z⇐zopn(zopm f)j:n x y in [intro◦n,m z])
|

pzm (introµ
m x) =

λfi:m.elimµ
m(λy.

let z⇐zopm+1 f (zopm f) x y in [introµ
m z])

|

in (Λm.λfi:m.λx, y.pzm x f y)

6.3.4 Limitations of FMLpoly à la Curry

We give some examples of polytypic functions that are definable in FMLpoly with

the unrestricted (poly) rule, but cannot be defined using the restricted (poly) rule,

where σm(F ) ≡ ∀∆.F (τ ) → . . . and ∆ is a sequence of type and functor variables.

These examples identify clearly the limitations at the level of polytypic definitions,

when terms have no explicit type and functor information.

Example 6.3 Consider the polytypic function isC : ∀m : N.∀F : m.Bool, which

tests whether F is equal to C. Clearly, we cannot define it using the restricted

(poly) rule. However, we could add an extra argument of type F (1), so that the

restricted (poly) rule become applicable and we have enough information about F .

This trick does not get very far, e.g. consider occurC : ∀m : N.∀F : m.Bool, which

tests whether C occurs in F . In this case we cannot get the necessary information

about F by inspecting a term of type F (1), e.g. when C = 1 and F is the functor

F (X) = X + 1, more formally F = +〈Π1
1, 1〈〉

1〉1.

Example 6.4 A more interesting example is the problem of constructing polytypic

parser, which takes a string and produces an element of type F (X). This parser

is used in the polytypic data compression algorithm of (Jansson & Jeuring, 1997;

Jansson, 1997). More precisely, we would like a combinator for generating a parser

for the type F (X) given parsers for the Xi

parse : ∀m : N.∀F : m.∀Xi:m : T.(PSXi)i:m → PS(F (X))

where PS is the parsing monad PSX = S → (X × S) + 1 defined in Section 4.2.1,

and usually the type parameter S consists of either lists of characters or lists of

tokens. (Björk, 1997) define a more complex parse combinator

parse :: (d a -> Struct a) -> Parser String a -> Parser String (d a)

parameterized over a regular datatype d rather than a functor.
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It is natural to decompose parse in two parts: parseshape for parsing the shape

information, and parsedata for filling the shape with data.

parseshape : ∀m : N.∀F : m.PS(F (1))

parsedata : ∀m : N.∀F : m.∀Xi:m : T.(PSXi)i:m → F (1) → PS(F (X))

parsedata is unproblematic and could be defined as an instance of ltraversem. Defin-

ing parseshape requires either explicit knowledge of the functor F or a single type

to describe all possible shapes.

7 Comparison of FML with PolyP

In this section we make a comparison between PolyP (as described in (Jansson

& Jeuring, 1997)) and FML. At present FML is only a formal calculus, where

choices and issues are spelled out and addressed precisely, but the language has

not been implemented. On the other hand, PolyP is being implemented as an

extension of Haskell, but some issues are resolved in a crude way in order to get

an implementation up and running, and less attention has been give to a rigorous

documentation.

Functors and datatype constructors. FML starts from the observation that the cat-

egorical concept of a functor is an abstraction with which it is both useful and

feasible to write programs. Indeed several researchers have advocated categorical

programming and stressed the importance of functors (e.g. (Hagino, 1987a; Hagino,

1987b; Meijer et al., 1991; Cockett & Fukushima, 1992; Cockett & Spencer, 1995)).

In FML, functors are considered as fundamental as types (and type schema);

there is no attempt to explain them in terms of type constructors with additional

structure and properties. Its functor application is the canonical way of getting a

type constructor from a functor, but there is no way to go in the opposite direction.

On the contrary, in PolyP functors (of arity 2) seem auxiliary to regular datatypes

(of arity 1). The PolyP operations

FunctorOf : Regular → Bifunctor

Mu : (Bifunctor, Regular) → Regular

do not have a clear category-theoretic reading (unlike the FML functor construc-

tors). They appear to be motivated mainly by the desire to keep information about

names of datatype constructors in the qualified kind Regular, but ignore it in

Bifunctor. In particular, FunctorOf is defined by induction on the syntax of

datatype definitions. For example, given the datatypes

Empty1 X = empty of Empty1 X

Empty2 X = empty of Empty1 X

FunctorOf(Empty1) = Rec and FunctorOf(Empty2) = Empty1@Par are differ-

ent, although the types Empty1 X and Empty2 X are isomorphic to the empty

type. FunctorOf does not make much sense semantically because it recovers a

functor from its initial algebra.
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Functor arities. At present PolyP handles only bifunctors, i.e. functors of arity

2. Moreover, the syntactic category of bifunctors F makes reference to two other

syntactic categories: datatypes D and types τ . These are not given explicitly, thus

it is unclear whether they correspond to the FML arities 1 and 0.

Fixing an upper bound to functor arities is a simple way to avoid both the infini-

tary rules (that we adopted in the informal account of FMLpoly) and the dependent

types (that are needed in a formal account). Such upper bounds are inherently ad

hoc, but once the upper bound is chosen an implementation of FMLpoly becomes

feasible.

Separation between functors and types. FML makes a clear decision: the language

for functors comes before and is independent from the language for types. This is

very important for having a considerable degree of freedom in interpreting functors

(see Section 2.5). On the other hand, PolyP has a construct Con : ∗ → Bifunctor,

which converts a type into a constant bifunctor. Because of this the bifunctors of

PolyP may fail to preserve equality types. Moreover, it is unclear how the Con τ

case of a polytypic definition should be handled, i.e. whether it may treat different

τs differently or it must treat them uniformly.

Type inference. Type inference for FML is a fairly straightforward extension of type

inference for ML. In PolyP the situation is more delicate. In the definition of a

polytypic function the type schema should be given explicitly. However, Section 2.2

of (Jansson & Jeuring, 1997) claims that one can infer the functor argument of a

polytypic function. This seems doubtful without restrictions on the type schema

allowed in polytypic definitions, like those introduced in the typing rule (poly) of

FMLpoly . For instance, we expect type inference to be problematic, when one allows

polytypic functions like parse (see Example 6.4).

Inductive functors or beyond. The polytypic construct of PolyP is very natural and

convenient for dealing with inductive functors. Indeed in FMLpoly one may easily

define polytypic combinators which have to be taken as primitive in FMLbasic and

FMLshape. On the other hand, FMLbasic and FMLshape take an open-ended view

of functors, which is incompatible with mechanisms allowing the programmer to

define their own polytypic operations by induction on the structure of functors.

In these calculi the only way to build polytypic functions is by combining existing

ones according to fixed patterns. Nevertheless the combinators of FMLshape are

powerful enough to express algorithms regarded as motivating examples for the

polytypic construct. The intended semantic of FMLshape tell us that its polytypic

combinators are applicable to a larger class of functors than the inductive ones. So

there is not a clear best choice between FMLshape and FMLpoly .

8 Conclusions

FML is an extension of the Hindley-Milner type system that supports parametric

functorial polymorphism. That is, one can write algorithms (e.g. mapping and fold-
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ing) which work uniformly for a large class of functorial type constructors, unlike

previous, ad hoc algorithms. The Hindley-Milner type inference algorithm extends

smoothly to FML and reduction on well-formed terms is confluent and strongly

normalizing.

The functor syntax admits functors of many variables, and functor composition.

Canonical isomorphisms are used to distinguish different orders of composition,

which allow terms to express the shape-data, or functor-argument decomposition

necessary to locate their data. This feature is essential for parametric algorithms.

Much remains to be done. We expect that the usual denotational models of system

F can be extended to handle explicit functors. Also, the exact relationship between

FML and Fω is not yet clear. Many of the subscripts on the combinators seem to

be redundant. By introducing form variables (Jay, 1995a) to represent sequences of

types we may be able to infer many of them, just as we infer types. Another, basic

shape polymorphic operation is that of extracting the data from the shape. This is

fundamental to search operations, pattern-matching etc. and should be comfortably

supported within the current system, as a new combinator.

FML should be considered as an intermediate language. Indeed, the examples

show that FML is rather awkward in comparison with ML. FML provides a fine

analysis of access to data via the canonical isomorphisms, and should be com-

pared with other intermediate languages, such as those proposed in (Peyton Jones,

1991; Leroy, 1992) to distinguish between boxed and unboxed values and provid-

ing explicit coercions between them. One can envisage an intensional semantics

where introΠ
m,i(t) ∈ Πm

i (X) is like a boxed value, since t is wrapped with additional

information about m and i, while intro◦m,n acts like data redistribution. Here, dis-

tinguishing between types and functors is crucial.

Another possibility is to add additional base functors that are not inductive, e.g.

arrays. This would allow for types such as trees whose nodes support arrays, as

appeared in (Wu et al., 1997), and connect to research on shape analysis (Jay &

Sekanina, 1997; Jay et al., 1997; Jay & Steckler, 1998).

Finally, it remains to implement FML as an extension of an existing programming

language, so that its merits can be tested by the community of programmers.
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Bellè, G., Jay, B., & Moggi, E. (1996). Functorial ML. PLIPL’96. LNCS, vol. 1140.
Springer Verlag.
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