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Abstract

The λ-calculus is considered an useful mathematical tool in the study
of programming languages, since programs can be identified with λ-terms.
However, if one goes further and uses βη-conversion to prove equivalence
of programs, then a gross simplification1 is introduced, that may jeopardise
the applicability of theoretical results to real situations. In this paper we
introduce a new calculus based on a categorical semantics for computations.
This calculus provides a correct basis for proving equivalence of programs,
independent from any specific computational model.

1 Introduction

This paper is about logics for reasoning about programs, in particular for proving
equivalence of programs. Following a consolidated tradition in theoretical computer
science we identify programs with the closed λ-terms, possibly containing extra
constants, corresponding to some features of the programming language under con-
sideration. There are three approaches to proving equivalence of programs:

• The operational approach starts from an operational semantics, e.g. a par-
tial function mapping every program (i.e. closed term) to its resulting value (if
any), which induces a congruence relation on open terms called operational
equivalence (see e.g. [Plo75]). Then the problem is to prove that two terms
are operationally equivalent.

∗On leave from Università di Pisa. Research partially supported by the Joint Collaboration
Contract # ST2J-0374-C(EDB) of the EEC

1programs are identified with total functions from values to values
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• The denotational approach gives an interpretation of the (programming) lan-
guage in a mathematical structure, the intended model. Then the problem
is to prove that two terms denote the same object in the intended model.

• The logical approach gives a class of possible models for the (programming)
language. Then the problem is to prove that two terms denotes the same object
in all possible models.

The operational and denotational approaches give only a theory (the operational
equivalence ≈ and the set Th of formulas valid in the intended model respectively),
and they (especially the operational approach) deal with programming languages
on a rather case-by-case basis.

On the other hand, the logical approach gives a logical consequence relation `
(Ax ` A iff the formula A is true in all models of the set of formulas Ax), which
can deal with different programming languages (e.g. functional, imperative, non-
deterministic) in a rather uniform way, by simply changing the set of axioms Ax,
and possibly extending the language with new constants. Moreover, the relation `
is often semidecidable, so it is possible to give a sound and complete formal system
for it, while Th and ≈ are semidecidable only in oversimplified cases.

We do not take as a starting point for proving equivalence of programs the
theory of βη-conversion, which identifies the denotation of a program (procedure)
of type A→ B with a total function from A to B, since this identification wipes out
completely behaviours like non-termination, non-determinism or side-effects, that
can be exhibited by real programs. Instead, we proceed as follows:

1. We take category theory as a general theory of functions and develop on top a
categorical semantics of computations based on monads (this is my main
contribution).

2. We show that w.l.o.g. one may consider only monads over a topos (because of
certain properties of the Yoneda embedding), and therefore one can use higher
order intuitionistic logic.

3. We investigate how datatypes, in particular products, relates to computations
(previous work by category-theorists is particularly useful here).

At the end we get a formal system, the computational lambda-calculus (λc-calculus
for short), similar to PPλ (see [GMW79]) for proving equivalence and existence
of programs, which is sound and complete w.r.t. the categorical semantics of compu-
tations. The methodology outlined above is inspired by [Sco80]2, in particular the
view that “category theory comes, logically, before the λ-calculus”led us to consider
a categorical semantics of computations first, rather than trying to hack directly on
the rules of βη-conversion to get a correct calculus.

2“I am trying to find out where λ-calculus should come from, and the fact that the notion of
a cartesian closed category is a late developing one (Eilenberg & Kelly (1966)), is not relevant to
the argument: I shall try to explain in my own words in the next section why we should look to it
first”.
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1.1 Related work

The operational approach to find correct λ-calculi w.r.t. an operational equivalence,
was first considered in [Plo75] for call-by-value and call-by-name operational equiv-
alence. This approach was later extended, following a similar methodology, to con-
sider other features of computations like nondeterminism (see [Sha84]) and side-
effects (see [FFKD86, MT89]).

The calculi based only on operational considerations, like the λv-calculus, are
sound and complete w.r.t. the operational semantics, i.e. a program M has a value
according to the operational semantics iff it is provably equivalent to a value (not
necessarily the same) in the calculus, but they are too weak for proving equivalences
of programs.

The denotational approach may suggest important principles, e.g. fix-point in-
duction (see [Sco93, GMW79]), that can be found only after developing a semantics
based on mathematical structures rather than term models, but it does not give
clear criteria to single out the general principles among the properties satisfied by
the model.

The approach adopted in this paper generalises the one followed in [Ros86,
Mog86] to obtain the λp-calculus, i.e. the calculus for reasoning about partial com-
putations (or equivalently, about partial functions). In fact, the λp-calculus (like
the λ-calculus) amounts to a particular λc-theory .

A type theoretic approach to partial functions and computations is attempted in
[CS87, CS88] by introducing a new type constructor Ā, whose intuitive meaning is
the set of computations of type A. However, Constable and Smith do not adequately
capture the general axioms for (partial) computations as we (and [Ros86]) do, since
they lack a general notion of model and rely only on domain- and recursion-theoretic
intuition.

2 A categorical semantics of computations

The basic idea behind the semantics of programs described below is that a program
denotes a morphism from A (the object of values of type A) to TB (the object of
computations of type B). There are many possible choices for TB corresponding
to different notions of computations, for instance in the category of sets the set
of partial computations (of type B) is the lifting B + {⊥} and the set of non-
deterministic computations is the powerset P(B). Rather than focus on specific
notions of computations, we will try to identify the general properties that the
object TB of computations must have.

Definition 2.1
A computational model is a monad (T, η, µ) over a category C, i.e. a functor
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T : C → C and two natural transformations η: IdC

.
→ T and µ:T 2 .

→ T s.t.

T 3A
µTA

> T 2A TA
ηTA

> T 2A <
TηA

TA

@
@

@
@

@

idTA

R 	�
�

�
�

�

idTA

T 2A

TµA

∨

µA

> TA
∨

µA

TA
∨

µA

which satisfies also an extra equalizing requirement: ηA:A→ TA is an equalizer
of ηTA and T (ηA), i.e. for any f :B → TA s.t. f ; ηTA = f ;T (ηA) there exists a
unique m:B → A s.t. f = m; ηA

3.

Remark 2.2 Intuitively ηA:A→ TA gives the inclusion of values into computations,
while µA:T 2A → TA flatten a computation of a computation into a computation.
However, it is the equalizing requirement which ensures that ηA is a (strong)
mono rather than an arbitrary morphism.

According to the view of “programs as functions from values to computations” the
natural category for interpreting programs is not C, but the Kleisli category.

Definition 2.3 (see [Mac71])
Given a monad (T, η, µ) over C, the Kleisli category CT , is the category s.t. :

• the objects of CT are those of C

• the set CT (A,B) of morphisms from A to B in CT is C(A, TB)

• the identity on A in CT is A
ηA→ TA

• the composition of f ∈ CT (A,B) and g ∈ CT (B,C) in CT is

A
f
→ TB

Tg
→ T 2C

µC→ TC

Remark 2.4 Our view of programs corresponds to call-by-value parameter passing,
but there is an alternative view of “programs as functions from computations to
computations” corresponding to call-by-name (see [Plo75] and Section 5). In any
case, the fundamental issue is that there is a subset of the computations, the values,
which has special properties and should not be forgotten. By taking call-by-value
we can stress better the importance of values. Moreover, call-by-name can be more
easily represented in call-by-value than the other way around.

Before going into the details of the interpretation we consider some examples of
computational models over the category of sets.

Example 2.5 non-deterministic computations:

3The other property for being an equalizer, namely ηA; ηTA = ηA; T (ηA), follows from the
naturality of η

4



• T ( ) is the covariant powerset functor, i.e.
T (A) = P(A) and T (f)(X) is the image of X along f

• ηA is the singleton map a 7→ {a}

• µA is the big union map X 7→ ∪X

It is easy to check the equalizing requirement, in fact

ηTA:X 7→ {X} T (ηA):X 7→ {{x}|x ∈ X}

therefore ηTA(X) = T (ηA)(X) iff X is a singleton.

Example 2.6 computations with side-effects:

• T ( ) is the functor (S → ( × S)), where S is a nonempty set of stores.
Intuitively a computation takes a store and returns a value together with the
modified store.

• ηA is the map a 7→ (λs:S.〈a, s〉)

• µA is the map f 7→ (λs:S.eval(fs)), i.e. µA(f) is the computation that given
a store s, first computes the pair computation-store 〈f ′, s′〉 = fs and then
returns the pair value-store 〈a, s′′〉 = f ′s′.

One can verify for himself that other notions of computation (e.g. partial, proba-
bilistic or non-deterministic with side-effects) fit in this general definition.

2.1 A simple language and its interpretation

The aim of this section is to focus on the crucial ideas of the interpretation, and the
language has been oversimplified (for instance terms have exactly one free variable)
in order to define its interpretation in any computational model without requiring
any additional structure on it. However, richer languages, e.g. with product and
functional types, will be considered in Section 3. The term language we introduce
is parametric in a signature (i.e. a set of base types and unary function symbols),
therefore its interpretation in a computational model (T, η, µ) over a category C, is
parametric in an interpretation of the symbols in the signature.

• Given an interpretation [[A]] for any base type A, i.e. an object of the Kleisli
category CT , then the interpretation of a type τ : : = A | Tτ is an object [[τ ]]
of CT defined in the obvious way, namely [[Tτ ]] = T [[τ ]].

• Given an interpretation [[f ]] for any unary function symbol f of arity τ1 → τ2,
i.e. a morphism from [[τ1]] to [[τ2]] in CT , then the interpretation of a well-formed
term x: τ ` e: τ ′ is a morphism [[x: τ ` e: τ ′]] from [[τ ]] to [[τ ′]] in CT defined by
induction on the derivation of x: τ ` e: τ ′ (see Table 1).

• On top of the term language we consider two atomic predicates: equivalence
and existence (see Table 2).
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RULE SYNTAX SEMANTICS

var
x: τ ` x: τ = η[[τ ]]

let
x: τ ` e1: τ1 = g1

x1: τ1 ` e2: τ2 = g2

x: τ ` (let x1=e1 in e2): τ2 = g1;Tg2;µ[[τ2]]

i.e. g1; g2 in the Kleisli category

f : τ1 → τ2
x: τ ` e1: τ1 = g1

x: τ ` f(e1): τ2 = g1;T [[f ]];µ[[τ2]]

[ ]
x: τ ` e: τ ′ = g

x: τ ` [e]:Tτ ′ = g; ηT [[τ ′]]

µ

x: τ ` e:Tτ ′ = g

x: τ ` µ(e): τ ′ = g;µ[[τ ′]]

Table 1: Terms and their interpretation

RULE SYNTAX SEMANTICS

eq
x: τ1 ` e1: τ2 = g1

x: τ1 ` e2: τ2 = g2

x: τ1 ` e1 = e2: τ2 ⇐⇒ g1 = g2

ex
x: τ1 ` e: τ2 = g

x: τ1 ` e ↓ τ2 ⇐⇒ g factors through η[[τ2]]

i.e. there exists (unique) h s.t. g = h; η[[τ2]]

Table 2: Atomic assertions and their interpretation
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Remark 2.7 The let-constructor is very important semantically, since it corresponds
to composition in the Kleisli category CT . While substitution (of a variable with an
expression denoting a value) corresponds to composition in C.

In the λ-calculus (let x=e in e′) is usually treated as syntactic sugar for (λx.e′)e,
and this can be done also in the λc-calculus (because of (β) in Table 8). However, we
think that this is not the right way to proceed, because it amounts to understanding
the let-constructor, which makes sense in any computational model, in terms of
constructors that make sense only in λc-models. On the other hand, (let x=e in e′)
cannot be reduced to the more basic substitution (i.e. e′[x: = e]) without collapsing
CT to C.

Remark 2.8 The existence of e does not simply means that the computation denoted
by e terminates (as, say, in the logic of partial terms), but something stronger,
namely that e denotes a value. For instance:

• a non-deterministic computation exists iff it gives exactly one result;

• a computation with side-effects exists iff it does not change the store.

According to the paradigm of Categorical Logic, formulas should be interpreted by
subobjects. This can be achieved by interpreting the binary predicate ≡ : τ , i.e.
equality of computations of type τ , by the diagonal ∆T [[τ ]] and the unary predicate
↓ τ , i.e. existence of computations of type τ , by η[[τ ]], which is a mono because of

the equalizing requirement.

2.2 Embedding of a computational model in a topos

We show that any computational model (T, η, µ) over a small category C can be lifted
to a computational model (T̂ , η̂, µ̂) over the topos Ĉ of presheaves (i.e. the functor
category SetC

op

), and that such a lifting commutes with the Yoneda embedding Y
of C into Ĉ, i.e.

T̂ (Y ) = Y(T ) , η̂Y = Y(η ) , µ̂Y = Y(µ )

As pointed out in [Sco80] such an embedding enable us to switch from the equa-
tional (and rather inexpressive) calculus of an arbitrary computational model to the
intuitionistic higher-order logic of (a computational model over) a topos.

The monad (T̂ , η̂, µ̂) is defined by using the Yoneda embedding Y: C → Ĉ and

LanY, i.e. the left adjoint to Y; : Ĉ Ĉ → ĈC mapping any F : C → Ĉ to its left Kan
extension4 along Y (see [Mac71]), namely:

T̂ = Lan(T ; Y) , η̂ = Lan(η; Y) , µ̂ = Lan(µ; Y)

The commutativity with the Yoneda embedding (stated above) and the fact that Y
induces a full and faithful embedding Y of CT into ĈT̂ follow from some well-known
properties of Y and LanY, summarised in the following lemma:

Lemma 2.9 If C is small category, then Y: C → Ĉ and LanY: ĈC → Ĉ Ĉ are full and
faithful. Moreover Y; LanY F = F for every F : C → Ĉ.

4the left adjoint LanY exists because Set is small cocomplete
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3 Extending the language

In this section we discuss how to interpret terms with any finite number of variables
(instead of exactly one as in Table 1) and how datatypes relate to computations. We
will consider only product and functional types, because sum types are completely
straightforward5. This will allow a comparison with cartesian closed categories (ccc)
and partial cartesian closed categories (pccc).

The standard requirement on a category for interpreting terms with any finite
number of variables is that it must have finite products, so that the interpretation [[f ]]
of a function symbol f of arity τ → τ is a morphism from [[×(τ )]] (i.e. [[τ1]]×. . .×[[τn]])
to [[τ ]] and similarly the interpretation of a well-formed term x1: τ1, . . . , xn: τn ` e: τ
is a morphism from [[×(τ )]] to [[τ ]].

According to the view of “programs as functions from values to computations”,
products should be taken in C, since a value of type A×B is a pair of values one of
type A and the other of type B, even though the natural category for interpreting
programs is CT . However, products are not enough to extend the interpretation to
terms with more than one free variable, because we must be able to take a pair
value-computation or computation-computation and turn it into a computation of
a pair.

Example 3.1 Let g2: τ1 → Tτ2 and and g: τ1 × τ2 → Tτ be the interpretations of
x1: τ1 ` e2: τ2 and x1: τ1, x2: τ2 ` e: τ respectivelly. The problem with terms having
more than one free variable (and its solution) becomes apparent if we try to interpret
x1: τ1 ` (let x2=e2 in e): τ , when both x1 and x2 are free in e.

If T were IdC, then [[x1: τ1 ` (let x2=e2 in e): τ ]] would be 〈idτ1 , g2〉; g. In the
general case, Table 1 says that ; above is indeed composition in the Kleisli category,
therefore 〈idτ1 , g2〉; g becomes 〈idτ1 , g2〉;Tg;µτ . But in 〈idτ1 , g2〉;Tg;µτ there is a
type mismatch, since the codomain of 〈idτ1 , g2〉 is τ1 × Tτ2, while the domain of
Tg is T (τ1 × τ2). To get around this we require T to have a tensorial strength
tA,B:A × TB → T (A × B) (see below), so that x1: τ1 ` (let x2=e2 in e): τ will be
interpreted by 〈idτ1 , g2〉; tτ1,τ2 ;Tg;µτ .

Similarly for interpreting x: τ ` f(e1, e2): τ
′, we need a natural transformation

ψA,B : (TA× TB)→ T (A× B) (see Definition 3.4), which given a pair of programs
returns a program computing a pair. More precisely, let gi: τ → Tτi be the inter-
pretation of x: τ ` ei: τi, then [[x: τ ` f(e1, e2): τ

′]] is 〈g1, g2〉;ψτ1,τ2;T [[f ]];µ.

Definition 3.2 Let C be a category with finite products, and rA, αA,B,C and cA,B be
the natural isomorphisms:

(1× A)
r
→ A , (A× B)× C

α
→ A× (B × C) , (A× B)

c
→ (B × A)

A computational cartesian model over C is a computational model (T, η, µ) over
C together with a tensorial strength tA,B: (A×TB)→ T (A×B) of T , i.e. a natural

5coproducts are preserved by the inclusion of C into the Kleisli category CT
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transformation s.t.

1× TA
t1,A
> T (1× A)

@
@

@
@

@

rTA

R

TA
∨

TrA

(A×B)× TC
tA×B,C

> T ((A×B)× C)

A× (B × TC)

αA,B,TC

∨ idA × tB,C
> A× T (B × C)

tA,B×C
> T (A× (B × C))

∨

TαA,B,C

satisfying the following diagrams:

A×B
idA×B

> A× B

A× TB

idA × ηB

∨ tA,B
> T (A×B)

∨

ηA×B

A× T 2B

idA × µB

∧

tA,TB
> T (A× TB)

T tA,B
> T 2(A× B)

∧

µA×B

Remark 3.3 In general the tensorial strength t has to be given as an extra parameter
for models. However, t is uniquely determined (but it may not exists) by T and
the cartesian structure on C, when C has enough points, i.e. if f, g:A → B, then
f = g ←→ (∀h: 1→ A.h; f = h; g).

The diagrams above are not new, they are all in [Koc70b], where a one-one corre-
spondence is established between functorial and tensorial strengths 6:

• the first two diagrams, saying that t is a tensorial strength of T , are (1.7) and
(1.8) in [Koc70b]. By Theorem 1.3 in [Koc70b] t induces a functorial strength
of T making T a C-enriched (also called strong) functor.

• the last two diagrams say that η and µ are natural transformations between
suitable C-enriched functors, namely η: IdC

.
→ T and µ:T 2 .

→ T (see Re-
mark 1.5 in [Koc70b]).

6If V is a monoidal closed category, then a functorial strength of an endofunctor T on V

is a natural transformation stA,B : BA → TBTA making T a V -enriched functor. Intuitively st
internalizes the action of T on morphisms.
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Definition 3.4 The tensorial strength t induces a monoidal structure, i.e. a
natural transformation ψA,B : (TA× TB)→ T (A×B) and a map ψ1: 1→ T1

ψA,B = cTA,TB; tTB,A;T (cTB,A; tA,B);µA×B , ψ1 = η1

satisfying certain diagrams (see [EK66]).

The morphism ψA,B : (TA×TB)→ T (A×B) has the correct domain and codomain
to interpret the pairing of a computation of type A with one of type B (obtained
by first evaluating the first argument and then the second), while the morphism
ψ1 interprets the computation of 〈〉 (the empty tuple). There is also a dual notion
of pairing, namely ψ̃A,B = cA,B;ψB,A;TcB,A, which amounts to first evaluating the
second argument and then the first (see (2.1) and (2.2) at page 14 in [Koc70b]).

The categorical interpretation of functional types in a computational model re-
sembles that of partial function spaces in a pccc (see [Ros86, Mog86]):

Definition 3.5 Let C be a category with finite products. A λc-model over C is a
computational cartesian model (T, η, µ, t) over C together with a family of universal
arrows evalTA,B: (BA

T ×A)→ TB (in C) s.t. for any f : (C ×A)→ TB there exists a
unique h:C → BA

T (denoted by ΛT
A,B,C(f)) making the following diagram commute

BA
T × A

evalTA,B
> TB

�
�

�
�

�

f

�

C × A

h× idA

∧

A more suggestive way of saying the same thing is that there is a natural isomorphism
CT (C × A,B) ∼= C(C,BA

T ), where A, B and C vary over Cop, CT and C respectively.
The simple language introduced in Section 2.1 and its interpretation can be

extended according to the additional structure available in a cartesian computational
model (T, η, µ, t) on a category C with finite products:

• there is a new type 1, interpreted by the terminal object of C, and a new type
constructor τ1 × τ2 interpreted by the product of [[τ1]] and [[τ2]] in C

• the interpretation of a well-formed term Γ ` e: τ , where Γ is a sequence
x1: τ1, . . . , xn: τn, is a morphism from [[Γ]] (i.e. [[τ1]] × . . . × [[τn]]) to [[τ ]] in CT
(see Table 3)7.

In a λc-model the interpretation can be extended to functional types and λ-terms,
namely: the type τ1 ⇀ τ2 is interpreted by [[τ2]]

[[τ1]]
T , while abstraction and application

are interpreted as in Table 4.

7We do not have to consider nonunary functions explicitly, because in a language with products
they can be treated as unary functions from a product type.
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RULE SYNTAX SEMANTICS

var
x1: τ1, . . . , xn: τn ` xi: τi = πn

i ; η[[τi]]

let
Γ ` e1: τ1 = g1

Γ, x1: τ1 ` e2: τ2 = g2

Γ ` (let x1=e1 in e2): τ2 = 〈id[[Γ]], g1〉; t[[Γ]],[[τ1]];Tg2;µ[[τ2]]

∗
Γ ` ∗: 1 = ![[Γ]]; η1

where !A is the only morphism from A to 1

〈〉
Γ ` e1: τ1 = g1

Γ ` e2: τ2 = g2

Γ ` 〈e1, e2〉: τ1 × τ2 = 〈g1, g2〉;ψ[[τ1]],[[τ2]]

πi

Γ ` e: τ1 × τ2 = g

Γ ` πi(e): τ1 = g;T (πi)

Table 3: Terms and their interpretation

RULE SYNTAX SEMANTICS

λ

Γ, x1: τ1 ` e2: τ2 = g

Γ ` (λx1: τ1.e2): τ1 ⇀ τ2 = ΛT
[[τ1]],[[τ2]],[[Γ]](g); η[[τ1⇀τ2]]

app
Γ ` e1: τ1 = g1

Γ ` e: τ1 ⇀ τ2 = g

Γ ` e(e1): τ2 = 〈g, g1〉; app[[τ1]],[[τ2]]

where appA,B:T (BA
T )× TA→ TB is ψBA

T
,A;T (evalTA,B);µB

Table 4: λ-terms and their interpretation
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3.1 Examples

In this section we show few general ways of constructing computational models from
simpler ones. Each of them amounts to adding a new feature to computations.

Example 3.6 Let (T, η, µ, t) be a cartesian computational model on a topos (for
simplicity Set), then the following are cartesian computational models:

• Let S be inhabited (i.e. 1 � S), then the model (TS, η
S, µS, tS) of T -computations

with side-effects in S is

TS( ) = ( × S)S

T

ηS
A = ΛT

S,(A×S),A(ηA×S)

µS
A = ΛT

S,(A×S),(T 2
S
A)(evalTS,(TSA×S);T (evalTS,(A×S));µA×S)

tS
A,B = ΛT

S,(A×S),(A×TSB)(αA,TSB,S ; (idA × evalTS,(B×S)); tA,B×S;T (α−1
A,B,S))

• the model (TE, η
E, µE, tE) of T -computations with exceptions in E is

TE( ) = T ( + E)
ηE

A = in1; ηA+E

µE
A = T ([idT (A+E), in2; ηA+E]);µA+E

tE
A,B = tA,B+E ;T (dA,B,E; [idA×B, π2])

where A
in1→ A+B

in2← B is a coproduct diagram,
[f, g]:A+B → C is the mediating morphism of f :A→ C and g:B → C, i.e.
the unique h:A+B → C s.t. f = in1; h and g = in2; h,

dA,B,C is the natural isomorphism A×(B+C)
d
→ (A×B)+(A×C) expressing

commutativity of coproducts w.r.t. products8

These constructions provide basic building blocks, that can be combined together
for instance:

• TES( ) = T (( × S) + E)S and TSE( ) = T (( + E)× S)S combine side-effects
and exceptions. In the former the store is lost, when an exception is raised,
while in the latter it is retained.

• If T is the monad of R-continuations9, i.e. T ( ) = RR( )
, then the monad

TS(A) = RS×(RA×S) combines continuation and side-effects as done when giving
the denotational semantics of imperative languages with goto.

Monad-morphisms provide a simple tool for relating two computational models:

Definition 3.7
Given two cartesian computational models (T, ηT , µT , tT ) and (S, ηS, µS, tS) over the

8which holds in cartesian closed categories, but not in general
9It is not clear what properties R must have in order for the monad T to satisfy the equalizing

requirement. Intuitively one expects that the category C must have enough R-observations, i.e.
f = g ←→ (∀h: B → R.f ; h = g; h) for any f, g: A→ B
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same category, a monad-morphism from the first to the second model is a natural
transformation σ:T

.
→ S s.t. :

A
ηT

A > TA <
µT

A T 2A A× TB
tT
A,B
> T (A× B)

A

idA

∨

ηS
A

> TA

σA

∨
<

µS
A

T 2A

∨

σ2
A

A× SB

A× σB

∨

tS
A,B

> S(A× B)
∨

σA×B

where σ2 is the horizontal composition, i.e. σ2
A = T (σA); σSA = σTA;S(σA).

Example 3.8 For each of the computational model constructions defined above there
is a monad morphism from T to it, namely:

• σS:T
.
→ TS is the natural transformation s.t. σS

A is ΛT
S,A×S,T (A)(tA,S)

• σE:T
.
→ TE is the natural transformation s.t. σE

A is T (inA,E
1 )

Monad-morphisms are not adequate for relating λc-models, because the natural
transformation σ cannot be extended to functional types. Instead, one can use
a notion of logical relation between λc-models (see [Mog88] for various notions of
logical relation between λp-models).

4 The λc-calculus

In this section we present a formal system, the λc-calculus, based on many sorted
intuitionistic logic with two atomic predicates, existence and equivalence.

We claim that the formal system is sound and complete w.r.t. λc-models (over
toposes). Soundness amounts to showing that the inference rules are admissible in
any λc-model, while completeness amounts to showing that any λc-theory has an
initial model (given by a term-model construction).

The inference rules of the λc-calculus are for deriving sequents Γ.∆ ` A, where Γ
is a sequence of type assignments x: τ , ∆ is a set of formulas and A is a formula s.t.
the free variables FV(∆, A) of ∆ and A are included in the declared variables DV(Γ)
of Γ. The intuitive meaning of Γ.∆ ` A is: “for all variables in Γ, if all formulas in ∆
are true, then A is true”. We have intentionally left the set of formulas unspecified,
since it depends on what class of models one is interested in. There is a minimal
and maximal choice for the set of formulas:

• if the language has to be interpreted in any λc-model, then only atomic for-
mulas (including e ≡ e′: τ and e ↓ τ) are allowed

• if the language has to be interpreted only in λc-model over a topos, then all
higher order formulas are allowed.

13



The inference rules are partitioned as follows:

• general rules for (higher order) intuitionistic logic, where variables range over
values, while terms denotes computations (see Table 5 for the most relevant
rules)10

• the basic inference rules for computational models (see Table 6)

• the inference rules for product types (see Table 7)

• the inference rules for functional types (see Table 8)

Remark 4.1 A comparison among λc-, λv- and λp-calculus shows that:

• the λv-calculus proves less equivalences between λ-terms, e.g. (λx.x)(yz) ≡
(yz) is provable in the λc- but not in the λv-calculus

• the λp-calculus proves more equivalences between λ-terms, e.g. (λx.yz)(yz) ≡
(yz) is provable in the λp- but not in the λc-calculus, because y can be a
procedure, which modifies the store (e.g. by increasing the value contained in
a local static variable) each time it is executed.

• a λ-term e has a value in the λc-calculus, i.e. e is provably equivalent to some
value (either a variable or a λ-abstraction), iff e has a value in the λv-calculus
(λp-calculus)

5 Untyped λc-models

It is well-known that a categorical model for the untyped λ-calculus is a reflexive
object DD ∼= D in a cartesian closed category (see [Sco80, Bar82]). In a λc-model
there are two analogs for a reflexive object: V V

T
∼= V and NTN

T
∼= N (see [Ong88]

for similar definitions in the context of partial cartesian closed categories).
In the first case we have a model of call-by-value. In fact the elements of V

correspond to functions from values to computations (as V V
T stands for V TV ), and

therefore an element can be applied to a computation e only after e has been evalu-
ated . In the second case we have a model of call-by-name, since the elements of N
correspond to functions from computations to computations.

The call-by-value and call-by-name interpretations are defined by induction on
the derivation of the untyped λ-term x1, . . . , xn ` e (with let):

• Let G:V V
T → V be an isomorphism with inverse F , then the call-by-value

interpretation of x1, . . . , xn ` e is a morphism from V n to TV (see Table 9),
because free variables range over values.

10The general rules of sequent calculus (in [Sza69]), more precisely those for substitution and
quantifiers, have to be modified slightly, because variables range over values. These modifications
are similar to those introduced in the logic of partial terms (see Section 2.4 in [Mog88]).
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We write [x: = e] for the substitution of x with e in .

E.x
Γ.∆ ` x ↓ τ

subst
Γ.∆ ` e ↓ τ Γ, x: τ.∆ ` A

Γ.∆ ` A[x: = e]

≡ is an equivalence relation

congr
Γ.∆ ` e1 = e2: τ Γ.∆ ` A[x: = e1]

Γ.∆ ` A[x: = e2]

Table 5: General rules

We write (let x=e in e) for (let x1=e1 in (. . . (let xn=en in e) . . .)), where n is the lenght
of the sequence x (and e). In particular, (let ∅=∅ in e) stands for e.

id
Γ.∆ ` (let x=e in x) = e: τ

comp
Γ.∆ ` (let x2=(let x1=e1 in e2) in e) = (let x1=e1 in (let x2=e2 in e)): τ

x1 6∈ FV(e)

let.ξ
Γ.∆ ` e1 = e′1: τ Γ, x: τ.∆ ` e2 = e′2: τ

′

Γ.∆ ` (letx=e1 in e2) = (let x=e′1 in e′2): τ
′

let.β
Γ.∆ ` (let x1=x2 in e) = e[x1: = x2]: τ

let.f
Γ.∆ ` f(e) = (let x=e in f(x)): τ

E.[ ]
Γ.∆ ` [e] ↓ Tτ

T.ξ
Γ.∆ ` e = e′: τ

Γ.∆ ` [e] = [e′]:Tτ

let.µ
Γ.∆ ` µ(e) = (let x=e inµ(x)): τ

T.β
Γ.∆ ` µ([e]) = e: τ

T.η
Γ.∆ ` [µ(x)] = x:Tτ

Γ.∆ ` e ↓ τ and Γ.∆ ` [e] = (let x=e in [x]): τ are interderivable

Table 6: rules for let and computational types
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E.∗
Γ.∆ ` ∗ ↓ 1

1.η
Γ.∆ ` ∗ = x: 1

E.〈 〉
Γ.∆ ` 〈x1, x2〉 ↓ τ1 × τ2

let.〈 〉
Γ.∆ ` 〈e1, e2〉 = (let x1, x2=e1, e2 in 〈x1, x2〉): τ1 × τ2

E.πi
Γ.∆ ` πi(x) ↓ τi

let.πi
Γ.∆ ` πi(e1, e2) = (let x1, x2=e1, e2 inπi(x1, x2)): τi

×.β
Γ.∆ ` πi(〈x1, x2〉) = xi: τi

×.η
Γ.∆ ` 〈π1(x), π2(x)〉 = x: τ1 × τ2

Table 7: rules for unit and product types

ξ
Γ, x: τ.∆ ` e = e′: τ ′

Γ.∆ ` (λx: τ.e) = (λx: τ.e′): τ ⇀ τ ′
x 6∈ FV(∆)

E.λ
Γ.∆ ` (λx: τ1.e) ↓ τ1 ⇀ τ2

let.app
Γ.∆ ` e(e1) = (let x, x1=e, e1 in x(x1)): τ2

β
Γ.∆ ` (λx1: τ1.e2)(x1) = e2: τ2

η
Γ.∆ ` (λx1: τ1.x(x1)) = x: τ1 ⇀ τ2

Table 8: rules for functional types
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Application call-by-value appv:TV × TV → TV is strict in both arguments:

appv = ψV,V ;T ((F × idV ); evalTV,V );µV

• Let G:NTN
T → N be an isomorphism with inverse F , then the call-by-name in-

terpretation of x1, . . . , xn ` e is a morphism from (TN)n to TN (see Table 10),
because free variables range over computations.

Application call-by-name appn:TN×TN → TN is strict in the first argument
but lazy on the second:

appn = cTN,TN ; tTN,N ;T (cTN,N);T ((F × idTN ); evalTTN,N);µN

Remark 5.1 In call-by-value (let x=e in e′) is equivalent to (λx.e′)(e), but in call-
by-name there is no way of expressing (let x=e in e′) in terms of application and
abstraction only, because e is evaluated before binding its value to x (see [Ong88]
for an analysis of call-by-name for partial computations).

We think that it is desirable (and very natural) for a programming language to
have a let, which forces evaluation of an expression. We conjecture that the λβ-
calculus (i.e. Plotkin’s call-by-name λ-calculus) proves exactly those equivalences
between untyped λ-terms without let that are true in any model of call-by-name
NTN

T
∼= N11.

6 Reduction

The syntactic aspects of the λc-calculus can be studied according to the same pattern
used for the λ-calculus and the λv-calculus (see Chapter 3 of [Bar84] and [Plo75]).
For simplicity we consider only untyped λ-terms with let-constructor.

In order to define the notions of reduction we need to distinguish between two
kind of terms: values and nonvalues. The notion of value is that introduced in
[Plo75] and gives a sufficient (syntactic) criteria for a term to denote a value.

Definition 6.1 (Basics)

• Terms, Values and NonValues are the sets defined by the following bnfs

e ∈ Terms: : = v|nv

v ∈ Values: : = x|(λx.e)

nv ∈ NonValues: : = (let x=e in e′)|e(e′)

• A binary relation → over Terms, is compatible iff
for all M → N and P ∈ Terms

11This is obviously true if we allow NTN
T � N .
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RULE SYNTAX SEMANTICS

var
x1, . . . , xn ` xi = πn

i ; ηV

let
x ` e1 = g1

x, x ` e2 = g2

x ` (let x=e1 in e2) = 〈idV n , g1〉; tV n,V ;Tg2;µV

λ

x, x ` e = g

x ` (λx.e) = ΛT
V,V,V n(g);G; ηV V

T

app
x ` e1 = g1

x ` e = g

x ` e(e1) = 〈g, g1〉; appv

Table 9: call-by-value interpretation

RULE SYNTAX SEMANTICS

var
x1, . . . , xn ` xi = πn

i

let
x ` e1 = g1

x, x ` e2 = g2

x ` (let x=e1 in e2) = 〈id(TN)n , g1〉; t(TN)n,N ;T (id(TN)n × ηN);Tg2;µN

λ

x, x ` e = g

x ` (λx.e) = ΛT
TN,N,(TN)n(g);G; ηNTN

T

app
x ` e1 = g1

x ` e = g

x ` e(e1) = 〈g, g1〉; appn

Table 10: call-by-name interpretation
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– (λx.M)→ (λx.N)

– M(P )→ N(P ) and P (M)→ P (N)

– (let x=M inP )→ (let x=N inP ) and (let x=P inM)→ (let x=P inN)

• a notion of reduction R, i.e. a binary relation over Terms, induces the
following binary relations over Terms

– one-step R-reduction →R, i.e. the compatible closure of R

– R-reduction ⇒R, i.e. the reflexive and transitive closure of →R

– R-convertibility =R, i.e. the symmetric and transitive closure of ⇒R

We introduce three notions of reductions: let, βv and ηv. The notion βv was
first introduced in [Plo75] as the call-by-value analog of β, while let is a new notion,
which gives to the λc-calculus extra power w.r.t. the λv-calculus.

Definition 6.2 (Notions of reduction)

• βv is the notion of reduction > s.t. (λx.e)v > e[x: = v]

• ηv is the notion of reduction > s.t. (λx.v(x)) > v if x 6∈ FV (v)

• let is the notion of reduction > defined by the following clauses:

id (let x=e in x) > e

comp (let x2=(let x1=e1 in e2) in e) > (letx1=e1 in (let x2=e2 in e))

letv (let x=v in e) > e[x: = v]

let.1 nv(e) > (let x=nv in x(e))

let.2 v(nv) > (let x=nv in v(x))

Remark 6.3 The last two clauses of let together with βv provide mutually exclusive
clauses for reducing an application e1(e2), namely:

• if e1 ∈ NonValues, then e1(e2) > (let x=e1 in x(e2)) by let.1

• else if e2 ∈ NonValues, then e1(e2) > (let x=e2 in e1(x)) by let.2

• else if e1 is (λx.e), then e1(e2) > e[x: = e2] by βv

• else we can only try to reduce the subterm e2

The clause let.2 is particularly important in conjunction with βv, since it reduces a
β-redex (λx.e)(nv), which is not a βv-redex, to a βv-redex in the body of a let.

Example 6.4 We show how let and βv combined together reduce (λx.x)(yz) to (yz),
while βv alone cannot:

• (λx.x)(yz) > (let x=(yz) in (λx.x)(x)) by let.2
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• (let x=(yz) in (λx.x)(x)) > (let x=(yz) inx) by βv

• (let x=(yz) inx) > (yz) by id

It is easy to give a syntactic characterization of let- and letβv-normal forms:

Proposition 6.5 The set NF of let-normal forms is given by the following bnfs:

e ∈ NF: : = v|v1(v2)|(let x=v1(v2) in e) provided e is not x

v ∈ NFValues: : = x|(λx.e)

While the set βvNF of letβv-normal forms is given by the following bnfs:

e ∈ βvNF: : = v|x1(v2)|(let x=x1(v2) in e) provided e is not x

v ∈ βvNFValues: : = x|(λx.e)

The following lemma is the basis for characterizing equivalence and existence in
the λc-calculus in terms of reduction.

Lemma 6.6 (Normalization and Commutativity)

• let-reduction is normalizing, i.e. every term reduces to a let-normal form.

• let-, βv- and ηv-reduction commute with each other, i.e. if M ⇒R M1 and
M ⇒S M2, then there exists M ′ s.t. M1 ⇒S M

′ and M2 ⇒R M ′, where R and
S can be let, βv or ηv.

• ηv-reduction can be postponed after let- and βv-reduction, i.e. if M ⇒ηv
N and

N ⇒R Q, then there exists P s.t. M ⇒R P and P ⇒ηv
Q, where R can be

either let or βv.

Remark 6.7 Since let-conversion is decidable, one could consider terms up to let-
conversion, and define βv and ηv as notions of reduction on NF (the set of let-normal
forms).

The study of equational presentation and reduction for the λp-calculus in Chap-
ters 7 and 8 of [Mog88] is far more complicated than here, because a proper analog
of let-reduction is lacking (although there is an analog of let-conversion). We think
that these complications are due to the non-equational axiomatization of partial
computations in the λc-calculus, in particular the axiom saying that two partial
computations e1 and e2 are equivalent iff (e1 ↓ ∨e2 ↓)→ (e1 ≡ e2).

Theorem 6.8 (Syntactic characterization of λc-calculus)

• two terms are provably equivalent in the λc-calculus iff
they letβvηv-reduce to a common term

• a term can be proved to exist in the λc-calculus iff
it letβvηv-reduces to a value.
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Conclusions and further research

In this paper we have presented an abstract approach to computations (based on
category theory), which achieves the following objectives:

• it provides a general framework for reasoning about programs, rather than a
collection of similar, but not clearly related, calculi based on an operational
(or denotational) semantic;

• it improves calculi inspired by operational semantics (like the λv-calculus), by
deriving more correct equivalences between programs.

A comparison between the categorical semantic of computations and that of
linear logic based on monoidal closed categories (see [See87]) shows that they lead to
orthogonal (and compatible) modifications of the notion of cartesian closed category.
In fact, in the former the monad IdC is replaced by another monad T , while in the
latter the cartesian product × is replaced by a tensor product ⊗. In our opinion
this means that proof and program are rather unrelated notions, although both of
them can be understood in terms of functions. Moreover, we expect categorical
datatypes suggested by logic to provide a more fine-grained type system (e.g. the
only procedures of a linear functional type are those where the formal parameter
is used exactly once), but without changing the qualitative nature of computations
(e.g. partial, nondeterministic, and so on), which is given by T . A different view is
suggested in [Gir88], based on the paradigm: “proofs as actions”.

The λc-calculus open the possibility to study axiomatically specific notions of
computation, e.g. nondeterminism and parallelism, and their relations. For instance,
an investigation of the relation between direct and continuation semantics might be
carried out in full generality, without any commitment to a specific language. In
the λc-calculus there is a very simple (and natural) definition of equality, namely
e1 = e2 iff both e1 and e2 exist and they are equivalent, which can be safely used at
compile time to check whether two program units share a common component, as
required for checking a sharing constrain in ML (see [HMT87]). While up to now
the correctness of a type-checking has to be proved by looking at the details of the
operational semantics.
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