
A Categorical Analysis of Multi-Level Languages (Extended Abstract)

Zine El-Abidine Benaissa(1), Eugenio Moggi(2), Walid Taha(1), Tim Sheard(1)
(1) Oregon Graduate Inst., Portland, OR, USA (2) DISI, Univ. di Genova, Genova, Italy

E.Moggi, DISI, Univ. di Genova, v. Dodecaneso 35, 16146 Genova, Italy
tel: +39-010-353 6629, fax: +39-010-353 6699, e-mail: moggi@disi.unige.it

Abstract. We propose categorical models for λ©,
λ2, MetaML, and AIM. First, we focus on the under-
lying logical modalities and the interactions between
them, then we investigate the interactions between log-
ical modalities and computational monads. We give
two examples of categorical model: one simpler but
with some limitations, the other more complex but
able to model all features of AIM.

Keywords: categorical models, semantics, type sys-
tems (multi-level typed calculi), combination of logics
(modal and temporal).

1 Introduction

This paper proposes a categorical semantics for multi-
level languages like λ©, λ2, MetaML and AIM (see [4,
5, 12, 11]). Developing such a semantics has a number
of benefits, including:

• Suggesting simplifications and extensions. We have
already simplified the type system of MetaML and
proposed an extension with closed code types called
AIM (see [11]).

• Validating equational reasoning principles. In this
paper we have not established any computational
adequacy results, and therefore we cannot formally
claim that equality in a model entails observational
equivalence (where code inspection is not among the
allowed observations). However, we expect such re-
sults to hold, and their proof should exploit Kripke
logical relations (see [10]).

• Explaining multi-level languages in terms of more
primitive concepts, namely logical modalities (in the
sense that the modalities are characterized by uni-
versal properties) and computational monads.

Multi-level languages provide generic constructs for the
manipulation of code fragments. They can be viewed

as instances of two-level languages, in which the object
language is the multi-level language itself. We study
four multi-level languages:

• λ2 [5], proving constructs for the construction and
the execution of closed code. Such a language is
useful in machine-code generation.

• λ© [4], providing constructs for manipulating open
code fragments. Such a language is useful in high-
level program generation and inlining.

• MetaML [13, 12], providing an additional construct
for the execution of such fragments, and cross-stage
persistence. Cross-stage persistence is the ability to
use at one level a variable declared at a lower level.
Both features are important for pragmatic reasons.

• AIM [11], revising and extending MetaML with a
closed code type for expressivity and modularity.

λ2 and λ© already have clean, logical foundations (see
[4, 5, 7, 6]): there is a Curry-Howard isomorphism
between λ© and linear time temporal logic, and be-
tween λ2 and modal logic S4. MetaML had no such
foundations, nor the formal hygiene they often pro-
mote. Indeed, MetaML had a complex type system
and a number of ad hoc restrictions (see [12]), which
demanded deeper investigation and possibly simplifi-
cation. Starting from the categorical account of two-
level languages [9], we arrive at a number of results for
multi-level languages:

• We analyze, from a categorical point of view, the
logical modalities and how they interact. Borrow-
ing ideas from the work by Benton and others on
categorical models for linear logic (and more specif-
ically the adjoint calculus)1, we give a definition of
what constitutes a categorical model for simply typed
multi-level languages, namely λ2, λ©, and AIM,
and consider some examples.

1We replace the notion of symmetric monoidal adjunction

with FP-adjunction.

1

• We give the interpretation (denotational semantics)
of AIM without cross-stage persistence nor compu-
tational effects in an AIM-model.

• We investigate the interaction between modalities
and computational monads, since computational ef-
fects are a pervasive feature of programming lan-
guages. In particular, we refine the interpretation of
AIM in the presence of computational effects, and
discuss the subtleties involved in the interpretation
of the run-with construct.

Notation 1.1 We introduce notation and terminology
used throughout the paper.

• If C is a category, we write |C| for the set of objects,
C(A,B) for the hom-set of maps from A to B.

• We write GF for G ◦ F and GFA for G(FA), when
F and G are functors/functions and A an object.

• We write arrow ⊂
- for a full and faithful functor,

and F a G for an adjunction, where F is the left-
adjoint and G the right-adjoint.

• We write (xn|n ∈ N) for an infinite sequence, and
(xi|i ∈ m) for a finite sequence of length m (we
identify the natural number m with the set of its
predecessors). Sometimes we write xi for (xi|i ∈ m)
when m is clear from the context. If s is a sequence
and x an element, we write x: : s for the sequence
obtained by adding x in front of s.

• We write n+ for n+ 1 and n− for n− 1.

• We use Haskell’s notation do{xi ← ei; e} and ret e

for monads, instead of the notation let xi ⇐ ei in e

and [e] from [8]. If op:
∏

iAi → MB, we write
op:

∏

i MAi → MB for its monadic extension,

i.e. op(ui)
∆
= do{xi ← ui; op(xi)}.

2 Multi-Level Languages

We begin by describing the syntax and type systems
of the four multi-level languages investigated in this
paper, i.e. λ2, λ©, MetaML and AIM. We adopt the
following unified notation for types:

τ ∈ T : : = b | t1 → t2 | 〈t〉 | [t]

i.e. base types, functions, open code fragments, and
closed code fragments.

λ2 of [5] features function and closed code types.
Typing judgments have the form ∆; Γ ` e: t, where
∆,Γ ≡ {xi: ti|i ∈ m}. The syntax for λ2 is as follows:

e ∈ E: : = c | x | λx.e | e1e2 | box e | let box x = e1 in e2

The type system of λ2 is given in Figure 1.

λ©, MetaML and AIM feature function and open code
types. Typing judgments have the form Γ ` e: tn,
where Γ ≡ {xi: t

ni

i |i ∈ m} and n is a natural called the
level of the term. The syntax for λ© is as follows:

e ∈ E: : = c | x | λx.e | e1e2 | 〈e〉 | ˜e

The first four constructs are the standard ones in
a λ-calculus with constants. Bracket and Escape
(called Next and Prev in [4]) allow the construction
and combination of open code. Brackets construct
code, and Escapes splice a code fragment into the con-
text a bigger code fragment. A term such as (fn x

=> <(~x,~x)>) <5> yields <(5,5)> when executed.
The rules for constants, variables, and applications are
essentially standard.

MetaML [13, 12] uses a more relaxed type rule for vari-
ables than λ©, in that variables can be bound at a
level lower than the level where they are used. This is
called cross-stage persistence. Furthermore, MetaML
extends the syntax of λ© with

e ∈ E: : = . . . | run e

Run allows the execution of a code fragment. For ex-
ample, run <3+4> is well-typed and evaluates to 7.

AIM [11] extends MetaML with an analog of the Box
type of λ2 yielding a more expressive language, and
yet has a simpler type judgment than MetaML2. The
syntax of AIM extends that of MetaML as follows:

e ∈ E: : = . . . | run e with {xi = ei|i ∈ m} |
box e with {xi = ei|i ∈ m} | unbox e

Run-With generalizes Run of MetaML, in that it al-
lows the use of additional variables xi in the body of
e if they satisfy certain typing requirements.

The type systems of λ©, MetaML and AIM are given
in Figure 2, 3 and 4, while the big-step operational
semantics of AIM and its sub-languages is in Figure 5.

Now that the basic multi-level constructs have been
introduced, we illustrate the need for both open and
closed code types in staged programming.

2The presentation of MetaML in this paper uses the simpler

type judgment of AIM, for reasons of space.

Uses of open code: Taylor Series. Consider gen-
erating code for an embedded system (e.g. the con-
troller of a robot) that requires computing the sin

function using Taylor series polynomial around 0:

n
∑

k=0

−1k x2k+1

(2k + 1)!
= x−

x3

3!
+
x5

5!
...

First we write a function to add the first n coefficients:

val sinN : int -> real -> real

If we determine n at the time of generating our pro-
gram, Brackets and Escapes can be used to derive a
similar function that manipulates “representations” of
x instead of the value of x itself, and where the result
is a representation of the desired polynomial:

val sinN : int -> <real> -> <real>

To construct the definition of the desired code frag-
ment, we need the following construction:

fun sinN’ n = <fn x => ~(sinN n <x>)>;

: int -> <real -> real>

which allows us to derive the expansion for any n:

val sinN3 = sinN’ 3;

= <(fn a =>

let val b = a * a; val c = b * a;

val d = b * c; val e = b * d

in a/1.0 + c/-6.0

+ d/120.0 + e/-5040.0

end)> : <real -> real>

where b is bound to x2, c to x3, d to x5, and so on.
In this code, the factorial expressions have been pre-
computed, and fairly efficient code was generated to
perform this computation. Thus, the construction of
the desired expression is performed symbolically, once
and for all, before we know the value of x.

To achieve this kind of “unfolding” (“symbolic compu-
tation”, or “reduction under lambda”), it is necessary
to apply sinN to the open code fragment <x>, where
x has not yet been bound, and is therefore still a free
variable. Such unfolding cannot be achieved in λ2.

To execute sinN3 we use the Run construct:

val sin = (run sinN3) : real -> real

Caveat: Typing Run Unfortunately, typing the
above use of Run is problematic. In fact, typing the
use of Run on a code fragment constructed in a pre-
vious declaration is problematic, even in the trivial
example

val one = let val a = <1> in run a end

because, using the standard interpretation for let, it is
the same as typing:

val one = (fn a => run a) <1>

But (fn a => run a) : <’a> -> ’a is not derivable
in MetaML’s type system, and for good reason: An
open code fragment, in general, cannot be executed.
One solution is to use (for type checking purposes
only) an interpretation of the let-statement using di-
rect substitution. This would make the first declara-
tion for one typable, but impairs the efficiency of type-
checking. In the existing implementation of MetaML,
ad hoc solutions were used to overcome this problem
for top-level declarations (See [13]).

Solution: Closed Code AIM’s type system ad-
dresses the cause of the typing problem described
above: to ensure that a code fragment can be executed,
we ensure that it is closed. This is achieved by adding
the Box type to MetaML. From the programmer’s
viewpoint the main new concept is that all code frag-
ments and functions used in the construction of a new
closed fragment, must be Boxed to ensure that they
do not have free variables. In the trivial example of
let-binding, we simply rewrite our expression as:

val one = let val a = box <1>

in run (unbox b) with {b=a} end

In our example, the basic function must have the type:

val sinM : [int -> <real> -> <real>]

This is easily accomplished by surrounding the defini-
tions of the symbolic sinN by box (...). Now, we can
describe the desired computation using the following
well-typed AIM terms:

val sinM’ = box fn n => <fn x => ~(s n <x>)>

with {s=sinM});

: [int -> <real -> real>]

val sin = run (unbox s) 3 with {s=sinM’}

: real -> real

3 Categorical Models

In this section we define what is a categorical model for
various multi-level languages, namely λ2, λ© and AIM
(see Definition 3.6, 3.8 and 3.10). At first we ignore
computational effects, and focus on the logical modal-
ities underpinning these languages. Previous work by

Davies and Pfenning has already established a corre-
spondence between closed code types and the necessity
modality of S4, and between open code types and the
next modality of linear time temporal logic. We show
that these modalities can be described in terms of FP-
adjunctions, and explain how they should interact to
provide a model for AIM.

Definition 3.1 D

G -
>�
F

C is an FP-adjunction

iff it is an adjunction in the 2-category of categories
with finite products and functors preserving them (or
equivalently it is an adjunction where the left adjoint
F preserves finite products).

Remark 3.2 We use the FP- prefix to indicate any
2-categorical notion (e.g. category, functor, monad,
adjunction) specialized to the 2-category introduced
above.

An FP-adjunction is a special case of a symmetric
monoidal adjunction, which has been used to give an
elegant definition of what is a categorical model for
intuitionistic linear logic (see [1, 2, 3]).

We recall some properties of FP-adjunctions (and FP-
functors), which will be exploited in the sequel.

Proposition 3.3 If C is a CCC and D
⊂

-
>�
F

C

is an FP-adjunction, then D is an exponential ideal of
C, i.e. Y X ∈ D (up to iso) for any Y ∈ D and X ∈ C.

Definition 3.4 An FP-functor F : C → D induces the
following simple C-indexed FP-category S: Cop → Cat

• |SX |
∆
= |D| and SX(A,B)

∆
= D(FX ×A,B).

• h◦Xg
∆
= h◦〈π1, g〉 ∈ SX (A,C), where g ∈ SX (A,B),

h ∈ SX(B,C) and π1: (FX) × A → FX is the first
projection. While the identity for A in SX is the
second projection π2:FX ×A→ A.

• substitution f∗:SX → SY along f ∈ C(Y,X) is given

by f∗(A)
∆
= A and f∗(g)

∆
= g ◦ (Ff × id).

S is called simple because the action on objects of the
substitution functor f∗ is the identity.

Proposition 3.5 The simple indexed category S of
Definition 3.4 has the following categorical structure:

• finite products, i.e.
∏

i∈m

SX (A,Bi) ∼= SX(A,
∏

i∈m

Bi)

• simple existential quantification ∃YA
∆
= FY ×A, i.e.

SX×Y (A,B) ∼= SX (∃YA,B)

• exponentials, i.e. SX(C ×A,B) ∼= SX(C,BA), pro-
vided D is CCC

• simple universal quantification ∀Y A
∆
= AFY , i.e.

SX×Y (A,B) ∼= SX (A, ∀Y B), provided D is CCC

• simple comprehension, i.e. SX(1, A) ∼= C(X,GA),
provided F a G is an FP-adjunction.

Definition 3.6 A λ2-model is given by a CCC D and

an FP-adjunction D

G -
>�
F

C.

Remark 3.7 The pattern for interpreting λ2 is to
interpret a type t by an object [[t]] of D, namely

[[[t]]] = FG[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

and a term {xi: ti|i ∈ m}; {xj : tj |j ∈ n} `2 e: t is by a

map in SX (
∏

j∈n[[tj]], [[t]]) where X
∆
= (

∏

i∈m G[[ti]]).

The FP-adjunction induces an FP-comonad B = FG

on D. B is all that is needed for interpreting λ2. In
fact, the objects of C relevant for the interpretation
have the form GA, and so we could take C to be the
co-Kleisli category DB for B, which is always a CCC
(however in a λ2-model C is not required to be a CCC).

The separation of typing contexts in two parts is not
essential. In fact, there is a bijection (modulo semantic
equality) between terms of the form ∆, x: t; Γ `2 e1: t

′

and those of the form ∆;x: [t],Γ `2 e2: t
′ given by

e1 7→ let box x = x in e1 e2 7→ e2[x: = box x]

By analogy with the adjoint calculus, one may consider
a variant of λ2 in which the category C and context
separation have a more prominent role.

Definition 3.8 A λ©-model is given by a CCC D and

an FP-adjunction D
⊂

N -
>�
P

D.

Remark 3.9 The pattern for interpreting λ© is to
interpret a type t by an object [[t]] of D, namely

[[〈t〉]] = N[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

and a term {xi: t
ni

i |i ∈ m} `© e: tn by a map in

D(
∏

i∈m

Nni [[ti]],N
n[[t]]).

The assumption “N is full and faithful” ensures that
N preserves the whole CCC structure (see Proposi-
tion 3.3), therefore one may safely confuse Nn[[t1 → t2]]
with (Nn[[t2]])

N
n[[t1]] (formalizing Section 8 of [13]).

In AIM closed and open code types coexists, and so
the key point is to clarify how the modalities of λ2 and
λ© interact. The basic idea is that a model for AIM
is a λ2-model where the category D has the structure
of a λ©-model parameterized w.r.t. C. The precise
formulation uses the simple indexed category of Defi-
nition 3.4.

Definition 3.10 An AIM-model is given by a CCC

D, an FP-adjunction D

G -
>�
F

C, and a C-indexed

FP-adjunction S
⊂

N -
>�
P

S.

Remark 3.11 The above definition of an AIM-model
fails to capture cross-stage persistence. This can
be easily fixed by requiring a natural transformation
up:A → NA (satisfying some additional properties),
but we prefer not to include up in the definition of an
AIM-model (we will see also models without up).

The pattern for interpreting AIM mimics that for λ©,
i.e. a type t is interpreted by an object [[t]] ofD, namely

[[[t]]] = FG[[t]] , [[〈t〉]] = N[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

and a term {xi: t
ni

i |i ∈ m} ` e: tn by a map in

D(
∏

i∈m

Nni [[ti]],N
n[[t]]).

Proposition 3.12 In any AIM-model there are two
canonical isomorphisms compile: GNA → GA and
down: PFX → FX.

Remark 3.13 These isomorphisms suggest an exten-
sion of AIM with up : [t] → 〈[t]〉, i.e. cross-stage per-
sistence for close code types, and compile: [〈t〉]→ [t].

3.1 Examples

We give examples of AIM-models parameterized w.r.t.
the category C, making explicit what additional struc-
ture or properties are needed. For each example we
define the category D, the action on objects of the
functors N, P, F and G.

Example 3.14 Let N be the set of naturals. Given a
CCC C with N -indexed products, take

• D
∆
= CN , hence an object A ∈ |D| is a sequence

(An ∈ |C||n ∈ N) and a map f ∈ D(A,B) is a
sequence (fn ∈ C(An, Bn)|n ∈ N).

• NA
∆
= 1: :A, where 1 is the terminal object of C,

while PA
∆
= (An+|n ∈ N).

• FX
∆
= (X |n ∈ N), i.e. the sequence which is con-

stantly X , while GA
∆
=

∏

n∈N

An.

Example 3.14 does not support cross-stage persistence.
Therefore, it is suitable for interpreting λ©, but not
MetaML or AIM (as defined in [12, 11]).

Example 3.15 Let ωop be the category of natural
numbers with the reverse order, i.e.

0 � 1 . . . n � n+ . . .

Given a CCC C with finite and ωop-limits, take

• D
∆
= Cωop

, hence a map f ∈ D(A,B) amounts to a
commuting diagram

A0
� a0

A1 . . . An
� an

An+ . . .

.

B0

f0

?
�

b0
B1

f1

?
. . . Bn

fn

?
�

bn
Bn+

fn+

?
. . .

while an object of D is a sequence of maps in C.

• NA
∆
=!A0

: :A, where !A0
is the map 1 ← A0 in C,

while PA
∆
= (an+|n ∈ N).

• FX
∆
= (id:X ← X |n ∈ N), i.e. the sequence which

is constantly idX , while GA
∆
= lim

n∈ωop
An.

In this model we can define the natural transformation
up:A→ NA modeling cross-stage persistence, namely

up0
∆
=!:A0 → 1 and upn+

∆
= an:An+ → An.

Note that exponentials in D are not defined pointwise.
However, existence of exponentials and finite limits in
C ensures that D has exponentials (and finite limits).

4 Interpretation of terms

We have already given the interpretation of types for
AIM without computational effects or cross-stage per-
sistence in an AIM-model, namely

[[[t]]] = B[[t]] , [[〈t〉]] = N[[t]] and [[t1 → t2]] = [[t2]]
[[t1]]

This section gives the corresponding interpretation of
terms. Before doing that, we introduce some auxil-
iary morphisms, which simplify the definition of the
interpretation, and clarify the similarities with the in-
terpretation of the λ-calculus in a CCC.

• cn: 1 → NnA where c: 1 → A is a global element of
A (e.g. the interpretation of a constant). Since N

preserve finite products, we define cn
∆
= Nnc.

• λn: (NnB)N
nA → NnBA. Since N preserves the CCC

structure, λn is the iso (NnB)N
nA → NnBA.

• @n: NnBA × NnA → NnB. @n is essentially an in-
stance of evaluation eval: (NnB)N

nA×NnA→ NnB.

• unboxn: NnBA → NnA. Since B is a comonad with
co-unit ε: BA → A and co-multiplication δ: BA →

B2A, then unboxn
∆
= Nnε.

• boxn(f):
∏

i NnBAi → NnBB when f :
∏

i BAi → B.
Since all functors preserve finite products, it suffices

to say that boxn(f)
∆
= Nn((Bf)◦ δ): NnBA→ NnBB

when f : BA→ B and A
∆
=

∏

iAi.

• runn(f):C ×
∏

i NnBAi → NnB when f : NC ×
∏

i NnBAi → Nn+B. As in case of boxn(f) it
suffices to give runn(f):C × NnBA → NnB when

f : NC × NnBA→ Nn+B and A
∆
=

∏

i Ai.

By the canonical iso down (see Proposition 3.12) we
have C × NnBA ∼= C × NnPBA. We have an FP-

monad In
∆
= NnPn on D with unit ηI

n:A → InA

induced by the FP-adjunction Pn a Nn. Moreover,
we have an iso PNA → A given by the co-unit of
the adjunction P a N, since N is full and faithful.
Therefore, modulo some canonical isos runn(f) is

C × NnPBA
ηI

n- InC × NnPBA
InPf- NnB

Figure 6 defines the interpretation of a well-formed
term Γ ` e: tn by induction on the typing derivation
in the type system of Figure 4.

5 Modalities and monads

We have given a simplified interpretation of AIM (and
other multi-level languages) in the absence of compu-
tational effects. This interpretation is the analogue of
the interpretation of the simply typed λ-calculus in a
CCC. However, we are interested in multi-level pro-
gramming languages, like Mini-ML2 Mini-ML©, and

MetaML (see [5, 4, 13]), where logical modalities co-
exist with computational effects. In this section we
define a CBV monadic interpretation of AIM in an
AIM-model equipped with a strong monad (see [8]).

Definition 5.1 A monadic AIM-model is a AIM-
model with a strong monad M over D s.t. the canoni-
cal morphism MNBA → (MNB)NA is an iso, and we
call λ∗: (MNB)NA →MNBA its inverse.

The idea is that M models computation at level 0. We
extend the AIM-models of Examples 3.14 and 3.15 to
monadic AIM-models.

Example 5.2 A strong monad M over C induces a

strong monad M over CN given by (MA)0
∆
= MA0

and (MA)n+
∆
= An+. It is immediate to check that

the additional requirement is always satisfied, since
exponentiation in CN is pointwise.

Example 5.3 A strong monad M over C induces a
strong monad M over Cωop

, namely MA is given by

MA0
�Ma0

MA1 . . . MAn
�Man

MAn+ . . .

The additional requirement holds, provided the monad
M over C preserves pullbacks and the commuting

square

M(BA)
e- (MB)A

(M∗)

M1

M !

?

k
- (M1)A

(M !)A

?

is a pullback, where

e(u)
∆
= λx:A.do{f ← u; ret (fx)} and k(u)

∆
= λx:A.u.

Remark 5.4 The interaction of M with pullbacks is
important, because exponentials in Cωop

are computed
using exponentials and pullbacks in C. Many monads
over the category of cpos (e.g. lifting, state and ex-
ception monad) satisfy the properties required in Ex-
ample 5.3, but notable exceptions are power-domains
and continuations.

Interpretation of types. A type t is interpreted
(as usual) by an object [[t]] of D, namely:

[[[t]]] = BM [[t]], [[〈t〉]] = NM [[t]], [[t1 → t2]] = (M [[t2]])
[[t1]]

We introduce the shorthand N∗ for MN and Mn for
(MN)nM . We call MnA the type of n-stage com-

putations returning (at stage n) a value of type A.

In a monadic AIM-model a term {xi: t
ni

i |i ∈ m} ` e: t
n

is interpreted by a map in D(
∏

i∈m

Nni [[ti]],Mn[[t]]).

Remark 5.5 This interpretation is a refinement of the
interpretation given in Section 4, which is recovered by
replacing M with the identity monad, and it extends
the CBV interpretation of the simply typed λ-calculus
(in a CCC with a strong monad). Mn is always a
functor, but in general it is not a monad.

Auxiliary morphisms. We introduce some auxil-
iary morphisms, similar to those given in Section 4.
The only exception is the morphism runn(f), which
we have been unable to define in general, but will be
given for specific models. (We use notation intro-
duced in Notation 1.1.)

• ηn: NnA→ Nn
∗A is given by induction:

0) A
id - A

n+) Nn+A
η- MNn+A

MNηn- Nn+
∗ A

where η:A→MA is the unit of the monad M .

• ψn:
∏

i Nn
∗Ai → Nn

∗

∏

i Ai is given by induction:

0)
∏

i

Ai

id-
∏

i

Ai

n+)
∏

i

Nn+
∗ Ai

ψ- N∗

∏

i

Nn
∗Ai

N∗ψn- Nn+
∗

∏

i

Ai

where ψ:
∏

iMAi →M(
∏

i Ai) is given by ψ(ui|i)
∆
=

do{xi ← ui; ret (xi|i)}, and we exploit preservation
of finite products by N.

• cn
∆
= 1

Nnc- NnMA
ηn- Nn

∗MA ≡MnA, where
c: 1→MA is a global element of MA.

• varn
∆
= NnA

Nnη- NnMA
ηn- Nn

∗MA ≡MnA.

• λn: (MnB)N
nA →Mn(MB)A is given by induction:

0) (MB)A η- M(MB)A

n+) (Mn+B)N
n+A λ∗- N∗(MnB)N

nA

@
@
N∗λn

R
Mn+(MB)A

• @n:Mn(MB)A × MnA → MnB is given by
(Nn

∗ (eval)) ◦ ψn, where eval: (MB)A × A → MB

is an instance of evaluation.

• unboxn:MnBMA →MnA is given by Nn
∗ (ε), where

ε: BMA→MA is an instance of the co-unit for B.

• boxn(f):
∏

iMnBMAi → MnBMB is given by

Nn
∗ ((Bf) ◦ δ) ◦ ψn, where f :

∏

i BMAi → MB, δ is
an instance of the co-multiplication for B, and we
exploit preservation of finite products by B.

The interpretation of terms. Figure 7 defines the
interpretation of a well-formed term Γ ` e: tn by in-
duction on the typing derivation in the type system
of Figure 4 (without run-with). We give the inter-
pretation of run-with in the monadic AIM-models of
Example 5.2 and 5.3. To interpret run-with we need
an auxiliary morphism

• runn(f):C×
∏

i MnBMAi →MnB for any f : NC×
∏

i NnBMAi →Mn+B.

For simplicity, in the sequel we assume that there is
only one Ai, and call it A.

Example 5.6 In the monadic AIM-model based on
CN we can define runn(f) only when C is replaced by
NnC. In this model we have

(MnA)m =

M1 when m < n

MA0 when m = n

Am−n when m > n

Let g
∆
= runn(f): NnC ×MnBMA→MnB, we define

its mth component gm (a map in C) by case-analysis:

< n) gm(x: 1, v:M1) = do{y ← v; fm(x, y)}, where
fm: 1× 1→M1

= n) gn(x:C0, v:MX) = do{y ← v; fn(∗, y); fn+(x, y)}

where X
∆
= (

∏

nMAn), fn: 1 × X → M1 and
fn+:C0 ×X →MB0

> n) gm(x:Ck, v:MX) = do{y ← v; fm+(x, y)}, where
k = m− n and fm+:Ck ×X →MBk.

Remark 5.7 In the absence of computational effects
we defined runn(f) by applying the functor NnPn+

to f . In CN this functor replaces the mth component
fm with !, when m ≤ n. If the codomain of fm is
the terminal object 1, we don’t lose any information.
However, in the monadic interpretation the codomain
of fm is not 1 but M1. Informally speaking, the above
definition of g = runn(f) does not loose information,
because it maps fm to gm when m < n, collapses fn

and fn+ into gn, and maps fm+ to gm when m > n.

The interpretation in CN has a serious caveat, namely
if we have a natural transformation c: 1 → MA in C
(e.g. ⊥: 1 → A⊥) there is no generic way of lifting it
to a natural transformation cn: 1→MnA in CN .

Example 5.8 In the monadic AIM-model based on
Cωop

we define runn(f) without imposing any restric-
tion on C. In this model we have

(MnA)m =

{

Mm+1 when m < n

Mn+Am−n when m ≥ n

Let X
∆
= GMA, then f : NC×NnFX →Mn+B and we

have to define runn(f):C ×MnFX →MnB:

• first we define F :C → PMn(N∗MB)FX as

P(NC
Λf- (Mn+B)N

n
FX λn- Mn(N∗MB)FX)

• then we define R: PMn(N∗MB)FX → Mn(MB)FX ,
namely its mth component Rm, by case-analysis:

< n−) Rm
∆
= Mm+!:Mm++1→Mm+1

= n−) Rn−
∆
= Mn!:Mn+(M1)X →Mn1

≥ n) Rm
∆
= Mn+µX :Mn+(M2Bk)X → Mn+(MBk)X ,

where k = m− n

although exponentiation in Cωop

is not pointwise, in
the special case of exponentiation by FX it is.

• finally we define runn(f):C ×MnFX →MnB as

C ×MnFX
R ◦ F × id- Mn(MB)FX ×MnFX

@n- MnB

Remark 5.9 The monadic AIM-model in Cωop

does
not have the serious caveat we mentioned for CN .
Moreover, it has a property that we call cross-stage
persistence of computational effects, i.e. there exists
an iso downM :MPA → PMA (commuting with the
monad structure).

Monadic interpretation of compile. In any AIM-
model there is an iso compile: BNA→ BA (see Propo-
sition 3.12), and therefore the pure interpretation of
[〈t〉] and [t] are isomorphic. Although the monadic
interpretations of these types are not isomorphic, in
the monadic AIM-models described above there is a
morphism compile′: BMNMA→MBMA suitable for
interpreting compile: [〈t〉] → [t] with the following op-

erational semantics
e

0
↪→ box e′ e′

0
↪→ 〈v′〉

compile e
0
↪→ box v′0

.

We define compile′ in CN (in the other model one must
assume that M over C preserves ωop-limits). First,

note that (BMA)m = X
∆
= MA0 ×

∏

nAn+1 and
(BMNMA)m = M1 × X . It is now easy to define
the mth component compile′m by case-analysis:

0) compile′0(u:M1, v:X)
∆
= do{u; ret v}

> 0) compile′m(u:M1, v:X)
∆
= v.

∆; Γ ` c: tc ∆; Γ ` x: t if t = ∆(x) or Γ(x)

∆; Γ, x: t1 ` e: t2

∆; Γ ` λx.e: t1 → t2

∆; ∅ ` e: t

∆; Γ ` box e: [t]

∆; Γ ` e1: t1 → t2 ∆; Γ ` e2: t1

∆; Γ ` e1e2: t2

∆; Γ ` e1: [t1] ∆, x: t1; Γ ` e2: t2

∆; Γ ` let box x = e1 in e2: t2

Figure 1: λ2 Type System

Γ ` c: tnc Γ ` x: tn if tn = Γ(x)

Γ, x: tn1 ` e: t
n
2

Γ ` λx.e: (t1 → t2)
n

Γ ` e1: (t1 → t2)
n Γ ` e2: tn1

Γ ` e1 e2: tn2

Γ ` e: tn+

Γ ` 〈e〉: 〈t〉n
Γ ` e: 〈t〉n

Γ ` ˜e: tn+

Figure 2: λ© Type System

Γ ` x: tn if tm = Γ(x) and m ≤ n

Γ+ ` e: 〈t〉n

Γ ` run e: tn

Figure 3: MetaML Type System (+ Figure 2)

Γ ` ei: [ti]
n

Γ+, {xi: [ti]
n|i ∈ m} ` e: 〈t〉n

Γ ` run e with xi = ei: t
n

Γ ` ei: [ti]
n {xi: [ti]

0|i ∈ m} ` e: t0

Γ ` box e with xi = ei: [t]
n

Γ ` e: [t]n

Γ ` unbox e: tn

Figure 4: AIM Type System (+ Figure 2)

e1
0
↪→ λx.e e2

0
↪→ v1 e[x: = v1]

0
↪→ v2

e1 e2
0
↪→ v2

λx.e
0
↪→ λx.e

e
0
↪→ 〈v〉

˜e
1
↪→ v

ei

0
↪→ vi

box e with xi = ei

0
↪→ box e[xi: = vi]

e
0
↪→ box e′ e′

0
↪→ v

unbox e
0
↪→ v

ei

0
↪→ vi e[xi: = vi]

0
↪→ 〈v′〉 v′0

0
↪→ v

run e with xi = ei

0
↪→ v

e
n+
↪→ v

〈e〉
n
↪→ 〈v〉

x
n+
↪→ x c

n+
↪→ c

e1
n+
↪→ v1 e2

n+
↪→ v2

e1 e2
n+
↪→ v1 v2

ei

n+
↪→ vi

box e with xi = ei

n+
↪→ box e with xi = vi

e
n+
↪→ v

λx.e
n+
↪→ λx.v

e
n+
↪→ v

˜e
n++
↪→ ˜v

e
n+
↪→ v

unbox e
n+
↪→ unbox v

ei

n+
↪→ vi e

n+
↪→ v

run e with xi = ei

n+
↪→ run v with xi = vi

Figure 5: Big-Step Operational Semantics

[[Γ ` c: tnc]]
∆
= [[c]]n◦!:C → Nn[[tc]] [[Γ ` x: tn]]

∆
= πx:C → NnA if tn = Γ(x)

[[Γ, x: tn ` e: t′n]] = f :C × NnA→ NnB

[[Γ ` λx.e: t→ t′n]]
∆
= λn ◦ (Λf):C → Nn(BA)

[[Γ ` e: [t]n]] = f :C → Nn(BA)

[[Γ ` unbox e: tn]]
∆
= unboxn ◦ f :C → NnA

[[Γ ` e: tn+]] = f :C → Nn+A

[[Γ ` 〈e〉: 〈t〉n]]
∆
= f :C → Nn(NA)

[[Γ ` e: 〈t〉n]] = f :C → Nn(NA)

[[Γ ` ˜e: tn+]]
∆
= f :C → Nn+A

[[Γ ` ei: [ti]
n
]] = fi:C → Nn(BAi)

[[{xi: [ti]
0|i} ` e: t0]] = f :

∏

i BAi → A

[[Γ ` box e with xi = ei: [t]
n
]]

∆
= boxn(f) ◦ 〈fi|i〉:C → Nn(BA)

[[Γ ` e1: t→ t′n]] = f1:C → Nn(BA)
[[Γ ` e2: t

n]] = f2:C → NnA

[[Γ ` e1 e2: t′n]]
∆
= @n ◦ 〈f1, f2〉:C → NnB

[[Γ ` ei: [ti]
n
]] = fi:C → Nn(BAi) [[Γ+, {xi: [ti]

n|i} ` e: 〈t〉n]] = f : NC ×
∏

i Nn(BAi)→ Nn(NA)

[[Γ ` run e with xi = ei: t
n]]

∆
= runn(f) ◦ 〈idC , 〈fi|i〉〉:C → NnA

where C
∆
= [[Γ]], A

∆
= [[t]], B

∆
= [[t′]] and Ai

∆
= [[ti]].

Figure 6: Pure Interpretation in AIM-Models

[[Γ ` c: tnc]]
∆
= [[c]]n◦!:C →Mn[[tc]] [[Γ ` x: tn]]

∆
= varn ◦ πx:C →MnA if tn = Γ(x)

[[Γ, x: tn ` e: t′n]] = f :C × NnA→MnB

[[Γ ` λx.e: t→ t′n]]
∆
= λn ◦ (Λf):C →Mn(MB)A

[[Γ ` e: [t]n]] = f :C →Mn(BMA)

[[Γ ` unbox e: tn]]
∆
= unboxn ◦ f :C →MnA

[[Γ ` e: tn+]] = f :C →Mn+A

[[Γ ` 〈e〉: 〈t〉n]]
∆
= f :C →Mn(NMA)

[[Γ ` e: 〈t〉n]] = f :C →Mn(NMA)

[[Γ ` ˜e: tn+]]
∆
= f :C →Mn+A

[[Γ ` ei: [ti]
n
]] = fi:C →Mn(BMAi)

[[{xi: [ti]
0|i} ` e: t0]] = f :

∏

i BMAi →MA

[[Γ ` box e with xi = ei: [t]
n
]]

∆
= boxn(f) ◦ 〈fi|i〉:C →Mn(BMA)

[[Γ ` e1: t→ t′n]] = f1:C →Mn(MB)A

[[Γ ` e2: tn]] = f2:C →MnA

[[Γ ` e1 e2: t′n]]
∆
= @n ◦ 〈f1, f2〉:C →MnB

where C
∆
= [[Γ]], A

∆
= [[t]], B

∆
= [[t′]] and Ai

∆
= [[ti]].

Figure 7: Monadic Interpretation in AIM-Models without run

References

[1] N. Benton. A mixed linear and non-linear logic:
Proofs, terms and models. LNCS, 933, 1995.

[2] N. Benton and P. Wadler. Linear logic, mon-
ads and the lambda calculus. In 11th LICS, New
Brunswick, New Jersey, 27–30 July 1996. IEEE
Computer Society Press.

[3] G. M. Bierman. What is a categorical model of
intuitionistic linear logic? LNCS, 902, 1995.

[4] R. Davies. A temporal-logic approach to binding-
time analysis. In 11th LICS, New Brunswick, New
Jersey, July 1996. IEEE Computer Society Press.

[5] R. Davies and F. Pfenning. A modal anal-
ysis of staged computation. In 23rd POPL,
St.Petersburg Beach, Florida, January 1996.

[6] S. Martini and A. Masini. A computational inter-
pretation of modal proofs. In H. Wansing, editor,
Proof Theory of Modal Logic. Kluwer, 1996.

[7] A. Masini. 2-Sequent calculus: Intuitionism and
natural deduction. Journal of Logic and Compu-
tation, 3(5), 1993.

[8] E. Moggi. Notions of computation and monads.
Information and Computation, 93(1), 1991.

[9] E. Moggi. A categorical account of two-level lan-
guages. In MFPS 1997, 1997.

[10] E. Moggi. Functor categories and two-level lan-
guages. In FoSSaCS ’98, volume 1378 of LNCS.
Springer Verlag, 1998.

[11] E. Moggi, W. Taha, Z. Benaissa, and T. Sheard.
An idealized MetaML: Simpler, and more expres-
sive (includes proofs). Technical Report CSE-98-
017, OGI, October 1998.

[12] W. Taha, Z. Benaissa, and T. Sheard. Multi-stage
programming: Axiomatization and type-safety.
In 25th ICALP, Aalborg, Denmark, 1998.

[13] W. Taha and T. Sheard. Multi-stage program-
ming with explicit annotations. In PEPM. ACM,
1997.

