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In this collection we try to give an overview of some selected topics in Do-
main Theory and Denotational Semantics. In doing so, we first survey the
mathematical universes which have been used as semantic domains. The em-
phasis is on those ordered structures which have been introduced by Dana Scott
in 1969 and which figure under the name (Scott-) domains. After surveying
developments in the concrete theory of domains we describe two newer devel-
opments, the axiomatic and the synthetic approach. In the second part we look
at three computational phenomena in detail, namely, sequential computation,
polymorphism, and mutable state, and at the challenges that these pose for a
mathematical model.

This presentation does by no means exhaust the various approaches to deno-
tational semantics and it certainly does not describe all possible mathematical
techniques which have been used to describe various aspects of programs. We
hope that, nevertheless, it illustrates how a particular challenge (namely the
modelling of recursive definitions) has given rise to an immensely rich theory,
both in its general parts and in its applications.

Let us start with a few general remarks.

Denotational semantics has traditionally been described as the theory of
true meanings for programs, or, to put it more poignantly, as the theory of what
programs denote. In many cases, denotations have been built with the help of
functions in some mathematical universe and so this position presupposes that
the ontological status of sets and functions is firmly established. But there has
always been an alternative viewpoint in which denotational semantics is seen
as a translation from one formal system to another. This second position has
become more and more popular over the last years, following the rapid progress
on the programming language side which results in ever new and successful
computational paradigms and which can hardly be ascribed merely to the desire
to find syntactical descriptions of already existing mathematical objects.



However, the pragmatics of denotational semantics is essentially unaffected
by the foundational stance one takes; the aims, hopes and concrete uses are
the same. In highly condensed form, these may be described as follows: By
translating from one formalism into another one expects to gain new insight into
the object at hand. Elaborating slightly on this, we can say that the purpose
of denotational semantics is threefold: to bring out subtle issues in language
design, to derive new reasoning principles, and to develop an intuitive abstract
model of the programming language under consideration so as to aid program
development.

One would expect that the connection between programming language and
mathematical model had to be very tight (as in the soundness and completeness
theorems of mathematical logic) before the whole approach could be useful. Sur-
prisingly enough, this is not the case. A true one-to-one correspondence (called
full abstraction in the jargon) has seldomly been achieved, yet the discovery and
the transfer of reasoning principles has indeed taken place. A most convincing
example of this is the so-called context lemma for functional languages [Mil77]:
the mere existence of a model consisting of functions which is loosely connected
with the language (“adequacy”) allows one to infer in a series of very simple
steps that the equivalence of two terms depends only on the behaviour under
application to arguments (as is the case with mathematical functions).

Still, a closer correspondence between Syntax and Semantics ought to result
in better applications for the theory. As this text shows, much remains to be
done and many fascinating riddles remain.

Classical Domain Theory
Achim Jung

Domain theory started in 1969 when Dana Scott explored the possibility of using
ordered topological spaces to give meaning to first typed and then untyped A-
calculi [Sc093, Sco72]. 25 years may be too short a period to warrant the
attribute “classical” but these 25 years have seen a tremendous development
of this theory and its incorporation among the basic concepts of theoretical
computer science (on par with recursion theory, complexity theory and formal
languages) so that the expression is well justified.

Here we also use “classical” to distinguish between the concrete set-theoretic
structures known as directed-complete partial orders (or depo’s for short) from
the more abstract categorical approaches described in the next two sections.

The category of dcpo’s and Scott-continuous functions serves as a convenient
ambient universe in which one may study more refined notions. Foremost among
these is the concept of approximation expressed via continuous and algebraic
domains. The effect of adopting an axiom of approximation is that each domain
may be seen as a completion of a countable, possibly even decidable, structure.
The behaviour of ideal elements is completely determined by the behaviour of
its approximants. In contrast, the ambient category DCPO is rather awkward



to work with when it comes to concrete calculations.

Within approximated domains, that is, within the categories CONT and
ALG we may look for additional structure to model computational phenomena.
Higher types, for example, require cartesian closure. Neither CONT nor ALG
is cartesian closed but from [Smy83a] and [Jun90] we know essentially all carte-
sian closed full subcategories. Among the maximal ones are FS-domains (in
the continuous case) and bifinite domains (in the algebraic case), see [AJ94b,
Chapter 4].

Recursive types pose no problem for ALG, CONT, nor for any of its carte-
sian closed subcategories. They are resolved by the fundamental technique of
bilimits [AJ94b, Chapter 5], devised early on by Scott [Sco72]. Adding algebraic
structure in a free fashion is also possible [AJ94b, Section 6.1] but the general
theorem applies to ALG and CONT only. It is an open problem whether there
is a characterization of those algebraic theories which yield free algebras within
one of the cartesian closed subcategories. Even the probabilistic powerdomain
construction stays within CONT as was shown in [Jon90] but again it is un-
known if it stays within FS-domains. Hence we may have to accept the fact
that there is no single category of domains which meets all needs.

In his attempts to capture sequentiality in a mathematical model, Gerard
Berry [Ber78, Ber79] developed an alternative domain theory based on the no-
tion of stability, seemingly incompatible with Scott-continuity (see [Gun92, Sec-
tion 5.2] for an exposition). Through the very recent work of Fran¢ois Lamarche
[Lam] and Mathias Kegelmann [Keg95] we now see that both Scott-continuity
and stability are manifestations of a single concept, that of a factorized domain,
where the information order can be decomposed uniquely into two suborders.
It is a fascinating question to see how this factorization reflects different orders
between program terms.

A further development of the last 10 years is the clarification of the connec-
tions between denotational semantics and program logics. Initiated by Michael
Smyth [Smy83b] (another precursor is [CDCHL84]) and carried much further
by Samson Abramsky [Abr87, Abr91b], we now have a fully developed logical
theory of domains in place. The fundamental insight is that open sets may be
seen as “observable” properties and that Stone-duality [GHK'80, Joh82] is the
connection between domain and logic. This theory has been brought to bear on
functional languages [AO93] and communicating systems [Abr91a] by its inven-
tors and has been applied by many others since. Domain logic is propositional
in character and the obvious question of how to embed it into a richer frame-
work has been frequently asked but not been answered satisfactorily. Synthetic
domain theory is one of the more coherent projects to tackle this problem.

One of the earliest successes of domain theory, as already mentioned, was
the solution of recursive type definitions which involve positive and negative
occurrences of variables, such as in D = [D — D]. While this was happily
accepted as a technique to construct meanings of programs, only very recently
has it been clarified, in which sense these solutions are canonical. Peter Freyd
gave a categorical condition for what it means in Computer Science to have
a canonical solution to a recursive type definition, namely, that initial algebra



and final coalgebra of the corresponding functor coincide [Fre91, Fre92]. From
this (for covariant functors) he derived a condition for functors of mixed vari-
ance. Building on this, Andrew Pitts developed it into an induction-coinduction
principle for the elements of canonical solutions, see [Pit94, Pit96].

While ordered sets arise naturally in the theory of computable functions
(since one partial recursive function may extend another one by converging on
more inputs and coinciding with the former whenever that is defined), it has
always been emphasized by Scott that the information order in domains may
also be interpreted as giving approximations to a space of ideal elements on the
top of the domain. To put it differently, in recursion theory and in denotational
semantics all points in the domain are equally needed as meanings (even the
concepts of total function and maximal element do not coincide; a much more
elaborate theory is needed [Ber93]), whereas under the second interpretation
everything except maximal points is considered auxiliary. This viewpoint has
been developed in two areas recently, in database semantics and in measure the-
ory. In the former one enriches a space of values (as in database theory) with
partial elements so as to allow partial information and complicated types to be
incorporated. See [BJO91, JP95, Puh95] for the current state of this approach.
Much remains to be done in this field. The second application was developed al-
most single-handedly by Abbas Edalat over the last few years [Eda95b, Eda95a].
He showed that when a topological Hausdorff space is embedded as singleton
sets in its “upper space” of compact subsets, then the Borel measures on the
space are embedded as maximal elements in the probabilistic powerdomain of
the upper space. By this embedding it is possible to approximate Borel mea-
sures from below, hence giving an order theoretic account of approximation of
measures. In contrast, classical measure theory always had to invoke various
topologies on the space of measures to express convergence. Furthermore, the
probabilistic powerdomain contains completely new “measures” and in many
circumstances allows the construction of an increasing chain of approximating
measures to a desired Borel measure. Edalat has demonstrated the applicability
of his approach in areas as varied as dynamical systems, neural networks and
image compression. This connection between domain theory and mainstream
mathematics remains a fascinating and active area of research.

Axiomatic Domain Theory

Marcelo P. Fiore

The denotational semantics approach to the semantics of programming lan-
guages interprets the language constructions by assigning elements of math-
ematical structures to them. The structures form so-called categories of do-
mains and the study of their closure properties is the subject of domain theory
[Sco70, Sco82, Plo81, GS90, AJ94b).

Typically, categories of domains consist of suitably complete partially or-
dered sets together with continuous maps. But what is a category of domains?



The main aim of axiomatic domain theory is to answer this question by ax-
iomatising the structure needed on a mathematical universe so that it can be
considered a category of domains. Criteria required from categories of domains
can be of the most varied sort. For example, we could ask them to

e have a rich collection of type constructors: sums, products, exponentials,
powerdomains, dependent types, polymorphic types, etc;

e have fixed-point operators for programs and type constructors;

e have only computable maps [Sco76, Smy77, Mul81, McC84, Ros86, Pho91,
Lon95];

e have a Stone dual providing a logic of observable properties [Abr87, Vic89,
Zha9l).

An additional aim of the axiomatic approach is to relate these mathematical
criteria with computational criteria.

As we indicate below an axiomatic treatment of various of the above aspects
is now available but much research remains to be done.

Developments

In the beginning, the axiomatic treatment of domain theory was scattered; it
concentrated on fixed-points, mainly of endofunctors but also of endomorphisms.

Concerning fixed-points for endofunctors, already in [Sco72], Scott mentions
a suggestion by Lawvere aiming at providing a categorical framework for per-
forming the D, construction. But it was not until [Wan79] that the solution
of recursive type equations in categories of domains was first treated abstractly,
in the sense that no commitment to a particular category of domains was re-
quired. Subsequently this approach was developed in [SP82]. The approach
was very much appreciated as a wunification of the techniques for solving re-
cursive type equations in categories of domains, but its axiomatic character
remained overlooked. For instance, it lead Lehmann and Smyth [LS81] to out-
line the first abstract setting for specifying both algebraic (in the ADJ jargon)
and recursive types, but these ideas were not pursued further. In [Fre90], aim-
ing at an axiomatic treatment of recursive types, Freyd revisited the previous
approaches. And, in [Fre91, Fre92], he proposed a universal approach (in the
category-theoretic sense) for solving recursive type equations. There he intro-
duced algebraically compact categories and established their fundamental prop-
erty: that bifunctors on them have canonical and minimal fixed-points. This
has been a first important step towards an aziomatic theory of recursive types
(see [Sim92] and [Fio94a, Chapters 6-8]). Other work on algebraic compactness
can be found in [Ad493, Bar92].

Concerning fixed-points of endomorphisms, it was noticed by [HP90], after
studying the work of [Law64, Law69], that in the presence of cartesian closure
they are inconsistent with coproducts (empty or binary). Also algebraic com-
pactness (which yields zero objects) is inconsistent with cartesian closure. This,



in principle, precludes a unified treatment of sums, products, exponentials and
recursive types via the usual universal properties. However, it was via a direct
semantic analysis of non-terminating computations [Plo85] involving categories
of partial maps [RR88] and, in particular, via the notion of partial cartesian
closure [LM84] that an appropriate categorical setting emerged.

With this background it was possible, for the first time, to consider cate-
gorical models for a rich type theory with recursive types. In [Fio94a, FP94],
a notion of categorical model for the metalanguage FPC —a type theory with
sums, products, exponentials and recursive types [Plo85, Gun92, Win93]— was
defined. Very roughly, categorical models of FPC are algebraically compact
partial cartesian closed categories with binary coproducts.

Impact of axiomatic domain theory

In relating operational and denotational semantics. The investigation
of the relation between operational and denotational semantics started with a
question of Scott in [Sco69]. An answer for PCF (a higher-order functional pro-
gramming language with fixed-point operators, and base type and arithmetic
operations for natural numbers) was given by Plotkin in [Plo77]; there he proved
the soundness and adequacy of the standard semantics of PCF for a call-by-name
evaluator. A computational soundness and adequacy result is a correspondence
theorem between operational termination and denotational existence; it gener-
ally states that a program terminates according to the operational semantics
if and only if its denotational semantics denotes a value. The first axiomatic
version of such a result was provided by Berry in [Ber79] (see also [BCL85])
for PCF with respect to a class of models including both the standard one and
the stable one. In this vein, [Bra94] considered a term language for intuitionis-
tic propositional linear logic extended with fixed-point operators and provided
a computational soundness and adequacy result with respect to a categorical
semantics.

Concerning languages with recursive types, in [Plo85], FPC was considered
as a programming language with a call-by-value operational semantics and a
denotational semantics in pCpo (the category of cpos and partial continuous
functions) and a computational soundness and adequacy result was proved.
(Related results can be found in [ML83, MC88].) In [Fio94a], the author gave
an axiomatic version of Plotkin’s proof for an axiomatisation of absolute non-
trivial domain-theoretic models of FPC. From this result it follows that not
only the standard model pCpo provides a computationally sound and adequate
interpretation for FPC but so also do many full subcategories of domains and
functor categories over pCpo.

In reasoning principles for recursive types. The universal approach taken
by the category-theoretic solution of recursive type equations provides, as a
by-product, reasoning principles for recursive types. Lehmann and Smyth, and
Plotkin [LS81, Plo81], exploited the initiality property of the solution of covari-
ant recursive types (like lists, trees, etc.) to formulate an abstract induction



principle generalising that of the natural numbers. Motivated by the intro-
duction of algebraic compactness, [Smy91] studied the dual reasoning principle,
coinduction, in some particular cases. In [Pit94, Pit93], Pitts pursued this
line of research further. Drawing upon the initiality /finality universal property
given by the compactness axiom, he established a mixed induction/coinduction
property of abstract relations on recursive domains in Cppo, (the category
of pointed cpos and strict continuous functions). Abstract category-theoretic
accounts of these issues can be found in [Fio93, HJ95].

In type theory. In [CP92], Crole and Pitts introduced a higher-order typed
predicate logic for fixed-point computations. This was done by exploiting Moggi’s
treatment of computations using monads [Mog91], and by introducing the key
notion of fizpoint object. Fixpoint objects were partly inspired by Martin-Lof’s
non-standard “iteration type” [ML83], and give a categorical characterisation
of general recursion at higher types similar to the characterisation of primitive
recursion at higher types in terms of Lawvere’s concept of natural number object
[LS86].

A type-theoretic approach to domain theory is that of [P1o93]. There, rather
than considering directly possible categorical structure, the idea is to work
within a type theory pursuing the analogies: intuitionistic exponential = func-
tion space, and linear exponential = strict function space. More precisely, the
basic setting is that of second-order intuitionistic linear type theory enriched
with a fixed-point operator for endomorphisms. Then, in the presence of a
modified form of Reynold’s parametricity the category of linear maps is shown
to be algebraically compact with respect to definable endofunctors.

In [Mog95], Moggi describes monadic and incremental approaches to deno-
tational semantics. There, incorporating ideas from axiomatic and synthetic
domain theory, typed metalanguages are used to capture relevant structure of
semantic categories. Then, by translation into the metalanguage, a variety of
programming languages can be interpreted.

In models of domain theory. New non-order-theoretic models of domain
theory have been found in connection with research towards establishing a rep-
resentation theory for domains (see ‘§ Representation theory for domains’ be-
low). For illustrative purposes we present one such model. Domains are spaces
equipped with a notion of approzimation (the information order) and a notion
of passage-to-the-limit (the sup operator). We now consider objects with an al-
gebraic (rather than universal) notion of passage-to-the-limit. To this purpose
we introduce a notion of formal-sup operator due to the author and Gordon
Plotkin. Let D be a cartesian closed category (think of Poset, the category of
posets and monotone functions), let w be an object in D (think of w, the first
infinite ordinal), and let s : w — w be a morphism in D (think of succ, the
successor function). A formal-sup operator (for diagrams of shape w under the
invariance s) on an object D in D is given by a map \/ : D¥ — D satisfying the



following three algebraic laws:
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A formal cpo is an object equipped with a formal-sup operator. For formal cpos
(P,\p) and (Q,VQ), amap f: P — @ in D is said to be continuous if it
satisfies the following law:
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We write V(w’s) D for the category of formal cpos and continuous maps. The
reader can readily check that our running example \/(w’succ)Poset is Cpo,
the category of cpos and continuous functions. What happens if we replace
Poset by Preo (the category of preorders and monotone functions)? Nothing,
V(w’succ)Preo is again Cpo. The surprise comes when we consider the construc-
tion for structures with not only a one-dimensional notion of approximation (as
the above examples) but with higher-dimensional notions of approximation.
For instance, consider Poset,, the category of posets with pullbacks (here the
pullback “squares” provide a “two-dimensional” notion of approximation) and
stable functions. Then, V(%succ) Poset cannot be enriched over Cpo in a rele-
vant sense [Fio94b] but in it the constructions of domain theory (as, for example,
the existence of uniform fixed-point operators and the solution of recursive do-
main equations) are possible (see ‘§ Representation theory for domains’ below).
The above formal-cpo construction has been studied in generality by the author,
Plotkin and Power.



Directions

Representation theory for domains. A representation theorem is a result
that classifies the models of mathematical structures in terms of more concrete
models; allowing the study of the general through the study of the particu-
lar. (E.g. one such result is Cayley’s theorem for groups stating that every
group is isomorphic to a subgroup of a group of permutations.) The purpose
of setting up a representation theory for domains is to understand the extent
to which axiomatisations constrain their models. Work in this direction can be
found in [Fio94b]. There the author provided a strong axiomatisation for which
enrichment and representation theorems in Cpo were proved. Corresponding
enrichment and representation theorems for weaker axiomatisations are being
explored by the author, Plotkin and Power. This has uncovered a new range of
models (among which V(w,succ)Poset,\) based on higher-dimensional geometric
structures. In fact, these models yield models of domain theory in the sense of
[Plo95]. According to Plotkin, these consist of a monoidal adjunction between
a cartesian closed category and a symmetric monoidal closed one (i.e. a model
of intuitionistic linear type theory [BBHAP93]) together with natural axioms
for recursion; and, as he shows, they admit the standard techniques for solv-
ing recursive domain equations via a version of the limit/colimit coincidence
theorem.

Axiomatic and synthetic domain theory. Axiomatic domain theory and
synthetic domain theory [Mul81, Ros86, Hyl91, Pho91, Tay91, RS94, Lon95,
Ros95] are complementary approaches. On the one hand, synthetic domain
theory tries to identify domains, complying with the requirements of axiomatic
domain theory, within a universe of sets. On the other hand, as we exemplify
below, it is conceivable that one could embed models of axiomatic domain theory
in a universe of sets, along the lines prescribed by synthetic domain theory.
For example, building upon [Fio94b], for a strong axiomatisation, the author
has obtained a representation theorem of the form: every small model has a
full and faithful representation in a model of cpos and continuous functions
in a presheaf topos; furthermore, the representing model is a full reflective
subcategory of the topos. Analogous embeddings for weaker axiomatisations
are under investigation by the author, Plotkin and Power.

Type theory. Animportant direction of research is the formalisation of seman-
tic developments in logical frameworks [dB80, CAB*86, CH88, HHP92, ACN90]
for their subsequent use in machine-assisted reasoning about programs. To this
purpose it might be helpful to close the gap between the language of category
theory and that of type theory. Recent work in program verification in synthetic
domain theory using the LEGO proof checker [Pol95] can be found in [Reu95].

Relating models of FPC. It is an interesting and rather straightforward ob-
servation that two interpretations of the simply typed A-calculus in a cartesian
closed category, for which the base types get isomorphic objects, are essen-
tially the same; in that the interpretations of types are canonically natural iso-
morphic and the interpretations of terms are interdefinable (via the canonical



natural isomorphisms). A corresponding result (and generalisations involving
interpretations in different models) for FPC would be worth investigating. For
instance, this question is relevant to abstract proofs of adequacy (see [Fio94a,
Section 10.3]). The main difficulty here is that in the presence of recursive types
one has to overcome a kind of coherence problem.

Notions of computation. In [Fio94a] an axiomatic setting for partiality was
developed. A similar attempt for other notions of computation has not been
pursued. A natural step would be to consider non-determinism. One may
regard non-determinism as a free construction [HP79] and hence as a notion of
computation in the sense of Moggi [Mog91]; alternatively one may develop an
abstract setting of observable properties in the vein of [Abr87, Rob88] (see also
[Vic89, Joh82]).

Polymorphism and recursion. It would be interesting to develop axiomatic
frameworks for polymorphism with recursion (accommodating both domain-
theoretic models [CGW89] and per models [AP90, FMRS90]) together with a
corresponding representation theory.

Game semantics. The application of game theory to semantics has provided
new insights and results [AMJ94, HO95b, AM95]. In particular, [AMJ94] and
[HO95a] have constructed intensionally fully abstract semantic models of PCF
which yield fully abstract models by extensional collapse. As advocated by
Abramsky, axiomatic studies of game semantics may lead to abstract full ab-
straction results (as had happened with adequacy results).
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Synthetic Domain Theory
Eugenio Moggi and Giuseppe Rosolini

Background and motivations

In the second part of the seventies Dana Scott suggested that domains for de-
notational semantics could be nicely embedded into a model of intuitionistic set
theory (i.e. an elementary topos, see [Joh77]) so that domains would be “sets”
with some very peculiar properties and all functions between them continuous.
The standard theory for domains, which is required for denotational semantics,
would then have to follow from set-theoretic principles.

The main goal of Synthetic Domain Theory is to bridge the gap between cat-
egories of domains, which provide adequate models for programming languages,
and set-theoretic universes, where type-theory and logic are interpreted. In this
way one would like to obtain a viable framework for the practice of Denotational
Semantics and Program logics as originally envisaged by Dana Scott.
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An important step in this direction is to develop axiomatisations of cate-
gories of domains (this is the main goal of Axiomatic Domain Theory). These
axiomatisations should be consistent with known categories of domains, and
should also provide structural requirements for new semantic categories.

History and state of the art

The early work was by Robin Grayson, Martin Hyland, David McCarty, Phil
Mulry and Giuseppe Rosolini (see [Hyl82, McC84, Mul81, Ros86]). It focused
on the effective topos Eff based on Kleene’s realizability, and it was noted that
effectively given Scott domains form a full sub-category of Eff, and that there
is an object ¥ of “recursively enumerable” truth values, which can be defined
in the internal logic as

Y={peQFf:N>Np< (IneN.f(n)=0)}

such that the r.e. subsets of N are in a one-one correspondence with the maps
N — 3.

Wesley Phoa pointed out more interesting, peculiar properties of ¥ [Pho91,
Pho90]. The order on X is defined in terms of X-paths:

pLge I >I.(p=a(l)Ag=a(T)).

Martin Hyland presented the first set of properties for an object ¥ of an
elementary topos necessary to develop domain theory as the theory of the replete
objects (see [Hyl91, HM95]): an object X is replete if, whenever £/: £B — 4
is iso, then X has the unique extension property with respect to f, i.e. for every
a: A — X there is a unique : B — X such that So f = a.

Roughly at the same time, Peter Freyd discovered the universal properties
of the solutions of domain equations clearing the way for their full category-
theoretic treatment (see [Fre91, Fre92]). This discovery spurred research toward
an axiomatic presentation of categories of domains (see [Sim92, Fio94a, FP94]),
which encompassed that centered on O-categories. Freyd’s axiomatic presenta-
tion sets an important criterion about properties of functors in a model of SDT
(see [Hyl91, Ros95)).

By pursuing the SDT approach in the setting of realizability toposes it is
easy to model both polymorphism and recursive definitions. The first such
model was based on complete extensional PERs (see [FMRS90, Ros92]). More
recently, John Longley investigated a variety of realizability models for SDT
(see [Lon95]). Some of these models do not satisfy the axioms for ¥ proposed
by Hyland and others. However, Longley and Simpson have proposed weaker
axioms for ¥ and a different category of domains: the well-complete objects,
which include the replete ones.

Directions

The research directions can be classified under two main headings: study of
specific models, further development of the axiomatic setting.
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Realizability models. Only few realizability models have been studied in
some depth (mainly by Hyland, Rosolini, Phoa, Streicher, Longley). Prelimi-
nary studies have shown that realizability models can give very different insights
into SDT and type theory, simply changing the partial applicative structure or
modifying the notion of realizability (see [Pho94, Lon95, Reu95]), this has no
parallel in sheaf models for SDT.

Moreover, one could also broaden the current realizability framework to
encompass typed versions of realizability, which should be directly applicable to
categories of domains used in denotational semantics.

Axiomatic and synthetic domain theory. It is important to identify a
class of models of SDT, in which a wide range of categories of domains (identified
axiomatically) can be embedded. These models (together with the realizability
models) could provide the intended models for expressive type theories, where
programming languages can coexist with set-theoretic reasoning. Three main
steps seem necessary.

e To identify axiomatic descriptions (along the lines proposed by Freyd,
Plotkin and others) for categories of domains, including the categories used
in denotational semantics. These descriptions should represent minimal
requirements on structure and properties of semantic categories.

o To investigate models of SDT, i.e. set-theoretic universes together with
a natural construction of a good sub-category which complies with the
axiomatic descriptions above. Only the replete construction has been in-
vestigated in some generality (see also [HM95]). Other promising construc-
tions like the well-complete objects introduced by Longley and Simpson,
and the formal cpos introduced by Fiore, Plotkin and Power deserve fur-
ther investigation. In some cases these constructions do not rely on all
properties of a topos, e.g. the replete construction can be performed in
any monoidal closed category. It is important to apply such constructions
to familiar categories of domains, and test whether they give rise to a
proper subcategory, e.g. it is not known what are the replete objects in
the category of cpos.

e To investigate general ways of embedding categories of domains (e.g.
cpos), complying with the axiomatic descriptions, into SDT models (e.g.
based on sheaf toposes).

Another important issue is how much of classical domain theory can be recovered
from the axioms for SDT, this can be approached in different ways.

e One could express the concepts of classical domain theory (e.g. vari-
ous combinators and domain constructions, admissible subsets, finite ele-
ments) in the language of SDT, and then try to derive from the axioms of
SDT most of the classical results (see [RS94, Reu95]).
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e One could try first to rethink classical domain theory more abstractly
(e.g. powerdomains as free algebras constructions, Freyd’s axiomatic pre-
sentation, duality in terms of a dualising object), and look for the SDT
analogue at this more abstract level (see [TP90, Tay95]).

Finally, one should also investigate axiomatisations more usable for the practice
of program verification, though derivable from more fundamental axioms of
SDT.

PCF and the Problem of Full Abstraction
Jon G. Riecke

History

PCF (Programming Computable Functions) is a spare, purely functional lan-
guage originally defined by Dana Scott in 1969 as the term language of the logic
LCF (Logic of Computable Functions) (see [Sco93]). Scott’s main purpose in
explicating LCF was to show how a simple model based on lattices and con-
tinuous functions, with a least fixed point interpretation of recursion, could be
used in deriving a program logic. As a final remark, Scott mentioned a curious
function in the model that seemed not to be definable in PCF:

true if d or e = true
por(d,e) =< false if d =e = false
1 otherwise

In 1977, Plotkin demonstrated the importance of the remark. He proved that
not only was the “parallel or” function not definable, but it caused two terms
to be distinguished that cannot be distinguished in PCF [Plo77]. For instance,
given the term F' defined

Az:bool. Af:bool—bool—sbool.
if (and (f true diverge)
(f diverge true)
(not (f false false)))
then x
else true

where diverge encodes any infinite loop of type bool, (F true) and (F false)
must be different in the model, since when applied to por, the meaning of the
former returns true whereas the meaning of the latter returns false. However, in
PCF, there is no term which will cause all three parts of the and in F to return
true. More generally, placing (F true) or (F false) in any context—i.e., a term
with a hole in them—will produce exactly the same answer. That is, the terms
are “operationally equivalent” [Mor68]. When operational and denotational
equivalence do coincide, the model is called fully abstract. Plotkin went on to
establish that the model based on cpo’s (Scott’s model construction generated
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from base types without top) and continuous functions is fully abstract for PCF
enhanced with a “parallel if” operation [Plo77]. Stoughton [Sto91] later showed
that adding a term for por was enough.

But what about the original problem—can one describe the sequential func-
tional computation of PCF via some abstract denotational model? The problem
has fascinated semanticists for over 25 years, and is important for at least three
reasons. First, the problem is robust. For instance, if we build Scott-style mod-
els for PCF with only booleans or only naturals, for call-by-value versions of
PCF, or for languages like FPC with recursive types or polymorphic A-calculus
with recursion, the same problem arises: the model contains parallel elements
that cause unwanted distinctions. Second, deterministic sequential computation
appears to be fundamental, especially when we move from purely functional lan-
guages to languages with state. In naive Scott-style models for languages with
state, a determinate por also arises in the model, but this form of determinate
parallelism requires copying the state; keeping one state and parallelism forces
us to nondeterminism. In essence, parallelism in a language with state seems
to impose a choice between nondeterminism or efficiency. The naive models
thus prevent one from deriving helpful principles about determinate, stateful
programs—surely an important class of programs.

Third, the sequentiality problem is embarrassing. One of the key goals of
semantics is to describe and formalize the structure of computation. There can
be no doubt that por is computable in Turing’s sense: one can simply run two
arguments via time-slicing, returning true if one halts at true and returning
false if both halt at false. To the semantics novice, this seems to expose a
flaw in the proof that por is not definable: PCF is Turing complete, so surely
por can be defined. But this can only be done by encoding entire computations
of type bool as numbers; the por function cannot be computed in isolation. In
other words, if we try to describe the structure of programs without destroying
that structure, sequentiality is one of the first problems one encounters, and
shows just how limited our knowledge is of semantics.

The sequentiality problem, nevertheless, is vague as stated. What does it
mean to capture the idea of sequentiality in an abstract way? One could say the
problem is simply to build a fully abstract model of PCF, but the unilluminating
term model built from the operational equivalence relation would satisfy that
goal. One could demand that the model be constructed out of partially-ordered
sets and continuous functions, so that Scott’s interpretation of recursion as least
fixed point is possible. The basic term model does not have enough limit points,
so it fails that criterion. But the following theorem due to Milner [Mil77] codifies
the weakness of this criterion.

Theorem 1 (Milner, 1977) There is exactly one continuous, inequationally
fully abstract model for PCF.

A model is inequationally fully abstract if it is based on partial orders, and if de-
notational approximation coincides with operational approximation, where M
operationally approximates N if in any context C[-] such that C[M] and C[N]
have base type, if C[M] reduces to a final answer, then C[N] returns the same
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final answer. (See [St0o90] for a discussion of equationally fully abstract mod-
els). Milner constructed the model using a sophisticated inverse limit, where the
finite models were built from operational equivalence classes of terms. Never-
theless, it still tells us little independent of the operational equivalence relation.
The sequentiality problem boils down to finding interesting, illuminating char-
acterizations of Milner’s model.

Developments

Berry, Curien, and Levy’s excellent article [BCL85] gives a summary of ap-
proaches to the sequentiality problem before 1985; this article covers the main
developments since then. Basically, there have been five (somewhat overlapping)
attempts to describe Milner’s model: term models, domain-theoretic models, se-
quential algorithms models, games models, and logical relation models.

Term models form the first class. Milner’s construction was followed by
two more distinct constructions. Mulmuley’s model [Mul87] takes the original
lattice model of Scott and, using syntactic closures (retractions that are greater
than the identity), collapses it syntactically to the fully abstract model. The
offending parallel elements are sent to the top elements of the lattices, which are
then eliminated. Stoughton’s model [Sto88] starts with the inductively reachable
subalgebra, the set of elements of Plotkin’s cpo model which are lubs of definable
elements, and uses a syntactically defined preorder to reach Milner’s model. The
construction was improved by Jung and Stoughton, who used a syntactically
defined projection to reach Milner’s model [JS93]. The technical advantages
and disadvantages to each construction are described succinctly in [JS93].

The second approach, domain-theoretic, comes from Berry’s notion of sta-
ble functions, a subset of the continuous functions on dI-domains that does
not include por [Ber78]. The stable model is quite interesting, but not fully
abstract; in fact, even though it seems closer at first-order type to the fully ab-
stract model, the inequational theory is incomparable to that of Plotkin’s model
[JM91]. Bucciarelli and Ehrhard [BE91, Ehr93] refined the model with stronger
stability conditions on functions to arrive at a model that is fully abstract for
the first-order fragment of PCF. Brookes and Geva [BG93] also achieve full ab-
straction for a fragment of PCF using domain-theoretic ideas. Recently, Winskel
[Win94] refined Berry’s bidomains to bistructures, and arrived at a better model
incorporating stable and pointwise orders.

The initial failures of stable functions led to the third approach of sequential
algorithms. Previously, Berry and Curien [BC85, Cur86] described a model com-
posed of algorithms (not functions) for PCF which had a game-like structure.
Computations proceed by dialogues of questions and answers composed of “fill-
ing cells”. Cartwright and Felleisen, subsequently built a fully abstract model
for SPCF—an extension of PCF that remains sequential but includes errors and
a simple control operator—out of question/answer trees [CF92]. Curien pointed
out that they had defined on a subtly different version of sequential algorithms
[Cur92, CCF94]. While this result is not for PCF itself, the model is quite
interesting in many respects.

15



A fourth approach that is closely related to sequential algorithms is game
semantics. Games-based models are almost like sequential algorithms, except
that the same question may be repeated in computations. The first results, due
to Abramsky and Jagadeesan used game semantics to achieve full complete-
ness for a fragment of linear logic [AJ94a]; “full completeness” means that any
element of the model (in this case, a strategy) corresponds to a proof. The con-
nection with full abstraction should be clear: if all elements of the model can
be represented syntactically, then the model is almost assuredly fully abstract.
Subsequently, three groups (almost simultaneously) found ways to extend the
results to PCF. Abramsky, Jagadeesan, and Malacaria used a certain class of
“history-free strategies” where answers are provided only to the previous ques-
tion, and where new questions cannot use the entire list of previous moves
[AMJ94]. These games can be used to describe directly the ! operation of linear
logic. Due to the direct use of !, two quotients are required to arrive at Milner’s
model: the first to eliminate distinctions between playing in different copies of
!, and the second to eliminate distinctions based on order of evaluation, etc.
Hyland and Ong [HO] and Nickau [Nic94] described games for PCF without
interpreting ! directly. In their “dialogue games”, every answer must have a
unique justifying question, and where answers are supplied to only immediately
proceeding questions. Their construction requires only the last quotienting step
of the history-free games, although composition seems more difficult to define.

Sieber [Sie92] pioneered a fifth, rather different approach to sequentiality,
using logical relations to eliminate functions that were not obviously sequential.
For example, por does not preserve the ternary relation

R={(d,e, f) € {true, false, L}* | (d= L)V (e = 1)V (d = e = f)}

whereas all the operations of PCF do preserve that relation. This argument,
discovered independently and earlier by Plotkin [AC80], was expanded by Sieber
to a semantic definition of which fixed, finite-arity relations were preserved by
the operations of PCF. Sieber then used the relations to obtain a model that was
fully abstract for PCF up to third-order types. O’Hearn and Riecke [OR95b]
extended the model with varying arity Kripke logical relations of Jung and
Tiuryn [JT93], where each constituent relation was one of Sieber’s relations,
and proved that the new model was Milner’s fully abstract model. They left
open the problem of whether Sieber’s original model was fully abstract at all
types. The situation is rather like [Plo80], where binary relations characterize A-
definability in the full type hierarchy over an infinite ground set up to type-level
two, and Kripke relations characterize definability at all types, but it remains
open whether binary relations suffice for definability.

Directions

With more than 25 years of research, we still do not have an adequate description
of sequential, determinate computation. Even the most successful descriptions
have not been generalized much past PCF. Only the games models have been
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extended, to the lazy A-calculus [AM95] and to a call-by-name language with
recursive types [AM94], and nothing is known about call-by-value languages or
languages with categorical or “smash” sums. This unfortunate fact shows that
while the sequentiality problem is robust, our understanding of sequentiality is
not.

Even if we focus on describing PCF’s sequential computation, there are still
large gaps in our understanding. The two good semantic descriptions of PCF,
the games and logical relation constructions, do not help us answer three related
decidability problems first pointed out by Jung and Stoughton [JS93]:

1. Definability problem: Given an element of the monotone model over the
booleans, is it PCF definable?

2. Counting problem: Given a PCF type over only the base type bool, how
many elements are in the fully abstract model at that type?

3. Equality problem: Given two PCF terms whose types involve only the base
type of bool, are the two terms operationally equivalent—or, equivalently—
are the terms equivalent in the fully abstract model?

One can formulate similar recursive enumerability problems for compact ele-
ments in the fully abstract model of PCF over the naturals. For PCF over
the booleans with por, both (2) and (3) are decidable, since the fully abstract
model boils down to the monotone function model over a three point cpo. The
domain-theoretic approach continues to hold interest precisely because it may
answer these questions for PCF. If, however, the problems turn out to be unde-
cidable, it may spell doom for the domain-theoretic approach, since we expect
the conditions on finite posets and functions to be decidable.

One final question is in order: how good is the original model used by Scott?
After the extraneous top elements of the base types are eliminated (see, e.g.,
[Blo90] for an account of why such elements ought to be eliminated), the model
appears to classify correctly many equations. Indeed, the counterexample above
due to Plotkin relies on having divergence built into the terms that are opera-
tionally equivalent but denotationally distinct. Since programmers (hopefully)
do not write divergent subterms, are there counterexamples to full abstraction
where divergence is not necessary? At what level of the type hierarchy do such
examples occur? Answers to these questions may tell us where reasoning prin-
ciples for programs can be derived from simpler principles.

Parametric Polymorphism
Peter O’Hearn

An example of a polymorphic function is the function

map : Yaf . (a — B) = listfa] — list[]
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that takes a function and a list as arguments and returns the list obtained by
applying the function to each element in the list. A polymorphic function such
as this can work for a variety of types a and 3, but it is not so unconstrained
as to be typeless.

Polymorphism has posed a severe challenge for semantics from the begin-
ning. Initially, the most substantial issue faced was the impredicativity of the
polymorphic, or second-order, A-calculus, an extension of typed A-calculus dis-
covered independently by Jean-Yves Girard and John Reynolds in the early
seventies [Gir72, Rey74]. More recently the focus has shifted to parametricity,
the idea that a parametric polymorphic function works uniformly for any types
to which it is instantiated: the map function is a good example of this.

Models of Second-Order \-Calculus

In the context of the polymorphic A-calculus impredicativity refers to the non-
stratified nature of the types in the language. Intuitively, a polymorphic type
Vo .T(a) is semantically a certain form of indexed product [[ e, . T(D)- But
the rules of the polymorphic calculus allow the type variable a to be instantiated
to the same polymorphic type, so that if p has type Va.T'(a) then the poly-
morphic application p[Ve . T'(a)] has type T' (V. T'(«)). This indicates a certain
circularity in the product [] DeType T (D), because it seems that this product
must itself be an element of the indexing collection T'ype. So the question of
mere existence of (non-syntactically-defined) models is non-trivial.

Domain Models. One successful attack on impredicativity uses the technology
originally developed for solving recursive domain equations. The earliest such
model [McC79] interprets types as operators on a suitable universal domain.
An alternative, that avoids universal domains, is the model construction given
by Girard [Gir86] using ideas from stable domain theory; it was later adapted
by Coquand, Gunter and Winskel [CGW89] to a more traditional cpo setting.
The construction works by interpreting types as continuous functors of a certain
kind, allowing a type to be constructed out of finite approximations. This fini-
tary nature of the interpretation is what allows impredicativity to be skirted.
Although the construction does use domain theory technology, the model does
not rely on a previously-constructed model of untyped A-calculus. In this sense
the model may be said to provide a genuinely typed viewpoint on the calculus.

Realizability Models. In models based on realizability (in the sense of real-
izability semantics of intuitionistic logic) types denote “sets” of realizers, typ-
ically taken from a previously-constructed model of untyped A-calculus. The
“functions” taken are then those determined in a suitable sense by the untyped
realizers.

The existence of such models for the polymorphic calculus dates back in
fact to Girard and Troelstra in the seventies. But in the mid eighties there
was a discovery, due to Eugenio Moggi and Martin Hyland [LM91, Hyl88], of a
perspective on these models that exposed their extraordinary character. Often,
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concretely, the denotation of a type is given as a PER (partial equivalence re-
lation) over a partial combinatory algebra; in PER models any two elements of
an equivalence class are viewed as different realizers of an element of the type.
There is a “standard” PER model, where types are PERs over the natural num-
bers with partial combinatory algebra structure given by Kleene’s application
app(m,n) = @,(m) of partial recursive functions. But this concrete descrip-
tion can also be understood as the “externalization” of an internal category, a
category that lives inside another category.

One remarkable fact about this second form of description is that the stan-
dard PER model appears as a set-theoretic model, provided that one under-
stands “set theoretic” liberally enough allow models of intuitionistic set theory;
the model of intuitionistic ZF that contains the PER model in this way is the
effective topos [Hyl82, Ros90]. From the point of view of intuitionistic set the-
ory the result is models where the function type A — B is interpreted by all
set-theoretic functions and V is an indexed product [[ 57, T'(D). This is par-
ticularly startling, because Reynolds [Rey84] had earlier shown the impossibility
of a (classical) set-theoretic model, a model where types denote sets of some kind
and where the function type A — B consists of all set theoretic functions, with
“all set theoretic functions” understood classically.

The other remarkable thing is that these internal categories are, in a suit-
able sense, small (set-sized) and complete (closed under all small products and
other limits). Completeness is very powerful: it makes reasonably obvious that
a variety of type theories can be modelled with ease. It is crucial, however, that
“completeness” is understood relative to the ambient category, such as the ef-
fective topos or one of its subcategories, and not in the usual classical (external)
sense. Important work illuminating these issues include:

e Andy Pitts’s [Pit87] demonstration that enough “intuitionistically set-
theoretic” models exist to satisfy a completeness theorem (in stark con-
trast to the classical case); and

e the study by Hyland, Edmund Robinson and Pino Rosolini elucidating
subtle completeness properties of internal categories in the effective topos
and other categories related to it [HRR90] (also, [Hyl82, Rob89, FRR92b]).

Work on realizability models has flourished. Specific directions include algebraic
characterizations of low-order types, work on recursion, and on subtypes; just
a few examples are [HRR88, BFSS90, Amag89, FMRS90, BL90, Mit88]. Other
pointers to work on realizability models can be found in the section on synthetic
domain theory.

Comparison and Evaluation. The construction and understanding of models
of the polymorphic A-calculus represents a substantial achievement. With this
understood, it is worthwhile to consider a number of criticisms of the domain
and PER/realizability approaches.

The strongest criticism of domain models is that none of them are paramet-
ric, and it is not clear how they may be modified to be so. We will consider para-
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metricity in more detail below: let us simply mention, for now, that the types
contain “junk,” elements that are non-uniform and contradict the spirit of para-
metric polymorphism. For instance, in Girard’s model the type Va.a X a = a
consists of four elements. Three of these — L and the two projections — are
perfectly reasonable, and definable in the polymorphic calculus with recursion.
The fourth element is the function that takes two arguments a,b and returns
their meet a M b. The meet exists because the types are coherent spaces, but
it is easy, using relational parametricity with complete relations (see below), to
explain the sense in which it is not parametric.

A second problem is that the domain models can all interpret the polymor-
phic A-calculus with a fixed-point operator. Reynolds had argued in [Rey83]
that “types are not limited to computation,” and that that the polymorphic
calculus should possess a set-theoretic model; there seems no prior reason why
recursion should be necessary in interpreting the calculus. In contrast, realiz-
ability models are set-theoretic, provided one is willing to accept intuitionistic
sets. Note that this does not imply any foundational commitment.

But a conceptual disadvantage to realizability models is (arguably) their re-
liance on a previously-constructed model of untyped A-calculus; this should be
compared especially with Girard’s domain model. So even in the “set-theoretic”
models recursion sneaks in the back door. A more practical problem with realiz-
ability models is that denotations of terms are usually huge equivalence classes
of realizers, and these can be unwieldy to work with.

Of all the work on semantics of polymorphism, one of the more important
applications to have emerged is the use of realizability models as tools for exper-
imenting with type theories. One of the fastest ways to show soundness of type
rules, or just test out ideas, can be to try to construct a model: realizability
models are well-suited to this, primarily because of their strong completeness
properties. A prime example of this is in work on applying type-theory tech-
nology to develop secure type systems for object-oriented programming (e.g.
[BM92]).

Parametricity

When Strachey introduced the notion of polymorphic function in 1967, he im-
mediately distinguished between parametric and ad hoc polymorphism. Ad hoc
functions may work differently at different types, whereas parametric functions
are supposed to be uniform. It is this uniformity notion that is increasingly be-
ing seen as important to capture semantically. The most satisfactory approach
to parametricity thus far is based on logical relations, relations defined by in-
duction on types [Mit90b], and is often referred to as relational parametricity
or Reynolds parametricity [Rey83].

Relational Parametricity. Throughout his work Reynolds has emphasized a
connection between parametric polymorphism and representation independence,
the principle that the behaviour of an abstract data type is invariant under
changes to its concrete representation. For example, a client that uses a type of
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stacks should not be able to distinguish (at a suitable level of abstraction) an
implementation based on lists from one based on functions with integer domain.

The basic idea behind relational parametricity is simple. Suppose we have
a polymorphic function p : Va.T'(«). This function can be instantiated to a
variety of types, yielding p[D] : T(D), p[E] : T(E)... Relational parametricity
says that the different instantiations bear the following uniform relationship,
which we call the (binary, relational) parametricity condition:

for any types D and E and any relation R : D < E, there is an
induced relation T(R) : T(D) + R(E), and (p[D],p[E]) € T'(R).

Intuitively, we may regard a relation R : D <+ E as relating different represen-
tations of a, and T'(R) as an invariant relationship that must be maintained.
Typically, the relation T'(R) is determined in the usual inductive manner of
logical relations, with the significant caveat that free type variables other than
a are mapped to identity relations. The idea is that two pieces of code satis-
fying invariant T'(R) should behave equivalently from the point of view of the
“visible” types, types other than a.

The parametricity condition is stated informally; it is the job of mathe-
matical formulations to make precise terms like “type” and “relation” in this
statement. But to get an idea of the constraining effect it has, consider a
specific type Va.a — a — a. If this were interpreted straight as a product
[Ipeset - P = D — D then it would be far too large to be a set. However,
with the relational parametricity condition, taking “types” as sets, we consider
only those elements of the product that preserve all relations, where two func-
tions (f,g) are related by R — R — R iff for all (ag,bp) and (ai,b;) in R,
(fagai, gbeb1) € R. There are only two such elements of the indexed product,
Azy.x and Azy.y; to see this use relations R : 2 < D between a two-point
set 2 and any other set D. So the parametricity condition in this case cuts a
proper class down to a two-point set. But because of the result of [Rey84], it
is not possible to use the parametricity constraint to pick out a suitable subset
of [Ipeser - T(D), for any type T in the polymorphic M-calculus: parametricity
does not give us a way to skirt impredicativity.

Data Abstraction and Algebra. Parametricity gives a method for prov-
ing the equivalence between different representations of an abstract data type.
Consider an abstract type a with operations z; of type ti(a), i = 1,..n. To
equate two concrete representations [T K ... K, and [T'] K] ... K], of the type
it suffices to find a relation R : T ¢+ T’ under which each Kj, K] is invariant
(according to the induced relation t;(R) : ¢;(T) < t;(T"). For instance, we can
implement stacks of integers using list[int] as the representation type, or a type
(int — int) X int using the int component to indicate the top of the stack. The
relation used to prove equivalence of the representations relates a list to a pair
(f,n) such that f(0),...f(n) is the list.

This reasoning method can be derived from the parametricity condition using
either Reynolds’ treatment of abstract types using polymorphic application —
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e.g.
(Aa. A1, .z M) [T Ky ... Ky

to bind a and z; to their concrete representations — or the treatment later given
by Mitchell and Plotkin using existential types (see [Mit86, PA93]).

Put this way, relational parametricity appears as a systematization and gen-
eralization of (often informal) ideas for reasoning about data types, objects, and
so on (e.g. [Hoa72]), and this connection with data abstraction is part of its
appeal. But there is also substantial theoretical support in the way of the many
consequences of the (binary, relational) parametricity condition.

e Certain categorical data, such as sums and products, can be encoded in a
strong sense using only V and —. For example,

A+ B
Ax B

Va.(A—a)=»(B—a)—a
Va.(A->B—>a)—>a

Without parametricity, these formulae only define weak sums and prod-
ucts.

e Existential quantification is coded as
Ja.T(a) = V8.(Va.T(a) = 08) > 0

e Any type T'(a) with a occurring only positively determines (in a suitable
sense) a covariant functor on types, and we get encodings of initial T-
algebras and final T-coalgebras:

pa.T@) = Va.(T(a) 5 a) > a
va.T(a) = Ja.ax (a = T(a))

This determines the structure of a range of types. For instance,
Va.(a = a) = (a = a)

is isomorphic to Va.((1 + @) —» a) — « using standard manipulations,
and this shows that the Church numerals are an initial fixed-point for
T(a) =1+ a, as one expects. Again, without parametricity the Church
numerals are only weakly initial.

These properties are nowadays usually taken as definitive properties of para-
metricity, not just relational parametricity, and provide a useful test for any
proposed alternative definitions. The importance of these properties can be
seen in a number of works, beginning with [Rey83] and continuing in a number
of places (e.g. [RP93]), with probably the most systematic exposition being
[PA93]. Bainbridge, Freyd, Scedrov and Scott [BFSS90] were the first to define
a parametric model satisfying these properties; they achieved this by trimming
down the PER model. Of course, for the statements of the properties, and the
parametricity condition itself, to make precise sense we need to work either with
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a specific model or within a more general mathematical framework.

Mathematical Frameworks. In formalizing the notion of relational para-
metricity it is reasonable to separate the parametricity condition itself from the
problem of existence of a model. That is, independently of whether relations
have been used to construct a model, one can ask whether all of the elements
that live in it satisfy the relational condition. Some approaches to frameworks
for parametricity are the following

1. Reynolds and Ma [MR92] give a categorical formulation of parametricity,
in the context of indexed-category models of polymorphism [See87]. There
is also similar work of Mitchell and Scedrov [MS92] for essentially ML-style
polymorphism.

2. Robinson and Rosolini [RR94] give a related development, with the defini-
tions reworked in the setting of internal category models of polymorphism.

3. Wadler [Wad89] does the same in the context of type-frame models [BMM90],
and provides many useful examples of reasoning with relational para-
metricity (see also [Has94]).

4. Plotkin and Abadi [PA93] define a logic that allows quantification over,
and substitution of, relations as well as types, leading to a logical expres-
sion of the relational parametricity condition.

In the first three cases we have a notion of what counts as a model of poly-
morphism, and additional requirements that parametric models must satisfy;
[MR92, RR94] contain useful discussions on relationships among the three ap-
proaches. One might expect that parametric models in the Ma-Reynolds or
Robinson-Rosolini senses would provide sound models of the logic of Plotkin-
Abadi, but the details of this have not appeared as of yet. The question of
completeness of this or a related logic wrt categorical models is also pertinent.

Constructing Particular Models. One way to obtain a parametric model
is to take an existing model, or model construction, where a notion of “prod-
uct” [ DeType .T(D) is already understood, and then use the parametricity
condition to cut down, accepting only certain “elements” of such a product.
We do not mean the product literally here, but simply the interpretation of a
polymorphic type.

This idea is subtler than first appears. Since the interpretation of a poly-
morphic type is not literally a (set-theoretic) product, there is the question of
the existence of the trimmed down “type”

{pe H T(D) | parametric(p) }

DeType

for a suitable predicate parametric(-) based on the relational parametricity
condition. For instance, a simple-minded attempt to try this construction with
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domain-theoretic models runs into apparent, but not well-understood, difficul-
ties. Domain models typically rely on algebraicity of their cpo’s, whereas many
of the non-parametric elements that are excluded by this scheme are in fact
finite elements. So it is not at all obvious that algebraicity is preserved.

But there are circumstances where this “cut-down scheme” can work. One
case is for predicative type theories. In these theories types are stratified into
levels, with quantifiers ranging over types from lower levels. Martin Lof’s type
theories and the core ML type system are examples. For instance, in ML a
polymorphic type cannot appear to the left or right of —: occurrences of V are
outside of all other connectives. As a result, it is possible to interpret Vo . T'()
literally as a trimmed-town set: because of predicativity, the indexing collection
Type can be taken to be small, and there are no foundational difficulties. This
can be done with sets or, if one considers recursion, with cpo’s by taking T'ype
to be, say, the countably-based bounded-complete algebraic cpo’s (which is es-
sentially a small collection) and parametric(p) to be determined by relations
between cpo’s that are strict and have lubs of directed subsets.

For the full second-order polymorphic calculus the cut-down scheme works
for models that have sufficient completeness properties. Completeness here
means “enough” limits, which essentially allows one to interpret the compre-
hension in

{pe H T(D) | parametric(p)}

DeType

while maintaining other properties required of models. The first parametric
model was in fact obtained by taking the standard PER model, and applying the
cut-down scheme wrt certain relations between PERs [BFSS90]. The key fact is
that PERs are sufficiently rich to allow the trimmed-down PER to exist. General
conditions sufficient for collapsing to a parametric model, together with a slick
model construction based on internal categories, have been given in [RR94].

As an alternative to the cut-down scheme, one might hope for a model that
is somehow more inherently parametric, that is to say, a model whose defini-
tion does not explicitly use logical relations, but for which all elements satisfy a
parametricity condition. Such a semantics would be very attractive but, apart
from syntactically-defined models [BTC88, Has91], no such are known for the
full polymorphic calculus or for any type theory where polymorphic functions
can be passed as arguments. One interesting bit of progress is the game seman-
tics of Samson Abramsky and Radha Jagadeesan [AJ94a], which gives a model
of multiplicative linear type theory in which all elements are definable (and one
expects parametric). This covers a weak form of polymorphism related to that
found in ML, and the model construction does not use logical relations.

Other Approaches to Parametricity. Relational parametricity expresses a
uniformity property of a family of functions in terms of relationships between
instances of the family. A more direct approach might be to say that parametric
functions are those that are given by uniform algorithms, algorithms that “work
the same way” at all types. An extreme take on this idea is to posit that “work-
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ing the same way” is tantamount to being a typeless algorithm that happens
to behave in a type-correct fashion for all instantiations of a polymorphic type.
This notion is what Plotkin and Abadi term Strachey Parametricity, to contrast
with Reynolds Parametricity ([PA93], also [Mit90al).

The standard PER model of polymorphism furnishes something of a for-
malization of this notion. A polymorphic type Ya.T'(«) is interpreted as an
infinitary intersection () ,cppp T4, so that a realizer for a polymorphic func-
tion is, in effect, a typeless function that is type-correct for all instantiations.
But this connection between Strachey Parametricity and PER models does not
extend to all realizability models of polymorphism, or even all PER models; the
interpretation of V as intersection is highly dependent on the specific nature of
the “internal set of PERs” in the ambient category of realizability.

Another idea that deserves mention is dinaturality. Given categories C' and
D, and functors F,G : C°? x C' — D, a dinatural transformation from F' to
G is a family of maps my4 : F[A, A] — G[A, A] satisfying the famous hexagon
property:

Vf:A— B.Glida, floma o F[f,ida] = G[f,idp]omg o Flidg, f]

The C°P component is used to take care of negative occurrences of type variables;
dinaturals are an adaptation of natural transformations to account for mixed-
variance. A connection between dinaturality and parametricity was proposed
in [BFSS90].

The notion of dinatural has problems: dinatural transformations do not com-
pose in general, and thus one does not automatically get a category. However, all
definable elements in the polymorphic A-calculus are dinatural, so dinaturality
can be used as a sound principle for reasoning about polymorphic functions. It
was further shown in [PA93] that relational parametricity implies dinaturality,
in the context of their logic for polymorphism.

But dinaturality has an important feature (apart from its simple expression)
that present treatments of relational parametricity lack: it is formulated gener-
ally, for any categories C and D, and any functors C°? x C' — D. (This does not
take nested polymorphic functions explicitly into account.) Thus, the notion is
precise, but not tied in any way to particular type theories. Peter Freyd’s work
on structors also a general flavour of this kind [Fre93].

Directions and Problems. Broadly speaking, there is room and reason to
investigate both generalizations and further applications of parametricity. For
example, it has been suggested that the “information hiding” aspect of locally
encapsulated state, as found in objects or higher-order imperative programming,
is closely related to parametricity [OT95]. It is reasonable to ask whether there is
a general notion of which the “abstractness of interfaces” found in polymorphic
type theories, in imperative and object-oriented programming, and in many
other programming situations are instances.

There remain specific questions about relational parametricity and related
approaches. The connection between data abstraction and uniformity has not
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been completely explained [Rob], and there are particularly questions about
alternative formalizations. For example:

e Is the PER model relationally parametric? Is the trimmed-down model
of [BFSS90] any different than the standard PER model? Answering this
would be a first step to relating relational parametricity and Strachey
parametricity. (Some partial results are [HRR90, FRR92a].)

o For what n and m are n-ary and m-ary relational parametricity different?
Similarly for Kripke relations [Plo80, JT93].

Most of the discussion so far has avoided fixed-points. Certainly relational
parametricity and a polymorphic fixed-point operator ¥ : Va. (& = a) — a can
live together comfortably; one restricts to suitable “admissible” relations. But
the encoding of initial algebras given above ceases to work (consider T'(a) = a),
and one loses strong sums, so, while parametricity can still be used, the story
being told is not nearly so neat. As a remedy Plotkin has proposed that fixed-
points should treated in the context of linear polymorphic type theory, instead
of the usual intuitionistic calculus. Then one recovers recovers initial algebras
via pa.T(a) = Va.(T'(a)—oa) — «, one obtains strong sums (which are in-
compatible with intuitionistic, or Cartesian closed, type theory and recursion),
and most remarkably, one obtains solutions of arbitrary domain equations, and
not just covariant ones. (This uses Freyd’s reduction of recursive to induc-
tive types [Fre90].) These results have been presented by Plotkin in lectures
[Plo93], though they have not been published yet. But the point that linear
type theory allows for a better treatment of parametricity with recursion rings
clear, and there are likely to be further applications of linear type theory as
far as parametricity is concerned. One example already is in work on applying
parametricity to the semantics of imperative languages [OR95¢].

One way to find a parametric model of impredicative type theory with re-
cursion would be to trim down a domain-based PER model [Ama89, Pho90,
FMRS90]. But since we already know of domain-theoretic models of polymor-
phism, models that accommodate fixed-points, there is a natural question:

o Can a cpo model of the polymorphic A-calculus be modified to be paramet-
ric?.

This explicitly does not ask for a domain-theoretic PER model, but one more like
Girard’s or McCracken’s. Related questions can be asked for predicative type
theories, but then existence is not itself a problem; rather, there are questions
about the resulting structure of the types, such as whether all the types denote
are algebraic or effectively given cpo’s. Generally, there is still an unanswered
question as to whether traditional (especially, effective) domain theory based
on cpo’s is compatible with parametricity, or whether other flavours of domain
theory, as found, e.g., in the sections on synthetic and axiomatic domain theory,
are more appropriate.
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Mutable State
Ian Stark

Explicit manipulation of state has been with programming languages from the
beginning; variables and store simply match the registers and memory of the
underlying machine. Similarly, almost every introduction to the denotational
approach includes some simple imperative language as a standard example; and
when the state consists of a fixed set of global integer variables, it is not hard
to describe an accurate model. Typically we have

States = Locations — Values
Ezxpressions = States — Values
Commands = States — States
where
Locations = {z,y,...} and Values={...,—-1,0,1,2,...}.

The interpretation of a command might then look like this:
[z :=€]s = s[z — [€]s] s € States,

where s[z +— -] is the state s with location z updated. The denotation of store
as a function from locations to their contents goes back a long way: Strachey
attributes it to a suggestion of Burstall in 1964 (see the forward to [Sto77]).
Adding loops and procedures makes things more complicated, but the treatment
of global state remains much the same.

However, state as a model of the underlying machine is not at all the same as
state as a programming tool. Real applications use explicit state in several more
sophisticated ways: private local variables to add structure and safety to code;
variables storing complex objects such as procedures or function closures; and
store that is dynamically created and discarded, to be swept up by a garbage
collector. These are all useful features, but their interaction with each other, and
other techniques like higher-order functions, can be subtle and surprising. This
is reflected in the fact that good mathematical models are hard to construct,
and in some cases it may even be difficult to find an operational semantics that
is clearly correct.

The problems with denotational semantics come in two degrees. First, it may
be hard to find any model at all: as with the storage of functions, which is enough
on its own to encode recursion and non-termination. Second, a model may not
be very abstract, in that it makes distinctions between too many programs. This
shows up because explicit mutable state is often most useful when its details can
be concealed. Local variables are convenient precisely because they are invisible
outside the procedure that uses them; and a memo function, that caches previous
results, should appear externally no different from its non-caching version.

We consider here two distinct approaches to mutable state in language de-
sign, and review work on the denotational semantics of each. The first concerns
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Algol-like languages, that try to mix imperative control and higher-order pro-
cedures in a safe and even-handed way; the second looks at Standard ML, a
broadly functional language with some powerful imperative features. Although
these languages encourage quite different styles of programming, there are many
similarities in the problems raised and the mathematical models used to under-
stand them.

Idealized Algol

Reynolds has promoted the investigation of Algol-like languages, with block
structured use of local variables, call-by-name parameter passing and higher-
order procedures. These all come together in Idealized Algol [Rey81]. This
language makes a sharp distinction between commands, which can modify the
state but not return values, and expressions, which can return values but cannot
affect the state. As a consequence, all local variables can be safely allocated on
a stack. Such carefully drawn constraints also make it possible to consider
construction of a denotational semantics for state in Idealized Algol.

One line of models for Algol-like state has been developed by Halpern, Meyer,
Trakhtenbrot and Sieber [HMT84, MS88, Sie93, Sie94]. These build on the very
simple model described above, but take into account the support of procedures:
the locations they actually use and how they affect them. This is done through a
system of multiple simultaneous logical relations, indexed in the style of Kripke
models. In [MS88] Meyer and Sieber give a range of examples that illustrate the
difficulties that can arise when reasoning about local variables, and show how
the denotational approach can express invariants of the store: properties that
a procedure is guaranteed to preserve. Sieber, in [Sie94], gives an impressive
proof of full abstraction for the second-order subset of the language. We can
gain some idea of the difficulty of reasoning about local state by noting that this
proof both subsumes and considerably extends Sieber’s previous demonstration
that logical relations give a complete account of sequentiality up to third-order
in the purely functional language PCF — generally considered a hard problem
in its own right [Sie92].

Following Reynolds work with Oles [Rey81, Ole82, Ole85], models for Ide-
alized Algol using functor categories have been further developed by Tennent,
O’Hearn and Lent [0T92, OT95, Len93]. Functors are important because they
capture the fact that the size of the store, as well as its contents, may change
over time. Thus an index category of possible worlds or state shapes is used to
record what freedom the state has to vary, at any point during program execu-
tion. This approach differs from those above, in that explicit locations are not
necessarily involved. Rather, a variable is represented by a pair of values, an
expression giving its current content, and an acceptor that can change it:

Ezxpressions = States — Values
Acceptors = Values — (States — States) .

This technique of separating the L-value and R-value of a variable has been much
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promoted by Reynolds, and allows for features such as conditional variables:
(if test then z else y) == a+b+c.

Inspired by relational parametricity for polymorphic functions, O’Hearn and
Tennent have adapted this model to use categories with relations. These cap-
ture the notion that a procedure is polymorphic in those parts of the state
to which it has no direct access. The resulting models allow reasoning about
state invariants, and can prove all of the tricky examples of Meyer and Sieber
[MS88], together with various others. Perhaps most interesting from a mathe-
matical standpoint is that this this rather powerful semantics can be represented
quite simply as Oles’ original model reformulated in the 2-category of reflexive
graphs, rather than the 2-category of sets.

These functor category models have been used to give a denotational ac-
count of specification logic, Reynolds’ extension of Hoare logic to higher-order
procedures [Rey82, Ten90, OT93]. Specification logic uses a notion of non-
interference to avoid the problems of variable aliasing, where procedures may
affect each other in unforeseen ways. This property can be hard to check,
and with syntactic control of interference [Rey78, Rey89] Reynolds proposes a
scheme to ensure that such interfering code cannot be written. This too has a
denotational semantics within the functor category model [Ten83, O’H93], and
indeed a comparison with mathematical models for linear logic has inspired a
reworking of the original syntactic scheme [0’H91, OPTT95]. This new version
corrects some known difficulties with types, by giving a correct handling of pas-
sive and active procedure parameters. We can see this as a prime example of
good denotational semantics feeding back into improvements at the language
level.

This link to linear logic has been investigated by Reddy, whose models using
coherence spaces bring out the historicity implicit in the state: variables are
objects, and the history of their local state is threaded through the course of
program execution [Red93, Red94, Red96]. Remarkably, an apparently crude
bolting together of this model with functor categories, via the Yoneda embed-
ding, gives a good description of both locality and historicity at the same time
[OR95a]. The success of this model is not yet entirely understood.

Standard ML

The language Standard ML offers functional programming with imperative fea-
tures. It is built around a core language that provides strongly typed higher-
order functions, possibly polymorphic, with call-by-value parameter passing.
Mutable state is incorporated through references: dynamically created cells
that can be read and written at will. Standard ML is a real language, with a
number of implementations and, unusually, a complete published operational
semantics [MT91, MTH90].

Programs in Standard ML use mutable state in quite different ways to the
Algol-like languages described above. Whereas in Algol, local variables are es-
sential intermediaries in all computation, in ML a purely functional sublanguage
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is sufficient for most programming. In Algol local variables permeate all code,
and much of the reasoning effort is devoted to ensuring that they behave well;
giving stack allocation and no covert interference between variables. By con-
trast, in ML most things can be done without reference cells, and when they
are used, it is exactly these interference effects that are most important.

For example, a function may have an associated reference cell that persists
from one call to the next, providing an accumulator or a cache. A complex data
structure might contain cells that change when it is consulted, to speed up future
accesses, as with path compression in the classic union-find algorithm. A group
of functions can share references in order to communicate among themselves;
or a higher-order function may return a function as result, but keep a link to it
through a common reference. Dynamic allocation of cells is also important, to
match the dynamic creation of functions by higher-order programs.

Combined with the fact that references may contain functions, structured
datatypes, or even further references, it is clear that mutable state in a language
like ML provides serious challenges for denotational semantics. On the other
hand, such power can have curious and unexpected interactions with features
like higher-order functions and exceptions, so it is even more important to find
solid reasoning principles to confirm that the examples above do behave as
expected.

These applications of references all depend on the wvisibility of cells: who can
see them, how they may update them, and whether they can pass this access on
to others. For ML references, this issue of visibility transcends the usual notions
of scope, and has a complex behaviour of its own. To study it, Pitts has identified
the nu-calculus, a simply-typed lambda-calculus with dynamically generated
names. Names are created fresh, they can be compared with each other and
passed around, but that is all. Bare as it appears, the nu-calculus captures
the essence of visibility, and its operational and denotational semantics have a
surprisingly rich structure that mirrors the subtleties of reference behaviour in
Standard ML.

Pitts and Stark describe the nu-calculus in [PS93b, PS93a], and outline
a categorical semantics for the language. This model uses a computational
monad, following Moggi’s general scheme for extensible denotational semantics
[Mog90, Mog91]. The idea is to use a cartesian closed category C for the func-
tional part of the model, and concentrate all non-standard behaviour in a chosen
monad T : C — C. Loosely, for every object of values A, there is an object of
computations T'A; and Moggi’s observation is that the requirement that 7 be a
strong monad is enough to capture a wide variety of notions of ‘computation’.
In addition, the internal language of C then provides a convenient computational
metalanguage for equational reasoning.

For the nu-calculus, Pitts and Stark specify some simple additional require-
ments concerning names and visibility, so that any category satisfying them
immediately provides an adequate model for the language. In essence, a gener-
alised element of T'A4 is then a computation ‘create some new names and return
an element of A, that may depend on them’.

They also give some examples of suitable categories, and two of these are
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investigated in more detail in [Sta96]. Like the models in the previous section,
both use functor categories indexed by possible worlds, where the state is now
represented by a finite set of names. The more sophisticated uses categories
with relations, from O’Hearn and Tennent’s work on relational parametricity;
and this model is proved to be fully abstract for expressions of ground and
first-order type.

All this is brought together in [Sta94], and extended to a language Re-
duced ML that includes integer references. It turns out that the models of
the nu-calculus can be reused to give a denotational semantics for this larger
language, simply by defining a new monad from the old:

T'A = (T(Ax 8))® S=1IN.

Here S is an object of states, defined from objects I of integers and N of
names. The intuition is that a computation can now update the store as well as
enlarge it. This equation seems almost to put us back to the original model of
global state; except that now we are working not with sets but in a category C
that smoothly handles dynamic creation of locations. Better models of the nu-
calculus give better models for Reduced ML, and these can be further improved
by refining the object of states S.

In the work cited, these models of names and state are accompanied by
a series of operational methods for reasoning about the nu-calculus and Re-
duced ML. These are especially interesting in that their development was guided
quite clearly by the denotational work: in particular the distinction between
computations and values, and the use of logical relations. Thus denotational se-
mantics proves its worth, in giving sound intuition on the operational behaviour
of a sophisticated programming construct.

Future Directions

While both approaches above clearly have much in common, there is not yet any
satisfactory formal relationship between local variables in Algol and references
in Standard ML. Such a connection would assist both areas, and might also cast
light on the very different styles of programming each involves: naive translation
from one to the other can often take a simple first-order procedure to a tortuous
third-order one.

A fully-abstract model of state is an obvious aim, as with any work on
denotational semantics. As mentioned earlier, proofs of full abstraction at lower
types have been obtained for Idealized Algol and the nu-calculus; one route to
extending these might be through logical relations of varying arity, as used
by O’Hearn and Riecke to construct a fully-abstract model of PCF [OR95b].
Another method may be the link to linear logic, and even game semantics,
suggested by Reddy and O’Hearn.

In the case of ML-style references and the nu-calculus, there is another re-
sult related to full abstraction and of independent interest. Purely functional
languages like PCF satisfy Milner’s context lemma [Mil77], which says that the
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behaviour of an expression in any context C[—] is determined by its behaviour
in contexts of the form [—]V; ... V,,. The importance of this in a typed language
is that all the V; have types smaller than that of the original expression. In a
language with state, the context lemma fails: to observe all the behaviour of a
function, it may be necessary to apply it more than once to the same argument,
or pass it the result of a previous application. The question then, is to find some
level at which we can again express the observable behaviour of expressions of
type (¢ — 7) in terms of those of types o and 7.

Finally, there remains almost unlimited scope for extending this work to
further uses of mutable state: local variables that store functions, references
that store references, references within structured data, and even the interaction
with other features like exceptions and input/output.

We have seen how mutable state has moved from a representation of the
underlying machine, first to local variables, a pervasive but regulated language
mechanism, and then to references, a powerful but very specific programming
tool. Denotational semantics has moved with it, and will surely continue to
guide and inform future applications and development.
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