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Abstract. The deep structure of scale-space of a signal refers to track-7

ing the zero-crossings of differential invariants across scales. In classical8

approaches, feature tracking is performed by neighbor search between9

consecutive levels of a discrete collection of scales. Such an approach is10

prone to noise and tracking errors and provides just a coarse represen-11

tation of the deep structure. We propose a new approach that allows us12

to construct a virtually continuous scale-space for scalar functions, sup-13

porting reliable tracking and a fine representation of the deep structure14

of their critical points. Our approach is based on a piecewise-linear ap-15

proximation of the scale-space, in both space and scale dimensions. We16

present results on terrain data and range images.17
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1 Introduction19

Since seminal works of Witkin [12] and Koenderink [8], scale-space methods have20

been greatly studied in the literature on computer vision and image processing21

- see [10] Section 4.4 for un updated bibliography - and later on in scientific22

visualization [1, 2, 6, 7]. The deep structure of the scale-space [9] captures the23

evolution of differential properties across scales, by tracking zero-crossings of24

differential invariants - most typically, the critical points of a scalar field. The25

importance of critical points is measured by their life time in the scale-space and26

helps identifying relevant features that subsume the structure of the signal.27

The standard approach to scale-space is discrete: a scale-space consists of a28

collection (f0, . . . , fk) of subsequently filtered versions of an input signal f = f0.29

Feature points are identified in each level fi and the deep structure is extracted30

by tracking each feature across pairwise consecutive signals fi, fi+1: given a31

feature point in fi+1, a neighborhood of its location is explored in fi, searching32

for a feature of the same type; feature points of fi that do not match any feature33

point in fi+1 are considered to end their life at scale i; etc. Such a procedure34

is prone to false and missed matchings, and the matching process is greatly35

influenced by the granularity of sampling through scales.36

In [11], a method was introduced to track the critical points of a scalar field,37

which follows the gradient of the field to detect correspondences across levels of38
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the scale-space. Albeit more robust than standard neighbor search, this approach39

is still discrete, as the analysis is again performed at the level of granularity of40

sampling in the scale dimension, with similar drawbacks.41

In this work, we propose a new approach that provides a virtually continuous42

model of the scale-space and of its deep structure. We adopt a piecewise-linear43

representation of the input signal f , by discretizing its domain with a simplicial44

mesh (a triangle mesh for a bi-variate function) having vertices at the sample45

points. The connectivity structure of samples provides a straightforward local46

criterion to detect critical points. We also adopt a piecewise-linear representa-47

tion of the diffusion flow that generates the scale-space. Given the collection of48

snapshots (f0, . . . , fk), we assume the flow to be linear between each pair fi,49

fi+1. This allows us to easily track critical points across scales, because changes50

in the deep structure can occur only at a finite set of events, which are easy to51

find. The granularity of such events is much finer than sampling of snapshots.52

Tracking of critical points is exact in the context of this piecewise-linear approx-53

imation, while density of sampling in the scale dimension is just relevant to the54

approximation of diffusion flow, which is a non-linear process.55

The trajectory of each critical point in the deep structure is encoded as a56

chain of edges of a mesh discretizing the domain of f ; in this model, velocity57

of displacement of each critical point along its trajectory is piecewise constant58

and it is encoded by storing times of transitions through vertices of the mesh59

on a continuous scale; bifurcations, corresponding to deletion/creation of pairs60

of critical points, occur at midpoints of edges of the mesh where trajectories61

end/start. With this data structure at hand, it is straightforward to perform a62

number of queries about the scale-space and its deep structure, such as: slicing63

the scale-space at any arbitrary scale; evaluating and visualizing the trajectories64

of all critical points; selecting critical points according to their life span; etc.65

2 Scale-space66

For the sake of simplicity, in the following we will deal just with the linear scale-67

space of a bi-variate scalar function defined on a 2D rectangular domain and68

sampled on a regular grid (such as images and digital elevation models). Most69

concepts introduced in this article, however, can be generalized in a straightfor-70

ward way to any kind of scale-space, for functions defined over general manifold71

domains, in higher dimensions, and with irregular sampling. Generalizations will72

be briefly discussed in Section 4.73

Let f : R2 → R be a bi-variate scalar function with bounded range. For74

convenience, we assume that f is a Morse function, i.e., all critical points of f75

are isolated. The linear scale-space Ff (x, y, t) of f is defined as the solution of76

the heat equation77

∂

∂t
Ff = α∆Ff ,

with initial condition Ff (x, y, 0) = f(x, y), where ∆ denotes the Laplace operator78

(with respect to the space variables x, y) and α is a constant term tuning the79
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Fig. 1: Piecewise linear discretization of the domain (light blue triangles). Virtual
points in the outer border (white triangles, dashed lines) correspond to a single
point “at infinity” that completes the domain to a sphere-like topology.

speed of diffusion. So, scale-space is defined on a three dimensional domain, the80

first two dimensions referring to space. We will use interchangeably the words81

scale and time referring to the third dimension, as time comes from physical82

interpretation of the heat equation. Function Ff can be obtained either through83

a diffusion process starting at f , or, equivalently, by filtering f with Gaussian84

kernels of increasing variance, where variance is directly proportional to t.85

Let p be a critical point of f , i.e., a maximum, or a minimum, or a saddle.86

Generally speaking, point p is displaced by the diffusion process, i.e.: it will87

possibly change its position for different values of t; and eventually it may disap-88

pear by collapsing with another critical point p′. Collapses always involve critical89

points of different types, the only possibilities being either minimum-saddle, or90

maximum-saddle. In linear scale-space - as well as in most other existing scale-91

spaces - critical points may also appear in pairs at a time t > 0, with the same92

pairing rules. The tracking of a critical point p through its life in scale-space93

provides a trajectory, which is a continuos line in the 2D + time domain. The94

trajectory starts either at t = 0, or at time of birth of p; and it either ends95

at time of collapse, or it extends to infinity. The life span of p is the interval96

spanned by the trajectory in time dimension, which provides a measure of how97

relevant p is across the different scales.98

In a discrete representation, scale-space is sampled at a finite set of times99

(t0 = 0, t1, · · · , tk) on a bounded domain D, which we will assume to be a100

rectangle. A straightforward discrete representation consists of a collection of101

snapshots (f0, . . . , fk), where each snapshot fi is a discrete sampling of Ff (·, ·, ti)102

at the nodes of a regular m× n grid GD over domain D, i.e., fi = {fi[r, c] | r =103

1, . . . ,m, c = 1, . . . , n}. If p is a node of GD at coordinates [r, c], we will use the104

shorthand fi(p) to denote fi[r, c].105

2.1 Piecewise-linear discretization of space106

We adopt a piecewise-linear representation of D by subdividing it into triangles107

as follows: each sampling point of coordinates [r, c] is connected to its neighbors108

to form triangles ([r, c], [r, c+ 1], [r+ 1, c+ 1]) and ([r, c], [r+ 1, c+ 1], [r+ 1, c]),109

as depicted in Figure 1. We extend the domain with a virtual outer border,110
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imposing the value of all samples of fi in the outer border to be an arbitrarily111

large negative value (virtually, −∞). In this way, all sampling points have exactly112

six neighbors; the extended domain can be seen as having the topology of a sphere113

(where all nodes in the outer border collapse to a single point); and the function114

has a global minimum in the outer border, at all scales.115

A discrete function sampled at the nodes of GD is thus extended to a116

piecewise-linear function interpolating the samples. With abuse of notation, in117

the following we will use the same symbols f0, . . . , fk to denote the piecewise-118

linear models of the sampled functions in the scale-space. Critical points of a119

function can occur only at sampling points:120

– A minimum/maximum is a sample whose value is smaller/larger than the121

values of all its neighbors;122

– A saddle is a sample such that, when its neighbors are traversed in cyclic ra-123

dial order, the number s of times that their values alternate between smaller124

and larger values with respect to the sample itself is larger than two. The125

index of the saddle is s/2 − 1: since each sampling point has exactly six126

neighbors, only 1- and 2-saddles may exist.127

Note that in the smooth case, a Morse function admits just 1-saddles. Multiple128

saddles that arise in the piecewise-linear model correspond to different 1-saddles129

collapsing to the same point, and so they will be treated in our model. The130

Poincaré-Hopf index theorem guarantees that nM + nm − ns = 1, where nM131

is the number of maxima, nm is the number of minima (excluding the virtual132

minimum in the outer border), and ns is the number of saddles (where each133

2-saddle counts for two). Also note that a classical model based on either 4-134

or 8-connectedness of pixels would not provide a classification of critical points135

consistent with the theorem, thus hindering the correct pairwise simplification136

of critical points through scales (see Section 2.3).137

2.2 Piecewise-linear discretization of time138

Given the piecewise-linear snapshots f0, . . . , fk as defined above, let p = [r, c]139

be a node of GD. We define a piecewise-linear approximation of Ff (r, c, ·) inter-140

polating all samples f0(p), . . . , fk(p). In this way, we may slice the scale-space141

in the continuum, at any time t ∈ [t0, tk] , obtaining a new snapshot ft that is142

again a piecewise-linear function defined on the same triangular tiling of D. Let143

i be such that ti < t ≤ ti+1, by linear interpolation we have144

ft(p) =
ti+1 − t
ti+1 − ti

fi(p) +
t− ti

ti+1 − ti
fi+1(p).

Combined use of piecewise-linear approximations in both space and time145

provides an approximated model F̃f of Ff that is continuous in the domain146

D× [t0, tk]. Because of its piecewise-linear structure, it is possible to analyze the147

deep structure of F̃f in an exact way, as we will show in the following.148
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Transition Effect

la lb → la lb no change
mr → rm a minimum moves from a to b
s1 r → r s1 a 1-saddle moves from a to b
s2 r → r s2 a 2-saddle moves from a to b
s2 r → s1 s1 a 2-saddle splits into two 1-saddles
s1 s1 → s2 r two 1-saddles merge into one 2-saddle
s2 s1 → s1 s2 switch between a 2-saddle and a 1-saddle
m s1 → r r a minimum collapses with a 1-saddle
m s2 → r s1 a minimum collapses with a 2-saddle, which becomes a 1-saddle
r r → m s1 a minimum and a 1-saddle appear from two regular points
r s1 → m s2 a minimum and a 2-saddle appear from a regular point and a 1-saddle

Table 1: Label transitions at a flipping edge (a, b): a transition lalb → l′al
′
b

means that a has label la before the flip and label l′a after it, and similarly for
b. Symmetric transitions and transitions involving maxima, which are analogous
to those involving minima, are not listed for brevity.

2.3 Tracking critical points149

Our approach to feature tracking is inspired to a mechanism first introduced150

in [4] for controlled-topology filtering. We introduce the following classification151

(labeling) for a node p of GD:152

– m: p is a minimum;153

– M: p is a maximum;154

– s1: p is a 1-saddle;155

– s2: p is a 2-saddle;156

– r: p is a regular point (neither of the above).157

We are interested in events that change the classification of p during the diffusion158

process (i.e., while varying t). From the piecewise-linear model introduced in159

Section 2.1, it turns out that these events can occur only when two adjacent160

samples flip the order of their values. Let a and b be two adjacent nodes on161

the triangular tiling of D. We say that edge (a, b) flips at time t if and only if162

ft(a) = ft(b) while for an arbitrarily small ε > 0 we have either ft−ε(a) < ft−ε(b)163

and ft+ε(a) > ft+ε(b), or vice-versa. Let us consider two consecutive times ti164

and ti+1 in the discrete time sequence. Since F̃f is linear between ti and ti+1,165

edge (a, b) flips in [ti, ti+1] if and only if fti(a) < fti(b) and fti+1
(a) > fti+1

(b),166

or vice-versa. The exact time t of flip is obtained by linear interpolation:167

t =
(fi+1(a)− fi+1(b))ti + (fi(b)− fi(a))ti+1

fi(b)− fi(a) + fi+1(a)− fi+1(b)
.

We select all edges that flip in each interval [ti, ti+1] and we sort them by168

time of flip. This sequence of flips provides all events that may cause changes in169
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the deep structure. Given the flip of edge (a, b) at time t and given a labeling170

for a and b at time t− ε, the transitions described in Table 1 may occur.171

We generate the deep structure of scale-space as follows. We evaluate all172

critical points of input signal f and we initialize a data structure listing them173

all. The data structure is an array of lists: each entry in the array is aimed at174

recording the trajectory of a critical point p through time, and it is linked from175

the corresponding entry of p in the grid GD; each entry in a list contains the176

location on GD of the corresponding critical point at a given time t. For each177

2-saddle we generate two entries in the array, accounting for the fact that two178

1-saddles start at the same place and can proceed along the same trajectory179

until they possibly split, or one of them collapses.180

For each i = 0, . . . , k − 1, we sort by time all flips that occur in [ti, ti+1].181

Then we scan the sequence of flips, and we update the trajectories and the182

corresponding links from GD according to relevant transitions (all except the183

first one in Table 1) that occur. A transition can be easily detected by comparing184

the height of a and b with all their neighbors just before and just after the time185

of split. Each transition that generates a pair of newborn critical points adds186

two new entries to the array of trajectories.187

At the end of processing, the trajectory of each point consists of a chain of188

edges of the triangular tiling of D, with time stamps that record the “time of189

arrival” of the critical point at each node along the chain. For newborn critical190

points and for critical points that collapse we also record their pairing with the191

critical points that are born, or collapsed, together with them.192

The array encoding trajectories will thus contain the lives of all critical points193

that appear in the deep structure, each encoded in a list. With a linear scan of194

the array, relevant points with respect to a given criterion can be extracted;195

the life span of each of them can be evaluated in constant time; while their196

position at any arbitrary time t can be evaluated with a binary search of the197

list and a linear interpolation. This mechanism supports several queries: critical198

points alive at a given scale t can be found without analyzing ft, and they can199

be located either on ft, or at their original position in f (or at time of birth200

for newborn points); the trajectory of each critical point can be obtained; most201

relevant points can be extracted based on the length of their life, and they can202

be located in space at any scale during their life span; given an interval of scales203

[t, t′], points whose life span contains the given interval can be extracted; etc.204

3 Experimental results205

We present results on two datasets: a 1200×1200 digital terrain model of a region206

around the Monte Rosa Massif in the Western Alps [3]; and a 500 × 500 range207

image from the Texas 3D Face Recognition Database [5]. For each dataset, we208

have built a sequence of snapshots of the scale-space on an exponential scale, by209

applying cumulative Gaussian blur, starting at σ =
√

2 and doubling the scale at210

each level, up to scale 1024 for terrain , and up to scale 128 for the range image.211

In Table 2 we show statistics about the deep structure of the terrain dataset.212
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scale #Max #min #saddle avg life avg log life
(newborn) (newborn) (newborn) (newborn) (newborn)

3.0 1718(1164) 1270(1100) 2903(2201) 1.40(0.61) 10.34(2.32)
9.0 1171(903) 906(863) 2062(1705) 1.34(0.58) 12.94(2.41)
27.0 766(626) 602(593) 1347(1168) 1.23(0.51) 16.48(2.46)
81.0 401(336) 285(285) 680(596) 1.25(0.48) 23.94(2.65)
243.0 42(25) 18(18) 61(42) 2.86(0.69) 80.32(6.07)

transition # events
type

no change 1,100,422
move 13,490

collapse 5,130
birth 2,579

Table 2: Statistics on terrain dataset. Left: number of critical points and average
duration of their lives in linear and logarithmic scale; in brackets statistics on
newborn critical points. Right: transitions (flips) in the scale-space that: do not
change the deep structure; move a critical point; collapse a pair of critical points;
generate a pair of critical points.

Note that, thanks to our data structure, we query scales different from those of213

the discrete sequence in input. On the left side, we report the number of critical214

points found at each scale, together with their average duration of life through215

scale-space, both on a linear scale (which tends to give longer lives to features216

appearing at large scales) and on a logarithmic scale (which better spreads the217

life spans through scales that grow exponentially). We give statistics both on218

the total number of critical points, and on newborn critical points that were219

generated from birth transitions during the diffusion process.220

Our exact tracking reveals a drawback of linear scale-space, which was un-221

derestimated in previous literature: a large number of newborn critical points222

are generated, a few of which live long and may sometimes take the place of223

original features. For instance, the maximum representing the highest point of224

Monte Rosa Massif at large scales is not a translation of the highest peak in225

the original dataset, but rather a new peak born around scale 32, while the true226

peak collapses short after. Substitution of features with newborn ones is hard to227

track, thus preventing a correct estimation of true life span in some cases. This228

is probably a good reason to prefer other kinds of scale-spaces, which guarantee229

non-creation of local extrema - one of the axioms of scale-space theory that is230

violated by linear scale-space in dimension larger than one. One possibility is for231

instance to incorporate controlled-topology filtering, as described in [4].232

In figure 2 we show trajectories of points through the scale-space, superim-233

posed to original terrain. For each point, we draw its trajectory through its life234

span. Time is encoded by color, ranging from blue to green to red on a logarith-235

mic scale. Points do not move much until the very coarse scales. Only the few236

points that survive very long may undergo non-negligible displacement (reddish237

long trajectories) to adapt to the extreme smoothing of the signal. In Figure238

3 we show close-ups of trajectories on both datasets. Note how pairs of points239

move toward each other and eventually collapse at different times (different col-240

ors along the lines). The marker in cyan depicts a maximum that survives up to241

the largest scale, in spite of being very close to a saddle in the input.242
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Fig. 2: Left: trajectories of all critical points on the terrain dataset (crop 900×700
pixels); color goes from blue to green to red, depending on the logarithm of time.
Right: original terrain (top) and terrain filtered at scale 1024 (bottom). Zoom-in
for a better view.

In Figure 4, we show results obtained on the range image, by querying the243

scale-space at scales 1 and 20 and by drawing critical points at their original244

positions in the input image (or at time of birth) with markers having a size245

proportional to the duration of life of each point. Note how several fiducial points246

that can be used for 3D face recognition [5] are detected by highly stable critical247

points. Since different fiducial points appear at different scales (e.g., centers of248

lips appear at a quite fine scale, while the center of the forehead appears at a249

very large scale), we are confident that combining information available from250

our scale-space model together with prior knowledge on distribution and proper251

scale of fiducial points, a reliable detection will be possible. We foresee that252

better results in this direction can be achieved by using a signal consisting of253

either Gaussian or total curvature of the underlying surface, rather than the raw254

range map. This will be the aim of our future work.255

4 Concluding remarks256

We have presented a framework that allows representing and querying the deep257

structure of scale-space for the critical points of scalar functions in a continuous258

setting. While we have described the framework for bi-variate functions defined259

on a rectangle and uniformly sampled at a grid, several extensions are possible.260
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Fig. 3: Close-up of critical points trajectories on terrain (left) and on the range
image (right). Markers: red maximum; blue minimum; green saddle; magenta
position of collapse; cyan position of a surviving point at the largest scale.

Fig. 4: Critical points alive at scale 1.0 (right) and 20.0 (left) on the range image,
superimposed to the original dataset and depicted at time of their birth. Markers:
blue minimum, red maximum, green saddle; size proportional to duration of life.

The framework is already modular with respect to the type of scale-space, which261

affects just the construction of the input sequence of snapshots (f0, · · · , fk).262

Extension to irregularly sampled data, possibly on a 2-manifold domain (such263

as the surface of a 3D object), is straightforward, provided that a triangle mesh264

representing the domain is given. The only difference is that multiple saddles265

with index k > 2 may appear. For dimensions higher than two, the mechanism266

can be easily adapted, by taking into account the presence of different kinds of267

saddles, according to Morse theory, and of related transitions.268

The main limitation of the current method is that it can only track critical269

points of a scalar field. Other features defined as zero-crossings of differential270

properties could be also treated, but generalization is not always straightforward.271

The essential ingredient to reproduce the framework for other kinds of features272

is determining the events that may change the deep structure (like edge flips in273
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our case) and to sort them by time. Once these events are found, and related274

transitions are defined, the rest of the framework will work unchanged.275

Our analysis reveals that linear scale-space may generate many newborn276

features, some of which may take the place of original features, thus hindering277

a correct feature tracking. For this reason, we plan to incorporate controlled-278

topology filtering [4] in out future work. Integration of this mechanism comes279

almost for free, being also based on the analysis of the same sequence of flips.280

We plan to apply our framework to the analysis of terrains and to the ex-281

traction of fiducial points for 3D face recognition. Other extensions of the frame-282

work may involve computation of the Morse complex and its evolution through283

scale-space, and the evaluation of topological persistence, to better characterize284

stability and strength of local features [11].285
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