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Abstract. We present a radically new method for the multi-resolution
representation of large terrain databases. Terrain data come as a collec-
tion of regularly sampled, freely overlapping grids, with arbitrary spacing
and orientation. A multi-resolution model is built and updated dynam-
ically off-line from such grids, which can be queried on-line to obtain
a suitable collection of patches to cover a given domain with a given,
possibly view-dependent, level of detail. Patches are combined to obtain
a Ck surface, with k depending on the type of base patches. The whole
framework is designed to take advantage of the parallel computing power
of modern GPUs.

1 Introduction

Management of huge terrain datasets is a challenging task, especially for vir-
tual globes, like Google Earth and Microsoft Virtual Earth, and GIS modules
performing analyses in hydrography, land use, road planning, etc. In fact, such
applications may need to cope with terabytes of data.

Digital Elevation Maps (DEMs) consist of collections of grids, which may
have different resolutions and different orientations. In order to support interac-
tive data manipulation, it is necessary to rapidly fetch a suitable and properly
organized subset of data, which is relevant for the problem at hand. Continuous
Level Of Detail (CLOD) models support dynamic extraction of representations
for a given domain at a given accuracy. However, to the best of our knowledge, all
CLOD models in the literature are based on static data structures that cannot
be updated dynamically [12].

In this paper, we present an approach to CLOD terrain modeling that is rad-
ically different from previous literature. Its salient features can be summarized
as follows (see Figure 1):

1. Our method provides on-line a compact Ck representation of terrain at the
desired accuracy over a given domain, with a degree of smoothness k selected
depending on application requirements. This representation is obtained by



Fig. 1. A view-dependent query executed on the Puget Sound Dataset with an on-
screen error of one pixel. The wedge is the portion of domain intersected by the view
frustum for an observer placed above its apex. The different colors represent patches
of different sizes.

blending a collection of freely overlapping rectangular patches, of different
sizes and orientations, which locally approximate different zones of terrain
at different detail.

2. Starting from the input DEMs, we produce a large collection of small patches
of different sizes and accuracies, and we store them in a spatial data structure
indexing a three-dimensional space. Such embedding space has two dimen-
sions for the spatial domain, and a third dimension for the approximation
error. Every patch is represented as an upright box: its basis corresponds
to the domain covered by the patch; its height corresponds to the range of
accuracies for which the patch is relevant. We optimize the range of accura-
cies spanned by each patch, so that the number of patches used to represent
a given LOD is minimized. Independent insertion of patches in the spatial
index can be performed easily and efficiently, and the result is order inde-
pendent, thus dynamic maintenance of the database is supported.

3. CLOD spatial queries are defined by specifying a surface in the embedding
space, which encodes space culling and detail requirements altogether. Such
queries are executed on-line by finding the set of boxes that intersect this
user-defined surface.

4. The extracted representation can be resampled on-the-fly to produce an
adaptive (possibly view-dependent) tessellation with arbitrary connectivity.

This paper describes the general framework, alongside with two proof-of-
concept implementations. The first implementation provides a C0 representation
that can be efficiently sampled in real-time in the GPU. The second implemen-
tation provides a smooth C2 representation which and can be used for computa-
tionally intensive GIS tasks. We present results obtained on a moderately large
dataset containing about 256M points.



2 Related work

Overall, known approaches to terrain modeling and rendering can be subdivided
into three categories, reviewed in the following. The first category is better suited
for modeling purposes, while the other two categories are specifically designed
for rendering. Our proposal belongs to none of them, and it can be tailored to
both rendering, and other GIS tasks.

CLOD refinement. These methods produce triangle meshes, which approximate
terrain according to LOD parameters that can vary over the domain. They are
mostly used for modeling and processing purposes, since they provide an explicit
representation, with the desired trade-off between accuracy and complexity. Spe-
cific CLOD methods, tailored for rendering, build clusters of triangles in a pre-
processing steps, possibly at different resolutions [2, 4, 6]. Clusters are selected
on-the-fly at rendering time and passed to the GPU in batches: the rendering
primitive is not anymore a single triangle, but rather a triangle strip encoding
a large zone of terrain. Recent surveys on CLOD refinement methods can be
found in [12, 20].

Geometry Clipmaps. In the approach presented in [9], a set of nested regular
grids centered about the viewer are stored in the GPU memory, and used for
rendering. As the viewpoint moves, the Geometry Clipmaps are updated in video
memory. Tessellation is performed directly in the GPU. This method requires
that input comes as a single uniform grid at high resolution, and it takes ad-
vantage of the intrinsic coherence of height maps to compress the input, thus
reducing the amount of data that are passed to the GPU. Very high frame rates
can be obtained, even for huge datasets.

GPU Ray-Casting. The use of ray-casting for rendering height maps is well stud-
ied in the literature, and different GPU techniques that achieve real-time frame
rates have been developed in recent years. Methods for real-time rendering of
meshes and height maps represented as Geometry Images have been proposed
in [3, 11, 15]. However, all these methods were not designed to work with large
terrain datasets. In [5], a tiling mechanism is used to support real-time ren-
dering on arbitrarily large terrains. Ray-casting methods can be used only for
the purpose of rendering, since they do not produce an explicit multi-resolution
representation. In [16] a method is proposed, which exploits fast GPU wavelet
mechanisms to support both ray-casting rendering and interactive editing of
huge terrain datasets. Also this method requires input data to come as a sin-
gle regular grid at high resolution. In [1], a hybrid approach that combines ray
casting and mesh-based rendering has been proposed.

3 Patchwork terrains

In this Section, we describe our technique: in Subsection 3.1, we define the type
of patches we use; then, in Subsection 3.2, we describe how patches are blended



Fig. 2. The terrain is covered by a set of regularly sampled grids. Every grid has its
own anchor point p, orientation angle θ and different sample steps for the two axes sX
and sY .

to form a Ck representation of terrain; finally, in Subsection 3.3, we describe
the multi-resolution model, the order-independent algorithm for the dynamic
insertion of patches and the spatial queries.

3.1 From grids to patches

We assume a two-dimensional global reference system Π on which we define the
domain D of the terrain, where all input grids are placed. A grid is a collection of
regularly sampled height values of terrain. In addition to the matrix of samples,
every grid is defined by an anchor point, an angle that defines its orientation,
and grid steps in both directions (see Figure 2). In the following, we will use the
term vertex to denote a sample point on the grid, and the term cell to denote
a rectangle in D spanned by a 2 × 2 grid of adjacent vertices. The accuracy of
a grid also comes as a datum, and it is the maximum error made by using the
grid to evaluate the height of any arbitrary point on terrain.

We aim at defining parametric functions that represent small subsets of ver-
tices of the grid, called patches. A single patch is defined by an anchor point,
its height, its width, and the coefficients that describe the parametric function.
For the sake of simplicity, we will consider the height and width of every patch
to be equal, hence the domain of every patch will be a square. Extension to
rectangular patches is trivial.

We consider two types of patches: perfect patches interpolate the samples
of the original terrain; while approximating patches represent the terrain ad a
lower level of detail and accuracy. We assign an error to each patch, namely the
accuracy ε of the input grid for a perfect patch; and ε+ δ for an approximating
patch, where δ denotes the maximum vertical distance between the input grid
and the approximating patch. We will denote as kernel a rectangular region inside
every patch, while the rest of the patch will be denoted as its extension zone.
The extension zone will be used for the purpose of merging different patches,
and the ratio between the sizes of the kernel and of the extension zone provides
a trade-off between efficiency and smoothness of transition between different
patches, which will be clarified later on.
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Fig. 3. C2 weight functions: (a) 1D function w, plotted between -1 and 1. (b) 2D
function W , plotted with x,y between -1 and 1, with the parameter d set to 1.

The type of function defining a patch will vary depending on the application.
In Section 4.1 we provide specific examples. Our technique, however, can be
used with any kind of parametric function: depending on the application, it may
be convenient to use either a larger collection of simpler patches, or a smaller
collection of more complex patches. The rest of this section is generic in this
respect.

Note that, unlike splines, our patches may freely overlap, without any fixed
regular structure.

3.2 Merging patches

Given a collection of freely overlapping patches, we blend them to produce a
smooth function that represents the whole terrain spanned by this collection.
In order to obtain a Ck surface that is efficient to evaluate, we use a tensor
product construction, starting from the one dimensional, compactly supported
radial basis function defined in [21]. Our weight function is defined as:

W (x, y, d) =
w(x/d)w(y/d))∫ 1

−1
∫ 1

−1 w(x/d)w(y/d) dxdy

for x, y ∈ [−d, d] and 0 elsewhere. The 1-dimensional weight w(t) is a Ck function
with compact support, as defined in [21]: see Figure 3 for the C2 case and Section
4.1 for further details. It is easy to see that the weight function W has the
following properties:

1. It has compact support in [−1, 1]× [−1, 1];
2. Its derivatives up to order k vanish on the boundary of its support;
3. It is Ck in [−1, 1]× [−1, 1];
4. It has unit volume.

The first three conditions guarantee that the weight function has limited
support, while being Ck everywhere. This is extremely important for efficiency



reasons, as we will see in the following. Property 4 is useful, since it naturally
allows smaller (and more accurate) patches to give a stronger contribution to
the blended surface.

For every patch P , we define its weight function WP (x, y) as a translated
and scaled version of W , such that its support corresponds with the domain of
P :

WP (x, y) = W (|x− Px|, |y − Py|, Ps)

with Px and Py the coordinates of the center of P and Ps the size of P .

A collection of Ck patches P 1, P 2, ..., Pn placed on a domain D, such that
every point of D is contained in the kernel of at least one patch, defines a Ck

surface that can be computed using the following formula:

f(x, y) =

∑n
i=0 P

i
f (x, y)WP i

(x, y)∑n
i=0W

P i(x, y)
(1)

with P i
f the function associated with patch P i.

Note that the surface is Ck inside D since it is defined at every point as the
product of Ck functions and the denominator can never vanish since every point
in D belongs to the interior of the domain of at least one patch. The summation
actually runs only over patches whose support contains point (x, y), since the
weight function will be zero for all other patches.

At this point, terrain can be described with an unstructured collection of
patches. To use this method on large datasets, we still miss a technique to
efficiently compute this representation at a user-defined LOD.

3.3 The multi-resolution model

We build a multi-resolution model containing many patches at different LODs,
each patch being defined by a small number of parameters, and we provide a
simple and efficient algorithm to extract a minimal set of patches covering a
given region of interest at a given LOD, possibly variable over the domain.

We define a 3D embedding space, called the LOD space, in which two axes
coincide with those ones of the global reference system Π, while the third axis
is related to approximation error. For simplicity, we will set a maximum allowed
error, so that LOD space is bounded in the error dimension. In this space, every
patch will be represented as an upright box (i.e., a parallelepiped), having its
basis corresponding to the spatial domain of the patch, and its height corre-
sponding to the range of approximation errors, for which the patch is relevant.
The bottom of the box will be placed at the approximation error of the patch,
while its top will be set to a larger error, depending on its interaction with
overlapping boxes, as explained in the following.

In this section, patches will be always treated as boxes, disregarding their
associated functions. We will consider open boxes, so that two boxes sharing a
face are not intersecting. For a box B, we will denote as B.min and B.max its



Fig. 4. Boxes of patches in LOD space, with a cut shown by the blue line: (a) Two
independent patches P1 and P2; (b) A third patch P3 is added: patch P1 becomes
redundant for the given cut; (c) P1 is shortened to obtain a minimal set of patches for
every cut of the spatial index.

corners with minimal and maximal coordinates, respectively. Furthermore for a
point p in LOD space, we will denote its three coordinates as p.x, p.y and p.z.

Given a collection of patches embedded in LOD space, a view of terrain at
a constant error e can be extracted by gathering all boxes that intersect the
horizontal plane z = e. More complex queries, which may concern a region of
interest as well as variable LOD, can be obtained by cutting the LOD space with
trimmed surfaces instead of planes.

To informally describe our approach, let us consider the examples depicted
in Figure 4. Figure 4(a) shows two non-overlapping patches embedded in LOD
space: P1 is a perfect patch with zero error, and its box extends from zero to
maximum error in the LOD space. This means that P1 will be used to approxi-
mate its corresponding part of terrain at all LODs. On the contrary, patch P2 is
an approximating patch: it has its bottom set at its approximation error, while
its top is again set at maximum error. Patch P2 will be used to represent its part
of terrain at any error larger or equal than its bottom, while it will not be used
at finer LODs.

In Figure 4(b), a larger patch P3 is added to our collection, which has a larger
error than P1 and P2 and also it completely covers P1. A cut at an error larger
than the error of P3 would extract all three patches, but P1 is in fact redundant,
since its portion of terrain is already represented with sufficient accuracy from
P3, which also covers a larger domain. In order to obtain a minimal set of patches,
in Figure 4(c) patch P1 is shortened in LOD space, so that its top touches the
bottom of P3. Note that we cannot shorten P2 in a similar way, because a portion
of its spatial domain is not covered by any other patch.

This simple example leads to a more complete invariant that patches in LOD
space must satisfy to guarantee that minimal sets are extracted by cuts. We first
formally describe this invariant, then we provide an algorithm that allows us to
fill the LOD space incrementally, while satisfying it. This algorithm builds the



multi-resolution model and the result is independent of the order of insertion of
patches. Implementation will be described later in Section 4.2.

We define a global order < on patches as follows: P < P ′ if the area of
P is smaller than the area of P ′; if the two areas are equal, then P < P ′ if
P.min.z > P ′.min.z, i.e., P is less accurate than P ′.

Since both the spatial extension and the approximation error of a patch P
are fixed, the spatial invariant is only concerned with the top of P , i.e., with its
maximal extension in the error dimension.

Patch Invariant: A patch P must not intersect any set of patches, such
that the union of their kernels completely covers the kernel of P , and each patch
is greater than P in the global order <. Also, the patch P cannot be extended
further from above without violating the previous condition.

In other words, this invariant states that a patch is always necessary to
represent terrain at any LOD, in its whole extension in the error domain, because
that portion of terrain cannot be covered by larger patches. If all the patches in
the model satisfy this property, we are sure that we will obtain a minimal set of
patches whenever we cut the model with horizontal planes of the form z = c. The
second part of the invariant enforces patches to span all levels of error where their
contribution is useful for terrain representation, thus maximizing the expressive
power of the model. More general cuts will also extract correct representations
in terms of LOD, but minimality is not guaranteed.

Let us consider inserting a new patch P into a collection of patches that
satisfy the invariant. If the new patch does not satisfy the invariant, we shorten
it at its top. This is done through Algorithm 1 described below. Note that a
patch may be completely wiped out by the shortening process: this just means
that it was redundant. After the insertion of P , only patches that intersect P
may have their invariance property invalidated, so we fetch each of them and
we either shorten or remove it, again by Algorithm 1. All this process is done
through Algorithm 2. Shortening patches that were already in the model does
not invalidate invariance of other patches, so no recursion is necessary.

It is easy to see that all patches in a model built by inserting one patch at a
time through Algorithm 2 satisfy the invariant. We also show that the result is
independent on the order patches were added.

Order Independence: The structure of a model built by repeated applica-
tion of Algorithm 2 is independent of the insertion order of patches.

Proof : The height of the box associated to a patch depends only on the
spatial position and minimal error of the other patches inserted in the spatial
index. The invariant guarantees that all boxes have their maximum allowed size
in the error dimension, with respect to all other patches in the model. Therefore,
the final result only depends on what patches belong to the model. �

To summarize, the algorithm shown allows us to dynamically build and up-
date a spatial data structure that automatically detects and discards redundant
data. Queries are executed on-line by cutting such structure with planes or sur-
faces. Extracted patches are merged, as explained in Section 3.2, to produce the
final terrain representation.



Algorithm 1 cutter(Patch P, SetOfPatches ps)

1: sort ps in ascending order wrt min.z
2: current = {}
3: last = {}
4: for P ′ ∈ ps do
5: if P ¡ P’ then
6: current = current ∪ {P ′}
7: if the patches in current cover P then
8: last = P ′

9: break
10: end if
11: end if
12: end for
13: if not (last == {}) then
14: if last.min.z ¡ P .min.z then
15: Remove P
16: else
17: P .max.z = P ′.min.z
18: end if
19: end if

Algorithm 2 add-patch(Patch P)

1: ps = patches that intersect P
2: cutter(P, ps)
3: for P ′ ∈ ps do
4: if P ′ still intersects P then
5: ps′ = patches that intersect P ′

6: cutter(P ′, ps′)
7: end if
8: end for

This completes the theoretical foundations of our technique. We discuss the
implementation details in Sections 4 and 5, while we provide benchmarks and
results in Section 6.

4 Implementation of the spatial index

This section describes a possible implementation of the general framework pre-
sented in Section 3, which has been kept as simple as possible for the sake of
presentation. In Section 4.1 we describe the construction of patches, while in
Section 4.2 we describe the implementation of the spatial index.



4.1 Generation of Patches

We describe two types of patches: bilinear patches provides a C0 representation
of the terrain that can be used for rendering purposes; while bicubic patches
provide a C2 representation, trading speed for increased terrain quality.

We use patches at different scales, which are generated from sub-grids of
the various levels of a mipmap of terrain data. Each patch is a rectangle that
covers a set of samples of the terrains. The patch must represent the terrain it
covers, and its size depends on the density of grid samples. Patches may also
cover mipmaps, thus allowing to represent larger zones of the terrain with less
samples.

For every level of the mipmap, we build a grid of patches such that the union
of their kernels form a grid on the domain, and the intersections of their kernels
are empty. The size of the kernel with respect to the size of the patch is a pa-
rameter controlled by the user, that we denote σ. Any value 0 < σ < 1 produces
a Ck terrain representation; different values can be used to trade-off between
quality and performance: small values of σ improve the quality of blending be-
tween patches; conversely, large values reduce the overlapping between different
patches, thus improving efficiency, but transition between different patches may
become more abrupt, thus producing artifacts. In our experiments, we obtained
satisfactory results by using σ = 0.9.

Bilinear patches are formed by a grid of samples and they are simply produced
by bilinear interpolation of values inside every 2x2 sub-grid of samples. These
patches are C0 in their domain, and the blending function we use is w(t) =
(1− |t|).

Bicubic patches are formed by a grid of samples, as in the case of bilinear patches.
To define a piecewise bicubic interpolating function we compute an interpolant
bicubic spline with the algorithm described in [13]. These patches are C2 in their
domain, and the blending function we use is w(t) = (1− |t|)3(3|t|+ 1).

4.2 Spatial Index

The spatial index must support the efficient insertion and deletion of boxes, as
well as spatial queries, as explained in Section 4.3. An octree would be an obvious
choice, but it turns out to be inefficient, because large patches are duplicated in
many leaves. We propose here a different data structure that is more efficient
for our particular application.

Given a patch P , we define its z-span to be the interval [P.min.z, P.max.z]
of errors for which P is relevant, and the z-ceiling of P to be the highest value
of its z-span. We build a quadtree over the first two dimensions. For the sake of
brevity, we will refer with the same symbol q to a node in the quadtree and to its
related quadrant in the spatial domain. We store at every node q (either internal
or leaf) a set of patches that intersect the domain of q. Not all intersecting
patches are stored, but just the first t patches that have the highest z-ceilings,



and that are not stored in any ancestor node of q. We use a threshold t of 64
in our experiments. There is no guarantee that a patch is stored in exactly one
node, but in our experiments a patch is always stored in less than two nodes on
average. We define the z-span of node q to be the smallest interval that contains
th union of all patches stored at q.

The quadtree fulfills the following invariant: for a quadrant q of the quadtree,
let [zq, Zq] be its span, then: all patches intersecting q and having a z-ceiling
larger than Zq are stored in the ancestors of q; all patches intersecting q and
having a z-ceiling between zq and Zq are stored in q; and all patches intersecting
q and having a z-ceiling smaller than zq are stored in the children of q. This kind
of structure is similar to Multiple Storage Quadtrees [14] and it can be exploited
to support spatial queries, as explained in the following subsection.

Inserting a new box in the tree is simple. Starting at the root, a box B is
inserted in the node(s) that intersects its spatial domain, if and only if either the
number of patches in such node does not exceed its capacity, or the z-ceiling of
the new box is larger than the z-ceiling of the last box in the list at that node;
in the latter case, the last box of the list (which has the minimum z-ceiling in
the list) is moved downwards in the tree. Otherwise, the new patch is moved
downwards in the tree.

4.3 Spatial queries

As explained in Section 3.3, queries are specified by a surface in LOD space.
The projection of such a surface in the spatial domain is the region of interest
(ROI) of the query, which will drive traversal of the quadtree. The z-values of
the surface define the error tolerance at each point in the ROI, and will provide
thresholds to prune the search.

At query time, the quadtree is traversed top-down, and quadrants that in-
tersect the ROI are visited. For each such quadrant q, its z-span [zq, Zq], is
compared with the z-interval [zt, Zt] spanned by the portion of query surface
intersecting q. If Zq < zt, then the search is pruned at q; if zq > Zt then the
patches stored at q are discarded and the search is propagated to the children
of q; otherwise the list of patches is scanned and a patch P is selected if and
only if its z-span intersects the z-interval spanned by the query surface on the
domain of P . Traversal of the list can be interrupted as soon as a patch having
a span that does not intersect interval [zt, Zt] is found (as that patch, and all
subsequent patches, are more accurate than needed).

View-Dependent Queries. For applications such as view-dependent rendering,
the accuracy of the extracted representation should smoothly decrease with dis-
tance from the viewpoint, so that larger patches can be used on far portions
of terrain, thus reducing the computational load, without introducing visual ar-
tifacts. We perform a view-dependent query by cutting the LOD space with a
skewed plane, which aims at extracting a model with a constant screen error,
for a given viewpoint.



In [7] a method was proposed that computes the maximum error in world
coordinates that we can tolerate, in order to obtain an error in screen coordinates
smaller than one pixel. Such a method defines a surface in LOD space that we
could use to make view-dependent queries in our spatial index. However, the
resulting surface is complex and the related intersection tests would be expensive.
We use an approximation of such a method that allows us to cut the spatial
index with a plane, which provides a conservative estimate of the correct cutting
surface: we obtain a surface that is correct in terms of screen error, while it could
be sub-optimal in terms of conciseness.To compute the cutting plane, we ignore
the elevation of the viewer with respect to the position of the point, obtaining
the following formula:

δscreen =
dλδ√

(ex − vx)2 + (ey − vy)2
,

with e being the viewpoint, v the point of the terrain where we want to compute
the error, d the distance from e to the projection plane, λ the number of pixels
per world coordinate units in the screen xy coordinate system, δ the error on
world coordinate and δscreen the error in pixels.

This plane is reduced to a triangle by clipping the zones outside the view
frustum. The spatial index is then cut with this triangle, and the intersection
between boxes in the index and the triangle are efficiently computed with the
algorithm of [19], after an appropriate change of reference system has been per-
formed on the box.

5 Terrain tessellation

In this section, we discuss in detail how a terrain represented as a collection
of patches, as extracted from the spatial index, can be resampled to obtain
a tessellated model. We describe general principles concerning the resampling
operation, and we provide a CPU and a GPU implementation.

So far, we have shown how to extract a parametric Ck representation of
terrain at the desired LOD from the spatial index. Let G be a grid on the
domain of terrain and let S be the set of extracted patches. To render the
terrain, we rasterize it by imposing G on the domain and by evaluating the
parametric surface only at its vertices, using equation (1). The computation can
be performed efficiently by observing that the weight function associated with a
patch P is zero for all the vertices of G that lies outside the domain of P . Thus,
for every patch P i in S, we need to evaluate P i

f and WP i

just for the vertices

of G that lie in the domain of P i.
Note that sampling the terrain at a certain coordinate is an indipendent

operation. We use grids only for convenience - irregular triangulations could
be used just as easily. In the following paragraphs, we suggest two simple but
effective ways to support uniform as well as view-dependent resampling.

Uniform resampling: A uniform rendering is easily obtained by imposing
a regular grid on the terrain domain. Note that this resampling operation is



decoupled from the desired LOD, already obtained by querying the spatial index,
and can be tailored to application needs.

View-dependent resampling: A view-dependent rendering is obtained by
imposing a position-dependent grid on the terrain domain. We produce a grid in
screen space that has approximately the same number of samples as the number
of pixels on the screen. By projecting this grid on the terrain domain we obtain
a trapezoidal grid with a high density of vertices in the neighborhood of the
viewer, and progressively lower densities as we move farther. This technique is
similar to the Persistent Grid Mapping proposed in [8].

5.1 CPU resampling

To efficiently perform the resampling operation in CPU, we have built a two-
dimensional spatial index on the domain on the terrain. This spatial index con-
tains the position of all vertices of G and allows us to rapidly fetch all vertices
contained in the domain of a patch, exploiting the fact that only a small subset
of patches in S has a non-zero contribution to a particular vertex. Note that this
spatial index has to be built just once, since the grid is uniform or depends only
on the position of the viewer. If a viewer moves in subsequent frames, we do
not move the grid, but we rather translate and rotate the patches returned by
the query to place the grid in the desired position. By using this spatial index,
we can efficiently extract the vertices that lie in every patch and incrementally
compute Equation (1). Note that the implementation can be easily parallelized
on multi-core CPUs with a multi-thread implementation, since every vertex can
be sampled independently.

5.2 GPU resampling

We have developed an experimental GPU implementation using the nVidia
CUDA language. It works using vertices as parallelization points. Every GPU
thread resamples a vertex and runs through all extracted patches, searching for
the relevant ones. Despite still being a basic prototype, results are promising (as
shown in section 6). Ideas for a complex GPU data structure specifically tailored
to the patchwork model are discussed in section 7.

6 Results

In this Section we present the results obtained with our prototype implementa-
tion on a dataset over the Puget Sound area in Washington. Experiments were
run on a PC with a 2.67Ghz Core i5 processor equipped with 8Gb of mem-
ory and a nVidia GTX275 graphic card. The dataset is made up of 16,385 ×
16,385 vertices at 10 meter horizontal and 0.1 meter vertical resolution [17]. Our
framework produces a single frame to be rendered in two main phases: a query
to the spaial index, in order to obtain a set of patches representing the terrain
at the desired LOD; and a tessellation phase, where points on a grid covering



the desired domain on the terrain are sampled from the set of patches. If this
second task is performed on the GPU or on another computer, patches need
to be transferred on the system bus or on a network. As we will show, queries
are extremely efficient even using a single core, easily scaling up to hundreds
of queries per second. The critical phases become transmission and tessellation.
Our current GPU prototype yields interactive frame rates and we expect that
an optimized GPU implementation, which will be the focus of our future work,
will be able to obtain interactive frame rates on larger terrains with HD quality.

We present results produced using bilinear patches unless otherwise stated.
Section 6.6 discusses performance when bicubic patches are used.

6.1 Pre-processing

The pre-processing computations executed by our system can be divided in three
phases: mipmap generation, error evaluation and construction of the spatial in-
dex. Table 1 reports our preprocessing times for the full dataset, and for two
scaled versions. Note that pre-processing is performed online, i.e. it is possible
to add new data to a precomputed dataset without the need to rebuild it from
scratch. This feature is unique of our method since, at the best of our knowledge,
it is not available in any other work in the literature [12].

In our experiments, each patch covers a grid of 32x32 samples, while its kernel
is made of the central 28x28 pixels.

Dataset Preprocessing Time Space overhead
samples size Mipmap Error Index Total Mipmaps Patches Index Total

1k × 1k 2M 0.1s 0.6s 0.05s 0.75s 702k 18k 12k 732k
4k × 4k 32M 0.9s 10s 0.83s 11.73s 11.2M 301k 202k 11.7M

16k × 16k 512M 12.6s 169s 14.6s 196.2s 179M 4.8M 3.2M 187M

Table 1. Time and space required to preprocess and store the multi-resolution model.
From left to right: the time required to compute the mipmap, to evaluate the error
associated with each patch and to build the spatial index; the space required to store
the mipmaps, the patches and the spatial index.

The majority of time is spent on the first two phases, which would be simple
to execute in parallel on multiple cores, unlike the last phase, which involves
complex data structures.

6.2 Space overhead

On average, our multi-resolution model requires approximately 35% space more
than the original dataset. A breakdown of the space occupied by the various
components of our model is shown in Table 1. The majority of space is taken by
the mipmap.



Fig. 5. Puget Sound Dataset (16k x 16k samples) rendered with error thresholds of 5,
20 and 50 meters. The colors on the bottom represent the size of the patch used to
approximate the terrain. Blue and cyan corresponds to large patches, used to approxi-
mate flat zones, while red and orange indicates small patches required to represent fine
details.

There is a trade-off between the space occupied by the multi-resolution model
and the size of patches. Smaller patches increase adaptivity but take more space
since they must be inserted and stored in the spatial index.

6.3 Spatial index queries

Uniform queries. Our system is able to execute 800 uniform queries per second
with a 50m error. Queries with no error slow down the system to 55 queries per
second. Note that the latter queries return the maximum number of patches at
the highest level of detail possible.

Figure 5 shows the results of three different queries performed with an error
threshold of 5, 20 and 50 meters. Smaller patches are used to correctly represent
fine details, while large patches are used in flat zones, even with a very low error
threshold. High frequency detail is obviously lost as error increases.

View-dependent queries. A single view-dependent query representing a portion
of terrain 15km long with an on-screen error of one pixel extracts approximately
250 patches and requires only 2.5ms. Thus, our system is able to query the
spatial index at very high frame rates, meaning that the CPU time required by
queries for every frame is negligible.

Figure 6 shows the number of view-dependent queries per second executed
by our prototype and the number of extracted patches at different screen error
thresholds. The use of progressive spatial queries could further increase perfor-
mance.

6.4 Transmission of patches

To the GPU. As shown in Figure 7, sending all the extracted patches to the
GPU takes a neglibile amount of time. Transmission of hundreds of patches
(more than enough for high quality rendering) to the GPU requires less than a
millisecond.
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Fig. 6. Number of queries per second (a) and number of extracted patches (b) while
performing view-dependent queries at different screen error thresholds.

On a network. We have simulated the minimal traffic required to send patches
on a network during a fly over the Puget Sound dataset at different speeds: only
a few kb per frame are required to send the difference between two queries to
the GPU (see (b) and (c) in Figure 7). Every patch that has to be sent to the
GPU uses 4106 bytes, while the removal of a patch requires only to transfer its
unique identifier (4 bytes). This makes our framework suitable for a client/server
architecture since a reasonably low bandwidth is required to achieve high quility
interactive rendering. Development of incremental queries would make it even
more suitable.

6.5 GPU tessellation

Our GPU prototype already obtains interactive frame rates with a laptop-screen
sized resampling grid (see Fig. 8). As expected, its performances scale linearly
with the number of sampling points. We expect a future optimized implemen-
tation, as sketched in section 7, to easily reach interactive frame rates for HD
resolutions.

6.6 Differences with bicubic patches

Changing type of patches influences differently the various steps of our frame-
work. The preprocessing step is slowed down thirty times: this is due to the
huge increase of the computational cost required for the evaluation of the bicu-
bic patches. The construction of the spatial index is almost unaffected by the
modification, since the only information that it needs is the maximal error asso-
ciated with every patch. The space used is similar. The evaluation of the terrain
is greatly slowed down. Currently, only a CPU implementation exists. While
our current implementation can be used just for modeling purposes, a highly
optimized GPU implementation would be required to reach interactive frame
rates.
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Fig. 7. (a) Time required to send a certain number of patches to the GPU on the system
bus. (b) During a straight fly over terrain at different speeds, only a few bytes per frame
must be sent through the network to update the set of patches to the viewpoint. (c)
A rotation of the viewpoint requires slightly more bandwidth. Both (b) and (c) were
performed with an allowed screen error of three pixels and every query extracted 70
patches on average, representing a portion of terrain 15km long.

7 Concluding Remarks

7.1 Benefits

The main advantage of our method is the possibility to efficiently update the
system with new heterogeneous grids, by automatically detecting and remov-
ing redundant data. Furthermore, our technique produces a multi-resolution Ck

surface instead of a discrete model. The actual evaluation of the surface, which
is the only computationally intensive task, can be demanded to the GPU, while
keeping the communication between CPU and GPU limited. Texture and normal
map can be easily integrated, since they can be associated to every patch and
interpolated, with the same method used for the height values.

The space overhead is moderate, being approximately the same as the space
used for a mipmap pyramid. The spatial index involves a negligible overhead,
and it can be maintained in main memory even for huge terrain databases.

7.2 Limitations

Some limitations of our current approach come from the lack of certain theoret-
ical bounds:

1. On the maximum number of patches that may overlap at a single point
of terrain. In our experiments the number of overlapping patches never ex-
ceeded six, and it was four on average, but computation of Formula 1 at each
sampling point may result computationally intensive even in this case.
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Fig. 8. Time required to resample the terrain on the GPU using a 256×256 grid (a), a
512×512 grid (b) and a 1024×1024 grid (c) while performing view-dependent queries
at different screen error thresholds.

2. On the accuracy of a sampled point. When evaluating the point, a patch that
is as precise as required is surely present, given the spatial index query prop-
erties. Unfotunately, using Formula 1 the contribute of the most accurate
patch could be slightly smoothed out by neighboring patches. In our exper-
iments this effect was undetectable by human eye, but having a theoretical
bound would be preferable.

Futhermore, our current GPU implementation is optimized neither for data
transfer, nor for computational balance, as all data are transferred to the GPU
at each frame, and all threads process all patches. We believe that a speedup
of orders of magnitude could be gained with an optimized implementation, as
outlined in the following.

7.3 Future work

Our current work is proceeding in several directions to extend our current model
and implementation. Our aim is to overcome the limitations outlined in the
previous section.

New blending function. We are exploring a blending function that will allow us
to use only the most accurate patch for any point that falls within its kernel,
while blending only at transitions between the extension zone of a more accurate
patch and the kernel of a less accurate patch. This new method will allow us
to improve accuracy and greatly speedup computation altogether, providing us
with a theoretical bound on the error and performing blending only on very
small (usually just two) and limited number of patches.

Optimized GPU tessellation. Computational load of GPU processors can be
greatly improved by a proper distribution of patches to multiprocessors. In the



CUDA architecture, a fixed number (usually 16 or 32) of threads reside on the
same processor core and share a fast memory between them that can be used as
an explicit cache called “shared memory”. These threads are said to belong to
the same “warp” (see [10]). We are exploring a novel GPU parallel data structure
that could exploit the fact that both sample points and patches share the same
2D geometrical domain. We may allocate sample points to threads in such a way
that threads within a given warp map to neighboring samples. Then, we assign
to the shared memory in the warp just the patches that contain such samples.
This can be done in a pre-computation phase on the GPU, where each thread
works on a patch; followed by an evaluation phase, where each thread evaluates
a sample point. With this strategy, every thread works just on a subset of all
patches, already cached inside the shared memory, thus greatly speeding up the
tessellation phase.

Cache-aware and pre-fetching policies. Since our model can be useful in a variety
of contexts - from real-time visualization on a local host, to client-server trans-
mission on a geographic network - and it is especially relevant for huge databases,
then the amount of data transferred between different levels of the memory hier-
archy is of utmost importance in assessing its performance. Network bandwidth
can be critical for a web application, as well as the bandwidth of system bus can
be critical for CPU-GPU communication. I all such contexts, suitable policies
can be developed to optimize performance in terms of trade-off between speed
and quality. Fast compression/decompression mechanisms [18] can be adopted
to compress patches or groups of patches (subgrids), thus reducing bandwidth
usage. Suitable cache-aware policies can be also developed to decide, depending
on both bandwidth and amount of memory available on the “client” side, the
amount of data to be transferred and cached, and how to discard data from local
memory when memory becomes scarce. Finally, for applications such as dynamic
view-dependent rendering, suitable pre-fetching techniques can be developed to
foresee the data needed to render the next frames ahead of time, and transfer
data before they become necessary.
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