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Abstract. The quest for fast and reliable extraction of fiducial points
from human faces using three dimensional surface information is still a
work in progress in current literature, despite its many potential advan-
tages compared to image-based extraction, such as less sensitiveness to
variations in pose and illumination. We propose an extraction method
that uses 3D information only and is based on two key steps: multi-
scale curvature analysis, and the reliable tracking of the deep structure
of a virtually continuous scale-space based on curvature. Our scale based
analysis, coupled to careful use of prior information based on variabil-
ity boundaries of anthropometric facial proportions, does not require a
training step, because it makes direct use of morphological character-
istics of the analyzed surface. The proposed method precisely identifies
important fiducial points with high precision and is able to extract new
fiducial points that were previously unrecognized, thus paving the way
to more effective recognition algorithms.

Keywords: scale-space, multi-scale, curvature, 3D computer vision, shape
analysis, fiducial points extraction

1 Introduction

Face recognition has been widely studied and addressed in the literature, mainly
in the image processing field. It can be described as the task of extracting descrip-
tors, from an image depicting a human face, which can be used to discriminate
if two of those are obtained from images of the same face.

Many works have been presented dealing with color and gray-scale images,
among which the most famous are PCA [8], LDA [6] and EBGM [18]. Recogni-
tion from 2D images, though, suffers from a lot of known problems, such as a
strong dependency on consistent illumination and pose. Moreover, it is straight-
forward to see that images cannot carry all the original information about a face’s
structure. Despite these shortcomings, work on 3D face recognition has been less
investigated in the past, because complex and exotic hardware is needed for the
extraction of 3D data and because of the consequent lack of publicly available
datasets with good enough resolution. All this has started to change in the last
few years, as the hardware landscape improved and the growth in available com-
putational power not only unlocked usage of more complex software techniques
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during processing steps, such as surface reconstruction and meshing, cleaning
and smoothing, but also enabled novel extraction techniques of 3D raw data,
such as photogrammetry.

Existent methods that extract fiducial points from 3D data can be roughly
subdivided into appearance based and feature based ; the first class is made of
methods that are typically modified versions of 2D algorithms extended to work
with range images. The second class contains methods that work by extracting
local relevant features. The method we propose falls into the latter category,
of which we are going to give a brief overview. Lu and Jain [10] proposed a
method that combines 2D and 3D techniques to extract a small set of facial
features: they use a priori knowledge to detect the tip of the nose, and then
detect the mouth and eye corners using the shape index from the range image.
Colbry et al. [11] use shape index to detect a similar set of features. Gupta et
al [7] developed a method which detects a set of 10 points combining curvature
information, a priori information and 2D techniques. Perakis et al [14] developed
a method which aims at detection of facials landmarks in presence of large yaw
and expression variations using shape index and spin images. Conde et al [4]
developed a 3D method based on spin images which obtains a high accuracy but
gets only three points on the faces. Segundo et al [12] use curvature information
combined with depth values from range images to detect a small set of points
(nose tip, nose and eye inner corners). Shin and Sohn [16] use ten facial landmarks
for face recognition, but they do not give details about how these points are
extracted. Sukno et al. [17] detect a set of fiducial landmarks using spin images
as described in [9] but then use statistical models to filter out outliers and infer
missing features. Bockeler and Zhou [2] detect a set of ten points with strong
2D information and antrophometric constraints.

Our method extends the family of techniques based on curvature and on prior
knowledge of anthropometric features’ locations. However, it makes use of the 3D
surface only, without need for color or light intensity information, and it doesn’t
need any kind of learning or training phases. First of all, we compute curvature
at different scales of increasing sizes, from finer to coarser. This allows us to build
a scale-space based on a curvature derived scalar field, and to perform a tracking
of its extremalities through scales. These processing steps give us a selection of
points, representing notable features of the surface, ranked by an importance
measure that corresponds to their lifetime in the scale-space. We can thus take
into account both the actual strength and the importance in terms of scale of
feature points when fiducial points are searched among them, achieving reliable
recognition of all fiducial points identified in previous literature and others that
were, to the best of our knowledge, previously unrecognized.

2 Multi-scale Curvature

Curvature is a second order differential property of surfaces that is represented
by a tensor field. at each point two principal directions of curvature exist, along
which the curvature is respectively maximum and minimum; the values k1, k2 of
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the curvature along these directions are called principal curvatures. In geometry
processing literature, two main families of curvatures estimation methods for
digital surfaces can be identified: discrete methods, which directly derive differ-
ential properties from the discrete geometry of the mesh, and fitting methods,
which fit an analytic surface to input data and derive differential properties an-
alytically. Most fiducial point extraction works that use curvature compute it
using discrete methods, which tend to highlight features at the finest scales and
to be prone to noise. Moreover, it is accepted knowledge in the geometry pro-
cessing field that these disadvantages tend to be exacerbated, instead of being
reduced, as the resolution and size of datasets grow. We suggest the adoption of
multi-scale curvature analysis methods; in particular, we adopt a method based
on fitting[13]. The scale parameter is the size of the local surface around a vertex
that contributes to the computation of the curvature value of the vertex itself,
with the size measured as the radius of a sphere.

For the purposes of our scale-space analysis we need a scalar field based
on curvature. We therefore derive from the curvature tensor field the Gaussian
curvature K = k1 ∗ k2, a scalar field which provides a good characterization of
a surface’s features; in particular:

– Points in which K < 0 are hyperbolic points (saddles)
– Points with K > 0 are elliptic point (either pits or peaks)
– Points with K = 0 are parabolic points.

We are interested in points that are either maxima or minima of Gaussian cur-
vature. As the scale parameter increases, extremal points tend to decrease and
to identify bigger, coarser features.

3 Virtually Continuous Scale-space

Since their introduction, scale-space methods have been widely used in computer
vision and image processing; the general idea is to build a one parameter family of
images from an input signal. This is usually done by applying a filter repeatedly,
thus building a discrete sequence. Among the many scale-spaces that have been
proposed, the linear scale-space, which adopts Gaussian smoothing as a filter,
is one of the most studied. An example of an alternative scale-space could be
a curvature scale-space, built by repeated computation of curvature using the
method we adopt in Section 2, as the radius parameter, and thus the size of the
local surface, increase at every step.

The main goal of scale-space methods is to highlight features at different
levels of detail and importance. One of the classic approaches to this end is the
computation of the deep structure, which is the tracking of the extremalities of
the signal as they change across the scale space. Tracking, though, is traditionally
performed by neighborhood search across discrete levels of the scale-space. This
approach is prone to errors and mismatches, and has coarse results. To overcome
this difficulties we employ a novel method, which exploits linear interpolation
between consecutive levels in order to approximate the continuous process that a



4

scale-space represents with discrete samples. This virtually continuous approach
has been introduced in [15]. The most interesting feature of this method is that
each critical point that is present in the original signal can be tracked across
scales at the finest level of detail possible, and its lifetime across scales can be
reliably reconstructed. In particular, we can consider the filtering process as a
time-dependent function and associate each point to the moment in time of their
disappearance in the scale-space. This lifetime value is well suited in the role of
an importance score, associated to each critical point and to the feature in the
signal that the critical point represents. It is also worth mentioning that this
tracking method is filter-agnostic and it is not limited to Gaussian smoothing.

4 Extraction Method

Our extraction method is based on two main phases: a precomputation phase,
in which we employ the multi-scale techniques previously described in order to
select a set of candidate points and measure their importance; and an identifica-
tion phase, in which we use prior knowledge in order to identify fiducial points
among candidates in the previously selected set.

4.1 Selection and Ranking of Candidate Points

Our goal is to extract all interesting morphological features on a 3D surface
representing a human face and measure them according to criteria that will
enable us to discriminate between different characteristics that they may have.
In particular, our main criterion is their lifetime in the scale-space, but we also
developed a secondary criterion which takes into account the relative strength
of a feature in comparison to the local surface surrounding it.

Diagonal scale-space. Computation of differential properties is severely af-
fected by the presence noise. This makes the most straightforward combination
of the concepts that we delineated in previous sections—a scale-space of curva-
ture where the discrete levels were computed with radii of increasing size—an
inadequate solution, because the number of extremalities does not decrease fast
enough as the curvature method’s scale parameter increase, and, as a conse-
quence, tracking them does not provide meaningful information. We propose a
new type of scale-space that combines multi-scale curvature with a Gaussian
scale-space, called diagonal scale-space, that offers a solution to this problem.

The diagonal scale-space is made up by scalar fields representing Gaussian
curvature at increasing scales, but it is generated by employing both a smoothing
filter on the original 3D surface and by varying at the same time the parameter
of the multi-scale curvature computation method. In fact, we initially compute a
linear scale-space of the original surface, with consecutive samples generated by
repeated smoothing with variances of increasing size. We then compute curvature
on each level, with a correspondingly bigger radius the smoother that level is
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in the linear scale-space. A graphical account of this arrangement is depicted in
Figure 1.

We used range images and a Gaussian smoothing filter, but the general idea
of increasing two different scale parameters together, one the amount of sur-
face smoothing and the other the local surface’s size applied during curvature
computation, should be equally effective with triangle meshes and a Laplacian
smoothing filter. The end result is that noise is discarded in a more effective
way, and that the number of features decreases faster. We are therefore able
to achieve a meaningful tracking of the extremalities of the Gaussian curvature
scalar field.

Importance measures: life and strength. In our experiments we generated
depth images of the faces at our disposal by rendering them and getting depth
information from the z buffer, because the tracking algorithm supports range im-
ages only. We then generate the diagonal scale-space, extract all the extremalities
in the original signal (which, in our case, is the curvature at the smallest radius
computed on the unsmoothed surface) and track them through scales. We do
this by identifying which pairs of neighboring pixels invert the relation between
their values in consecutive levels of the scale-space. This events, called flips, can
be sorted in time using linear interpolation. The result is an ordered sequence
of all the events that may have an influence on the position or existence of
extremalities in the scale-space, which makes it possible to easily track features
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across the scale-space with high granularity and precision; the result is a detailed
log of their movements, disappearances, and appearances. A detailed account of
the tracking method can be found in [15]. Extremal points always appear and
disappear in pairs (a saddle coupled to either a maximum or a minimum); we
call this events birth and death events. The moment in time of death events is
their lifetime in the scale-space. Birth events are disruptive, because these new
features do not correspond to original features in the scale-space and sometimes
have long lives in the rest of the scale-space. We recover the lifetime of original
critical points by following the chain of their death events as long as it is made
of newborn points. Their lifetime value becomes the time of the first death that
happens with an original point; we consider this recovered measure to be the life
value, our main criterion in the identification phase.

From here on, we are interested only in maxima and minima of Gaussian
curvature; saddles can be discarded. After tracking in the diagonal scale-space
has been performed, we compute the strength value, our secondary criterion. Our
goal is to assess the relative strength of the scalar field’s extremalities, compared
to the local trend on the surrounding surface. For each maximum, we compute
the average of the pixels that are below its value in a growing area around it,
and return the highest difference between its value and the average; the same
algorithm is applied to minima by taking into account only the surface values
above the minimum. The growth of the local area is capped at a value related
to its life in the scale-space.

4.2 Identification of Fiducial Points

The fiducial points we identify are a subset of the 25 points presented in [5], and
more precisely the 10 points that are found by the method developed in [7], plus
the points named sn, ls and li, as shown in figure 2. Fiducial points are selected
among extremalities of the Gaussian curvature scalar field. Our strategy, which
relies only on prior knowledge and on the life and strength measures, is based on
a hierarchical search. We start by identifying the most prominent features and
then seek out other features in narrowed down areas, found by displacements
relative to previously found ones. In particular, we identify fiducial points that
characterize the nose and compute a symmetry axis that separates the left and
right parts of the face. We then proceed to identification of the eyes’ corners and
of peculiar points on the mouth.

The nose. Five fiducial points characterize this area:

– The nose tip, prn. This is a very prominent feature which is characterized
by a high Gaussian curvature, a long life in the scale-space and by having
the highest vertical value. The best strategy is very simple: we restrict the
search to an area centered around the center of the mesh, and we extract
the maximum of Gaussian curvature with the highest vertical value.

– The sides of the nose, all and alr. Those two points are saddles on the surface,
which means they are minima of Gaussian curvature. To detect them we look
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Fig. 2. Names and positions of fiducial points extracted by the proposed method.

to the left and to the right of the nose tip and we extract the minima (one
on the left and one on the right) with the highest life value in those areas.

– The upper nose saddle, m. This is one of the most prominent saddles on a
face’s surface. In order to locate it we scan an area directly above the nose
tip and select the minimum which survives the longest.

– The lower limit of the nose, sn. This point, located on the saddle where the
nose ends, is a minimum of Gaussian curvature. We have discovered that
this point is more reliably characterized by strength; in order to find it we
narrow down our research to an area below the tip of the nose and we look
for the point with the highest strength.

Symmetry axis and the eyes. After points around the nose are identified,
we use them to compute a vertical symmetry axis. Our goal is to take advantage
the intrinsic symmetry of the human face during the next phases. The axis is
computed as the average of the line that fits the points m, prn, sn and the
line orthogonal to the one connecting the two points identified as al. Most of
the other fiducial points we still need to detect are pairs of symmetric points,
specular in relation to the axis. From now on, when we seek a pair of left and
right points, we evaluate their fitness together by requiring them to be almost
symmetric, within a given tolerance, on top of any other criteria that may be
necessary in order to identify them. Moreover, we consider the line connecting
all and alr as the dividing line between the upper half and the lower half of the
face.
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We employ the aforementioned strategy in order to find the pairs of fiducial
points that characterize the eyes: the external corners, exl and exr, and the
internal corners, enl and enr. These points are in pit regions, which means they
have high Gaussian curvature. We wish to extract the two symmetric pairs in
the upper half of the image that have the highest strength value. We perform
this by selecting all possible symmetric pairs of maxima (a, b), with strength
values (sa, sb); we keep the two pairs that have the highest sa · sb value.

The mouth. This area contains four fiducial points: the pair that represents
the corner of the mouth, and the two points representing the tip of the higher lip
and the tip of the lower lip. The corners of the mouth, chl and chr, are identified
with the same strategy employed for the eyes’ corners, applied to the lower half
of the face. The upper lip, ls, and the lower lip, li, are identified as the maxima
of Gaussian curvature with the highest life in the area below sn delimited by chl

and chr.

5 Experiments and Results

Experiments were run on Face Warehouse dataset [3], using meshes representing
faces with neutral expressions, for a total of 111 different faces. The dataset does
not provide a ground truth for fiducial points, so we created one by manually
selecting on every face the thirteen points shown in Figure 2. The method’s
performance is evaluated by measuring the distance in millimeters between each
fiducial point we extract and the corresponding ground truth, for every mesh in
the test set. Figures 3, 4, and 5 show the percentage of meshes (Y axis) on which
the distance is less than the given millimeters (X axis), for each fiducial point.

– Figure 3 shows results for fiducial points depicting features on the nose. The
localization accuracy in this area is high: when the distance from the ground
truth for fiducial point reach 4mm, prn is localized on 99% of the dataset,
and sn is localized on 94% of the dataset. It should ne noted that, as far as
we know, this work is the first to achieve detection of this particular fiducial
point. At 7mm, al and ar reach a detection rate of 90%. The point with
worst performance in this area is m, the nose saddle, which reaches 90%
at 11mm. It should be noted that this point is difficult to manually place,
because the nose saddle is wide.

– Figure 4 shows results for the eyes’ corners. Our method performs with good
accuracy for these fiducial points. All four point already reach a detection
rate above 90% within a 3mm distance.

– Figure 5 shows results for fiducial points located around the mouth. Features
depicted by these points are subtle, and extraction is easily affected by noise.
In fact, only a few works have tried to detect the mouth corner, chl and chr

([7], [2], [1], [14] and [17]) and they always use also 2D information. In our
case, extraction suffers because a lot of points along the mouth tend to have
similar curvature values. 90% accuracy is reached at 14mm. To the best of
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Fig. 3. Localization accuracy for fiducial points prn, m, all, alr, and sn.

our knowledge, this work is the first one that performs detection of fiducial
points on the upper and lower lip, ls and li. Detection of this points reach a
90% rate at 8mm.

6 Conclusions

We presented a novel technique for extraction of fiducial points on human faces
which makes use of 3D data. Since we rely on the surface’s morphological infor-
mation only, no training is needed for the method to be effective. Fiducial points
that were already extracted using 2D+3D techniques in previous works are de-
tected with a performance that is at least as good, and we show the capability
of our methodology by extracting three new fiducial points that were previously
undetected. Results are promising and we plan to extend the method and test
it on a wider range of datasets. In particular, we are currently working on a
version that uses triangle meshes and a Laplacian filter. We plan to experiment
with meshes with different facial expressions, and with range images taken from
a lateral point of view (or 3D meshes with occlusions and missing pieces), in
order to test for robustness in unstaged settings, where non-neutral expressions
and large variations in roll and yaw in the range data could occur. we also plan to
optimize execution times for the preprocessing part of our algorithm. The largest
time is spent in computing curvature data; this task is trivial to parallelize and
is a good candidate for GPGPU computation, because curvature on each vertex
can be computed independently from other vertices. More research work could
open the way to a curvature scale-space directly built from 3D raw data, instead
of meshes or range images, which could be computed in a dramatically faster
way.
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