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Abstract

Grid-shells are lightweight structures used to cover long spans with few
load-bearing material, as they excel for lightness, elegance and transparency.
In this paper we analyse the stability of hex-dominant free-form grid-shells,
generated with the Statics Aware Voronoi Remeshing scheme introduced in
(1). This is a novel hex-dominant, organic-like and non uniform remesh-
ing pattern that manages to take into account the statics of the underlying
surface. We show how this pattern is particularly suitable for free-form grid-
shells, providing good performance in terms of both aesthetics and structural
behaviour. To this end, we select a set of four contemporary architectural
surfaces and we establish a systematic comparative analysis between Stat-
ics Aware Voronoi Grid-Shells and equivalent state of the art triangular and
quadrilateral grid-shells. For each dataset and for each grid-shell topology,
imperfection sensitivity analyses are carried out and the worst response dia-
grams compared. It turns out that, in spite of the intrinsic weakness of the
hexagonal topology, free-form Statics Aware Voronoi Grid-Shells are much
more effective than their state-of-the-art quadrilateral counterparts. Even-
tually, we show the results of incremental load tests performed on a physical
mock-up of a Statics Aware Voronoi Grid-Shell.
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1. Grid-shells: topology and stability1

Grid-shells, also called lattice shells or reticulated shells, belong to the2

category of lightweight structures. The shape of these structures is optimized3

to support its own weight, its geometry being modified to provide addi-4

tional stiffness to the overall structure. Unfortunately, they are as efficient5

as exposed to risky buckling phenomena. In terms of structural behaviour,6

grid-shells indeed share some traits with their ‘brothers’ shells, but at the7

same time they are lighter and more flexible, hence even harder to analyse8

than proper shells.9

Shells typically suffer from modes interaction (i.e. some of the first linear10

buckling factors are coincident or have little separation) and imperfection11

sensitivity (i.e. a slight perturbation of their curvature may produce an un-12

expected deterioration of their static behaviour). Both these phenomena are13

extremely detrimental and usually lead to a huge abatement of the theoreti-14

cal linear buckling load of the perfect shell (2; 3).15

Although grid-shells are much more efficient than ‘equivalent’ shells with16

the same weight and span (because the material distribution is more effi-17

cient), luckily for them the aforementioned phenomena are less pronounced,18

although still present and indeed dangerous (4). This is because the collapse19

load is more likely to be determined by limit point rather than by bifurcation20

Figure 1: All Datasets. From left to right respectively: Neumünster Abbey glass roof,
British Museum great court glass roof, Aquadom and Lilium Tower architectural free
form shapes. The black bullet is the state parameter adopted in the geometrically non-
linear analyses.
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of equilibrium. Nonetheless, the failure mode is mainly influenced by the grid21

topology, and section 6.1 shows how usually an unstable symmetric bifurca-22

tion point appears associated with triangular topology and quasi-funicular23

underlying surface with regular boundary.24

Analytical relationships are available for the calculation of the linear buck-25

ling load for shells of some shapes and restraint conditions (5), together with26

experimental knockdown factors for abating the linear unsafe values (6), as a27

result of the efforts of theoretical and industrial research carried out since the28

end of the XIX century. Unfortunately, no akin results are available for grid-29

shells. Some attempts were done for evaluating the equivalent membrane30

stiffness and thickness of planar grids, in order to estimate the buckling31

load of grid-shells by using the available relationships for continuous shell32

(7; 8). Although overestimating the real buckling load and totally disregard-33

ing imperfections and material non-linearity (9; 4), the equivalent continuum34

method is very useful at least in the preliminary phase of the assessment pro-35

cess. Unfortunately, analytical solutions are available for a finite number of36

continuum shells, thus limiting its application. As a consequence, fully non-37

linear numerical analyses are the standard tool for the assessment of the38

stability of grid-shells.39

From a geometrical point of view, grid-shells can be considered as the40

discretization of continuous shells: the continuous shape is tessellated by41

a set of connected piecewise linear modules composing a manifold mesh.42

It is evident that both curvature and meshing influence the statics of the43

structure, but while the effect of curvature can be somehow envisaged with44

the theory of shells (5), the outcome of meshing is much more difficult to45

predict and additionally few related references are available (10, p. 239-244).46

Summarily, the behaviour of a grid-shell is utterly affected by the Gaussian47

curvature of its underlying surface, the grid topology, the grid spacing, the48

beam cross section, the joint stiffness and the (potential) stiffening method49

(11; 4).50

Up to now, many examples of glass covered grid-shells have been built,51

the vast majority of which being designed with triangular and quadrilateral52

grid topologies (12; 13; 14). Triangular grid-shells are unanimously credited53

as the most statically efficient structures as they rely on extensional deforma-54

tion only, whereas quadrilateral grid-shells provide a better trade-off between55

statics efficiency, transparency and manufacturing cost. In fact, quadrilater-56

als achieve high transparency at equal weight, as their area/perimeter ratio57

is higher than that provided by triangles. Additionally, planar panels can58
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be easily obtained that, by virtue of their almost right angles, are easier and59

cheaper to produce than triangular panels (15; 16). Unfortunately, quadri-60

lateral and polygonal patterns generally undergo ‘inextensional deformation’61

(i.e. that involves beams bending), that makes them less efficient than their62

triangular competitors. As a consequence, most frequently the effective use63

of the quadrilateral topology required the adoption of special stiffening meth-64

ods (e.g. bracing cables) (17), whereas ‘higher order’ topologies such as the65

hexagonal one are yet highly mistrusted by structural engineers. This atti-66

tude is not totally fair because, while hexagonal grids display an isotropic67

equivalent mechanical behaviour, quadrilateral grids are orthotropic and it is68

demonstrated that their efficiency greatly varies with the loading direction,69

becoming even much worse than that of hexagons in the most unfavourable70

case (18). This in turn indicates that a grid-shell with an optimized Voronoi-71

like topology (i.e. hex-dominant), might display a very satisfying structural72

behaviour.73

Indeed, in this paper we focus on pinning down the structural behaviour of74

Statics Aware Voronoi Grid Shells introduced in (1), that are actually polyg-75

onal hex-dominant grid-shell structures, i.e. composed of mostly hexagonal76

faces, including a few generic polygonal faces, usually heptagons, pentagons77

and quads. From a purely geometric viewpoint, this kind of structures turns78

out to be extraordinarily adaptive and suitable for free form architecture,79

definitely much more than purely hexagonal structures (19). In the follow-80

ing, we demonstrate how this pattern can be successfully used to tessellate81

highly free form surfaces providing static performances that are considerably82

better than current practice quadrilateral remeshing schemes, while for quite83

regular geometries the performances are comparable. This also demonstrates84

how the ‘statics awareness’ introduced in (1) can be adopted to overcome85

the intrinsic structural weakness of polygonal topologies.86

As a last remark it is worth noting that, for the sake of brevity, in the pro-87

posed experiments we considered no stiffening method (e.g. bracing cables).88

2. Stability checks for grid-shells89

Grid-shells are compressive structures and consequently they can display90

several types of stability failure (4; 20):91

1. member buckling: the classic Euler beam buckling under concentric92

axial load;93
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2. node instability: a set of beams fails locally due to the snap through94

of a node;95

3. line instability: all nodes of a ring in a dome or a generatrix of a barrel96

vault buckle simultaneously (less determinant for free-form shapes);97

4. global instability: the whole structure undergoes sudden long-wave98

displacements.99

Usually member instability is decisive for high grid spacing values, whereas100

global instability and line instability are more likely to appear in conjunction101

with dense networks (4). However, instabilities of type 1, 2 and 3 cannot be102

oberved by using simple cells, simplified static schemes or the equivalent103

continuum method. Therefore, in the general case, the assessment of the104

load bearing capacity of a grid-shell relies on performing numerical non-105

linear buckling analyses: the so called ‘direct’ method. In particular, the106

Finite Element Analysis (FEM) proves to be very effective as it allows to107

model any generic situation:108

• it allows to analyse any shape, also free-form shapes;109

• it makes it possible to point out buckling of all types;110

• it allows to take into account the effect of imperfections;111

• it allows to observe the softening behaviour (geometrical non-linearity);112

• it allows to introduce material non-linearity.113

Therefore we performed systematic geometrically non-linear numerical anal-114

yses with a commercial FEM software (21). Details are given in section 5.1.115

In particular, we chose not to consider material non-linearity because of the116

higher computational time needed and the large number of analyses per-117

formed. Indeed it is likely that the failure mode of grid-shells, especially if118

free-form, would be affected by yielding of the beams material (as is the case119

for the British Museum Great Court roof, for example). But the purpose120

of this study is not that of assessing the real buckling load of a design grid-121

shell, but instead only that of estimating the buckling strength of the Statics122

Aware Voronoi Grid-Shells in comparison with their state-of-the-art competi-123

tors. For this reason, we have deemed geometrically non-linear analyses to124

be accurate enough for our aim.125
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3. Iimperfection sensitivity analysis126

It is well-known that the solution of the generalized eigenvalue problem:

det(K) = det(Ke + λKσ) = 0 (1)

where K is the initial global stiffness matrix, Ke is the initial global elastic127

stiffness matrix, Kσ is the global geometric stiffness matrix and λ is the load128

factor that amplifies the external loads, provides an overestimate of the real129

buckling load. This is especially the case for shells and grid-shells endowed130

with a high level of symmetry, where imperfection sensitivity and modes131

buckling interaction may even halve the theoretical buckling load (3). This132

happens because these kinds of structures are characterized by a high share133

of membrane strain energy compared to the bending strain energy, and this134

in turn makes them very sensitive to imperfections (22). The process of eval-135

uating the effects of imperfections on the buckling strength of a structure is136

known as imperfection sensitivity analysis, and it is essential in assessing the137

safety of efficient structures.138

Koiter (2) elaborated the‘initial post-buckling theory’, which assumes that it139

is possible to evaluate the behaviour of the imperfect structure by knowing140

the behaviour of the perfect one. It applies to structures showing bifurcation141

of equilibrium and lays its foundations on the asymptotical approximation142

of the post-buckling path. Unfortunately, it is limited to almost linear fun-143

damental paths only as well as imperfections of small amplitude.144

A more recent trend is the ‘mimimum perturbation energy’ concept, which145

identifies snap-through phenomena towards secondary equilibrium paths by146

perturbing the system (23; 24).147

Nevertheless, the most commonly adopted method for determining the effect148

of imperfections is that of numerically analysing the imperfect model itself,149

which is called under the name of ‘direct approach’. This in turn raises the150

question of how to compute the ‘worst imperfection’, i.e. that imperfection151

that yields the lower buckling factor. It is worth noticing that the problem152

of finding the worst imperfection shape within a given amplitude limit is153

also coupled in the variables shape and amplitude. This search is still an154

open problem and some even think it does not have a unique solution (25).155

Indeed this approach has the advantage that complex searches for the non-156

linear post-critical path are avoided, as the introduction of the imperfections157

converts bifurcation points into limit points. On the other hand, it is defi-158

nitely computationally expensive as it requires to carry out a series of fully159
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non-linear analyses on a (possibly infinite) set of models adulterated with160

different imperfections. The computational cost is sometimes discouraging,161

especially for everyday design. As a consequence, several variations to the162

general procedure have been proposed.163

Deml and Wunderlich (26) propose to describe imperfections as additional164

nodal degrees of freedom and to solve for both the buckling load and the165

corresponding ”worst” imperfection shape by solving an extended system of166

nonlinear equations.167

After the studies of Ho (27) it was known that the worst imperfection shape168

is to be sought after within the convex linear combinations of the linear169

eigenmodes (i.e. the eigenvectors ui associated to the solutions λi of equa-170

tion (1), with uTi uj = δij). Subsequently it was also observed that in certain171

cases, especially when the softening behaviour is much pronounced in the pre-172

buckling phase, the worst imperfection shape must also take into account the173

non-linear eigenmodes (i.e. the he eigenvectors ui associated to the solutions174

λi of equation (1), with K being evaluated just before the bifurcation point)175

(28).176

A modern approach of absorbing this knowledge is that of setting up a non-177

linear optimization problem in which the solution is sought within convex178

linear combinations of linear and non-linear eigenmodes, subjected to user-179

defined imperfection amplitude constraints, by minimizing the buckling load180

(29). As expected, it is found out that lower buckling loads are obtained by181

considering also non-linear buckling modes and that the worst imperfection182

shape is usually composed of several eigenmodes. Additionally, it is noticed183

that the first non-linear eigenmode is a very good approximation of the worst184

imperfection shape. Nevertheless, it is also common knowledge that the first185

linear eigenmode represents a satisfactory approximation as well (30), al-186

though for some structures higher linear eigenmodes might erode the load187

bearing capacity even more (31).188

Kristanic and Korelc (32) propose instead a linear optimization problem, by189

carefully choosing linear constraints on both the shape and the amplitude190

of the imperfections. They also include deformation shapes (i.e. the dis-191

placement fields of the structure due to relevant load cases) among the base192

shapes for the generation of the convex linear combinations.193

However, other studies showed that the worst imperfection form depends on194

the specific combination of structure’s geometry and loading. Additionally,195

dimples and local imperfections in general that are more relevant to pro-196

duction and may also represent the occurrence of local instabilities along the197
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loading path, might also cater for the maximum reduction in load bearing ca-198

pacity (33; 34).Therefore, eigenmodes combinations as well as all long-wave199

imperfections may overestimate the buckling load.It is also worth noticing200

that some authors include also several post-buckling deformed shapes among201

the competitors for the worst imperfection shape (33; 35).202

As a consequence of this knowledge, the concept of ‘quasi-collapse-affine im-203

perfection’ has emerged, together with the awareness that the worst imper-204

fection shape cannot be pinpointed (25). Schneider finds that the worst205

imperfection pattern does not exist for shells because it depends on the im-206

perfection amplitude. Additionally, it cannot be spotted as it relies heavily on207

clustering of instability loads, crossing of secondary equilibrium paths in the208

post-buckling range and material non-linearity. Therefore he introduces the209

concept of ‘quasi-collapse-affine imperfections’: displacement fields extracted210

from the initial stage of the buckling process, obtained by conveniently re-211

stricting the space of the shape functions. These imperfections turn out to212

be more unfavourable than eignemodes, especially when the instability is213

caused also by material non-linearity. Actually they initiate the buckling214

process (they ‘stimulate’ it) and thus they allow to approach the most un-215

favourable imperfection pattern (35).216

217

Most of the described contributions are specific to shells, whereas few218

references specific to grid-shells are available. Bulenda and Knippers (20)219

propose to adopt as imperfection shapes the non-linear eigenmodes and the220

displacement shapes of the grid-shell under relevant load cases.221

We use GSA as a FE-program (21), a commercial software which does not222

allow the user to check and manipulate the stiffness matrix. Thus we can-223

not neither obtain non-linear eigenmodes nor restrict the space of the shape224

functions in order to compute ‘virtual’ initial buckling shapes (as proposed225

by Schneider (35)). However, our study is a parametric analysis on the im-226

perfection sensitivity of grid-shells with different topology (i.e., triangular,227

quadrilateral and hex-dominant), and not a thorough assessment of the safety228

of real projects. All this being said, we content ourselves with ‘stimulating’229

the buckling process as proposed by Schneider (25; 35), by adopting the230

following imperfections shapes (see Figure 2 for an example):231

1. the displacement shape obtained by linear static analysis, addressed232

with the acronym LS in the following;233

2. the initial buckling shape obtained by geometrically non-linear analysis234
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(i.e. the ‘real quasi-collapse-affine’ imperfection according to Schneider235

(25; 35)), addressed with the acronym NLS in the following;236

3. the first linear eigenmode and convex linear combinations of the first ten237

linear eigenmodes, addressed with the acronym LB in the following. No238

optimization procedure is established: the generic i -th buckling mode239

is included when a visual resemblance is noticed with the non-linear240

initial buckling shape of the grid-shell (i.e. NLS ).241

It is worth noticing once again that, as this is a comparative analysis and242

not a real project, only the uniformly distributed load case has been consid-243

ered. No asymmetric load cases have been addressed, neither in the buckling244

analyses nor in the definition of the imperfection shapes.245

For each dataset (see Table 1), for each topology and for each imperfec-246

tion shape, we have created a range of imperfect models by varying the247

norm of the imperfections and its sign. The norm is Euclidean (||e||2 =248 √∑
i(e

2
ix + e2

iy + e2
iz)) and it was sampled at regulars intervals±[250 200 150 100 50 25 0]249

mm. Every time the imperfections shapes have been scaled according to the250

selected maximum norm and added to the perfect geometry. We have also251

taken into account the sign of the imperfections, as it may significantly in-252

fluence the buckling behaviour of the grid-shell.253

In doing so, we ended up with a total of 13 imperfect models for each im-254

perfection shape, for each topology and for each dataset, for a total of more255

than 400 models (see second column of Table 1). Each model has then been256

analysed with the GSA FE-program (21), by carrying out geometrically non-257

linear buckling analyses (see section 2 for reasons about neglecting material258

non-linearity and section 5.1 for details about modeling and load cases).259

Imperfection sensitivity diagrams are shown in Figure 6, whereas relevant260

load-deflection diagrams are displayed in Figure 7.261

4. Statics aware Voronoi remeshing262

Here we briefly report the method we use to design the Statics Aware263

Voronoi Grid-Shells. Our method is based on Anisotropic Centroidal Voronoi264

Tessellations (ACVT) (36) and it is driven by the statics of the input surface,265

aiming at improving the strength of the grid-shell as well as its aesthetics.266

Voronoi diagrams appear in nature in many forms. In several cases, such267

as in the porous structure of animal bones, Voronoi-like structures optimize268

strength while keeping a light weight. We follow a similar approach to design269
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ORIGINAL

LS

NLS

LB1

LB2

LB3

Figure 2: Magnified deformed shapes for the hex-dominant remeshing of the Neumünster
dataset, side and front views. From top to bottom respectively: ORIGINAL, LS, NLS,
1st LB eigenmode, 2nd LB eigenmode and 3rd LB eigenmode.

hex-dominant grid-shells, by concentrating more cells of smaller size in zones270

subject to higher stress, while aligning the elements of our grid to the maxi-271

mum stress direction. The pipeline of the method is summarised in Figure 3272

and briefly discussed below. The reader is referred to (1) for further details.273

Given an initial surface Σ, we first perform a linear static analysis of274

the continuous shell (we always consider a uniformly distributed load case,275

but in theory every load condition can be adopted), thus obtaining a stress276

tensor for each point p ∈ Σ. As a thin shell can be considered in a plane277

stress condition, the resulting stress tensor is two-dimensional. Therefore we278

express it with respect to the local principal directions and we represent it279

as a pair of mutually orthogonal line fields1 Ψ(p) = (~u(p), ~v(p)), where ~u and280

~v define the maximum and minimum principal stresses at each point of the281

1A line field is a vector field modulo its orientation: only the directions and sizes of ~u
and ~v are relevant to Ψ, not their orientations.
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~un(p) d(p) a(p) 2 3 4
1

Figure 3: The different steps composing the pipeline of (1): the components of the stress
tensor inducing the anisotropic metric (1); the distribution of seeds and their distance field
(2); the corresponding ACVT (3); the final optimized tessellation (4).

surface, respectively. Since ~u and ~v are orthogonal, we decouple the scalar282

and directional information and represent Ψ as a triple (~un(p), d(p), a(p)),283

where ~un is a unit-length vector parallel to ~u, d = |~u| is the maximum284

stress intensity (henceforth called density), and a = |~u|/|~v| is the anisotropy285

(see Figure 3.1). Tensor Ψ induces an anisotropic metric gΨ = diag( 1
d2
, a

2

d2
)286

on surface Σ, where the matrix is expressed with respect to the principal287

reference system at p.288

Next we compute a hex-dominant tessellation covering Σ, whose faces289

have a uniform distribution with respect to metric gΨ. Roughly speaking, this290

means that faces will be more dense where the maximum stress is higher and291

they will be elongated along the direction of maximum stress proportionally292

to anisotropy.293

In order to do so, we sample a set of seeds on the surface (37), and then we294

relax their positions, so that the distribution of seeds becomes uniform with295

respect to metric gΨ. Relaxation consists of computing the Voronoi diagram296

of the seeds under metric gΨ and iteratively moving each seed to the centroid297

of its Voronoi cell (38), until convergence. Note that, since gΨ has variable298

density and is anisotropic, the distribution of seeds will not be uniform with299

respect to the Euclidean metric: Figure 3.2 depicts the distribution of seeds300

(red dots) together with the corresponding field that encodes distance of301

points on the surface from the seeds; Figure 3.3 depicts the corresponding302

ACVT, which assembles the (anisotropic) Voronoi cells of all seeds and is303

easily computed from the distance field.304
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Dataset Model Vertices’ Vertices Faces Edges Beams’ Total
Valence section (mm) length (m)

Neumünster Abbey Triangular (39) 6 220 380 541 CS φ 60 966.7
Quadrilateral 4 508 464 883 CS φ 60 932.7
Voronoi 3 1076 553 1522 CS φ 60 956.9

British Museum Triangular (40) 6 1746 3312 4878 CHS 120x30 10267.4
Quadrilateral 4 4693 4452 8723 CHS 120x30 10184.8
Voronoi 3 10221 5784 14829 CHS 120x30 10316.6

Aquadom Quadrilateral (41) 4 1078 1001 1936 CHS 100x20 3672.1
Voronoi 3 2382 1189 3400 CHS 100x20 3662.3

Lilium Tower Quadrilateral (41) 4 665 636 1244 CHS 100x20 2139.9
Voronoi 3 1432 717 2060 CHS 100x20 2121.1

Table 1: Statistics on datasets. When a reference is given the remeshing comes from that
source, otherwise it is a height field isotropic remeshing s(x, y).

Finally, we apply geometric optimization to improve the local shape of305

the faces of the hex-dominant mesh. Roughly speaking, we deform each face306

to its closest regular polygon under metric gΨ and we globally optimise the307

mesh by stitching adjacent polygons. The result of optimisation is depicted308

in Figure 3.4.309

5. Experimental setup310

We have tested our method on several input surfaces. Figure 1 shows311

the rendered views of the hex-dominant remeshing of these surfaces (i.e. the312

Statics Aware Voronoi Grid-Shells), whereas Figure 4 compares the top views313

of the various remeshings of each input surface. A summary of the datasets314

is presented in Table 1:315

1. Neumünster Abbey is the glass roof of the courtyard of the Neumünster316

Abbey in Luxembourg, designed by RFR-Paris (39) and built in 2003;317

2. British Museum is the great court glass roof in the British Museum:318

geometry rationalization by Prof. Chris J. K. Williams (40), struc-319

tural design by Buro Happold and construction completed in 2000 by320

Waagner Biro;321

3. Aquadom and Lilium Tower are architectural free form shapes; the322

latter is the top of the Lilum Tower skyscraper designed by Zaha Hadid323
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Neumünster Abbey British Museum

Aquadom Lilium Tower top

Figure 4: Top views of all remeshings utilised in our comparative analysis.

architects. The quadrilateral remeshings for these datasets comes from324

the statics optimization procedure of (41).325

Neumünster and British Museum datasets represent lightweight, quite ordi-326

nary surface geometries and very low height-to-span ratio grid-shells, whereas327

Aquadom and Lilium Tower embody architectural free form skins as well as328

high height-to-span ratio grid-shells.329

5.1. Restraints, load conditions, numerical modeling330

Since this is a comparative analysis and not a specific study on the topic331

of stability of grid-shells, some simplifications have been done:332

1. All models have pin joints all over the boundary;333

2. The section of beams varies according to the specific model (as is shown334

in Table 1) but it is constant within each model;335

3. The load is always uniformly distributed. There are three load cases,336

respectively:337

(a) G1 which is the dead load of the beams;338
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(b) G2 which is a uniform load of 0.75 kN/m2 of magnitude, that339

stands for an hypothetical 25 mm thick glass coverage;340

(c) Qk which is a uniform load of 1.00 kN/m2 of magnitude, that341

represents the snow action.342

Then a load combination only q = 1.0G1 + 1.0G2 + 1.0Qk, which is343

representative of the characteristic serviceability load, is used to carry344

out all the analyses;345

4. Material non-linearity is neglected as the analyses already involves346

many variables (see section 2 for explanation);347

5. Each beam is modeled as a single finite element in order to reduce the348

computational time, while keeping an acceptable level of accuracy of349

the overall simulation. This simplification prevents form pointing out350

single member buckling, but it is still acceptable as member buckling351

is not the ordinary failure mode for grid-shells.352

5.2. Statics comparison criteria353

As we want to assess the structural performances of the Statics Aware354

Voronoi Grid-Shells, we set up a comparative evaluation with respect to other355

current practices (e.g. triangular and quadrilateral remeshing schemes).356

As roughly stated by Gioncu (4) and Malek (11), the structural performance357

of a grid-shell with fixed topology is not only affected by the total weight358

of its members but also by the grid-spacing. Figure 5 shows the results of359

grid-spacing sensitivity analysis carried out on a shallow spherical cap (60360

m of span and 2.8 m of height) remeshed with triangular, quadrilateral and361

our statics aware Voronoi-like topologies, respectively, keeping the total mass362

constant. It is evident that the constancy of the total structural mass (i.e.363

the total weight of the beams) is not a satisfactory comparison criterion,364

as the load bearing capacity of some grid-shells (i.e. those with triangular365

topology) greatly varies with the grid-spacing. Therefore, it is found out that366

the constancy of both total structural mass and total length of the beams is367

an adequate statics comparison criterion.368

As a consequence, for each dataset and for each topology, each remeshing369

was generated with the same overall length (see last column of Table 1 - we370

tolerate a 5% of variation) and with the same beams’ diameter (which means371

that also the total weight keeps constant).372
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Figure 5: Results of grid-spacing sensitivity analyses on a spherical cap (span-to-height
ratio = 21.43). For this surface the triangular connectivity is the most sensitive to grid-
spacing variations, as its load bearing capacity rockets as grid-spacing increases.

6. Results373

We have compared the triangular, quadrilateral and statics aware Voronoi-374

like patterns in terms of buckling strength, compliance and imperfection sen-375

sitivity. In particular, the following comparisons have been performed:376

Imperfection sensitivity analysis: this analysis shows how the buckling377

factor is affected by surface, grid-topology and imperfections shape,378

sign and amplitude (see Figure 6 for results and section 3 for the setup379

of imperfect models).380

‘Worst’ response diagram vs Grid-topology: for each dataset (first col-381

umn of Table 1) this study compares the ‘worst’ response diagram (i.e.382

that corresponding to the lowest load factor) of each grid-topology (see383

Figure 7 for results - the state parameter on x axis represents the ver-384

tical deflection of the black bullet depicted in Figure 1).385

Response diagram vs Imperfection amplitude: this study outlines the386

variability of the response diagram with the signed magnitude of the387

(worst) imperfection shape (see Figure 8 for results). For the sake of388

brevity, only the results concerning the triangular and statics aware389

Voronoi remeshings of the Neumünster dataset are reported.390
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6.1. Comparative imperfection sensitivity analysis391

In accordance with Section 1, Figure 6 shows that the triangular topology392

is definitely the most effective as well as the most sensitive to imperfections393

(see Figures 6(a) and 6(c)), followed by our statics aware Voronoi remesh-394

ing (Figures 6(c) and 6(b)), while the quadrilateral pattern turns out to be395

the less sensitive to imperfections. These numerical results are in full accor-396

dance with the theoretical predictions of Tonelli (18), which where partially397

sketched in Section 1.398

Additionally, it is also evident that the regularity of the surface plays a399

central role in the definition of the critical point. According to section 5,400

Neumünster and British Museum datasets represent rather regular geome-401

tries (the former more regular than the latter, see Figures 1 and 4) whereas402

Aquadom and Lilium Tower Top are free-form surfaces. Figures 6(a) and 6(c)403

show that the Neumünster and British Museum datasets display an unstable404

symmetric bifurcation point (42) (compare the graphs with the two-thirds405

power law cusp of Figure 6(e)) roughly irrespective of the topology, although406

the trend is much more noticeable for the triangular topology. Similarly, Fig-407

ures 6(b) and 6(d) show that free-form surfaces such as Aquadom and Lilium408

datasets display a limit point (42) (compare the graphs with the monotonic409

non-singular curve of Figure 6(f)), again irrespective of the topology.410

Another clear result provided by Figure 6 is that the statics aware Voronoi411

topology is just as efficient as the quadrilateral topology when the underlying412

surface is quite regular (Neumünster and British Museum datasets, respec-413

tively Figures 6(a) and 6(c)) but its efficiency is even more than twice that of414

the quadrilateral pattern when the underlying surface becomes irregular or415

totally free-form (Aquadom and Lilium datasets, respectively Figures 6(b)416

and 6(d)).417

Contrary to polar-symmetric domes (which exhibit a symmetric graph418

both for negative and positive imperfections (20)), none of the tested grid-419

shells show a symmetric behaviour with respect to the imperfection sign.420

Hence, the sign of imperfections plays a crucial role in the structural be-421

haviour of grid-shells. Besides, the singularity of the cusp representative of422

the unstable symmetric bifurcation point of Figures 6(a) and 6(c) does never423

correspond to the perfect model. This in turn means that the perfect grid-424

shell does not necessarily produce the highest buckling factor (it never does in425

our experiments). Therefore, in certain circumstances, a slight imperfection426

acts as a mild stiffening for the grid-shell.427
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Figure 6: Imperfection sensitivity results. On the left column, from top to bottom:
Neumünster Abbey courtyard glass roof, British Museum great court roof and schematic
representation of an unstable symmetric bifurcation point. On the right column, from top
to bottom: Aquadom, Lilium Tower and schematic representation of a limit point. The
horizontal lines in Figures (a)-(d) represent the first linear eigenvalue (i.e. buckling load)
computed on the corresponding perfect model. Text within the graphs of Figures (a)-(d)
recalls the ‘worst’ geometric imperfection shape which generates the graphs (see section 3
for terminology). 17



As a last remark, at least for uniformly distributed load, the ‘worst’ imper-428

fection shape is topology-dependent. It is seen that, among the imperfection429

shapes taken into account (see section 3 for details and terminology), the430

‘worst’ is:431

1. the first linear eigenmode LB for triangular topology (see Figures 6(a),(c));432

2. either the first linear eigenmode LB or the linear static displacement433

shape LS for the quadrilateral topology (see Figures 6(b),(c) and 6(a),(d),434

respectively);435

3. the initial buckling shape of the perfect model NLS for the statics aware436

Voronoi-like topology (see Figures 6(a),(b),(d)).437

According to section 3, other convex combinations of linear eigenmodes have438

been considered, but in no case any of these has come out as the ‘worst’439

imperfection shape. Unfortunately, in agreement with Bulenda and Knippers440

(20), from our sensitivity analysis no relationship between imperfection shape441

and amplitude can be worked out, in order to predict the ‘worst’ imperfection.442

6.2. Comparative analysis of ‘worst’ response diagram vs Grid-topology443

Figure 7 shows the ‘worst’ response diagrams for each grid-topology (i.e.444

triangular, quadrilateral and statics aware Voronoi-like) of each dataset first445

column of Table 1). As usual, the term ‘worst’ response diagram means that446

it is associated with the imperfect model which produces the lowest load447

factor.448

As expected, triangular grid-shells achieve the highest load factor together449

with the lowest deformation (see Figures 7(a) and 7(b)). As already outlined450

in sections 1 and 6.1, the triangular topology is together the strongest as well451

as the most stiff, to such an extent that it does not require any stiffening452

device.453

On the contrary, almost the totality of the polygonal (i.e. quadrilateral454

and statics aware Voronoi-like) grid-shells exhibit a very much pronounced455

softening behaviour prior to collapse. They fail when a local maximum is456

reached along the primary equilibrium path, but by then they have un-457

dergone extremely high (totally unsatisfactory) forerunner displacements.458

Roughly speaking, they behave like thick equivalent continuous shells made459

of a ‘squashy’ material (i.e. with low equivalent Young modulus), accord-460

ing to the analytical results of Tonelli (18). It is worth noticing that this461

happens irrespective of the regularity of the underlying surface, i.e. there462

is no distinction between regular datasets such as Neumünster and British463
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Museum and free-form datasets such as Aquadom and Lilium (just compare464

the scale of the horizontal axis in Figures 7(a),(b) and 7(d)). These huge465

displacements point out the need for the adoption of an appropriate stiffen-466

ing method, aimed at reducing the flexibility. Indeed, polygonal lattice shells467

exhibit a proper shell behaviour only when a suitable stabilizing system is468

introduced. Usually a bracing cable system is used that caters for the shear469

forces to be transferred by membrane action, whereas transverse diaphragms470

might be added in order to provide for the double curvature to be maintained471

(17).472

Eventually, as already pointed out in section 6.1, the statics aware Voronoi473

remeshing becomes very effective for architectural free-form surfaces with a474

high height-to-span ratio (i.e. Aquadom and Lilium Tower datasets). Indeed,475

it achieves buckling factors which are on average twice as much as those476

yielded by equivalent quadrilateral state-of-the-art grid-shells (see Figures477

7(c) and 7(d)). This excellent result is due both to the innate adaptivity of478

the Voronoi diagram and to the ‘statics awareness’ introduced by Pietroni479

et al. (1).480

6.3. Response diagram vs Imperfection amplitude481

Figure 8 illustrates the variation of the response diagram with the signed482

amplitude of the imperfection for the Neumünster dataset. For the sake483

of brevity, only the triangular and statics aware Voronoi-like topologies are484

reported with reference to their ‘worst’ imperfection shape (i.e. the LS and485

NLS imperfections, respectively - see Figure 6(a)).486

It is evident that there is no straightforward correlation between the im-487

perfection amplitude and the shape of the response diagram. It is also worth488

mentioning that GSA (21) works in load control, which in turn means that489

it is not able to follow the post-buckling behaviour (e.g. also the potential490

bifurcation point of the triangular pattern). A correlation is instead spotted491

between the trend of the diagrams of Figure 8 and those of Figure 6(a). In492

particular, the cusp points of Figure 6(a) correspond to a sensible snap-back493

and an almost infinite slope in the corresponding response diagrams of Fig-494

ures 8(a) and 8(b), respectively. In so doing, the cusp points of Figure 6(a)495

can be regarded as ‘boundary lines’ (red lines in Figure 8) in the response496

diagram vs imperfection amplitude graphs of Figure 8.497

Eventually, the triangular topology displays a rather linear behaviour up498

to collapse (or up to the 80% of the collapse load at least) on average. On the499
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Figure 7: ‘Worst’ response diagrams vs Grid-topology. Respectively from top left to
bottom right: Neumünster Abbey courtyard glass roof, British Museum great court roof,
Aquadom and Lilium Tower datasets. The horizontal solid lines represent the ‘safety’ unit
load factor. Text within the graphs recalls the ‘worst’ geometric imperfection shape which
generates the diagrams (see section 3 for terminology). The state parameter referred to
on the x axis is the vertical deflection of the black bullet depicted in Figure 1.

contrary, the statics aware Voronoi-like topology exhibits a sensible soften-500

ing behaviour along the loading process, that intensifies as the imperfection501

amplitude grows.502

Unfortunately, there are no evident rules on how to state in advance503

the load-deflection relation for a whatsoever imperfect structure. Then the504

engineer has to undergo all the efforts of a thorough imperfection sensitivity505

analysis, as the response diagram shape affects the safety of the structure.506
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Figure 8: Variation of the response diagram with the signed amplitude of the imperfection
for the Neumünster dataset. On the left the triangular remeshing, on the right our statics
aware Voronoi remeshing. The state parameter referred to on the x axis is the vertical
deflection of the black bullet depicted in Figure 1.

7. Statics-Aware Voronoi Mock-up507

Building a mock-up and carrying out load tests on it is an opportu-508

nity both for appraising the practical feasibility of the statics aware Voronoi509

remeshing and for validating the numerical results, respectively.510

7.1. The geometry of the mock-up511

Therefore a mock-up of a funicular Statics Aware Voronoi Grid-Shell was512

built at the Department D.E.S.T.e.C. of the University of Pisa, with overall513

dimensions (2.4x2.4x0.7)m and composed of 465 joints, 697 beams and 231514

panels (see Figure 9 and Table 2 for statistics). Eventually, incremental static515

load tests were carried out on it. The joints were 3D printed, the timber516

beams manually cut and the P.E.T. panels laser cut. All the geometry was517

digitally handled by means of Rhinoceros (43), in particular using its plug-in518

RhinoScript for automating some procedures. During the assembling phase519

(lasted 17 days) temporary ‘scaffoldings’ were needed until the structure was520

completed and could bear its own weight (see Figure 9). Unfortunately the521

building process was slowed down by the ABS joints that, being not strong522

enough to bear the radial tension brought about by the insertion of the523

rods within the hollow pipes, kept on cracking very often. This in turn has524

introduced also a significant error in the accuracy of the built geometry, and525
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we assume a maximum deviation (i.e. an imperfection) of about 5 cm from526

the design geometry.527

Beams Joints Faces Washers Screws

Number 697 231 465 227 243

Material Mild Fir ABS PET Iron Iron

ρ ( kg
m3 ) 400 1050 1400 7750 7750

Various

E = 8 GPa V = 8.4 dm3 t = 0.8 mm t=1.5 mm 3x12 mm

L = 72.7 m Fill ' 20% A = 5.2 m2 φe = 23 mm

φ = 8 mm φi = 6 mm

Mtot (kg) 1.5 1.6 7.2 2.5 0.3

Mtot (kg) 13.1

Table 2: Statistics on the mock-up.

7.2. Experimental incremental load test528

The apparatus for an incremental statics load test was then set up, as529

shown in Figure 10. The structure is symmetrically loaded on 16 points (see530

starred points in Figure 9 (top left)) by hollow metal plates, hung by means531

of cords with a metal hook at their free end. Each plate weights 120g and532

each load step provides for the addition of 16 plates (one for each hook), for533

a total weight of 1.920 kg = 19.20 N. Vertical displacements are monitored at534

points P1, P2, P3 and P4 (see labeled points in Figure 9 (top left)) by means535

of ‘inductive displacement transducers’. The acquisition system relies on a536

control unit (HBM WPM 100) endowed with a suitable acquisition software537

(HBM Catman 3.1) for saving and elaborating the data in real-time. All the538

instrumentation has been fastened to an external metal scaffolding, in order539

to avoid any data corruption due to flexibility of the wooden flatbed.540

The results were a bit disappointing (see Figure 11 (top)). Although the541

grid shell is not perfectly symmetric, the underlying surface is and therefore542

quasi symmetric response diagrams were expected for the four monitored543

points. Instead, Figure 11 (top) clearly shows two main different trends: the544

‘left’ nodes (i.e. P1 and P2) undergo a non negligible displacement, whereas545

‘right’ nodes (i.e. P3 and P4) stay almost steady during the whole load pro-546

cess. Additionally, all nodes display a remarkable irreversible deformation547
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after the unloading has occurred.548

The joints were given credit for most part of this behaviour, as they actually549

act like almost compression-only constraints, while only a small (but highly550

scattered and unpredictable) amount of tension can be carried through fric-551

tion. In particular it was deemed that, under loading, some partially inserted552

rods might have slid deeper into the hollow pipes, while some other fully in-553

serted may have slid out of their slots. Hence, two additional and identical554

load tests were scheduled, in order to pin down the real behaviour of the555

mock-up by gradually phasing the joints non-linearity out. Figures 11 (mid-556

dle) and 11 (bottom) show the results of the second and third load tests,557

respectively. The second test seem to be the most reliable among all, as all558

monitored points display a similar softening behaviour. Nevertheless, signif-559

icant irreversible displacements are still experienced at the unloaded state.560

On the other hand, the results of the third test show a significant change in561

the behaviour of the ‘right’ nodes (i.e. P3 and P4), which means that some562

swing has happened within the grid-shell, probably due to the cracking of563

some joints, to some rods having lost contact with their pertaining nodes or564

to some large scale permanent modification having occurred to the overall565

geometry of the grid shell. The first and last considerations are definitely566

supported by Figure 10 (bottom row), that shows the mock-up after the third567

and last static test had been carried out on it. It is evident how the shape is568

now affected by significant changes in curvature, while some nodes have slid569

out of their housing. Ultimately, we can say that the structure has buckled570

by the repeated application of the same load.571

7.3. Calibrated numerical tests572

Actually the behaviour of the mock-up turns out to be quite complex and573

far from being symmetric as the pseudo-symmetry of the structure would574

indicate. In particular, the following sources of non-linearity steer its static575

response:576

1. high deformability of the structure (geometrical non-linearity);577

2. joints cracking (material non-linearity);578

3. monolateral restraints at the joints, i.e. sliding of rods within the joints’579

hollow pipes (contact non-linearity).580

Within the FE-program GSA (21) we can model geometrical non-linearity581

by simply carrying out geometrically non-linear analyses. We might also par-582

tially model the material non-linearity (i.e. we could set up an equivalent583
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Figure 9: The geometry of the Statics Aware Voronoi Grid-Shell mock-up.

non-linear material, but not directly model the cracks) and the contact non-584

linearity (i.e. we could use compression-only elements for the joints, but not585

directly model the friction), although it would require a lot of expertise and586

plenty of time for the calibration. Such a detailed study is out of the scope587

of the paper, thus we contented ourselves with a sensitivity analysis carried588

out by means of geometrically non-linear analyses only, as already done in589

section 6. We adopted the same imperfection shapes described in section 3590

(i.e. LS, LB and NLS ) and we scale them by varying the maximum norm in591

the discrete range ±[100 75 50 25 12.5 0] mm, thus obtaining a total of 33592

imperfect models.593

Figure 12 shows the results of this analysis: it is seen that the critical point594

is imperfection shape dependent. In particular an unstable symmetric bi-595

furcation point appears with the first linear eigenmode LB and the initial596

buckling shape NLS, whereas a limit point is associated with the linear static597

displacement shape LS. As already noticed in section 6.1, also in this case the598
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Figure 10: The static incremental load test on the Statics Aware Voronoi Grid-Shell mock-
up. From top left to bottom right: setup, loading phase and large permanent changes in
shape after the third load test.

NLS imperfection shape yields almost the most unfavourable buckling loads599

(at least for small amplitudes). Contrarily to section 6.1 instead, the cusp is600

centered on the zero amplitude, i.e. it is associated with the perfect model.601

This result might be related to the funicularity of the surface underlying the602

Statics Aware Voronoi Grid-Shell mock-up.603

Unfortunately, by simply comparing the scale of the y-axis of Figure 12 with604

that of Figure 11 displaying the experimental load tests results, it is immedi-605

ately observed how poorly the numerical model describes the real behaviour606

of the mock-up. Apparently the effect of material and contact non-linearities607

is not negligible, as witnessed by the lowest numerical buckling load being608

twice as big as the experimental load. For the sake of clarity, 7 is not prop-609

erly the buckling factor of the mock-up as the loading process was stopped610

before reaching collapse in order to spare the model, but probably the real611
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Figure 11: Experimental response diagrams for all monitored nodes P1, P2, P3 and P4.
From top to bottom: first, second and third load tests, respectively.
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Figure 12: Imperfection sensitivity of the Statics Aware Voronoi Grid-Shell mock-up.

buckling load was about no more than 10.612

8. Conclusions613

This paper evaluates the structural performances of a novel hex-dominant614

remeshing pattern for free-from grid-shells: the Statics Aware Voronoi Remesh-615

ing scheme introduced by Pietroni et al. (1). The basic intuition is to lay616

out the beams network along the edges of an anisotropic centroidal Voronoi617

tessellation of the surface, where the metric used is not the Euclidean metric618

but that induced by the stress tensor over the surface under uniform load.619

In order to assess the structural capabilities of the Statics Aware Voronoi620

Grid-Shells, we have carried out a systematic comparative analysis between621

them and equivalent state-of-the-art competitors (i.e. grid-shells with tri-622

angular and quadrilateral topology). To this aim, we have performed ex-623

tensive investigations through numerical geometrically non-linear analyses.624

The results we have obtained show that our free-form Statics Aware Voronoi625

Grid-Shells are not only aesthetically pleasing but also statically efficient.626

Obviously they cannot be as efficient as the triangular grid-shells, but they627

turn out to be twice as effective as their equivalent state-of-the-art quadrilat-628

eral competitors. Therefore they represent indeed a valid alternative for the629

design of modern grid-shells, especially if the underlying surface is free-form.630
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In particular we have observed that the bigger the geometry irregularity of631

the underlying surface, the better the structural performances of our Statics632

Aware Voronoi Grid-Shells, thanks to the statics awareness supplied by the633

statically driven metric.634

635

A thorough imperfection sensitivity analysis has also been carried out. We636

have found out that the ‘worst’ imperfection shape is topology-dependent, i.e.637

it varies with the remeshing pattern even if the underlying surface is kept con-638

stant. In particular, the initial buckling shape proposed by Schneider (25; 35)639

under the name of ‘quasi-collapse-affine’ imperfection, seems to be the most640

unfavourable imperfection for the Statics Aware Voronoi Grid-Shells. Addi-641

tionally, although less sensitive to imperfections than their ‘brothers’ shells,642

the reduction of the buckling load might be very high also for grid-shells.643

Specifically, the failure load can be even four times lower for triangular and644

highly regular grid-shells, whereas the minimum load bearing capacity ero-645

sion due to geometrical imperfections is not less than 30% for Statics Aware646

Voronoi Grid-Shells. Eventually, in some circumstances, the quadrilateral647

topology exhibits an even lower sensitivity (see Figure 6).648

From a geometrical and pragmatic standpoint, statics aware Voronoi649

meshes have twice the number of vertices with respect to statically equivalent650

quadrilateral meshes (see section 5.2), but at the same time all vertices have651

valence three (see Table 1), thus they are competitive from the feasibility652

viewpoint too. For issues such as planarity of the faces and further details653

about the geometry, the reader is referred to (1).654

Eventually a mock-up of a Statics Aware Voronoi Grid-Shell has been655

built in order to assess the inherent complexities of this innovative lightweight656

structure. Load tests performed on it have confirmed the general knowledge657

that the behaviour of a real grid-shell is hard to describe with numerical658

models only.659
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