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Figure 1: Our input is a triangle mesh endowed with a cross field. We construct a graph G that allows us to trace field-coherent geodesic
paths: graph G has multiple nodes at singularities of the field (upper zoom-in) and at 〈auxiliary〉 points along edges (lower zoom-in); each
node is related to one of the cross field directions and a fan of field-coherent arcs emanate from it across a triangle. We use graph G to
trace potential separatrices that connect singularities, forming another graph H . A coarser or finer quad layout can be derived by solving
a binary LP problem on H . The solution can possibly involve t-junctions, while all final layouts may be used to produce a pure quad layout
and quad meshes at arbitrary resolution.

Abstract
Given a cross field over a triangulated surface we present a practical and robust method to compute a field aligned coarse quad
layout over the surface. The method works directly on a triangle mesh without requiring any parametrization and it is based
on a new technique for tracing field-coherent geodesic paths directly on a triangle mesh, and on a new relaxed formulation of
a binary LP problem, which allows us to extract both conforming quad layouts and coarser layouts containing t-junctions. Our
method is easy to implement, very robust, and, being directly based on the input cross field, it is able to generate better aligned
layouts, even with complicated fields containing many singularities. We show results on a number of datasets and comparisons
with state-of-the-art methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Quad layouts provide an effective structure for parametrization
and shape abstraction, furthermore they can be used for semi-
regular quad mesh extraction or as a basis for subdivision sur-
faces [BLP∗13]. In spite of several proposals in the literature, au-

† e-mail: nico.pietroni@isti.cnr.it

tomatic methods are still far from providing high quality results on
complicated shapes.

A quad layout is totally defined by the network of separatrices
connecting the singularities of a directional field [TPP∗11]; a piece-
wise linear version of such network is defined on a quad mesh by
chains of edges that emanate from irregular vertices; the quad mesh
itself can be seen as the result of subdividing each patch of the lay-
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Figure 2: (a) Instability of separatrices: a separatrix emanating
from singularity A is connected to singularity B (left); an arbi-
trarily small drift may lead to totally different layouts (center and
right). (b) Field coherency: a field-coherent path may drift from the
cross field but it remains roughly parallel to it (top); a non-coherent
path can switch to a different direction of the field (bottom). If non-
coherent separatrices are selected, the resulting layout may contain
non quadrilateral patches.

out with a regular grid. Therefore, both the quad layout and the
quad meshing problems can be solved by finding a proper network
of separatrices.

In the quest for a solution to such problems, many difficulties
arise from the intrinsic instability of directional fields on surfaces.
Consider for instance the example depicted in Figure 2.a: a sepa-
ratrix emanating from singularity A reaches another singularity B
nearby; however, an arbitrarily small drift is sufficient for this sep-
aratrix to miss B and continue until reaching another singularity
arbitrarily far from it. Since the arrangement of separatrices must
be globally consistent, this apparently local fact has indeed global
effects, eventually leading to a totally different network.

Further uncertainty comes from discretization. While singulari-
ties of a discrete field can be located robustly with a simple local
analysis, tracing separatrices proves to be a much more challenging
problem [MPZ14, RS14]. Moreover, an exact tracing of the under-
lying field does not necessarily provide a good solution: as demon-
strated by [BLK11,TPP∗11], just a few separatrices missing singu-
larities in the short range and eventually wandering in long spirals
may result in highly fragmented layouts.

A layout made of relatively few and large patches can be ob-
tained by finding a consistent network made of as short as possible
separatrices. Such separatrices must follow the underlying field, be-
ing allowed to drift from it just enough to hit singularities in the
short range; moreover, they are allowed to intersect just orthogo-
nally at corners of patches. These requirements restrict potential
separatrices to the class of field-coherent geodesic paths that are
exemplified in Figure 2.b and formally defined in Section 3.

An overview of the pipeline is shown in Figure 1. We take in
input a triangle mesh, together with a discrete cross field computed
with standard methods [HZ00, RVLL08, BZK09]. We designed a
new robust, graph-based method for tracing geodesic paths directly
on the triangle mesh, which are guaranteed to be field-coherent.

Our method allows to test whether two intersecting paths are or-
thogonal or not, and whether two paths incident at the same sin-
gularity are compatible, on the sole basis of robust combinatorial
tests. We compute a super-graph of potential separatricesH, which
is reduced to the optimal graph of separatrices by resolving a binary
LP problem. With respect to methods based on global optimization
of separatrices [RRP15] we do not need an initial globally smooth
parametrization as input, and our formulation allows us to work
also with an incomplete graph in input.

2. Related Work

In the following, we briefly review the contributions most related
to our work. We will first overview the main methods for tracing
aniostropic geodesics, then we describe and compare the methods
for quad patch layout. A comprehensive survey on quad layout can
be found in [BLP∗13].

Tracing geodesic paths. Geodesic lines are shortest paths con-
necting pairs of points on a surface. Several exact and approximated
methods have been proposed in the literature to compute geodesic
lines on a mesh under the Euclidean metric [CWW13, KS98,
LMS97, MMP87, SSK∗05, Kan00]. Extensions of these methods
to anisotropic metrics are investigated in [CHK13], where a new
method is proposed based on a modified Dijkstra algorithm. The
approach proposed in [ZZFJ14] uses an anisotropic geodesic to
segment an input mesh into structural sound partitions. A similar
approach to trace anisotropic paths proposed in [CBK12], which is
specific for a metric induced by a cross field, also belongs to the
class of Dijkstra methods. In order to consider a sufficiently large
set of possible directions of propagation at each point, lines are
traced by jumping from each vertex of the triangle mesh to the ver-
tices of its k-ring. The distance induced by the anisotropic metric
is calculated using a harmonic mapping of the k-ring of a vertex
where field interpolated per edge is projected in parametric space.
This approach is prone to numerical error due to the distortion in-
troduced by the harmonic parametrization. We rely on a Dijkstra
approach with 〈auxiliary points along the edges〉 (as in [LMS97]),
which is modified to maintain geodesic paths always coherent to
the underlying field.

Quad layout. Several methods has been proposed for field aligned
quadrangulation based on a global parametrization [KNP07,
BZK09, PTSZ11, BCE∗13, CBK15], however most of them do not
design coarse quad patch layouts. The idea of producing a coarse
quad layout has been first investigated in [BMRJ04, CHCH06,
DISC09]. The approach proposed in [MPKZ10] allows the inser-
tion of t-junctions to adapt the patch layout to complex fields with-
out deviating from the original field. This problem has been recon-
sidered in [BLK11, TPP∗11] to align the quad layout to a given
cross field. Both methods require that a field aligned quadrangula-
tion is computed first, then they apply greedy techniques to disen-
tangle its corresponding network of separatrices. A more sophisti-
cated strategy that works directly on a triangle mesh equipped with
a cross field has been proposed in [CBK12]. This method first ex-
tracts a set of field-aligned loops on the input surface, then it selects
a minimal subset of loops that separate the cross-field singularities,
by using a greedy strategy; the final quad layout is the dualization of
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Figure 3: Meshes with relatively simple fields that requires no t-junctions.

this graph. Unfortunately, this method can get stuck on local min-
ima, since the final layout is the result of a greedy process. Other
methods [JLW10, CK14a, TPSHSH13, MTP∗15] allow the user to
interactively draw a quad patch layout using a simple graphical user
interface.

The approaches proposed in [RRP15,ZZY16] are most related to
our proposal because they share the idea of finding the best subset
of separatrices that produces a quad layout by resolving a global
0-1 programming problem. However our method has several no-
ticeable advantages:
Less dependence on input data: The approach of [RRP15] needs
as input a globally smooth parametrization without foldovers. As
shown in [MPZ14], neither [BCE∗13] nor [Lip12] may guarantee
the bijectivity of the produced parametrization, and this problem
has been only partially solved in [DVPSH15].
Simpler tracing: Designing a robust algorithm to trace paths in
parametric space (as in [RRP15]) is a challenging task, especially
in the presence of a complex parametric domain. Methods gener-
ating a globally smooth parametrization usually introduce discon-
tinuities (jumps) and overlapping regions in parametric space, in-
creasing the complexity of the tracing procedure. As opposite, we
trace field-aligned separatrices directly on the triangle mesh by us-
ing a new graph-based strategy.
Better and more controllable result: The quad layouts of
[RRP15, ZZY16] can be arbitrarily misaligned with respect to the
original cross field. In fact, the tracing procedure inherits all the
distortion of the input parametrization and may produce incontrol-
lable artifacts in the final layout. This effect is shown in section 5.
More flexible: Both methods in [RRP15, ZZY16] require to trace
the complete set of candidate separatrices to guarantee a feasible
solution. Instead, our system may produce a proper patch layout
even starting from a subset of all possible separatrices. This feature
is particularly useful in case of extremely complex fields.

3. Field-Coherent Geodesic Paths

-u

u

v

-v

Let us consider a smooth manifold surface M. A
cross field X is defined at each point of M by
four pairwise orthogonal unit length vectors in
the tangent plane, which we conventionally term
u, v, −u and −v (see inset). Field X is said to be
smooth if such directions vary smoothly while

traversing M. Let ` be a simple open smooth line on M, which does
not cross any singularity of X, and let a and b be the endpoints of
`. Since X is smooth, if we select one of the four directions of X at
a – say u – we can parallel transport u along ` up to b, mapping u
to its corresponding direction of the cross field at each point along
`. We conventionally denote u` this parallel transport. Note that the
parallel transport is not globally defined but dependent on `: for
instance, if we consider an orbit around a singularity and we place
a and b along this orbit, we may get different transports of u at b,
depending on which half of the orbit we follow.

45°
-45°

Let p be a non-singular point of X. We partition
the tangent plane at p into four non-overlapping
sectors, obtained by tracing bisectors between
consecutive directions of the cross at p. Each sec-
tor is the portion of space that spans directions
between − π

4 and π

4 from the respective direction
of the cross.

If p is a singularity of X, we generalize this par-
tition by tracing bisectors between consecutive di-
rections of separatrices emanating from p, so that
each bisector is associated to a port corresponding
to the outgoing tangent direction of a given separa-
trix at p, as shown in the inset. An arbitrary vector
w in the tangent plane at p will belong to one sec-
tor and it will be associated to the corresponding direction.

Now let ` be a smooth open line as above, let ta be the tangent of
` at its endpoint a, and let u be the direction of X(a) whose sector
contains ta. We say that ` is coherent to X if and only if the tangent
tp of ` at every point p lies in the sector of transported direction
u`(p). This means that ` may drift from the integral lines of X, but
it does not switch to a different direction of X (see Figure 2.b).

We introduce a non-Riemannian metric on M to penalize non-
coherent lines by increasing their length proportionally to their
amount of drift. Let p be a point of M, let w be a vector in its
tangent plane and let u be the direction of X(p) that contains w in
its sector. We define norm

‖w‖X = |w|(1+α
Angle(u,w)

π/4
) (1)

where |w| is the Euclidean norm of w, Angle measures the unsigned
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angle between a pair of vectors, and α is a parameter that tunes the
amount of penalty for the drift.

In the following, we are interested in finding field-coherent paths
of minimal length w.r.t. ‖ ·‖X (i.e., anisotropic geodesics) that con-
nect pairs of singularities of X. Note that, since we restrict our
search to field-coherent lines only, we are in fact looking for po-
tential separatrices of a slightly perturbed cross field that retains
the same singularities of X.

3.1. Discrete setting

We represent a discrete cross field X on a triangle mesh T by storing
one cross per triangle. The parallel transport of crosses between
adjacent triangles is obtained by flattening the triangles to the same
plane and associating each direction of a cross with the direction of
the other cross that makes the smallest angle with it. This transport
from triangle to triangle is defined by a simple 2D signed rotation;
a vertex p is a singularity of X if and only if the sum of all rotations
obtained by orbiting about p is different from zero.

Smooth lines over M will be approximated with polylines over
T , having their joints only at intersections with edges of the mesh.
For the sake of simplicity, we will consider only lines that do not
cross vertices of T , while they may have their endpoints at singular
vertices. Given such a polyline `, the transport u` of a field direc-
tion along it can be defined as in the continuous case, by using the
triangle-by-triangle parallel transport defined above. Similarly, we
can define a polyline ` to be coherent with X if the direction of seg-
ments of ` remains within the same sector of the transport u` at all
triangles traversed by `.

3.2. The geodesic graph

〈In order to〉 efficiently explore the space of field-coherent paths
that connect singularities we build a graph 〈H〉 that represents dis-
crete field-coherent geodesic paths traversing mesh T . 〈The nodes
ofH are the vertices of T that correspond to singularities of X; the
arcs of H are field-coherent polylines that approximate geodesic
paths between singular vertices. Such polylines have their joints at
auxiliary points placed along the edges of mesh T . Auxiliary points
provide enough degrees of freedom to propagate geodesics over the
mesh independently of the underlying tessellation, allowing us to
diffuse the sectors of the cross field coherently through adjacent
triangles, as shown in Figure 4.〉

〈The arcs of graph H are in fact built as chains of directed
straight-line arcs of an intermediate graph G, which is built as de-
scribed in the following. We start by placing auxiliary points along
the edges of T , controlling their density〉 with an angular parame-
ter φ: for each edge e, we tune its sampling step so that the angle
subtended by two consecutive points on e and the opposite vertex
is smaller than the given threshold φ. 〈In practice, angle φ sets the
sampling rate of space in terms of angular directions.〉

〈Intermediate graph G has its nodes placed at singular vertices
and at auxiliary points; while its〉 arcs are straight-line segments
crossing each triangle and joining either pairs of 〈auxiliary〉 points,
or singular vertices with 〈auxiliary〉 points. Since we want to rep-
resent only field-coherent paths, each 〈auxiliary〉 point s lying on

edge e generates eight potential nodes of G, i.e., one node per tri-
angle incident at e and per direction of the cross in the triangle.

The nodes corresponding to a single
〈auxiliary〉 point and a single triangle are
depicted in the inset by bullets, with arrows
representing their associated directions in the
cross. Each node has a corresponding sector
inside the triangle, which represents the portion
of triangle that can be traversed by field-coherent
paths outgoing from the node in its associated direction. Note that
there are at most three nodes per point per triangle, as at least one
sector is always completely occluded by the edge. Therefore, each
〈auxiliary〉 point will actually correspond to six nodes of G.

Each node is connected to directionally coher-
ent nodes on the adjacent faces, which belong to
its sector. For instance, let us consider a triangle
t and a node su

t placed at point s lying on an edge
of t and pointing at direction u. Then, node su

t is
connected with an outgoing arc to all nodes that
fall within the sector of u, belong to neighboring
triangles, and bear a coherent direction (i.e., the transport of u to
each neighboring triangle). See the inset for an example.

Singular vertices of X gen-
erate special nodes. Since the
cross field is undefined at a
singular vertex p, we gener-
ate twice as many nodes as the
number of separatrices incident
at p (typically 3 or 5); we ori-
ent each such node according
to the tangent direction of its corresponding separatrix at p and
we assign it a sector consequently. Details on how we derive the
directions of separatrices at singularities can be found in the Addi-
tional material. In order to find the correspondence between sectors
and adjacent nodes, we conformally map the star of p to 2D space.
For each direction there is one source node for outgoing arcs and
one sink node for incoming arcs. Outgoing arcs are generated in the
same way as arcs from 〈auxiliary〉 points. Arcs incoming at sinks
are generated similarly, by connecting to each sink nv at vertex v
the nodes that belong to the sector of nv, to a triangle incident at v
and that contain v in their sector (see inset).

By construction, each arc of G is contained in a triangle, it is di-
rected, and it is tagged with one of the four directions of X in the
triangle. Moreover each arc of G connects two nodes whose direc-
tions are coherent by parallel transport, hence, any directed chain
of arcs of G is a field-coherent path; in fact, G provides a discrete
approximation of all such paths on T . Finally, the length/weight of
each arc of G is computed according to Equation 1.

The number of arcs of G in each triangle t depends on the sam-
pling density of 〈auxiliary〉 points, 〈which varies with parameter
φ〉; this number is quadratic in the number of 〈auxiliary〉 points on
t; in practice, it is easily bounded by a small constant, hence the
overall complexity of G is linear in the size of T .
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Figure 4: Left: The Dijkstra search proceeds by spanning sectors
of the cross fields across the mesh. Right: the set of Field-Coherent
Geodesic Paths diffusing from two singularities along given direc-
tions on the Pensatore model.

3.3. Tracing field-coherent geodesic paths

In the proposed setup, a field-coherent geodesic path between two
nodes is obtained with a simple Dijkstra shortest path computa-
tion 〈on graph G〉. A single search launched from a source node
np spreads field-coherent geodesic paths over the surface, approx-
imating the continuous settings (see Figure 4). This is sufficient
to find all field-coherent geodesic paths from np to all sink nodes
of G. Running Dijkstra searches from all source nodes of G until
reaching all sinks provides us with a complete graph of potential
separatrices. For meshes with border, path expansion stops as soon
as the border is reached, and such paths are discarded. We encode
the results of these Dijkstra searches into an undirected graph H,
by identifying sources with their corresponding sinks as well as op-
posite paths; thus, each node of H is a source of G and each arc of
H corresponds to a source-to-source field-coherent geodesic path.
Since running a complete Dijkstra search may be computationally
expensive if the number of singularities is high, we allow the search
to stop after a given number k of sinks has been reached. Note that
in this case graphH 〈may〉 be not complete.

Our approach offers another advantage: for each pair of arcs of
H, which corresponds to two potential separatrices crossing in a
common face, we can precisely identify whether they intersect or-
thogonally or tangentially, by simply looking at their spanned sec-
tors (see Figure 5). Intersections are computed while generating the
arcs of H and stored for subsequent use. Moreover, since graph H
encodes each singularity s of the cross field with as many nodes as
the valence of s, by construction H already encodes whether two
different separatrices incident at s are compatible (i.e., they reach
it from different directions of the cross field) or not. This means
that all information needed to test the compatibility of separatrices
during the following optimization step are already encoded inH in
combinatorial (hence robust) form.

4. Quad Patch Layout

We aim at finding an optimal set of separatrices that subdivide the
mesh into quadrilateral patches. As remarked in [CBK12, RRP15],
this can be achieved only if the following constraints are satisfied:
Completeness: each port of each singularity must be incident at
exactly one separatrix.
Orthogonality: separatrices composing the layout can intersect
only orthogonally.
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-v
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u
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-u

u

Figure 5: Orthogonal (left) and tangential (right) intersections can
be seen simply looking at the cross field direction associated to
arcs.

Figure 6: Complex meshes requiring a few t-junctions.

As explained above, our setup allows us to test these conditions in
a very efficient and robust manner that does not involve geometric
computations. From Theorem 4.1 in [CBK12], it follows that these
two constraints guarantee the arrangement of separatrices to form a
quad layout, provided that all separatrices are field-coherent paths.
On the other hand, it is quite easy to show that non-quadrilateral
patches may appear in the layout if field-coherency is broken. See
the right side of Figure 2 for an example.

A feasible solution is any subgraph of H that fulfils complete-
ness and orthogonality. Within the space of all feasible solutions
we want to choose the one that minimizes the total length of the
paths in the anisotropic metric.
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4.1. A relaxed setup

If H is complete, an optimal solution can be found by resolving
a 0-1 programming problem, similarly to [RRP15]. However, we
already remarked that finding a complete graph for an arbitrarily
complex cross field may be prohibitively time consuming. More-
over, a conforming quad layout may become very fragmented for
complicated fields containing many singularities; in these cases, it
is sometimes more convenient to find a simpler quad layout with
a few t-junctions. We thus relax the problem by substituting the
Completeness constraint with the following weaker constraint:

Consistency: each port must have at most one incident separatrix.

We aim at keeping as many separatrices as possible subject to the
Orthogonality and Consistency constraints and, at the same time,
while minimizing the total length of the selected separatrices. Note
that we can obtain a solution in which some nodes are not reached
by any separatrix, i.e., they remain dangling. We will show later on
how a layout with t-junctions can be obtained by partially expand-
ing separatrices from dangling nodes.

We define a boolean variable ci for each arc si of H. Each can-
didate separatrix si joins two nodes. In order to fulfil Consistency,
we impose a constraint at each source node n j:

0≤ ∑
si∈Sep(n j)

ci ≤ 1 (2)

where Sep(n j) is the set of arcs of H incident at node n j . More-
over, in order to fulfil Orthogonality, for each pair of arcs si,s j that
intersect tangentially we impose that they are not both selected, by
constraint:

0≤ ci + c j ≤ 1 (3)

Hence, we obtain a system of linear constraints with 0-1 variables,
containing as many equations as the nodes plus the pairs of arcs
that intersect tangentially inH.

In order to maximize the number of separatrices while minimiz-
ing their length at the same time, we maximize the following ob-
jective function:

∑
i

ci

γ(si)
(4)

subject to the above system of constraints, where γ(si) is the length
of the candidate separatrix, computed using the anisotropic metric
of equation 1. To solve this ILP problem we use [Ach09]. Note
that the objective function is significantly different from the one
of [RRP15]. Due to the relaxed constraints, minimizing directly
the total length would inevitably lead to an empty solution. On the
other hand, if the graph H contains enough arcs (which does not
necessarily require it to be complete) a complete solution is found
also in our case.

4.2. The solving cycle

The approach described above can be iterated to reduce the number
of dangling nodes and, consequently, of t-junctions. Once we gather
a valid layout, we iterate a Dijkstra search from the dangling nodes,
while freezing the current solution as a set of barriers. This means
that the search is stopped as soon as the propagating path intersects

Iteration 1, 8 t-junctions

Iteration 2, 0 t-junctions

Iteration 1 Iteration 2
2 t-junctions 0 t-junctions

〈Iteration 1〉 〈Iteration 2〉 〈Iteration 3〉
〈44 t-junctions〉 〈18 t-junctions〉 〈16 t-junctions〉

Figure 7: Top: The dotted red separatrix on the left would be
shorter than the continuous red separatrix on the right. However,
adding the blue separatrix to the layout in a first run prevents the
insertion of the dotted red separatrix, while the continuous red sep-
aratrix is found as best shot, compatible with the blue constraint.
Bottom: a few iterations allow us to remove or considerably reduce
the number of t-junctions in the final layout.

tangentially a separatrix which belongs to the current solution (see
Figure 7).

Then, we solve the same LP problem bound to dangling nodes
and this new set of candidate separatrices. Note that the new set of
separatrices does not interfere with the previous solution, because
they are incident at different nodes, then the two sets of paths are
guaranteed to mutually intersect only orthogonally. We iterate this
process until no new separatrix can be added to the final layout.
Usually this process converges in 3-4 iterations. It is worth noticing
that a solution found with this lazy approach does not necessarily
coincide with the solution found starting at a complete graph H,
but the speedup may be dramatic for a complicated input.

Few cycles of this iterated approach are sufficient to eliminate
all dangling nodes, thus providing a conforming quad layout, for a
simple enough input, like in most examples processed in the previ-
ous literature. However, for rather complicated examples and with
all bordered meshes, the process may terminate while leaving some
dangling nodes. In this case, we perform a further propagation of
a separatrix from each dangling node. The propagation is stopped
at its first orthogonal intersection with an existing separatrix, thus
adding a t-junction to the final layout. This propagation step is con-
strained by the graph of separatrices that has been computed in the
previous steps. If a cylinder partition is present, we trace a field
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(a) (b) (c)

Figure 8: Left: some nodes may be unsolved because they need to be connected with the border (a); it is sufficient to propagate paths from the
singularity until they reach the border (b) to complete the patch layout (c). Rigth: some examples of models with multiple complex borders.

(a) (b) (c)

Figure 9: An example of zero chain removal: The faces that 〈do
not satisfy〉 equality constraints are highlighted (a); and then sub-
divided (b); leading to a globally smooth parametrisation (c).

line starting from a node which is perpendicular to the boundary
reducing the partition to a quad face, as in [MPZ14].

4.3. Handling Borders

In the case the input mesh is not watertight, some singularity
may have some associated dangling nodes (see figure 8.a). In this
case we simply use the same process we used to diffuse the t-
junctions. We propagate the separatrix from each dangling node
until it reaches a border node (see figure 8.b). This process pro-
duces a proper patch subdivision (see figure 8.c). Some example of
models with multiple borders is shown in figure 8.

4.4. Partition consistency

Every quad in the patch layout can be mapped to a rectangle in
parametric space with sides of integer length. A seamless globally
smooth parametrization can be obtained only if the opposite sides
of each patch map to the same length in parametric space, as well
as coincident sides of adjacent patches map to the same length in
parametric space. These constraints give a system of linear equa-
tions with integer variables.The objective function to be minimized
accounts for the difference between an ideal length of sides of rect-
angles in parametric space. The resulting ILP problem is solved
easily with the same solver [Ach09] that we used to find separatri-
ces.

In case of a purely quadrilateral patch layout these constraints
can be always satisfied. However in a more generic scenario that

allows t-junctions this system of equations may lead to a zero
chains [MPZ14], i.e an inconstant set of constraints that are sat-
isfied only when some variable becomes zero. In order to detect
and isolate such inconsistencies we set size equivalence constraints
only between sides with no t-junctions. As opposite, we set equiv-
alence constraints in a least squares sense when t-junctions are in-
volved. As a consequence, when a zero chain occurs, this system
of equations produces a length assignment that does not satisfy the
opposite side equivalence. In such case, we perform one step of
Catmull-Clark subdivision on each face with side inconsistency.
This operation will erase the t-junction that causes the inconsis-
tency by introducing one irregular vertex. We proceed resolving
again the system providing a new edge side assignment.

Notice that the Catmull-Clark subdivision of a single patch may
create additional t-junction(s) leading to another possible source of
inconsistence. We force opposite side equivalence constraint across
this newly created t-junctions. We repeat this sequence of opera-
tions until all opposite sides are consistent. In the worst case, every
face containing a t-junction may be subdivided, leading to a mesh
with neither t-junctions, nor inconsistencies. An example of this
procedure is shown in figure 9.

4.5. Quadrangulation

The final quadrangulation can be optioned by sampling each patch
uniformly in parametric space. As patches have integer sizes that
are globally consistent along shared edges, this procedure produces
a proper quadrangulation. The shape of faces and their alignment to
shape features may be improved with a final smoothing operation.
We obtained good results by applying the simple technique pro-
posed in [PTP∗15], which interleaves steps of polygonal regular-
ization with closest point re-projection on the original surface. We
believe the quadrilateral patch layout could be further optimized by
using the technique proposed by [CK14b].

5. Results

Our method relies on two main parameters: the drift coefficient α

for the anisotropic metric (see Equation 1); and the number of sinks
k reached from each source during Dijkstra propagation for build-
ing graphH. Coefficient α is used to tune the alignment of separa-
trices to the input field: the higher α, the more aligned the layout,
the less freedom we have in connecting singularities.

〈The number of patches in the layout may increase for higher
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α = 1 α = 5 α = 10 α = 30 α = 60
patches = 98 patches = 129 patches = 135 patches = 208 patches = 242

Figure 10: 〈Increasing the value of α results in a batter alignment to the input field at the cost of a larger number of patches in the final
layout. No t-junction has been introduced.〉

k=5, a =12, t=20 sec k=10, a =6, t=42 sec 〈k=20, a =4, t=112 sec〉 k=30, a =0, t=155 sec

Figure 11: Increasing the value of k reduces the number of t-junctions in the final layout, but slows down the entire process.

values of α (see Figure 10).〉We experimentally found that values
between 10 and 30 give a good trade-off between alignment and
complexity of the final layout. Parameter k is used to trade-off be-
tween completeness of graph H and speed: the higher k, the more
complete H, the slower its computation. A low value of k may re-
sult in more iterations of the solving cycle and possibly in a sub-
optimal layout with more t-junctions; on the other hand, depending
on the complexity of the dataset, a high value of k may slow down
computation dramatically (see Figure 11).

Parameter φ controls the creation and distribution of 〈auxiliary〉
points in the intermediate graph G used for the computation of
graph H. We set its value equal to 10◦ for all models. 〈Smaller
values of φ usually just produce slightly smoother paths, without
significantly changing the final layout (see Figure 12).〉

〈Finally, note how the complexity of the cross field in input may
affect the final result: a field containing many singularities may re-
sult in better alignment to geometric features, but it can increase
considerably the number of patches in the final layout (see Figure
13).〉

Figure 3 shows a sequence of quad patch layouts for relatively
simple cross fields that required no t-junctions. The same datasets
have been used several times in the previous literature and our re-
sults are at least qualitatively comparable with the state of the art.
Figure 6 shows results on complicated input fields that have seldom
been analyzed by quad layout methods in the previous literature:
these results require the use of a few t-junctions.

φ = 10◦ φ = 20◦

Figure 12: 〈Changing the value of φ, that controls the auxiliary
points in the intermediate graph G, usually does not affect the final
layout.〉

Results are summarized in Table 1; values of α and k used for
each dataset are shown in the table.

5.1. Comparisons

Figure 14 shows a comparison with the integer-grid (IG) technique
[BCE∗13]. Note that IG is capable of reducing significantly the
number of patches composing the final layout, however this comes
at the price of a large deviation from the input field, thus introduc-
ing a high distortion in the final layout. This effect is highlighted
〈with circles〉 in Figure 14. Conversely, our technique supports di-
rect control of alignment to the field, which is implicitly bounded
by field coherency, even for low values of α. Field distortion can
be reduced in [BCE∗13] by increasing the size of the integer grid.
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〈32 singularities〉 〈46 singularities〉
〈101 patches〉 〈189 patches〉

Figure 13: 〈A more complex field in input results in a more complex
patch layout.〉

mesh 4 S α k |G | 2 a Time
bunny 30K 50 15 30 528K 179 0 26.3
bolt 58K 24 30 20 243K 52 0 7.5

casting 37K 126 60 30 107K 515 0 76,6
chinese 52K 290 30 10 920K 941 38 73.6
dragon 25K 343 15 10 466K 1024 90 64.0
fertility 28K 38 30 30 492K 128 0 22.0
gargoyle 20K 141 30 10 462K 528 44 18.2
heptoroid 20K 168 30 10 979K 825 0 63.0

lucy 50K 173 30 10 2039K 671 62 101.0
neptune 52K 226 5 5 925K 640 62 32.9

pensatore 100K 72 20 30 3287K 336 0 193.0
redbox 50K 1170 30 5 2148K 4586 450 209.0

rockerarm 70K 30 30 30 1239K 75 0 43.3
sculpt 73K 16 30 10 130K 78 0 2.9

Table 1: Statistics of the processed data: name of the input mesh,
number of faces, number of singularities S, field alignment factor α,
number of sinks reached from each source k, number of nodes com-
posing G , number of quadrilateral patches, number of T-Junctions
and processing times in seconds.

Since the method is based on a global parametrization, the reso-
lution is increased globally in every region of the input surface,
thus obtaining a layout made of many more patches. Conversely,
our method can adapt the tessellation locally without the need of a
global scaling factor.

Figure 15 shows a comparison with the Perfect Matching Quad
Layouts (PMQ) approach [RRP15]. For each face, we show the de-
viation between the original cross field and the direction field in the
resulting parametrization (considering invariance to k π

2 rotations).
Notice that the distortion induced by the Poisson parametrization
required by [RRP15] can affect the final patch layout in an unex-
pected manner, increasing the misalignment or creating artifacts.
This undesirable effect may increase if the underlying parametriza-
tion has foldovers. For these reasons [RRP15] can include sepa-
ratrices in the quad layout, which are not well aligned with the
original cross field. As opposite, tracing separatrices that directly

〈IG 58 Patches〉 〈Ours 89 Patches〉

IG 112 Patches IG 626 Patches Ours 124 Patches

Figure 14: Comparison with Integer Grid method [BCE∗13]. 〈No
t-junction in all layouts.〉

follow the original cross field leads to a better conforming patch
layout 〈with out method〉.

Figure 16 shows a comparison with the approach of [MPZ14].
While [MPZ14] is able to trace the field more precisely (see Table
2), we obtain a significantly simpler patch layout because we intro-
duce few t-junctions, as seen in the Chinese dragon model. Since
our method minimizes the total number of required t-junctions,
zero loops configurations happen more rarely than in [MPZ14].
Figure 17 shows a comparison where the approach proposed by
[MPZ14] generates a zero loop configuration that is not present in
our patch layout. This is due to the fact that our approach is able
to align singularities, thus reducing the total number of t-junctions
and implicitly collapsing several possible zero cycles. Finally, dif-
ferently from [MPZ14], our method has already integer length as-
signed to each edge and it can be used to produce a quadrangula-
tion.

〈Figure 18 shows a comparison with the quadrangulation pro-
duced by [BZK09]. Quads are colored according to distortion with
respect to a rigidly aligned ideal square, as described in [PTP∗15].
Note that we achieve a fully structured quad patch layout at the cost
of a slightly larger distortion: the greenish zone in our model is due
to horizontal stretching that makes slightly rectangular quads. On
the other hand, [BZK09] does not capture the global quad layout,
thus containing more skewed elements, e.g., inside the hole on the
right.〉
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Input param Misalignment [RRP15] Misalignement Our Patch Layout Misalignment

5
o

0
o

10
o

15
o

20
o

25
o

〈 [RRP15]〉 〈Misalignement〉 〈Our Patch Layout〉 〈Misalignment〉

Figure 15: Comparison with Perfect Matching Quad Layouts [RRP15]: the patch layout of [RRP15] can be arbitrarily distorted by the
underlying parametrization; our method traces field-coherent paths directly on the surface, producing a patch layout with a better field
alignment. 〈No t-junctions in all layouts.〉

6. Conclusions

We have presented a novel method for the automatic computation
of a field-aligned, low resolution, quadrilateral patch layout of an
input shape. The method takes in input a triangle mesh endowed
with a cross field and it does not require any intermediate quad-
rangulation or parametrization. It is based on the construction of
a directed graph, a Dijkstra propagation and a global optimization

step. The final layout is a bijective parametrization and can be used
for quadrangulation or texture mapping. We demonstrated that by
keeping the field coherency, the proposed method excels in robust-
ness and adherence to the original field with respect to previous
techniques, being able to create quad layouts that conform to highly
complicated geometries and fields.

The proposed method can be extended to become a user-assisted
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[MPZ14] 〈a = 108〉

Proposed 〈a = 0〉

[MPZ14] 〈a = 270〉

Proposed 〈a = 91〉

[MPZ14]

Proposed

[MPZ14]

Proposed

Figure 16: 〈Our method reduces the total number of t-junctions with respect to [MPZ14]. As a consequence, the zero loop generated
by [MPZ14] (about the hole in the close-up) vanishes implicitly in our final layout (right).〉

〈 [MPZ14] a = 92〉 〈 [MPZ14] a = 687〉

〈Proposed a = 0〉 〈Proposed a = 78〉

Figure 17: The proposed method (Bottom) may derive a patch lay-
out almost as accurate as [MPZ14] (Top), with the main advantage
that it introduces 〈much〉 fewer t-junctions in the final layout

one by supporting interactive selection of separatrices during the
patch layout optimization process: since each optimization cycle
takes results from the previous one as constraints, manual and au-
tomatic cycles can be combined freely. Moreover, the method can
be generalized to work on arbitrary k-RoSy fields, hence it can be
adapted to derive regular triangulations or hexagonalizations of in-
put shapes.
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