
Dipartimento di Informatica e

Scienze dell’Informazione

Improving 3D Shape retrieval with SVM

Elisabetta Delponte, Curzio Basso, Francesca Odone and Enrico Puppo

Technical Report DISI-TR-2008-02

DISI, Università di Genova
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Improving 3D Shape retrieval with SVM

Elisabetta Delponte, Curzio Basso, Francesca Odone and Enrico Puppo

Abstract: In this paper we propose a technique that combines a classification method from

the statistical learning literature with a conventional approach to shape retrieval. The idea

that we pursue is to reduce the shapes gallery complexity by filtering it before retrieval with a

classifier for shapes, that allows us to keep only the shapes belonging to the classes similar to

the query shape. The experimental analysis that we report shows how our approach improves

the computational cost in the average case, as well as leading to better results.
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1 Introduction

Recent advances in 3D digitalization techniques lead to an increase of available 3D shapes

datasets — see, for instance the Princeton dataset [32], the National Taiwan University dataset

[28], or the data collected under the EU funded project AIM@SHAPE [1]. Among the applica-

tion domains where 3D shapes are applied with profit we recall cultural heritage and archaeology

(e.g., the digital Michelangelo project [24]), and biology (e.g., the well known Protein DataBank

[29, 12]). In order to be able to access these 3D shapes repositories it may be convenient to

set up retrieval systems. Such systems support the user in extracting from a potentially big

repository only the shapes that match a given specificiation. For a recent survey on 3D shape

retrieval see, e.g., [7].

In this paper we focus on the query by example (QBE) approach, very common on multime-

dia retrieval systems. In such a context, retrieval is based on applying appropriate similarity

measures to the query example (or test example) shape descriptor and all or some descriptors

from the dataset (or gallery, or repository). Therefore, most research in this direction focused

on finding robust and discriminative shape descriptors, on top of which applying rather con-

ventional similarity measures [27, 23, 31, 15, 33]. From the pattern recognition point of view,

similarity matching is usually coupled with a nearest neighbour approach, that orders the avail-

able dataset according to the degree of similarity with respect to the shape used as a query.

Efficient indexing techniques, derived from information retrieval literature, may be adopted [33].

It is easy to understand that this approach can suffer from the increase of the number of shapes

available in the repository and, in the case the chosen descriptor is not discriminant enough,

retrieval can easily fail.

We propose to adopt a combined strategy that couples conventional shape retrieval with classifi-

cation methods coming from the statistical learning literature, in order to increase the retrieval

efficiency and effectiveness as the shape repository size grows. For what concerns the classifi-

cation algorithms to adopt, we focus here on the well known Support Vector Machines (SVMs)

[11]. Different regularized approaches (e.g. RLS [30] or iterative methods [17]) could be applied
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as well, at the price of some loss in performance.

Throughout the paper we will point out how the choice of the shape distribution and of the

distance measure is not crucial for the method that we propose. In fact, we start off from a

simple and well known approach to shape retrieval [27] and show that filtering the repository

based on classification can improve performance and results.

More in details, let us assume that we have a dataset of labeled shapes divided in N classes.

We describe each shape by means of the D2 descriptor [27], which is a distribution of the

distances between two random points of the shape. Then, on the basis of D2 descriptions,

we exploit a classification tool to select a reduced number of classes more similar to a given

test or query shape. Finally we perform a retrieval on the basis of a similarity measure (the

L1 norm) computed for the shapes belonging to the reduced number of classes obtained with

previous classification. This initial classification step improves performance and effectiveness of

retrieval.

The paper is organized as follows.

2 Background on statistical learning

In this section we recall some basics of statistical learning that will be used thorughout the

paper. Specifically we focus on penalized empirical risk minimization approaches to supervised

learning and, implicitly, we refer to classification problems.

We first assume we are given two random variables x ∈ X ⊆ Rd (input) and y ∈ Y ⊆ R (output)

— in the classification case y ∈ {−1, 1}. We then consider a set of data

S = {(x1, y1), . . . , (xn, yn)}

that we call a training set obtained by sampling the set X×Y according to a fixed but unknown

probability distribution p(x, y).

Supervised learning approaches use the training set to learn a function f : X → Y that can be

applied to previously unseen data. Indeed, we say that an algorithm is predictive or that it has

good generalization properties if it applies successfully to data other than training examples.

This is important to obtain functions that may be used in practical applications. Predictivity

is a trade-off between information provided by training data and the complexity of the solution
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we are looking for. The latter is related to the choice of an appropriate hypothesis space H,

i.e., the space of functions where we look for our solution f . The ideal solution is defined as the

minimizer of the expected risk

I[f ] =
∫

X×Y
V (y, f(x))p(x, y)dxdy

where V is some loss function measuring the goodness of our solution f . Unfortunately, the

minimizer of I[f ] cannot be found in practice since p(x, y) is unknown. One could build an

approximation of it, based on the training set, called the empirical risk

Iemp[f, S] =
1
n

∑
V (y, f(xi)).

However, the minimizer of the empirical risk is not unique (and thus the minimization problem

is ill posed) and, if the space H is too large it may lead to complex solutions, and compromise

prediction properties. To restore well-posedness a possible way is to look for a regularized

solution by constraining the hypothesis space via a regularization or penalty term. We thus

re-write the minimization problem as

min
f

Iemp[f, S] + λPEN(f)

where λ is a regularization paramterer, trading off between the two terms. Within this framework

we will refer in particular to the so-called Tikhonov regularization, using a L2-norm in H as a

penalization term:

min
f

1
n

∑
V (y, f(xi)) + λ||f ||2H.

As for the choice of H, a very useful class of spaces to enclose some notion of smoothness in

their norm are the Reproducing Kernel Hilbert Spaces (RKHS). It can be shown [38] that to

every RKHS correspond a unique positive-definite function K that we call a kernel function.

Conversely, for each positive-definite function K on X ×X there is a unique RKHS H that has

K as a reproducing kernel. Roughly speaking, the kernel function K can be expressed as a dot

product in a higher dimensional space. Choosing a kernel or, equivalently, choosing a hypothesis

space, allows us to formalize a non-linear problem by mapping the original observations (feature

vectors in the input space) in a different space where a linear algorithm may be applied. Thanks

to the kernel the mapping may be performed implicitly with the so-called kernel trick:

K(x1,x2) = φ(x1) · φ(x2)
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This makes a linear classification in the new space equivalent to non-linear classification in

the original space. In practical terms, the choice of an appropriate kernel is often associated to

choosing a similarity measure between feature vectors. If no prior knowledge on how to compare

feature vectors is available, a number of off-the-shelf kernels may be used. Besides from the linear

kernel that corresponds to a linear learning algorithm we mention polynomial kernels K(xi,xj) =

(< xi · xj > +1)d that, in the classification case, lead to polynomial separating functions in

the input space and Gaussian kernels, K(xi,xj) = exp(−||xi − xj ||2/2σ2). The parameter

σ represents standard deviation and needs to be tuned appropriately. Its choice is somehow

alternative to the choice of λ: a small σ may lead to overfitting, a big σ to oversmoothing. A

very important theorem in statistical learning is the representer theorem stating that, under

general conditions on the loss function V , the minimizer of a Tikhonov regularization problem

is of the form f(x) =
∑n

i=1 ciK(xi,x) for some (c1, . . . , cn) ∈ Rn.

The choice of the loss function leads to different learning algorithms. The L2-norm leads to

Regularized Least Squares (RLS) algorithms [35, 8]. Instead the so-called Hinge loss (1−yf(x))+

leads to Support Vector Machines (SVM) [36]. SVMs have been used with success in a number

of different application domains. They are characterized by many nice properties, some of them

are not apparent from the regularized formulation followed in this section. We mention here,

as it will be useful later in the paper, the fact that they produce a sparse solution on the set

of input data. This means that the solution they produce (c1, . . . , cn) tends to be sparse (will

contain few non-zero entries). The training data associated to non-zero weights are referred to

as support vector. For a geometric intuition of such a property the reader is referred to [36].

3 Related work

3.1 3D shape retrieval

The problem of retrieval and matching of shapes has been extensively studied in numerous fields

such as computer vision, computer graphics and molecular biology. See [7, 19, 33] for general

surveys on this subject.

Most approaches to shape retrieval are based on shape descriptors and exhaustive search. A

shape descriptor is computed for each object in a database, as well as for the query object.
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Then the descriptor of the query object is compared with all descriptors of objects in the

database through some measure for pattern matching, and a ranked list of most similar objects

is retrieved. Most efforts in the literature have been devoted to find shape descriptors that are

robust, can give good results in term of retrieval, and can be computed and compared efficiently.

A large class of works deal with global descriptors in the form of feature vectors, i.e., arrays of

scalar values computed by some analysis of the 3D shape (e.g., [4, 10, 14, 16, 27, 37]). Some

such feture vectors are in fact histograms of either scalar fields computed on the shape, or some

form of shape distriution. The D2 shape distribution histogrm [27] that we adopt here, is one

of the simplest descriptors to compute. More recent descriptors exhibits better performances

though. As already remarked, the scope of this work is somehow orthogonal to the descriptor

adopted, as long as this falls in the class of feature vectors, so our approach could (and will) be

adopted also with other descriptors.

Other works use descriptor based on local features and more complex matching procedures

[9, 15, 22, 31].

Spin images [22] are often used to represent a 3D surface by means of a 2D image and thus

they can be considered as 3D shape descriptors. Spin images have been used for many different

applications: object recognition, studying the protein docking, 3D shapes retrieval.

More recently Gal and Cohen-Or [15] introduced a new local surface descriptor that is called

salient geometric feature and consists of a cluster of descriptors that locally describe a nontrivial

region of the surface. The salient features of a surface typically characterize the surface well

and form a basis for a nonglobal similarity measure among subparts of shapes.

Shilane and Funkhouser [31] start computing a descriptor based on harmonic shape for a random

set of points and a given set of scales of the object. Then they focus on the computation of how

distinctive every shape descriptor is with respect to a database containing multiple classes of

objects. Instead of finding an explicit definition of important features, they select them on the

basis of shape classification performance.

Castellani et al. [9] propose a local descriptor based on hidden Markov models.
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3.2 Supervised learning for 3D shape classification

A few approaches to 3D object retrieval based on statistical learning have been proposed in the

literature. In their seminal work, Elad, Tal and Ar [13] proposed a semi-interactive retrieval

system based on a feature vector descriptor and on the use of SVM together with relevance

feedback. Different method based on relevance feedback were compared by Novotni et al. [25]

and those based on SVM were found to give better performances. Relevance feedback on SVM

was also adopted in a more recent work by Leng, Qin and Li [5], where the authors adopt an

algorithm for SVM active learning, proposed in 2001 for image retrieval.

Hou, Lou and Ramani [18] use SVM for organizing a database of shapes through clustering and

then to perform the classification and retrieval. A test shape is first classified to belong to one of

the clusters that form the database, then only such a cluster is searched for similar shapes. In [39]

the authors propose a simple mechanism to exploit classification methods for retrieval problems.

Given a training set for N classes, they train N one-vs-all classifiers (implemented by back-

propagation neural networks). At evaluation time, the values returned by each classifier can be

ranked, resulting in an N-dimensional vector of rankings. The retrieval is then performed as a

usual matching, but with a metric which mixes the euclidean distance between the descriptors

of the two shapes and a distance between the vectors of class rankings.

Shape classification has also been addressed by Barutcouglu and De Coro [3] by using a bayesian

approach to exploit the dependence between classes, assuming that they are organized in a

hierarchical fashion. They show how, taking explicitly into account hierarchies and discarding

inconsistent results, classification results improve. However, their work is focused only on the

classification problem, and retrieval is not addressed.

A peculiarity of kernel methods is that they allow for the design of ad hoc kernels able to capture

the expressiveness of feature vectors. A number of kernels for different application domains have

been proposed in the literature [34]. For instance, in the case of histogram-like descriptions, a

possible way to deal with them is to treat them as probability distributions and to resort to

kernels defined on probability measures [20]. Alternatively, kernel functions derived from signal

or image processing may be adopted — see, for instance, [26].

All methods above feed the classification algorithms with shape descriptors of a unique type.
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However, in [2] the authors propose a fusion algorithm, based on the so-called empirical ranking

risk minimization, which combines different descriptor. The algorithm can also be implemented

via SVMs. The learning algorithm returns the weights to associate to the various descriptors.

After this, conventional retrieval may be performed, for instance by means of relevance feedback.

4 Our approach

We propose a technique that is a combination of classical retrieval methods with a classification

approach typical of the learning from examples framework.

We assume that our repository of shapes is labeled and that, for simplicity, a unique label is

assigned to each shape. We can thus organize our repository in classes using the labels to build

a dataset per each class. The idea that we pursue is to reduce complexity of search by filtering

the available dataset before retrieval, i.e., by using only shapes belonging to the k most relevant

classes to the query or test shape.

As a benchmark method, we consider a popular work proposed by Osada et al., based on

statistical shape descriptors [27]. In that work, shape distributions of two different 3D models

(the D2 descriptors represented as histograms of the distance between pairs of vertices randomly

selected on the shape) are compared with the L1 distance. Thus, for a given test shape, its

description is compared with all the descriptions available on the database, and the output

returned by the retrieval system is a ranked list of the n most similar shapes. In this paper, we

adopt the same shape description and follow a similar pipeline. Our variation of the original

pipeline consists of performing shape classification prior to shape retrieval, in order to reduce

the size of the dataset of shapes to be analyzed.

The reminder of the section describes the details of the classification (filtering) procedure and

discusses the computational advantages of our choice. Then we evaluate the appropriateness

of our choice in terms of nearest-neighbour performance and retrieval indicators (the so-called

first tier and second tier).
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4.1 Classification with SVM

Let us assume we start from a shape repository containing M labeled shapes, belonging to

N different classes. Each class is composed by a number of shapes that could be arbitrarily

different.

We aim at designing a shape classifier that returns the most likely shape classes Ŝ = {S1, . . . , Sk},

to a shape example. This will allow us to restrict retrieval to the shapes belonging to set Ŝ.

The shape classification problem that we consider is a multi-class classification problem. We

adopt a one-vs-all procedure that requires we train N binary classifiers of the type class Ci

i = 1, . . . , N versus all the other classes (see, e.g., [6]).

Thus, for each class we train a classifier: each training set is made of an equal number of positive

and negative examples of the shapes, where the negative examples are extracted from all the

other classes of the dataset.

In this work we adopt Support Vector Machines (SVM) [36] with Gaussian kernels as a classi-

fication algorithm. Our choice is mainly motivated by performance reasons, in particular the

fact that the solution of a SVM classifier is sparse on the training data, but other binary clas-

sifiers could be used within the same pipeline. In practice, we use the SVM implementation of

SV M light [21].

The optimal values for the two free parameters, the width σ of the Gaussian kernel and the

regularization parameter C = (λn)−1, are set with a standard leave-one-out (LOO) procedure

(see for instance [6]).

4.2 Classes selection and partial retrieval

At run time, we apply a test or query example to each classifier available, then we rank the

output of the classification results, thus obtaining a list of classes sorted from the most likely

to the least likely to a given test.

We exploit this result to filter shapes available in the repository before we apply a standard

nearest neighbor (NN) retrieval. In other words, given a query example, we test it against the

N classifiers, rank the results and then keep the shapes belonging to the first k classes for the

following retrieval process.
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Notice how the choice of an appropriate k is crucial both for computational and performance

reasons. A small k will make the retrieval very fast but it may impoverish the results. A big

k (k → N) would increase retrieval time but not necessarily improve performance - see the

discussion in Section 5.

4.3 Computational advantages

The computational cost of shape filtering followed by a retrieval restricted on the filtered classes

is equal to the maximum cost between the two operations.

If the filtering procedure considers all shapes from the training set (that is, if it consists in

comparing the query shape against all training shapes) the filtering phase is more costy than

actual retrieval, no matter the choice of k, and it is equivalent to conventional retrieval in terms

of number of comparisons between shapes performed.

For instance, if we consider a Regularized Least Squares (RLS) [35, 8] approach, the test datum

x is compared with each training datum xi via a kernel function K, then for each class C we

have

f(x) =
NC∑
i=1

ciK(x, xi).

In the case of SVM, instead, the sparsity on the training data in the obtained solution means

that filtering requires fewer comparisons - one per each support vector - since in this case the

summation runs on the support vectors only. There is no way to evaluate a priori the number

of obtained support vectors, as they depend on the training set (both their cardinality and the

data representation chosen) and on the choice of the kernel function. In the average case, and

assuming an appropriate choice of the representation and the kernel function, we observed a

saving in terms of number of comparisons between the test datum and training data. This effect

becomes more relevant as the training set size grows (see Section 5).

5 Experimental results

In this section we show the results of retrieval made on a subset of the Princeton Shape Bench-

mark (PSB) dataset [32] and we compare our results with the ones reported in [27].
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We first describe the dataset, then specialize the filtering and retrieval procedure that we

adopted on such data, reporting the experimental results obtained.

To evaluate the performances of the retrieval we use the following evaluation methods:

Nearest Neighbour : the percentage of closest matches that belong to the same class as the

query.

First Tier : the percentage of models in the query’s class that appear within the top k matches

where k is the size of the query’s class.

Second Tier : the percentage of models in the query’s class that appear within the top 2k

matches where k is the size of the query’s class.

5.1 The dataset

The Princeton Shape Benchmark (PSB) is a publicly-available database of 3D models, widely

adopted by the shape retrieval community. The dataset contains 1814 polygonal models col-

lected from the World Wide Web and classified by humans with respect to function and form

in 27 classes. For our experiments, we have used the PSB and the classes organization provided

in it: each shape class is evenly split in two parts, one for the training (907 shapes) and another

one for the test (907 shapes).

According to the classification provided with the PSB, the dataset is split in 42 categories

for training and 38 for test, therefore some of the training classes are not present in the test.

Moreover there are some of the categories which contain very few examples (less than 10) and

there are some classes containing objects with very different shapes.

Indeed, one of the main problems of the classification provided with the PSB is that some

of the classes are clustered on a functional basis: this means they are grouped according to

their semantics, rather thn to their 3D shape. For instance there is a class named ”musical

instruments” which contains guitars as well as pianos (see Figure 1). Another class named

”handheld” contains shapes of icecreams, skate-boards and microscopes (see Figure 2). This

does not favour retrieval based on shape similarity.

On the basis of previous considerations we choose a subset of 18 PSB classes, that fulfill require-

ments of intra-class shape homogeneity and a threshold for cardinality (we keep only classes
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Figure 1: The 3D models contained in the class of ”musical instrument”. It consists of only 10

shapes.

with at least 10 elements on the training and on the test set).

It is worth noticing that in shape retrieval it is common practice to use subsets of available

datasets: for instance in [16] the authors focus on flexible objects, thus they select few classes

of those presented in PSB. This may cause problems if trying to compare different methods by

referring to previously published results. Therefore in our comparisons with [27] we recompute

the performances obtained with the method on our dataset. Table 1 shows the set of 18 classes

that we have chosen for our experiments with relative cardinality for the training and test

sets that are used for classification procedure. Each training set contains the same number of

positive and negative examples: the negative are randomly selected from all the other classes of

shapes. Each test set contains the positive examples given by the PSB dataset and as negative

examples we have chosen to use all the other 3D shapes belonging to the test set. Therefore

the number of negative test examples is usually very high.

5.2 Filtering and retrieval results

We train 18 SVM classifiers according to the previously described procedure. After a prelimi-

nary analysis on the performance of different standard kernels, we adopted a Gaussian kernel.

Because of the presence of very small classes, we adopted a LOO procedure to select the regu-

larization parameter C and the parameter σ of the Gaussian kernel.

First of all, we analyse the solutions obtained by the 18 classifiers, noticing how the number of

support vectors becomes significantly smaller than the training set size when the latter grows
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Figure 2: A subset of the 40 shapes contained in the class of ”handheld”. It is apparent that

these objects are clustered according to their function and not their shape similarity.

(see Figure 3). This is an advantage, suggesting that if we adopt SVMs the sparsity of the

solution with respect to the training data may reflect on an overall computational saving. The

dataset considered in our experiments is too small to allow for an exaustive analysis. At run time

we test all test shapes against the 18 classifiers. Table 2 shows the ranking of the percentage

of correctly retrieved shapes for each SVM classifier. Each row refers to a given test class, in

decreasing size order. For each test shape Stj we consider its class ranking Cj
1 , . . . , C

j
18. Columns

Ri, i = 1, . . . , 18 show the percentage of test shapes of a given class including the correct class in

the first i classes of their ranking. An alternative view of the same information, averaged with

respect to the classes, is described in Fig. 4 where median values and standard deviations are

highlighted. The small crosses (+) indicate the presence of an outlier class the does not behave

in line with other classes (a further inspection shows that it is class ”hat”). Standard deviations

decrease as k grows, meaning that the average behaviour of the various classes becomes more

homogeneous - this is apparently the only advantage in keeping high values for k.

As we pointed our previously in the paper, the choice of the number of classes to keep for

shape retrieval is crucial and there is no obvious common sense rule to apply. Ideally, one

should choose i in order to guarantee that the correct class is always kept. Observe how, in
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Class name Training set Test Set

Positive Negative Positive Negative

Aircraft winged vehicle 107 107 135 772

Plant 78 78 60 847

Animal biped human 71 71 78 829

Vehicle car 62 62 51 856

Furniture table 43 43 35 872

Furniture seat 40 40 37 870

Body part head 40 40 38 869

Liquid container 35 35 24 883

Sea vessel 19 19 26 881

Aircrafthelicopter 17 17 18 889

Displaydevice 16 16 24 883

Lamp 14 14 8 899

Animal quadruped 14 14 17 890

Furnitureshelves 13 13 13 894

Animal underwater creature 12 12 23 884

Hat 10 10 6 901

City 10 10 10 897

Door 10 10 18 889

Table 1: The set of classes that we have chosen for our experiments: each class is split in a

training set and a test set.

the example under consideration, this would mean keeping all classes. Thus we weaken the

requirement choosing k so that enough correct classes are kept. Notice, for instance, that if we

consider the first 4 classes we keep the correct class on our dataset for about 66%.

Obviously the presence of the right class in the reduced set of shapes does not guarantee a

successful retrieval, but its absence means that the retrieved elements will all be wrong. At

the same time we notice how, as the size of the dataset grows, the average performance of the

retrieval indicators degrade. Fig. 5 shows how they vary as the number of retained classes

grow. From this analysis it is the case to conclude that a small number of classes ([2-5]) should
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Figure 3: Comparison between the original size of the training sets and the number support

vectors for the 18 classes considered; the sparsity of the solution is more noticeable for datasets

with more than 20 entries.

be kept both for efficiency and performance reasons. The remaining experiments are performed

with k = 4.
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Figure 4: Performance of the SVM-based filter as the number of retained classes varies. The

performance is evaluated as the percentage of 3D shapes whose true class was among the k

classes ranked first by the SVM. The boxplots show the median values and distributions across

the various classes (see text).

By analysing the different classes it is possible to notice that the performances of direct retrieval

are comparable or above our filtering method for those classes which have very small training

sets (less than 10 elements), while SVM filtering is a clear advantage when the training set has

more than 40 elements.

Table 4 reports the average retrieval results over all the classes, in the case of direct retrieval

and SVM filtering with k = 4. Notice that direct retrieval represents the results obtained with

the original work by Osada et al. [27] on our datasets. The advantage of our approach is

evident. The results presented in the original work [27] are relative to a different (and smaller)

dataset and the performances are described with different indicators, therefore comparison is

more complex. We conclude reporting that in [16] the following results, obtained with Osada

approach on a different subset of the PSB, are reported: FT = 33%, ST = 47%, NN = 59%.

The results seems to be superior to the ones that we obtain, the reasons may be due to the
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SVM filtering Retrieval

Training class cardinality FT ST NN FT ST NN

aircraft winged vehicle 107 0.52 0.73 0.63 0.36 0.59 0.64

plant 78 0.26 0.48 0.45 0.17 0.28 0.47

animal biped human 71 0.49 0.76 0.74 0.46 0.69 0.73

vehicle car 62 0.36 0.65 0.47 0.27 0.43 0.39

furniture table 43 0.29 0.55 0.31 0.22 0.38 0.26

furniture seat 40 0.25 0.47 0.43 0.14 0.24 0.40

body part head 40 0.37 0.71 0.5 0.29 0.48 0.58

liquid container 35 0.17 0.42 0.25 0.12 0.24 0.17

sea vessel 19 0.28 0.45 0.46 0.21 0.26 0.46

aircraft helicopter 17 0.15 0.32 0.56 0.11 0.17 0.44

display device 16 0.11 0.26 0.17 0.08 0.19 0.04

lamp 14 0.5 0.76 0.75 0.21 0.30 0.13

animal quadruped 14 0.16 0.2 0.35 0.15 0.18 0.41

furniture shelves 13 0.11 0.18 0.15 0.04 0.12 0.15

animal underwater creature 12 0.11 0.18 0.04 0.07 0.15 0.04

hat 10 0 0.02 0 0.02 0.02 0.17

city 10 0.1 0.15 0.3 0.10 0.12 0.30

door 10 0.06 0.12 0 0.03 0.10 0.00

Table 3: Performance of retrieval for the different classes, with and without SVM-filtering (left

and right, respectively). We show the results of first tier (FT), second tier (ST) and nearest

neighbors (NN).

19



2 4 6 8 10 12 14 16 18
# retained classes

10

20

30

40

50

60

70

%

1st tier
2nd tier
NN

Figure 5: The behaviour of our performance evaluation measures as the number k of retained

classes before retrieval grows.

First Tier Second Tier Nearest Neighbour

SVM filtering (4 classes) 33% 55% 47%

our implementation of Osada et al [27] 24% 39% 44%

Table 4: Results with our approach and Osada et al [27] computed by us.

different characteristics of the selected classes and to the fact that apparently only stable subsets

of shapes per each class are kept.

6 Conclusion

We have proposed a method based on SVM for filtering the relevant classes in a 3D object

database prior to shape retrieval. SVM classifiers are built for all classes of object in a database,

and just the k most relevant classes or a query object are searched to answer a query by

similarity. We have shown that not only our method can improve performance by pruning the
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dataset to be searched, but also results are better with respect to those obtained with exhaustive

search, using the same shape descriptor, according to the usual evaluation methods (nearest

neighbor, first tier and second tier).

The overall performance of the shape descriptor used in this initial work is beated buy others at

the state-of-the-art. Therefore, we plan to test our approach also with other, more performant,

descriptors. As already mentioned, our filtering is somehow orthogonal with respect to the

descriptor used. However, the quality of a descriptor may highly influence the performance

of classification through SVM. If some other descriptor could give us a better performance in

classification, we could restrict search to an even smaller number k of classes, thus improving

performance further.

In our future work, we also plan to test the use of other kernels to build the classifiers. Also,

a more careful tuning of SVM offset to contrast false negatives would allow us to minimize the

number of misses.
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