
A Continuous scale-space method for the automated
placement of spot heights on maps

Luigi Roccaa,∗, Bernhard Jennyb,1, Enrico Puppoa

aDepartment of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Italy
bCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

Abstract

Spot heights and soundings explicitly indicate terrain elevation on cartographic maps. Cartographers have developed
design principles for the manual selection, placement, labeling, and generalization of spot height locations, but these
processes are work-intensive and expensive. Finding an algorithmic criterion that matches the cartographers’ judgment in
ranking the significance of features on a terrain is a difficult endeavor. This article proposes a method for the automated
selection of spot heights locations representing natural features such as peaks, saddles and depressions. A lifespan of
critical points in a continuous scale-space model is employed as the main measure of the importance of features, and
an algorithm and a data structure for its computation are described. We also introduce a method for the comparison
of algorithmically computed spot height locations with manually produced reference compilations. The new method is
compared with two known techniques from the literature. Results show spot height locations that are closer to reference
spot heights produced manually by swisstopo cartographers, compared to previous techniques. The introduced method
can be applied to elevation models for the creation of topographic and bathymetric maps. It also ranks the importance of
extracted spot height locations, which allows for a variation in the size of symbols and labels according to the significance
of represented features. The importance ranking could also be useful for adjusting spot height density of zoomable maps
in real time.
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1. Introduction: placing spot heights on maps

Spot heights are included in topographic maps to quickly
and accurately ascertain the elevation values of points on a
terrain surface. For locations below sea level, spot heights
are referred to as depth points or soundings. For important
summits and mountain passes, the name of the mountain
or pass is commonly placed next to the spot height symbol
in addition to the elevation. To indicate the relative impor-
tance of topographic features, the type size of toponyms
is graded so that larger type indicates more important
features. Additionally, roman and italic type can be used
to differentiate between mountain peaks and other points.
Cartographers carefully adjust the density and distribution
of spot heights to the scale and purpose of the map and
the type of terrain represented. A rugged mountain region
with numerous summits and passes requires more of them
than a flat area (Imhof, 2007).

Ideal locations for spot heights are sites that, when
marked on the map, are unambiguous and easy to associate
with visible features and landmarks. Examples include
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natural features, such as mountain passes, summits, the
lowest points in depressions, junctions of streams, edges of
terraces, and artificial landmarks, such as intersections in
road networks, churches, railway stations, bridges, isolated
buildings and tunnel portals (Imhof, 2007). Spot heights
are not as useful when the location of the point cannot
be identified accurately, such as in the middle of a slope
or a flat plane or on a flat hillcrest (Gilgen, 2014), as
depicted in Figure 1. The selection, placement, labeling,
and generalization of spot heights are time consuming and
considerably expensive when done manually (Baella and
Pla, 1999; Baella et al., 2007). Therefore, accelerating
the process for generating spot heights has clear economic
advantages for the production of large-scale topographic
maps.

Figure 1: Poor and good placement of spot heights (after Spiess,
1996).
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Figure 2: Spot heights locations selected by the proposed method; red: summits; blue: mountain passes. Circle size indicates importance
values. Background: 1:50,000 map by swisstopo. In the background map, reference spot heights representing peaks and saddles are highlighted
in black. The selection has been obtained using different lifespan parameters: 5.32 for mountain passes and 4.51 for summits. Almost all
spot heights representing summits and passes in the map have been successfully matched, with only one false positive present, and their
automatically computed importance adequately reflects their actual significance on the terrain.

The aim of our work is to offer an algorithmic method
for the automated placement and selection of spot height
locations representing natural features, as extracted from a
digital elevation model (Figure 2). In particular, we focus
on mountain peaks, saddles and depressions. Techniques
for the extraction of points representing morphological fea-
tures in digital terrains have been known for a very long
time (Peucker and Douglas, 1975). A simplistic extraction
method, though, is not enough, because the points that
would make good spot heights will be just a small subset,
lost among countless others representing noise or unim-
portant features, especially when using a detailed model.
A trivial solution would be to apply a smoothing filter
in order to clean the terrain of noise and high frequency
information; this, however, would displace the position of
surviving features, making them useless for our purpose
unless manually corrected. An optimal solution is repre-
sented by a ranking of all extracted features, as found in
the original source, according to their intrinsic importance.
This allows for an easy discrimination between features to
be retained and to be discarded, according to the desired
amount of generalization and depending on the type and
scale of the designed map. It also permits differentiating
important features from lesser ones using different symbols
or font sizes.

We argue that measuring how long a feature survives in
a scale-space of the original surface is a good proxy of the
feature’s morphological significance, provided that the com-
putation is precise and error-free. A virtually continuous

scale-space data structure is adopted as the foundation of
our selection method. Such a structure provides an encod-
ing of all morphological features extracted from the input
surface and endows them with an importance score, fit to
be used as a simple selection parameter by cartographers to
choose the right amount of spot heights. The placement of
features is as precise as the elevation model allows. More-
over, we propose a general and statistically sound method
for testing how well an automatic algorithm for spot heights
selection works matched to a preexisting reference. We test
our results against manually compiled spot height locations
representing peaks in the 1:25,000 map series by the Swiss
Federal Office of Topography swisstopo, and we compare
to other known automatic techniques for the selection of
mountain peaks.

2. Related work

2.1. Extraction of spot height locations

The automated selection and generalization of spot
heights for topographic maps has received less attention
than other terrain mapping techniques (Guilbert et al.,
2014). Two articles by Baella et al. (2007) and Palomar-
Vázquez and Pardo-Pascual (2008) introduced a method
for automatically selecting relevant spot height locations
for small-scale maps from a database. Input locations
are rated by criteria to define an importance value for
each point, and then points are selected according to their
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importance value. Their method uses many criteria, among
them the geomorphological importance of peaks, saddles,
and depressions. The importance of peaks is computed by
placing a circle on each point and increasing the radius
until each circle contains one point higher than its center.
The significance value is determined from the radius and
the averaged slope of the terrain around the point. Map
space is partitioned into half planes using a binary tree. In
each half plane an equal number of spot heights exist, and
spot heights with the lowest importance values are removed.
The method is complicated and results are influenced by a
large number of parameters.

Baella et al. (2007) and Palomar-Vázquez and Pardo-
Pascual (2008) note that their results differ from those
obtained with manual generalization. The discrepancy
is attributed to the difficulty of introducing all required
contextual and aesthetical rules applied in manual spot
height generalization to an automated method.

Jaara and Lecordix (2011) developed a method for
extracting saddles from grids. For each cell, in a grid, the
neighborhood is analyzed, and a cell is considered to belong
to a saddle when two neighboring regions are lower and
two are higher. Because the algorithm identifies multiple
neighboring cells as saddles, a local search algorithm is used
to find the exact position of each saddle, discarding the
spurious neighbors. They also introduce a peak detection
method for placing spot heights on maps: the terrain is
divided into regular squares, and for each square, the cell
with the maximum altitude is found. If the altitude is
higher than the highest points in the neighboring squares,
the point is designated a peak. The procedure is repeated
for growing square sizes. As square size grows, peaks are
gradually ranked for their importance. The method is
algorithmically simple and fast, but the fixed size of the
square structure cannot adequately extract peaks that vary
in density.

Wood (2004) introduced an efficient algorithm using
the relative drop selection criteria to identify significant
peaks. The raster-based method searches local peaks in
the terrain model and identifies the area enclosing each
peak that is bounded by an isoline, such that no other
point that is higher than the peak is contained within the
isoline. The difference between the peak’s elevation and
the elevation of the enclosing isoline is the relative drop
distance. Peaks are selected by choosing a minimum rela-
tive drop distance. Wood’s method successfully identifies
major peaks in mountainous areas, but it may also identify
irrelevant minor peaks in flat areas.

Deng and Wilson (2008) presented a multi-scale method
for extracting peaks from an elevation model. The method
also assigns a relevance score to each peak. They propose
four criteria that characterize peaks: high slope relief in
the surrounding local area; amount of steepness in that
same area; high elevation compared to a larger neighbor-
hood; and a small number of competing peaks in that same
neighborhood. Those properties are quantified, normalized,
and weighted together as a single score, which is computed

at three scales of increasing window size and then normal-
ized again in a final score. The proposed algorithm has
the potential to be fine-tuned for different purposes and
applications, but it is quite complex to configure, with
several different weights to assign. It is also expensive to
run—execution times up to ten hours are reported for a
DEM composed by 1740× 930 cells.

2.2. Morse theory

Morse theory (Milnor, 1963) links the critical points
of a smooth real-valued function f to the topology of the
manifold on which f is defined by studying its gradient flow.
The theory extends and generalizes Maxwell’s intuitions
about the partition of a landscape into valleys and moun-
tains (Maxwell, 1870). In Morse theory, areas of uniform
gradient flow are part of the same region. Basins contain a
minimum and are bounded by ridges, with flow lines that
have the same destination. Mountains contain a maximum
and are bounded by river valleys, with flow lines that have
the same origin. The intersection of basins and mountains
creates a partition called Morse-Smale complex, which has
boundaries that are always divided in two by saddles. The
Poincaré-Hopf index theorem states an invariant relation
between the number of minima, maxima and saddles on a
surface:

nmaxima + nminima − nsaddles = 2 (1)

A survey and evaluation of known discrete algorithms
and data structures derived from Morse theory can be
found in (Comic et al., 2014). Methods based on these
techniques have also been widely studied in geographical
information science, where many data structures conceptu-
ally equivalent to Morse-Smale complexes such as surface
networks, Reeb graphs and contour trees are routinely
used. These structures compactly encode a great amount
of information about the underlying surface by storing
constitutive landform elements (peaks, pits and saddles)
and their connections by ridge and valley lines (Takahashi,
2006). A terse graph of the surface topology makes it
possible to build algorithms that analyze and take into ac-
count the logical and morphological structure of the surface
(Wolf, 2006). Most relevant to our purposes, these graphs
can be weighted by assigning a measure of importance to
their nodes and they can be simplified in a topologically
sound way. Edelsbrunner et al. (2001) have proposed one
of the most successful weighting and simplification tech-
niques, known as homological persistence. Their method
uses amplitude information to find a pair of features to be
simplified; it then progressively simplifies the entire graph,
simultaneously scoring all features according to their im-
portance.

Likewise, the method we propose weighs surface features
using a scale-space based technique (Rocca and Puppo,
2013), which is guided by frequency information: it starts
by identifying critical points on the surface and it takes
into account the relationship described in Equation 1. The
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working paper on surface networks by Rana and Morley
(2002) reports several questions that are still open regarding
techniques based on Morse theory and their geographic ap-
plications. Chief among them is the question of scale, and
its relationship with any chosen feature detection method:
on one hand, discrete methods find features at the highest
possible frequency; on the other hand, kernel-based meth-
ods often cause loss of the correct topological relations. It
is our hope that the method we propose can bridge a gap
between these two different classes of approaches.

2.3. Scale-space techniques for feature tracking

Since its introduction by Witkin (1983) and Koenderink
(1984), scale-space methods have been widely studied in
the computer vision and image processing fields (see Price,
2012, s. 4.4). A standard scale-space consists of a discrete
collection of subsequently filtered versions of an input sig-
nal f , usually obtained by repeated convolution of f with a
Gaussian kernel. Each level of the scale-space emphasizes
features at different scales, from finer to coarser. These
levels can be seen as discrete samples of a diffusion process
that has, in principle, a continuous nature; an example of a
scale-space of a digital terrain model is shown in Figure 3.

The deep structure of scale-space (Lindeberg, 1994)
tracks the zero-crossings of the signal’s differential invari-
ants in consecutive levels of the scale-space, thereby cap-
turing the evolution of features across scales. In a scalar
field, these features correspond to local extrema, or critical
points; in the special case of a terrain model they directly
represent peaks, pits, and saddles on the surface.

The relative importance of critical points in the original
signal is computed by measuring how long their life span
is in the scale-space, as more important features survive
smoothing while less important ones disappear. When
critical points disappear, smoothed out by the filter, they
always do so in maximum-saddle and minimum-saddle
pairs, in accordance to Equation 1. Often, critical points
that do not disappear move on the surface, displaced by
the smoothing effect along the direction of diffusion. The
axiomatic linear scale-space theory (Lindeberg, 2011) pro-
vides many different guarantees, among them the principles
of non-creation and non-enhancement of local extrema.

In the standard approach to scale-space, features are
extracted in each level and eventually matched to a feature
in the next one by local neighborhood search, starting from
the feature position in the previous level. This approach
tends to be error prone, with false and missed matches, be-
cause a lot of features disappear from one level to the next,
and the relative movement of a feature between levels can
be wide. Moreover, the tracking of features across levels is
difficult and inherently unreliable because the principle of
non-creation of local-extrema is not valid when smoothing
multi-dimensional signals: Gingold and Zorin (2007) ob-
serve that the number of features sometimes increases, with
new features always appearing in pairs—a saddle coupled
to either a maximum or a minimum.

Reininghaus et al. (2011) propose a tracking algorithm
that follows the gradient of the scalar field when detecting
the correspondence of critical points between consecutive
levels of the scale-space. This method is more robust than
standard neighborhood search but cannot overcome the
many drawbacks of the discrete approach, because the
granularity of the performed analysis still corresponds to
the number of smoothed samples in the scale-space.

Rocca and Puppo (2013) describe a method that, start-
ing from the discrete samples of a traditional scale-space,
uses linear interpolation to obtain a virtually continuous
approximation of the diffusion process. They achieve a
measure of the importance of critical points that is several
order of magnitudes finer than the number of levels in the
input scale-space. Their experiments show that the appear-
ance of new pairs is more common than previously thought
and that a subset of newborn features can achieve very long
life spans in the scale-space, sometimes taking the place of
important features on the original terrain. This makes a
correct measurement of the importance of critical points on
the original surface impossible, because somewhere in the
scale-space a tracking path that should have been longer

Figure 3: A discrete scale-space of a digital terrain (Aletsch Glacier
region). The original surface is progressively smoothed to identify
features at different scales, and the number of critical points corre-
spondingly decreases (red: maxima; green: minima; blue: saddles).
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has been interrupted by a sequence of death and birth
events. This is an open problem in current literature.

3. Selection method

The method we propose for selecting spot height lo-
cations is based on multiple contributions. We suggest
adoption of the life span of critical points in a linear scale-
space as the main selection parameter, because the life
span of a feature directly measures its morphological im-
portance. We call this the lifespan parameter. Section 3.1
describes an algorithm and a data structure first introduced
by Rocca and Puppo (2013), which we adapt and tailor
to the specific task of computing the life span of critical
points in the scale-space of a digital elevation model. At
this stage, however, the result is impaired by the presence
of spurious features born during the smoothing process.
We develop a novel post-processing enhancement algorithm,
described in Section 3.2, that solves the issue of newborn
features and successfully recovers the full life span of criti-
cal points. In addition, we adopt the relative drop method
proposed by Wood (2004) as the source of a secondary
importance measure when selecting peaks.We call this the
drop parameter.

3.1. Virtually continuous scale-space

Our input is a grid encoding a digital elevation model. A
discrete scale-space is computed by smoothing repeatedly
the input, until N levels are generated. Each nth level
is convoluted by a discrete Gaussian filter to compute
the (n+ 1)th level, using a square window of size kn. The
window size and the kernel’s standard deviation have a
fixed relationship, kn = 6σn. We aim at a constant ratio of
disappearances of features between each pair of consecutive
levels in the discrete scale space. We have empirically
determined that this result can be achieved by exponentially
increasing the variance of the kernel through the different
levels, roughly σ2

n ≈ 2n, which corresponds to:

kn = floor (
√

2n ∗ 6) (2)

with k incremented by one if the result is even.

Connectivity model of the input grids. In order to
fulfill the Euler-Poincaré equation 1, for each level in the
scale-space we consider each input pixel to be a vertex in
a triangle mesh. In our experiments, every vertex is con-
nected by edges to six neighbor vertices in a regular fashion.
Each input cell at coordinates (x, y) becomes a vertex con-
nected by edges to six neighbors at coordinates (x−1, y−1),
(x−1, y), (x, y+1), (x+1, y+1), (x+1, y), (x, y−1). Any
other triangulation strategy could be employed, such as
the one described by Rana and Morley (2002). Our choice
greatly simplifies computations because of the regular struc-
ture of the mesh. Vertices on the border are connected
to a virtual global minimum set to −∞, thus making our
mesh borderless, with every vertex except the outer one

Figure 4: From the input grid (dashed lines and light grey background)
to a triangle mesh (dark grey solid lines and points). Vertices of
the triangle mesh are shown in the center of each input cell. Border
vertices, which would have only two, three, or four edges depending
on their position, are connected to a virtual outer border (light grey
solid lines and points). Vertices in the virtual outer border hold a
large negative value that represents a global minimum.

having six neighbors (Figure 4). It is assumed that two
connected vertices never have the same value; one has to
be higher or lower than the other. When flat areas are
present a removal strategy must be employed (see Magillo
et al., 2013). In our experiments, a disambiguation of the
original signal is enough. If the input does not contain
flat areas to begin with, flat areas do not appear in the
smoothed levels of the scale-space.

For each level of the scale-space, vertices are classified as
sloped or critical points by analyzing their local neighbor-
hoods, as commonly used (Figure 5). The main criterion
is the number of times that the surface surrounding the
central vertex goes from higher to lower. The result is
always an even number between zero and six. The current
vertex is then classified as:

• a sloped point, if the sign changes two times;

• a maximum, if the sign never changes and the central
vertex is highest;

• a minimum, if the sign never changes and the central
vertex is lowest;

• a saddle, if the sign changes four times;

• a monkey saddle, if the sign changes six times.

Sloped points are discarded. For each level, a list of crit-
ical points composed by peaks, pits, and saddles is retained.
To guarantee consistency with Equation 1, our model treats
monkey saddles as two different saddles occurring in the
same spot.

Approximation of the diffusion process by linear
interpolation. Levels of the scale-space, generated by
Gaussian filtering, represent discrete samples of a contin-
uous diffusion process. This smoothing process can be
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seen as a time-dependent dimension, starting at time t0
(the original, unfiltered data), and regularly sampled at
intervals (t1, t2, · · · , tN−2, tN−1), for the N levels of the
scale-space. Height values of vertices in the DEM therefore
change in time, and their values across the time dimension
can be linearly interpolated from the discrete samples. The
resulting model is depicted in Figure 6.

Our goal is to compute how the set of critical points
evolves from points extracted in the original DEM to points
present in the last level of the scale-space. Our strategy is
to identify all the single events that could cause a critical
point to change. Given that vertices are classified based
on the relation (lower or higher) they share with their
neighbors, one of those relations has to change for the
resulting classification to change. This happens only if two
connected vertices change their relative height from one
level to the next in the scale-space. This event is called edge
flip (Rocca and Puppo, 2013). An edge flip occurs if, given
two adjacent vertices a and b, with height values ai, ai+1

and bi, bi+1 in two consecutive levels respectively, the fol-
lowing condition is true:

(ai > bi ∧ ai+1 < bi+1) ∨ (ai < bi ∧ ai+1 > bi+1) (3)

For each flip we compute a timestamp tflip by interpolat-
ing the moment when the two vertices have equal height
between consecutive levels:

tflip =
bi − ai

bi − ai + ai+1 − bi+1
+ i (4)

Note that i < tflip < i+1, where i and i+1 are the indices
of two consecutive levels. For each level in the scale-space
every edge in a level is compared to the corresponding edge
in the next level. A flip is represented by an edge and a
timestamp. All flips are collected in an array, which is then
sorted according to timestamps.

sloped maximum minimum
(two changes) (zero changes) (zero changes)

saddle monkey saddle
(four changes) (six changes)

Figure 5: Classification of a vertex in the triangle mesh. Vertices
depicted by dark gray, upward pointing triangles are higher than the
central vertex; vertices depicted by light gray, downward pointing
triangles are lower than the central vertex. The six neighbor vertices
are visited in a clockwise or counterclockwise radial order, and their
height values are compared to the central vertex. The number of
times the sign of the comparison changes, because the relation goes
from lower to higher or from higher to lower, is counted and the
vertex is classified accordingly.

Tracking of features. Tracking is performed by process-
ing the list of flips, sorted by timestamp, as described in
Rocca and Puppo (2013). The algorithm’s input is the list
of critical points in the first level of the scale-space, and
the ordered list of flips. It returns the list of critical points,
modified by processing the list of flips. It makes use of
a temporary map (a grid of the same dimensions as the
original terrain) which keeps, for each vertex, the following
information:

• The relation of the vertex with its six neighbors (lower
or higher);

• Up to two pointers to critical points in the tracking
data structure (none if no critical point is present;
one for a peak, pit, or saddle; two if a monkey sad-
dle occurs in the given vertex). A pointer can be
implemented as an index in the list of critical points.

The temporary map is initialized with the relations
present in the first level of the scale-space and the corre-
sponding critical points. Flips are visited in order. For
each flip, we look at the relations stored in the temporary
map for both vertices a and b involved in the event. This
allows us to classify the vertices before and after the flip.
If the classification changes, one of the following events has
happened:

• A critical point has moved. The pointer in the
temporary map is erased in the source vertex and
written in the destination vertex.

• A pair of critical points has collapsed. The two
pointers are erased from the temporary map, and the
two critical points involved are updated by memo-
rizing the timestamp of their death and a pointer to
their death companion.

• A pair of critical points has appeared. Two new
critical points are added to the list, with a pointer to
their birth companion, and their pointers are written
in the temporary map.

Displacements Collapses Appearances

(m, r) → (r,m) (m, s) → (r, r) (r, r) → (m, s)
(M, r) → (r,M) (M, s) → (r, r) (r, r) → (M, s)
(s, r) → (r, s) (m,K) → (r, s) (r, s) → (m,K)
(K, r) → (r,K) (M,K) → (r, s) (r, s) → (M,K)
(K, r) → (s, s)
(s, s) → (K, r)
(K, s) → (s,K)

Table 1: Possible transitions in the state of a pair of vertices connected
by a flipping edge, after Rocca and Puppo (2013). r: a sloped point;
M : a maximum; m: a minimum; s: a saddle; K: a monkey saddle.
Note that for every event a specular one is also possible, for a total
of 32 possible events. An example would be: (M,K) → (r, s) is
equivalent to (K,M) → (s, r).
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Figure 6: Abstract model of a virtually continuous scale-space. The smoothing process proceeds from the first level at the bottom, representing
the original DEM (dark gray), to the last level at the top, representing the most smoothed sample (light gray). A number of levels
between 10 and 20, depending on the dimensions of the input grid, worked well in our experiments. Starting from the discrete samples,
organized in a triangle mesh, a continuous approximation is built using linear interpolation along both the spatial dimension and the scale
dimension.

The temporary map is updated by inverting the relations
of the two vertices involved in the event. A comprehensive
list of the possible events is outlined in Table 1.

When all flips have been processed, critical points that
have survived up to the last level get tN−1 as a timestamp.
Each critical point in the final list has the following prop-
erties: a timestamp value corresponding to the moment of
its death in the scale-space; an optional pointer death-mate
that refers to the critical point this point died with, if such
an event happened; and an optional pointer birth-mate
that refers to the critical point this point was born with
(if the point is not among the original ones).

3.2. Life span computation

The goal is to compute the life span in the scale-space
of critical points present in the original, unfiltered terrain.
The timestamp computed in Section 3.1 represent only a
partial account, because of the additional, spurious points
caused by the smoothing process. The birth of new critical
points represents a perturbation in the usual flow of dis-
placements and collapses, which should result in a steadily
decreasing number of critical points as the scale parameter
increases. Most newborn critical points are ephemeral, ex-
isting only for a very small fraction of the scale-space before
collapsing again, and can be safely discarded. However, a
small but sizable fraction of them does not disappear and
survives arbitrarily long through scales. It turns out that,
in most cases, these long-lived newborn critical points in
fact extend the life span of pre-existing critical points of the
same type, which disappear shortly after the appearance
of the newborn ones in their proximity.

As an example, consider a maximum m that was present
in the original data, which collapses together with a saddle
s at time t. If s is a newborn saddle that was born at time
t′ < t together with a maximum m′, which lives longer
than t, we interpret the collapse of m and s as a transition
of the maximum from m to m′. We thus extend the life of
m until m′ dies. The life of m′ could later be extended by
the same mechanism, thus prolonging the life of m further,
and so on.

Our goal in dealing with newborn features is therefore
twofold: on one hand, to discard them, because they are not
present in the original surface; on the other hand, to add

their life spans in the scale-space back to the original points
we want to keep, because we want to take into account ev-
ery feature represented and evolving in the scale-space. To
perform this task, a relationship between newborn points
and original points of the same type in the scale-space must
be found. As suggested in the previous example, death and
birth events (which always happen in pairs, as explained
in Section 2.3 and shown in Table 1) form a chain of re-
lationships that can be exploited to recover the life span
of original points. A pseudocode version of the recovery
procedure is detailed in Algorithm 1. The recovered life
span is computed by following the sequence of collapse and
appearance events, checking and propagating the times-
tamps of those events along the way. The procedure stops
when the critical point currently reached is alive at the end
of the scale-space, or it collapses with a point that is not a
newborn one.

Algorithm 1 life span recovery

1: for CriticalPoint op ∈ TrackedPoints do
2: if op.is newborn then
3: continue
4: end if
5: if op.is alive then
6: op.lifespan = op.timestamp
7: continue
8: end if
9: CriticalPoint current = op

10: op.lifespan = 0.0
11: while true do
12: if op.lifespan < current.timestamp then
13: op.lifespan = current.timestamp
14: end if
15: if current.is alive then
16: break
17: end if
18: CriticalPoint dm = current.death mate
19: if ¬ dm.is newborn then
20: break
21: end if
22: CriticalPoint bm = dm.birth mate
23: current = bm
24: end while
25: end for
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3.3. Final steps

All the critical points that were not present in the
original, unfiltered surface are discarded, because of their
spurious nature. The recovered timestamps associated
with remaining points represent their life spans in the scale-
space, becoming the lifespan values assigned to each critical
point. For every maximum present, we also compute its
drop value, using the relative drop method (Wood, 2004).

The procedures described so far can be performed as
a preprocessing step and do not require user input. After
that, the user selects two values for the lifespan and drop
parameters to keep critical points with values equal or above
the chosen thresholds. The operation can be performed
with real-time responsiveness in a graphical user interface.
Optionally, independent parameters can be given for the
selection of peaks, pits, or saddles, to fine tune the amount
of spot heights depending on their type.

4. Experimental results

Testing the results of an automated selection method
requires two things: a database of manually compiled spot
heights, to be used as a reference; and an assessment of
how accurately results match the reference. The selection
usually varies depending on one or more parameters that
control the size and distribution of the resulting popu-
lation. Our tests compare the proposed algorithm with
known methods. Resulting spot heights are matched to the
reference, using a given distance threshold as a tolerance
(we used a distance 3w, where w is the width of a cell on
the DEM). The quality of the match is assessed using bi-
nary classification, which provides a well-known conceptual
framework for experimental evaluation of the performance
of a wide range of selection algorithms and procedures. We
present test results comparing a match to a reference for
the selection of peaks only. Peaks outnumber by far any
other category in the reference databases that we used for
testing, representing 90.3% of spot height locations associ-
ated with a toponym and 65.0% of unnamed spot height
locations. Additional results that include saddles and pits
are presented visually.

4.1. Binary classification

Binary classification divides a population in two differ-
ent classes according to a given criterion. In our application,
the input population is composed by the cells of a digital
elevation model. An automated extraction method sub-
divides those cells into those that are spot heights and
those that are not. Preexisting spot heights databases by
swisstopo provide a target reference that can be used to
evaluate the performance of a selection method. A perfect
result would extract all the cells in the target reference and
only those; with a less-than-perfect selection the elements
of the input population will be classified as:

• True Positives (TP ). A cell is extracted and it
matches a reference location.

• False Positives (FP ) A cell is extracted but it does
not match a reference location.

• False Negatives (FN). A cell is not extracted, but
a reference location is there.

• True Negatives (TN). A cell is not extracted, and
a reference location is not there.

We adopt three basic indicators computed from these rela-
tions (Sokolova and Lapalme, 2009):

• precision (P ), or positive predictive value, defined
as TP/(TP + FP ).

• recall (R), or true positive rate, defined as TP/(TP+
FN).

• specificity (S), or true negative rate, defined as
TN/(TN + FP ).

These indicators vary between 0 (worst result possible) and
1 (best result possible). A derived measure of the general
performance of a selection method’s results is the Fβ score,
defined as

Fβ = (1 + β2) · P ·R
(β2 · P ) +R

(5)

where β is a parameter that changes the relative weights
of precision and recall. The Fβ score varies between 0
and 1. It is a useful indicator, but it is too limited to
be used as the only indicator of performance. A single
number cannot fully capture all the possible behaviors
of a binary classification system; a more sophisticated
instrument is needed. A recommended technique is the
Receiver Operating Characteristic curve (Powers, 2011).

A ROC curve plots P on the Y axis and 1 − S on
the X axis as the parameters of the classification system
vary. Unfortunately, ROC curves cannot be used in our
case. The population of DEM cells is too unbalanced. True
negative elements are always an overwhelming majority
and, as a consequence, 1−S is near zero for every possible
parameter. This problem is well-known in the literature
(Davis and Goadrich, 2006). When this problem arises, they
suggest adoption of another widely used analysis technique,
Precision-Recall curves, and show that the ROC curves
and PR curves are tied by precise mathematical relations.

A PR curve is drawn by plotting precision on the Y
axis and recall on the X axis as selection parameters vary.
It shows the relations between the number of true posi-
tives with the number of false negatives (recall) and false
positives (precision). PR space covers the unit square on
the xy-plane (Figure 7). A good metric for finding the
query with the best performance in PR space is identifying
the point nearest to (1, 1), which denotes the best possible
performance.

For our evaluation, PR curves and Fβ graphs are used.
We chose β = 0.5, which gives twice as much importance to
precision compared to recall, because we envision that most
cartographers will use an automated method to achieve an
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Figure 7: Graphical breakdown of Precision-Recall space. P = 0.5
means that TP = FP , and R = 0.5 means that TP = FN . A
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TP = (FP + FN)/2). Results reach the areas to the top-right of
these functions when the number of true positive samples gradually
surpasses the number of mismatches.

initial selection of spot heights that will be inspected and
adjusted later. It therefore seems a good idea to favor a
less cluttered selection result that has fewer false positives,
even if it has more false negatives.

4.2. Test results

Two digital elevation models that include spot height
locations have been used, depicting two different areas
in the Swiss Alps: the Aletsch DEM (Figure 3) and the
Brienzersee DEM (Figure 11). Both are sections of the
swisstopo (2015) digital elevation model with a 25 m reso-
lution. The Swiss Federal Office of Topography swisstopo
provided us a database containing the spot heights placed
on their 1:25,000 maps for the areas depicted in the chosen
models. Reference spot heights for the Brienzersee DEM
are differentiated in two classes: one class contains spot
height locations associated with toponyms, which represent
the most important spot heights; the other class contains
unnamed spot heights locations of less importance. Details
can be found in Table 2.

Data set Size Time #summits #named

Aletsch 703× 697 24s 170 -
Brienzersee 1366× 1134 248s 630 153

Table 2: Data sets used in the binary classification experiments, with
their size (number of cells), the time elapsed for precomputation steps
described in Section 3 (in seconds), the number of summits present
in the 1:25,000 map, and the number of locations among summits
that have a toponym.

The binary classification experimental framework could
be reliably applied to the summits only. The main reason

is that there are not enough data in the reference databases
to carry out a good enough match and analysis for the
other categories. The test area does not contain a suffi-
cient number of depressions. Passes are present, but their
number in the swisstopo database is smaller by an order
of magnitude than the number of summits, and they often
show a high discrepancy between the reference spot heights
and the digital elevation model’s surface.

For every experiment, we test our lifespan+drop method,
described in Section 3, and two other methods as a compar-
ison: drop alone, as proposed by Wood (2004), and jaara,
the summit extraction algorithm described by Jaara and
Lecordix (2011), both briefly summarized in Section 2.1.
Each test consists in the execution of an automated ex-
traction method, matched to the reference as its selection
parameters vary. Evaluation is performed using PR plots
and F0.5 graphs. For the lifespan+drop method, which has
two parameters, the PR plot is obtained by independently
varying the lifespan and drop parameters for a total of
100× 100 runs. The lifespan parameter covers the entire
range of possible values; the drop parameter is employed as
a preselection parameter, with a restricted range. The end
result is a point cloud instead of a simple curve because the
parameters’ space is multidimensional. The F0.5 graph is
obtained by fixing the relative drop parameter to the value
that gives the highest F0.5 score in the PR plot, and by
varying the lifespan parameter. The drop and jaara meth-
ods have a single parameter. For the drop method, it is
the difference in altitude between the peak and the highest
pass that must be reached in order to get to an higher peak;
for the jaara method it is the size of the biggest square in
which the peak is the highest one compared to surrounding
squares (see Section 2.1). PR plots and F0.5 graphs for drop
and jaara are the result of 1000 runs with the parameter
varying across the entire range of possible values. Three
different experiments were carried out:

• On the Aletsch DEM, with locations classified as
peaks as a reference set (Figure 8).

• On the Brienzersee DEM, using as a reference set
both named summits, as provided by swisstopo, and
unnamed locations classified as peaks (Figure 9).

• On the Brienzersee DEM, with named summits only
as a reference set (Figure 10).

PR plots (first row of Figures 8, 9, and 10) show
that lifespan+drop has a good advantage in the Aletsch
experiment and in the Brienzersee experiment with both
named and unnamed peaks, and a slight advantage in
the one with named peaks only. The latter experiment
is the most challenging of all three, because the reference
spot heights are few and sparse. A visual rendering of the
queries with the best results in PR space for the Brienzersee
data set can be found in Figure 11. The F0.5 graphs
(second row of Figures 8, 9, and 10) make apparent that
lifespan+drop provides relevant results for a longer range
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Figure 8: Results for all peaks in the Aletsch data set. Top row: Precision-Recall plots; bottom row: F0.5 score curves. The drop parameter in
the lifetime+drop runs varies between 2 and 40 for the PR plot and is fixed to 13.28 for the F0.5 curve. The best PR query has been obtained
with lifetime=0.60 and drop=11.49; the best F0.5 query with lifetime=1.58 and drop=13.28.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
re

ci
si

o
n

Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
re

ci
si

o
n

Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
re

ci
si

o
n

Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 2.7 5.3 8.0 10.7 13.3 16.0

F
-S

co
re

Selection Parameter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 131.7 263.3 395.0 526.7 658.3 790.0

F
-S

co
re

Selection Parameter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 58.3 116.7 175.0 233.3 291.7 350.0

F
-S

co
re

Selection Parameter

life+drop drop jaara

Figure 9: Results for all peaks (named and unnamed) in the Brienzersee dataset. Top row: Precision-Recall plots; bottom row: F0.5 score
curves. The drop parameter in the lifetime+drop runs varies between 1 and 40 for the PR plot and is fixed to 7.69 for the F0.5 curve. The
best PR query has been obtained with lifetime=0.56 and drop=5.60; the best F0.5 query with lifetime=0.75 and drop=7.69.
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Figure 10: Results for all named peaks in the Brienzersee data set. Top row: Precision-Recall plots; bottom row: F0.5 score curves. The drop
parameter in the lifetime+drop runs varies between 1 and 80 for the PR plot and is fixed to 46.00 for the F0.5 curve. The best PR query has
been obtained with lifetime=0.96 and drop=40.68; the best F0.5 query with lifetime=0.96 and drop=46.00.

of the main selection parameter when compared to the
other two methods: the drop and jaara curves reach a
maximum very soon and steeply fall back to low values. In
the lifespan+drop curves, on the contrary, there is a hint of
a plateau and a gentler downslope. A good visual reference
is how much the F0.5 score curve stays higher than the 0.5
value (cyan horizontal line). Note in particular how this
trend is confirmed by the named peaks only experiment,
which is the most challenging one.

4.3. Additional tests

We show results for two additional elevation models.
The first DEM is a bathymetric data set of the ocean floor
around New Zealand produced by CANZ (2008) with a
250 m resolution. We use a section of 1645 × 1466 cells
(Figure 12) located north of North Island that shows an
area where multibeam swath depth information has been
used. The featureless flat area at the center of Figure 12
is the Raukumara plain. The second DEM is the 2000
Shuttle Radar Topography Mission (SRTM) data set with
1 arc second resolution and void areas filled by de Ferranti
(2015). We use a section of 600× 600 cells showing Monte
Rosa in the Italian and Swiss Alps (Figure 2). Results are
evaluated by visual inspection. For the Monte Rosa data
set, we compare to a 1:50,000 map by swisstopo.

We show a selection of depressions and summits for the
Raukumara plain data set in Figure 12. Most main features
present in the ocean floor are properly identified and a well-
balanced density of soundings is obtained, with a lesser

density of soundings in flatter parts of the sea bottom. A
selection of passes and summits for the eastern part of the
Monte Rosa data set is shown in Figure 2. The main sum-
mits, which are situated along the impressive north-south
and east-west ridges, prominently stand out and are well
recognized, along with the mountain passes between them.
The critical point with the longest lifespan value in the
scale-space is a peak that corresponds to the Dufourspitze,
the massif’s highest and most relevant summit. The longest
lived saddles corresponds to mountain passes that all have
a toponym on the 1:50,000 Swiss map (among the three
most important ones we identify the Lysjoch, which is the
main trekking route across the glacier between Switzerland
and Italy).

5. Conclusions

We propose an effective spot height placement method
that achieves a selection dense enough in morphologically
interesting regions, without selecting irrelevant points in
flat areas. The method requires manipulation of two pa-
rameters at most. Rigorous experiments on peaks, which
often are the most important spot heights on topographic
maps, show better performance compared to other state-of-
the-art methods with similar characteristics. The method
is suitable to be used in a graphical user interface; after
running a preprocessing step, candidate spot heights can
be selected in real-time using the precomputed importance
scores. We plan to develop a spot height selection GUI for
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Figure 11: Best lifetime+drop queries in PR space for the Brienzersee data set. Green: true positive points; orange: false positive points; cyan:
false negative points. Note that the sum of green and orange points represents the selection by our method, while the sum of green and cyan
points represents the swiss spot heights reference. In the left image the reference is composed by named and unnamed peaks together (441 true
positive points, 150 false positive points, 189 false negative points). In the right image the reference is composed by named peaks only (74 true
positive points, 35 false positive points, 79 false negative points).

cartographers based on the proposed work, and to investi-
gate whether results can be directly employed in interactive
maps.

Techniques for the automatic calibration of selection
parameters according to feature type, map extent, and
local terrain morphology could be worth exploring. The
goal is to achieve fully automated spot height placement
and labeling without pre-existing reference data or human
supervision.

Figure 12: A selection of soundings representing summits (in red)
and depressions (in green) for the Raukumara plain data set. Spot
height locations have been selected using a lifespan parameter of 8.
Sample points are exponentially scaled according to their lifespan
value.

A promising extension of this research could be the
extraction of interesting morphological features that are
neither peaks nor saddles nor depressions but can be easily
recognized by observers on the terrain nonetheless. Intu-
itively, these particular features are usually located near
sudden changes of steepness, which should be characterized
by high curvature. A scalar field based on curvature, such
as mean or Gaussian curvature, could be computed from
the digital elevation model and then directly used as input
for the continuous scale-space method we described. Long-
lived critical points in the curvature based scale-space that
are distant enough from already selected spot heights could
be good candidates for addition to large-scale topographic
maps.
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