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Evaluating movement quality through intra-personal
synchronisation

Nikolas De Giorgis, Enrico Puppo, Paolo Alborno, Antonio Camurri

Abstract—We present a method to measure intra-personal
synchronisation of movement from motion capture data, and
we show that our method is effective in classifying the level of
skills of athletes performing karate kata. Our method is based
on detecting relevant peaks of acceleration of limbs (arms and
legs) and measuring their synchronisation. We run a multi-
scale analysis, based on topological persistence, to rank the
importance of peaks of acceleration. The resulting impulse signals
are processed next with a Multi-Event Class Synchronisation
algorithm, in order to define an Overall synchronisation index that
scores the level of intra-personal synchronisation with a single
scalar value. We build a basic multiclass classifier, which uses
just the means of indexes computed on the different classes in the
training set. We make a statistical analysis and a cross validation
of the classifier on real data. Performances by athletes from three
levels of skill have been recorded, classified by experts and used to
test our method. Cross validation of the classifier is performed
by leave-one-out and bootstrap resampling. Results show that
our method can classify correctly with very high probability
(beyond 99%), while it succeeds on 100% of the data used in
cross validation.

Index Terms—Human Movement, Movement Analysis, Move-
ment Qualities, Karate, Event Synchronisation, Intra-personal
Synchronisation

I. INTRODUCTION

The analysis of human movement from point-light display
or motion capture (MoCap) data originated by the seminal
work of Johansson [1], and has been investigated for several
decades. MoCap data of human movement, although severely
impoverished with respect to full video, are still capable to
convey high-level perceptual qualities to a human observer,
such as sex differences [2] and affect [3], [4]. From a compu-
tational perspective, trajectories recorded from the markers in
a MoCap sequence are treated as time series and are analysed
by applying various types of signal processing techniques [5].

In recent years, higher-level computational analysis tech-
niques emerged, grounded on the results obtained from ex-
perimental psychology [6]. Notable examples are the affective
bodily expressions in non-verbal communication, and the level
of performance in sports and performing arts. Computational
models and techniques for the automated analysis of move-
ment in such domains are receiving a growing attention from
both the scientific and industrial communities. In the analysis
of movement in sport, systems capable to perform automated
analysis of movement qualities can be useful for more efficient
training [7], and for evaluating the effectiveness of a specific
physical gesture in the performance practice.

In this paper, we address the problem of evaluating the
overall quality of movement in martial arts performance,
starting from MoCap recordings. Figure 1 shows an example

Fig. 1: Video frames and corresponding MoCap data of an
athlete performing a kick of the Bassai Dai kata. MoCap data
are shown here from the same perspective of video, but they
contain full 3D information about markers (coloured joints of
the skeleton). We process only the MoCap data.

of our input data. Our interdisciplinary approach is grounded
on computer science, biomechanics, artistic theories [8], and
affective computing. More specifically, we aim at quantifying
how performances at different levels of expertise are perceived
by an external, not necessarily expert, observer. To this aim,
we hypothesise that synchronisation of movements between
specific limbs can be employed as a main feature to explain
the differences between the same kata (a movement sequence,
or “choreography”, in karate) expressed by different athletes
with different levels of expertise. The motivations to ground
our measure of quality on synchronisation is rooted on well-
known assumptions in sport practice and as suggested by
karate experts in [9]: an experienced athlete makes a more
neat execution of a kata with respect to a less skilled athlete,
in which the starting and ending moments of each movement
(e.g. punches, strikes, kicks) are performed with less or no
fluctuations or ripples between joints movements.

In music performances, a similar hypothesis has been con-
firmed by the model of soft entrainment [10]: in a joint music
performance, a higher level of expressivity corresponds to a
higher inter-personal synchronisation at the start and at the
end of each musical phrase. In our analogy, we study intra-
personal synchronisation: a high-level control of the move-
ment corresponds here to a strong synchrony between limbs,
at the starting and ending moments of single movements.

We analyse a set of performances (katas) to distinguish
and classify them on a measure of overall quality. Several
problems arise while analysing this kind of data: performing
sessions are of different length, due to the different speed
at which the athletes perform; there is no external clock to
synchronise with, hence, intra-personal synchronisation must
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be evaluated by relating different parts of the body and by
analysing instantaneous events that provide an internal beat
for synchronisation. This process entails extracting from the
MoCap data, assumed as samples of a continuous signal, a
set of impulses precisely located in time at relevant instants,
which characterise movement. MoCap data are noisy in nature,
therefore selecting relevant instantaneous events is all but
simple. However, we show that, once the relevant impulse
events have been detected, the whole framework becomes
surprisingly simple and effective. We tackle these issues by
using a multi-scale analysis to filter noise and extract relevant
information present in the input signal, which is then fed to
an event synchronisation algorithm inspired to [11].

The claim we wish to demonstrate is the high correlation
between intra-personal synchronisation and the quality of
motion, as well as our ability to evaluate the former in order to
classify the latter. To this aim, we deliberately selected a case
study that contains neat and sharp movements - i.e., karate
kata - and a dataset consisting of trials that can be clearly
classified by experts into different classes - i.e., no athlete
participating in the trials exhibits a border line performance
between different classes. We run our algorithms on the
dataset of performances, without either introducing any bias,
or tweaking our method to achieve the desired results, and we
compare our evaluation with respect to benchmark rankings
from experts: our experiments confirm that the analysis of
synchronisation can be used safely to characterise the quality
of performance of athletes from different levels of skill.

II. RELATED WORK

Several methods to automatically evaluate the quality of a
performance have been proposed and applied in various fields.
In dance, the system presented by Alexiadis [12], obtaining
data from Kinect, assessed the overall quality by comparing
positions and velocity of the various joints with reference
performances. Another Kinect-based model, presented by Kit-
sikidis [13], in order to estimate the performance quality of
Greek dance pieces, made use of low-level motion features
(e.g., accelerations, velocities, etc.). Muneesawang et al. [14]
developed a tool for dance training that, through a visual
feedback in the form of a coloured skeleton, mapped the
quality and goodness of the movements, i.e., how much they
reflect the teachers, to different colours. In rehabilitation,
Barrett et al. [15] presented a system to measure the gestures’
accuracy through a serious game. Effenberg et al. [16] applied
sonification to enhance motor perception and motor control
and studied how a real-time auditory feedback applied to
arm movement trajectories can improve motor rehabilitation.
Ilg et al. [17] developed a model to measure the different
levels of ability to perform movement sequences in different
sports. In karate, VencesBirto et al. [18] showed a significant
difference in kinematics patterns and EMG measurements on
the execution of a particular kata (the choku-zuki punch),
performed by non expert and experienced karatekas. Cynarski
et al. [19] measured the differences between novices and expe-
rienced karatekas through the analysis of the kinematics of the
various joints. Bianco and Tisato [20] proposed an algorithm

for karate movement recognition from skeletal motion on a
dataset consisting of punches, kicks, and defense karate moves.

The analysis of synchronisation has been studied in many
fields. Among investigation of human movements and social
interaction, Hwang et al. [21] carried out a study on inter-
personal synchronization in which two participants collabo-
ratively control the movement of a spherical virtual object,
through a pair of tactile supports connected to a tablet. Demos
et al. [22] investigated the effects and influence of differences
in the social status of a duet of pianists on their temporal coor-
dination and perceived synchrony. Waterhouse et al. [23] pre-
sented a case study on entrainment between a duo of dancers.
On the same topic, Lussu et al. [24] analysed synchronisation
on multimodal data (respiration energy and body movement
energy) to distinguish movements performed with different
expressive qualities. Miyake et al. [25] introduced a reha-
bilitation system based on limbs synchronisation to support
and stabilise the walking of patients affected by Parkinson’s
disease and hemiplegia. Leman et al. [26] concentrated on
the effects of beat synchronised walking in human beings on
movement timing and vigour. In the specific framework of
social interaction studies, Varni et al. [27] investigated how
motor synchronisation can be used to analyse social group
dynamics and detect dominant members, while Hung and
Gatica-Perez [28] used synchronisation to measure the degree
of cohesion of the group.

Several methods for the computation of synchronisation
have been proposed in literature: correlation analysis tech-
niques have been applied to a wide number of contexts to
establish the degree of similarity between two time series [27],
[29], [30]. Linear phase correction models describe the process
of minimizing the asynchrony by predicting and adjusting
the timing of each future movement. Event Synchronization
(ES) [11] measures synchronization and time-delay patterns
between two time series. The method relies on time differ-
ence between events occurrence-timings. Alborno et al. [31]
applied ES to demonstrate how to distinguish between full-
body movements performed with different expressive qualities
(namely rigidity, fluidity, and impulsivity) by applying the
Event Synchronisation algorithm on arms and hands kinemat-
ics. Wing et al. [32] recently proposed a linear phase correction
model to estimate how the members of a string quartet correct
asynchronies on tone onsets arising from fluctuations in their
individual tempos. An alternative technique, initially applied
in signal processing for financial forecasting, is the Wavelet
Transform. Wavelets have been increasingly employed in
other fields, among these, to the study of human movement.
For example, Wong and colleagues [33], applied wavelets
to study human movements trajectories. and Fujiwara et al.
[34] used them to measure interpersonal synchrony during an
unstructured conversation. Finally, Recurrence Quantification
Analysis (RQA)1 has been applied to study and estimate the
degree of synchronisation in the study conducted by Varni et
al. [35] where RQA is used to investigate entrainment between
four violin players measuring the recurrent behaviours of the
movement of their heads.

1http://www.recurrence-plot.tk/
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III. OVERVIEW OF THE METHOD

Our input consists of time series from a motion capture
system. Each series contains discrete trajectories from markers
placed on the body of the athlete. Our analysis is concentrated
on movements of limbs. In order to get stable measures, we
consider the markers related to each arm and each leg of
the participant, forming four independent clusters, which we
consider for further processing. Our input, as well as the
clustered model, are described in detail in Section IV and
summarised in Figure 2.

We aim at analysing such data to estimate the level of intra-
personal synchronisation, i.e., how synchronously different
parts of the body move with respect to each other during
performance. Notice that we do not rely on any external source
of beat or master clock to synchronise with: as customary in
single sport performance, the speed of movement is free.

The lack of an external reference compels us to select
instantaneous events originated by the body movement itself,
to be used as internal references to evaluate synchronisation.
We base our analysis on peaks of acceleration. MoCap mea-
sures are affected by noise and peaks of acceleration occur
very often because of it. In order to get relevant events to
synchronise with, we preprocess our data and we score the
relevance of each peak through multi-scale analysis based on
topological persistence. These operations will be described in
Section V and are summarised in Figure 3.

Next we take pairs of sequences of events (e.g., left arm
vs right arm) and we feed them to our Multi Event Class
Synchronisation (MECS) algorithm [36]. We adopted this
method due to the fact that, while many of the existing Event
Synchronisation algorithms (e.g., [11], [37]) were developed in
the context of brain signal analysis, while MECS was created
with the purpose of studying multimodal human-human and
human-machine interaction. We are interested in measuring the
overall degree of motor synchronisation considering an high
number of measures (the various joints’ acceleration) in which
we detect relevant peaks; the chosen algorithm provides a way
to compute a single synchronisation index as a function of the
events occurring in N time series. We match corresponding
events and we weight their amount of synchronisation with
a linear kernel that is a decreasing function of the time
shift separating them. These measures provide an event-wise
estimate of synchronisation; we integrate such measures on
the whole sequence to obtain a global estimate in the form
of an Overall Synchronisation Index. More details about the
synchronisation algorithm can be found in Section VI.

We propose the degree of synchronisation as a measure of
quality of a performance, and this criterion is tested against
ground truth in Section VII. We also build a basic classifier that
makes use of just the means of the Overall Synchronisation
Indexes measured on a training set. The classifier, as well as
its cross-validation, are discussed in Section VII-C.

IV. RECORDING DATASET

We have used the dataset presented in [9]. Recordings were
acquired using a motion capture system Qualysis with 9 high
resolution cameras and a 250Hz frame rate. Post-processing

# Description Years
of practice

Experience
(from 1-low
to 5-high)

1 Adult, Male, Karate teacher > 15 5
2 Adult, Male, Black Belt > 10 4
3 Adult, Female, Black Belt > 10 4
4 Teenager, Male > 5 3

5 Adult, Male
participated in the World Championships > 15 5

6 Teenager, Male > 5 3
7 Teenager, Male > 5 3

TABLE I: Subdivision of participants

has been applied to get a labeled dataset, with a skeleton
model, in which noise from “ghost” or jitter markers has been
as much as possible cleaned out.

A total of 7 athletes participated in the recordings; they
were chosen with different skills and levels to have a various
representation of abilities of execution; their ability has been
assessed by experts on a conventional scale from 1 to 5, while
only levels from 3 to 5 are represented in the dataset. The
subdivision is summarized in table I.

The participants performed two different katas, namely
Heian Yondan and Bassai Dai. Each athlete performed 2 or 3
trials of each kata. The final datasets consists of 32 recordings,
divided as follows:

• Level 3 - Junior, Brown belt: 7 recordings of the Heian
Yondan kata and 7 of the Bassai Dai

• Level 4 - Senior, Black belt 1st dan: 4 for Heian Yondan
and 5 for Bassai Dai

• Level 5 - Master, beyond 4th dan: 5 for Heian Yondan
and 4 for Bassai Dai

Athletes were let free to perform at their own speed and
rhythm with no interventions, even in post processing, to
match the lengths of trials or align the recordings. As a result,
recordings have differences both in length (Bassai Dai ranges
from 71 to 115 seconds, Heian Yondan from 50 to 97 seconds),
and also in speed of relative body parts.

Motion tracking has been obtained by 25 markers placed on
the body (as shown in Figure 2), each providing a 3D trajectory
of samples at 250hz. Every sample consists of a triple (x, y, z)
of coordinates representing the position of a marker at each
time instant, in a calibrated reference system.

Since our analysis is focused on the movements of the limbs,
we do not use every marker of the model but we rather extract
four clusters (one for each limb, see Figure 2) in order to
exploit redundant information and obtain a reduced yet more
stable representation. Five markers on the head and upper torso
have been set out of our analysis, because they do not have
any symmetric counterpart in the body; moreover, movements
of the head in karate often must precede the movement of
limbs, thus resulting not synchronised with them in a correct
performance. This particular clusterisation is relevant in karate
analysis, but it is not unique: the particular choice in another
context (e.g. dance) would be dependant on the body parts
that are expected to be synchronised.
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Left Arm

LIND

Right Arm

RIND
LPNK RPNK
LELB RELB
LWRS RWRS
LSHD RSHD

Left Leg

LFHP

Right Leg

RFHP
LBHP RBHP
LKNE RKNE
LBAK RBAK
LFAK RFAK

Fig. 2: The MoCap skeleton. In red, green, purple and blue the
groups of markers used to define the four clusters, summarised
in the side table. L and R at the beginning discrimate between
left and right. The other three letters indicate the marker
position as follows: IND=index finger, PNK=pinkie finger,
ELB=elbow, WRS=wrist, SHD=shoulder, FHP and BHP=front
and back of the hip, KNE=knee, FAK and BAK=front and back
of the ankle.

V. EXTRACTING INSTANTANEOUS EVENTS

As outlined before, we aim at analysing the level of syn-
chronisation between limbs. The feature we found to be more
representative for our analysis is given by peaks of limbs’
acceleration (and deceleration) that allow us to distinguish
the initial and final phases of the basic movements, such
as punches, strikes, kicks, steps, parry and block actions.
Since recordings are quite noisy, in order to perform a stabler
analysis, we extract a smoothed version of this feature: we
compute the velocity of the clusters’ barycenters at each
frame, then we apply a standard Savitzky-Golay filter [38]
to this signal. Acceleration is derived next from the smoothed
velocity. Examples of a raw velocity signal, its corresponding
smoothed signal and the derived acceleration are provided in
Figure 3, by the magenta (a), green (b) and red (c) graphs,
respectively.

Peaks of acceleration and deceleration characterise instants
of time that are relevant for our analysis, but they also
appear along trajectories, because of noise, uncertainty and
ripple in the movement. Since data are rather noisy, isolating
relevant peaks from unimportant ones is a challenging task.
We tackle this problem by performing a topological analysis,
which gives us a multi-scale representation of our signal in
terms of its critical points’ persistence, i.e. a measure of
importance related to their difference in amplitude. Persistence
induces a total ranking of critical points, which can be used
to discriminate noisy and spurious peaks from relevant ones
by simple thresholding.

Topological persistence is a concept related to Morse theory
[39], which provides a characterisation of a function in terms
of topology of its level sets. It can be seen as a filtering
process which takes place in the amplitude domain, i.e. by

(a)

(b)

(c)

(d)

Fig. 3: Detection of instantaneous events on a single trajectory.
From the top: velocity from raw data (a); smoothed velocity
(b); acceleration from smoothed velocity (c); Persistency Index
(d). Time shift related to smoothing does not harm synchro-
nisation, since it has the same effect on all signals.

progressively removing pairs of critical points depending on
their relative values. In a one-dimensional signal, persistence is
obtained through a flooding process of basins, each expanding
from a local minimum: each time a basin gets filled at one of
its sides (i.e., along the path connecting its local minimum and
the lowest of its two adjacent maxima), this basin gets merged
with one of its two neighbours; contextually, the minimum
corresponding to the basin and the maximum that has been
flooded are removed, and the persistence value of both of them
is set at their difference in amplitude. For a graphical depiction
of the process, see Figure 4. Notice that the merge of basins
and the corresponding deletion of flooded pairs of critical
points changes the adjacencies of basins: a minimum and a
maximum that were relatively far in the original sequence
become adjacent during the process, when all critical points
between them have been filtered out.

More formally, let us consider a piecewise-linear function
f defined discretely by its value at sample points regularly
spaced in the integer domain and extended to R by linear
interpolation, and the set of its critical points. A point i is
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Steps of persistence computation: (a) An input signal f
with its critical points highlighted in red, and an initial pairing.
(b) The first step of the filtering: a pair of critical points that is
about to be removed is highlighted in blue. (c) An equivalent
signal after removing the critical points: the basin located at
the removed minimum has been merged into the one to its left.
(d) Another pair of critical points to be removed is marked
in blue. (e) An equivalent signal after removing the critical
points: just one basin has been left. (f) The last pair of critical
points to be removed is marked in blue. Dotted lines are just
placeholders to denote that in such interval the function is
considered as if it were monotonic. Notice that the function
is not modified by the algorithm, only the relative adjacency
of critical points changes.

called

• a maximum (M ) if f(i) > f(i− 1) and f(i) > f(i+ 1)
• a minimum (m) if f(i) < f(i− 1) and f(i) < f(i+ 1)

The algorithm computes persistence as follows:

1) Initially, each maximum Mi is paired to its neighbouring
minimum mj , whose difference in value from Mi is
minimal. Figure 4 (a) shows an example of the initial
pairing. We take a bookkeeping of the current pairings
in a map data structure, as they may become obsolete
during processing (see point (3), last step).

2) Then, all maxima are stored in a priority queue Q, where
priority is set by the difference in value between Mi

and the minimum paired with it: maxima with lower
difference have higher priority.

3) Maxima are progressively popped from queue Q. Each
time a maximum Mi is popped: if its pairing has become
obsolete, then it is discarded; otherwise, the absolute
difference between Mi and its paired minimum mj is
written in output as their persistence, and the pairings of
their neighbouring critical points are updated as follows:

• Mi and mj are excluded and marked as inactive;
from a theoretical point of view, this is like re-
moving the pair of critical points selected – e.g.
the two blue points in Figures 4 (b), (d), and (f) –
thus obtaining a new function with two less extrema
(see Figure 4 (c), (e)). From the perspective of the
flooding process, it means that the basin with the
local minimum in mj is merged into the adjacent
one on the other side of Mi.

• The pairing of the closest active maximum Mk on
the other side of Mi with respect to mj might need
to change (in case it were also paired with mi): in
this case, the new pairing of Mk is determined by
looking at its active neighbuor minima and choosing
the one with the closest value to it. The bookkeeping
of pairings is updated by assigning to Mk a new
paired minimum, and Mk is then reinserted into
Q, thus making any older instance of itself in the
queue obsolete; since the auxiliary data structure is
always up-to-date, an instance of a critical point
Mk in Q is considered obsolete if and only if its
paired minimum m is different from the one in the
bookkeeping.

The process ends when there are no more elements
in the priority queue. The last maximum remaining in
the filtered signal is assigned an arbitrarily high value
of persistence, larger than the maximum persistence
computed previously.

At the end of the process, each critical point ck of the
input signal has been assigned a real number pk, which is the
computed persistence for that critical point. The result of the
analysis is encoded into a time series P , defined as follows:

Pi =

{
pk if f(i) is a critical point ck
0 otherwise

(1)

Therefore, the output of our analysis is a sequence of
impulses, which we call a Persistence Index (PI for short).
The purple graph in Figure 3(d) depicts the Persistence Index
corresponding to the acceleration in the red graph. The Persis-
tence Index is taken in input by our synchronisation algorithm.

VI. MULTI EVENT CLASS SYNCHRONISATION

The output of persistence analysis consists of the following
time-series:

tsf with f ∈ {leftArm, rightArm, leftLeg , rightLeg}

containing the values of the Persistence Index (or events) at
each frame.
We now consider pairs of time series tsf and tsg , related to
different limbs, and we measure their mutual synchronisation.
Our method relies on two parameters:

1) A threshold ρ to select only a subset of events from PI
(considered as the relevant events);

2) A maximum time lag τ between synchronous events.
We first threshold both time series: only events with PI > ρ

are maintained. Then, we apply an extended variant of the
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Fig. 5: The same action - the ending of a punching phase - performed by athletes at different levels of skill. From left to
right: Level 3, 4 and 5 (top); and their corresponding PI’s (bottom). In orange, PI of the right arm; in green, PI of the left arm.
The red bracket is the size of the synchronisation kernel τ = 40 used for our analysis, showing that movements of the Level
3 performer will not count as synced, while both Level 4 and Level 5 will contribute positively to the synchronisation index,
but with different intensities. Only the two high peaks are considered, while the remaining peaks are below the threshold of
relevance ρ. This action occurs at different frames in the different trials.

Event Synchronisation algorithm [11]: the Multi Event Class
Synchronisation (MECS) algorithm [36]. Similarly to [11],
MECS consists of two steps: the algorithm first detects the
coincident events in different time series (coincidence detec-
tion) and counts them; then the number of coincidences is
normalized with respect to the total number of possible co-
incidences that may happen (normalization). Besides, MECS
modulates the contribution of each pair of coincident events
as a decreasing function of their difference in time.

Let tAf with A = 1, ...,mf and tBg with B = 1, ...,mg be
the times of events A and B occurring in sequences tsf and
tsg , respectively, where mf and mg represent the total number
of events in the time-series tsi and tsj , respectively. A pair of
events A and B contribute to the synchronisation index if and
only if they occur within a time interval (coincidence window)
not larger than τ .

Coincidences are detected by a simple parallel scan of the
two time series, like in a merge algorithm for sorted sequences:
pairs of events A and B that are consecutive in the merged
sequence and such that tAi and tBj differ for no more than τ
are paired, while events that have no neighbour within a time
distance of τ are skipped; note that each event A can be paired
with just one event B in the other sequence, and vice-versa.

For each pair of coincident events A and B with time
occurrences tAf and tBg we set a synchronisation rate in the
interval [0, 1]:

cf,g(A,B) = ψτ (d(A,B))

where d measures the temporal distance between events:

d(A,B) = |tAi − tBj |

and ψτ is a kernel depending on parameter τ , i.e., a decreasing
function with finite support in interval [0, τ ]. Several kernels
can be used, e.g., with exponential or sigmoid decay; we found
a linear ramp to give the best results in our case:

ψτ (t) =

{
1− t

τ if 0 ≤ t ≤ τ
0 otherwise

In our experiments, we analysed the impact of varying τ
on the results obtained, and we show the findings in Section
VII-A. Figure 5 shows a comparison of the synchronisation
measured on the arms of athletes at different levels while
executing the same action.

Similarly to [11], the average degree of synchronisation Qτ
for a pair of time-series tsi and tsj is finally given by:

Qτ =

∑
cf,g(A,B)

(mf +mg)/2
(2)

Note that Qτ takes into account not only the number of
synchronised events with respect to the number of occurring
events, as in [11], but it also provides a measure of the
synchronisation strength in time, due to our weighted version
of the synchronisation index ci,j . The average degree of syn-
chronisation associates a unique number in the interval [0, 1]
to each time series, which will be used in our experiments to
rank the overall quality of performance.

VII. DATA ANALYSIS

We processed all data described in Section IV without
introducing any bias and by setting the same parameters for all
of them. For all recordings, we computed the four PI series of
clusters corresponding to arms and legs (see Section V). Pairs
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Fig. 6: Average of the overall synchronisation index Qtot
τ

computed on the trials of each level at different values of the
synchronisation threshold τ (the number of frames).

of PI series were used next as input to the MECS algorithm.
The result for each pair of series is a value Qτ , in the range
[0, 1], where 0 means a total lack of synchronisation, while 1
means that all the detected events of the two limbs are perfectly
synchronous (see Section VI).

Among all six possible pairs of PI series, we concentrate
our analysis on two pairs: left arm vs right arm; and left
leg vs right leg. Mixed combinations of an arm vs a leg
were also tried, but provided less significant results; this is
not surprising because many movements in karate involve
coordination of arms while legs remain static or have a role of
maintaining postural stability. In mixed arm-leg combinations,
a large number of events in one sequence find no mate in the
other, hence giving small values of Qτ in all cases.

In the end, for each trial we obtain two values Qarms
τ and

Qlegs
τ to measure the level of synchronisation between arms

and between legs, respectively. Since such indexes are on a
congruent scale, we define the Overall synchronisation index

Qtot
τ = Qarms

τ +Qlegs
τ (3)

which will be used in our statistical tests. The purpose of
our analysis is to show that index Qtot

τ provides sufficient
information to discriminate the level of performance among
the three levels of athletes, congruent with annotations by
experts (see Section IV). In the following, we first show how
our index characterises the three different groups, then we test
the discriminative power of a simple classifier based on it.

A. Parameters setting

As described in Section VI, our method uses two parameters
ρ and τ . Persistency Indexes of all series were normalised on
interval [0, 1] and then thresholded with a value ρ = 0.15.
This means that a peak of acceleration is considered relevant
if its persistence is larger than 15% of the dynamic range of
accelerations. This threshold was found empirically to preserve
the relevant peaks, while discarding the residual noise.

Parameter τ determines the size of the kernel used to weight
synchronisation. The value of Qτ , hence Qtot

τ , for the same
data is monotonically increasing with τ . However, if τ is too
small, too many pairs of potentially synchronous events are
missed; while if τ is too large, the value of Qtot

τ becomes less

Fig. 7: The overall synchronisation index for all trials in the
dataset. Each bar represents the value of Qtot

τ and is divided
into two segments, representing Qarms

τ (lower, lighter) and
Qlegs
τ (upper, darker), respecitvely. Different hues correspond

to the three levels (L3 magenta, L4 cyan, L5 brown). Less and
more saturated colours correspond to the two different katas
(Heian Yondan lighter; Bassai Dai bolder). Labels inside bars
permit to identify different takes by the same subject.

discriminative. For all trials, we carried out our analysis with
multiple values of τ , to estimate the impact of this parameter
on results. As summarised in the chart of Figure 6, the choice
of τ is not critical: performances from athletes of higher level
of skill return consistently higher values of Qtot

τ ; while such
values remain discriminative on a reasonably large range of
values of τ . From the chart, it appears reasonable to place τ
in the range from 10 to 50 frames, i.e., from 1/25 to 1/5 of a
second. In what follows, we set τ = 40, i.e., about 1/6 of a
second.

B. Statistical analysis

The barchart in Figure 7 shows the overall synchronisation
indexes for all the trials, arranged in the three groups corre-
sponding to the different levels of skill. Note that all scores for
the group at Level 3 (magenta, left) are smaller than the scores
of group at Level 4 (cyan, center), which in turn are smaller
of scores at Level 5 (brown, right). The visual analysis of this
chart suggests that the overall synchronisation index succeeds
in discriminating between different levels of skill. In order to
provide a more rigorous evaluation of the discriminative power
of our index, we have employed standard tools from statistical
analysis.

We first run a test aimed at discarding the null hypothesis,
i.e., the assumption that our index characterises all data as
coming from the same population. Due to the small sample
size, we have computed the effect size using Cohen’s d [40].
The effect size can be seen as a quantitative measure of the
difference between two populations. To obtain the value for
two classes of size n1 and n2 with respectively average values
of M1 and M2 and standard deviations SD1 and SD2, we first
compute the Pooled Standard Deviation:
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Classes compared Cohen’s d
Level 3 vs Level 4 3.477
Level 4 vs Level 5 4.277
Level 3 vs Level 5 6.523

TABLE II: Effect size between different classes computed
using Cohen’s d.

(a) Level 3 (b) Level 4

(c) Level 5

Fig. 8: Q-Q plots for the three groups at Levels 3 (a), 4 (b),
and 5 (c) support the null hypothesis for each group.

SDpooled =

√
|(n1 − 1) ∗ SD2

1|+ |(n2 − 1) ∗ SD2
2|

n1 + n2 − 2
(4)

and we then obtain Cohen’s d as:

d =
M2 −M1

SDpooled
(5)

As initially suggested by Cohen [41] and expanded by
Sawilowsky [42], a value of d = 0.8 means a large effect
size, and values of d = 1.2 and d = 2 represent respectively
very large and huge effect size. For our computed overall
synchronisation indices, we get the results summarised in table
II, which are all much larger than 2, thus supporting our
hypothesis of significant difference between the populations,
while also implying a high statistical power of the test despite
the low sample size [43]. These results were also corroborated
by running ANOVA 1-way test and Tukey HSD Test, with
similar results to support our hypothesis; we do not report
them here for brevity.

Next, we verify that it is reasonable to assume samples from
each single group to come from a normal distribution (null
hypothesis for each group). This allows us to model each group
by its distribution, in order to study the amount of overlap
between groups. Since our samples are generated by taking
several takes of two different katas from several different
athletes, the null hypothesis is all but a foregone conclusion.
We have ran a Shapiro-Wilk test [44], which returns p-values
of 0.635, 0.504, and 0.943 for Levels 3, 4 and 5, respectively.

0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Fig. 9: The Gaussians representing the ideal normal distribu-
tions of the three groups. Level 3 is represented in magenta
(left), level 4 in cyan (center) and level 5 in brown (right). The
area of overlap below different curves gives the probability
that an element is misclassified. Overlap between Level 3 and
Level 4 is tiny; while overlap between Level 5 and the other
two groups is nearly null.

Such large values allow us to say there is no evidence that
the null hypothesis can be discarded, and suggest that each
group may reasonably come from a normal distribution, but
data are too few to support a stronger claim. However, also the
Q-Q Plots depicted in Figure 8 show evidence that data are
well fit by straight lines in all three cases, thus supporting the
assumption that each group comes from a normal distribution.
Therefore, we proceed under this hypothesis.

We have computed the mean and variance of each group to
compare their distributions visually and numerically. Figure 9
shows the three Gaussians corresponding to such means and
variances, which are clearly well distinct. We have computed
the area of overlap of such Gaussians by using [45], in order
to estimate the probability that an element is misclassified:

• The Gaussian of Level 3 overlaps the other two for just
0.0032, hence an element of Level 3 is classified correctly
with probability 0.9968

• The Gaussian of Level 4 overlaps the other two for just
0.0032, hence an element of Level 3 is classified correctly
with probability 0.9968

• The overlap of the Gaussian of Level 5 with the other two
is below the precision of the method of computation that
we have used; hence an element of Level 5 is classified
correctly with probability 1 − ε where ε represents the
numerical accuracy of the method.

C. A basic classifier

On the basis of previous analysis, we define a basic classi-
fiier as follows: let µ3, µ4 and µ5 be the means of the Qtot

τ

indexes for the three groups of observed trials, respectively.
Given a new trial, let q be its Qtot

τ index. We classify the new
trial to belong to:

• Level 3 if q ≤ (µ3 + µ4)/2;
• Level 4 if q > (µ3 + µ4)/2 and q ≤ (µ4 + µ5)/2;
• Level 5 if q > (µ4 + µ5)/2.

Better thresholds can be obtained by computing the inter-
section points of Gaussians of consecutive groups (which is
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easily done with [45]); however, our data are so well separated
that we did not try a setting finer than the midpoint between
consecutive means.

We test the performance of our classifier by cross validation
through leave-one-out and bootstrap resampling. The leave-
one-out technique culls one of the samples, say s, builds the
classifier on the remaining samples and tries to classify s
through it. We repeated the test by culling in turn all data
and we obtained 100% of correct classifications.

The bootstrap resampling builds three new groups by ran-
dom sampling from each group, with replacement, the same
number of elements of the original group. Since resampling is
made with replacement, some data are sampled multiple times,
while some data remain out-of-bag. The classifier is built on
the resampled groups, and it is tested on the out-of-bag data.
We repeated the bootstrap resampling 100,000 times and we
tested the resulting classifiers on a total of over 1 million data
(out-of-bag). Also in this case, we obtained 100% of correct
classifications.

VIII. CONCLUSION AND FUTURE WORK

We have presented a method to estimate movement quality
in karate by studying how much the limbs are synchronised
during relevant motion phases. Our approach demonstrates to
be extremely robust on real examples consisting of MoCap
data from 32 performances by athletes from three different
levels of skill, as classified by experts in this martial art. A
basic classifier built on our analysis succeeds in 100% of
the subjects according to standard tests of cross validation,
suggesting strong correlation between the level of skill of an
athlete and her intra-personal synchronization.

Because of the lack of data, we could not test our approach
on more than three classes, but we believe that there is good
potential to apply the same approach also to several classes and
to larger datasets in which the separation between consecutive
classes is less sharp. Of course, we expect our method to
decrease its performances in matching human classification
on datasets that contain border line cases, for which even
classification by different experts may disagree. It should be
noted that our analysis is completely independent from any
assumptions on the data: all the recordings are treated in
the same way, independently of length, speed and specific
performance. We neither needed to tweak our method, nor
to bias data in any way in order to achieve the desired
classification. This makes our technique easily applicable with
little effort to other scenarios. One possible application is to
measure the level of synchronisation of movements of dancers.

Events detected with our multi-scale approach could be
used to derive also other measures of quality. For instance,
kata usually contain many sudden and fast movements, and
intuition suggests that experienced athletes are better at having
a cleaner transition when starting the movement and, most
important, when ending it. We plan to extend our analysis
to measure the level of ”cleanness” of motion and use it as
another way to discriminate between different levels of skill.
We are also working on the application of the same analysis
to the automated segmentation of different movements (e.g

dance movements): relevant peaks of acceleration, as detected
and ranked by the multi-scale analysis, give us a robust way
to find the beginning and end of each relevant movement;
also, the ranking among extracted peaks allows us to tune the
granularity of such segmentation.
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